
MIPT, spring camp 2016, day #2

Theme: sqrt-decomposition

March 28, Sergey Kopeliovich

Contents

1. Sqrt decomposition on tree 2

2. Sqrt decomposition on strings 2

3. Sqrt decomposition on array 3

4. Sqrt decomposition on array: split & rebuild 4

5. Sqrt decomposition on queries 6

1/6

1. Sqrt decomposition on tree

Consider a tree of 𝑛 ≤ 105 vertices. We have to perform two types of queries:

1. add(v,x) – all neighbours of the vertex v will get +x.
2. get(v) – what is value of the vertex v?

It’s easy to solve the problem in time 𝒪(
√
𝑛) per query. Lets call vertex light if its degree is less

than
√
𝑛, in other case vertex is heavy. How to maintain add(v,x)? If v is light, it’s easy. If v is

heavy, lets store x into bonus[v] – the value we have to add to all the neighbours of v. How to
maintain get(v)? Lets take value of the vertex and add bonus[i] for every heavy neighbour i of
the v.
The trick is "there are no more than 2

√
𝑛 heavy vertices in any tree".

∙ Exercise. Calculate number of triangles in directed graph in time 𝒪(𝐸
√
𝑉).

2. Sqrt decomposition on strings

Consider searching substrings 𝑠1, 𝑠2, . . . , 𝑠𝑘 of equal length 𝑙 in the string 𝑡. For each 𝑖 we are
interested, if 𝑠𝑖 is a substring of 𝑡. We can solve this problem in 𝒪(𝑙𝑘 + |𝑡|) time, using hash table
of polynomial hashes of the strings 𝑠𝑖. Here you may ask, why don’t we use Aho-Corasic? Lets
imagine, we just do not know this algorithm, but already heard about hashes and hash tables.

Let we have strings of arbitrary lengths. How to use our solution for previous problem? The idea of
sqrt decomposition helps. Lets denote summary length of all strings 𝑠𝑖 as 𝐿 then we may iterate all
small lengths (less than

√
𝐿) in time 𝒪(𝐿+ |𝑡|

√
𝐿). We have at most 𝒪(

√
𝐿) big strings of length

at least
√
𝐿, so summary working time of the solution "group the strings by its length and perform

each length in linear time" is also 𝒪(𝐿+ |𝑡|
√
𝐿).

∙ Exercise. You are given text 𝑡 and dictionary 𝐷. Check, if text is a concatenation of words from

the dictionary. If 𝐿 = max(|𝑡|,
∑︀
𝑤∈𝐷

|𝑤|) then there is solution in time 𝒪(𝐿
√
𝐿).

2/6

3. Sqrt decomposition on array

Consider an abstract problem “we have an array «𝑎» and we want to perform many different hard
queries on its subsegments”. Lets start with the simplest problem. Query #1: sum on the range.
Query #2: change 𝑎[𝑖]. Lets denote as [𝑓(𝑛), 𝑔(𝑛)] data structure which can perform the first type
queries in time 𝑓(𝑛) and can perform queries of the second type in time 𝑔(𝑛). For example, range
tree as well as Fenwick tree is [𝒪(log 𝑛),𝒪(log 𝑛)] data structure. Below we’ll describe [𝒪(1),𝒪(

√
𝑛)]

and [𝒪(
√
𝑛),𝒪(1)] data structures. Denote 𝑘 = ⌊

√
𝑛⌋.

Solution #0. Note, we may calculate partial sums of initial array sum[i+1]=sum[i]+a[i], sum
on the range [𝑙, 𝑟] is equal to sum[r+1]-sum[l], and to change any 𝑎[𝑖] we recalculate all the array
sum[]. Another way is do not precompute anything, we may calculate the sum of the range in
linear time. These are solutions in [𝒪(𝑛),𝒪(1)] and [𝒪(1),𝒪(𝑛)].

Solution #1 in [𝒪(𝑘),𝒪(1)]. Lets maintain array 𝑠, 𝑠[𝑖] is equal to sum of 𝑎[𝑗] for 𝑗 ∈ [𝑘𝑖..𝑘(𝑖+1)).
Query “sum on the range”: the range can be viewed as head + body + tail, where body consists of
big parts whose sums we already know. Head and tail are not longer than 𝑘.
Query “change 𝑎[𝑖]”: set(i,x) { s[i/k] += x-a[i]; a[i] = x; }

Solution #2 in [𝒪(1),𝒪(𝑘)]. Lets maintain the same array 𝑠, and partial sums on it. Lets also
maintain partial sums for each range [𝑘𝑖..𝑘(𝑖+1)). To change 𝑎[𝑖] we have to fully recalculate two
arrays of partial sums (sums of small part, sums of 𝑠). To get sum on the range, we may view it as
head + body + tail. For each of three parts we may get the sum in 𝒪(1) time.

Solution #3 in [𝒪(𝑘),𝒪(𝑘)]. Lets maintain partial sums sum[i+1]=sum[i]+a[i] and array of
changes, which have been applied to array since partial sums were calculated. Denote with array
as Changes. One change is pair ⟨𝑖, 𝑥⟩. It denotes operation a[i]+=x. Lets maintain property
|Changes| ≤ 𝑘. Query “sum on the range”: sum on the range [𝑙, 𝑟] in initial array was equal
to sum[r+1]-sum[l], in 𝒪(|Changes|) time we may calculate, how much it was changed. Query
“change 𝑎[𝑖]”: to set 𝑎[𝑖] := 𝑥, lets add to Changes the pair ⟨𝑖, 𝑥− 𝑎[𝑖]⟩, and put 𝑥 into 𝑎[𝑖]. If now
|Changes| > 𝑘 then build partial sums of current version of the array in time 𝒪(𝑛), and clear the
list Changes. Lets denote this operation 𝑟𝑒𝑏𝑢𝑖𝑙𝑑. Note we’ll call 𝑟𝑒𝑏𝑢𝑖𝑙𝑑 not so often. One time per
𝑘 queries. So amortized time of performing one query is 𝒪(𝑛

𝑘
) = 𝒪(

√
𝑛).

Last approach we’ll call “delayed operations” or “sqrt decomposition on queries”. This approach has
no advantages solving this task. But it will be useful later.

∙ Exercise. Queries: set(l,r,x) – set all the range. sum(l,r) – sum on the range.

3/6

4. Sqrt decomposition on array: split & rebuild

Lets solve more complicated task: we have four operations with the array

1. Insert(i, x) – insert 𝑥 on 𝑖-th position.
2. Erase(i) – erase 𝑖-th element of the array.
3. Sum(l,r,x) – calculate sum of elements greater than 𝑥 on the range [𝑙, 𝑟].
4. Reverse(l,r) – reverse the range [𝑙, 𝑟].

At first, imagine, we have only queries Sum(0,n-1,x). Notice, it is not query on the range, it is
query on whole array. Then we will maintain sorted array and partial sums on it. To answer the
query lets do binary search and get sum on the suffix. The time to build the structure is 𝒪(𝑛 log 𝑛)
(do sort), the time to answer one query is 𝒪(log 𝑛) (do binary search).

Lets solve full version of the problem. Main idea: in any moment we store our array, splitted into
some parts. For every part the structure described above is built. To do anything on range [𝑙, 𝑟],
lets do Split(r+1), Split(l). After it range [𝑙, 𝑟] is union of some parts. If amount of parts became
extermly big, rebuild whole our structure.

We have the array 𝑎[0..𝑛). We will maintain some partition of the array into ranges 𝑇 =
[𝐴1, 𝐴2, . . . , 𝐴𝑚]. For each range 𝐴𝑖 we store two versions – initial array and sorted array with
partial sums. We will maintain two properties: ∀𝑖 : |𝐴𝑖| ≤

√
𝑛 and 𝑚 < 3

√
𝑛. Initially lets split the

array into 𝑘 =
√
𝑛 ranges of length

√
𝑛. For each of 𝑘 ranges we’ll call operation build which sorts

the range and calculates partial sums. The time for each range is 𝒪(
√
𝑛 log 𝑛), the total time is

𝒪(𝑛 log 𝑛). Now lets describe the main operation Split(i), which returns such 𝑗, that 𝑖-the element
is the start of 𝑗-th range. If 𝑖 is not a start of a range, find 𝐴𝑗 = [𝑙, 𝑟), such that 𝑙 < 𝑖 < 𝑟, and split
it into two ranges 𝐵 = [𝑙, 𝑖) and 𝐶 = [𝑖, 𝑟). For ranges 𝐵 and 𝐶 call build, we’ve got new partition
of the array into ranges: 𝑇 ′ = [𝐴1, 𝐴2, . . . , 𝐴𝑗−1, 𝐵, 𝐶,𝐴𝑗+1, . . . , 𝐴𝑚]. Time to perform one Split(i)
is 𝒪(𝑘) + 𝒪(build(𝑛

𝑘
)), means if 𝑘 =

√
𝑛 time is 𝒪(

√
𝑛 log 𝑛). Here we assume 𝑇 stores not the

ranges, but links to it, so to “copy” one range we need only 𝒪(1) of time. We have Split(i). Now
lets express all other operations in terms of Split(i).

vector<Range*> T;

int Split(int i) { ... }

void Insert(i, x) {

a[n++] = x;

int j = Split(i);

T.insert(T.begin() + j, new Range(n-1, n));

}

void Erase(i) {

int j = Split(i);

split(i + 1);

T.erase(T.begin() + j);

}

int Sum(l, r, x) { // [l, r]

4/6

l = split(l), r = split(r + 1); // [l, r)

int res = 0;

while (l <= r)

res += T[l++].get(x); // binary search and use partial sums

return res;

}

To perform queries of type Reverse, we need to store additional flag “is the range reversed ”, imple-
mentation of Split(i) becomes bit more complicated, all other parts stay the same.

void Reverse(l, r) {

l = split(l), r = split(r + 1);

reverse(T + l, T + r)

while (l <= r)

T[l++].reversed ^= 1; // this range might be already "reversed"

}

We have the solution, which starts with 𝑘 =
√
𝑛 ranges, perform of each query may increase 𝑘 by at

most 2. After 𝑘 queries will have at most 3
√
𝑛 parts, at this moment lets rebuild whole the structure

in 𝒪(𝑛 log 𝑛) time. Amortized time of one rebuild is 𝑛 log𝑛
𝑘

=
√
𝑛 log 𝑛. In total our solution can

perform any query in amortized time 𝒪(
√
𝑛 log 𝑛).

We may speed up the solution. Note, Split(i) may be done in linear time, more precisely 𝒪(𝑘+ 𝑛
𝑘
),

rebuild may be also done in linear time, in 𝒪(𝑛). Let the number of ranges 𝑘 is equal to
√︀
𝑛/ log 𝑛,

amortized time to perform one query of type Sum is 𝒪(𝑆 + 𝐺 + 𝑅), where 𝑆 – time of Split(i), is
equal to 𝒪(𝑛

𝑘
+𝑘), 𝐺 – time of inner for-loop of function Sum, is equal to 𝒪(𝑘 log 𝑛), 𝐵 – amortized

time per one rebuild, is equal to 𝒪(𝑛
𝑘
). In total we get 𝒪(

√
𝑛𝑙𝑜𝑔𝑛) per query.

∙ Exercise. Queries:

reverse(l,r) – reverse the subrange.
increaseUpTo(l,r,x) – for all 𝑖 in [𝑙, 𝑟] perform a[i] = max(a[i], x).

5/6

5. Sqrt decomposition on queries

Example: extendable sorted array. The task is to maintain set of integers and process queries
1. add(x) – add number 𝑥 to the set.
2. count(l,r) – count number of elements with value from 𝑙 to 𝑟

If we had only count(l,r), the solution is to sort array and then “count(l,r) = upper_bound(r)

- lower_bound(l)”. How to add new elements? Lets store these new elements outside of long
sorted array, in special small sorted “array of new elements”. Lets also merge these to parts each√
𝑛 time. Merging we may do in 𝒪(𝑛 +

√
𝑛 log 𝑛) (sort the small part, merge parts). Our result:

time(add) = 𝒪(
√
𝑛) amortized time. add(x) inserts into small part and one time per

√
𝑛 queries

merge parts in 𝒪(𝑛); time(count) = 𝒪(log 𝑛 + log 𝑛). count(l,r) does binary search by the big
sorted array and by the small sorted array.

This solution has some variations:
1. Small array is not sorted. Then time(add) = time(count) = 𝒪(

√
𝑛).

2. Do not merge arrays, just resort all data each
√
𝑛 log 𝑛 time.

Then time(add) = time(count) = 𝒪(
√
𝑛 log 𝑛).

The second variation is worse, why we talk about? Because this result may be used for any structure
T with interface T.build(), T.get(). Let 𝑓(𝑛) = time(T.build) ≥ 𝑛, lets store new elements in
unsorted array and each

√︀
𝑓(𝑛) time. Then summary time of all builds is 𝒪(𝑓(𝑛)3/2) and each get

operation works in time 𝒪(
√︀

𝑓(𝑛) + time(T.get)).

∙ Dynamic connectivity

We have an undirected graph. We have to perform queries of three types:
1. Add edge
2. Delete edge
3. Check, if two vertices are connected.

Let number of queries is 𝑛, number of vertices is no more than 𝑛, than all the queries can be easily
answered in 𝒪(𝑛

√
𝑛) time in offline mode. How to process pack of

√
𝑛 queries in 𝒪(𝑛)? Each query

fixes set of edges and forms a graph.

1. Lets fix all the edges that are contained in all
√
𝑛 graphs.

2. dfs: find components of the graph, formed by selected edges. For each vertex 𝑣 we know 𝑐[𝑣]
– number of its component.

3. Answer query(𝑎,𝑏): check, if 𝑐[𝑎] and 𝑐[𝑏] are in one component of graph formed, by new
𝒪(

√
𝑛) edges. Of course, we need 𝒪(

√
𝑛) of time to check it.

To check if 𝑎 and 𝑏 are in one component, you may use dfs. As usual. But DSU is faster ;-)

∙ Exercise. Let we have a set of points on the plane. You have to add new points and answer

get(a,b) = max𝑖(𝑎𝑥𝑖 + 𝑏𝑦𝑖), in other words, the fartherst point along direction ⟨𝑎, 𝑏⟩.
∙ Exercise. Queries on tree: minimum on path [𝑎, 𝑏], add new leaf with parent 𝑝.

6/6

	1. Sqrt decomposition on tree
	2. Sqrt decomposition on strings
	3. Sqrt decomposition on array
	4. Sqrt decomposition on array: split & rebuild
	5. Sqrt decomposition on queries

