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Abstract: We present a short proof of the theorem of Tutte that every
planar 3-connected graph has a drawing in the plane such that every vertex
which is not on the outer cycle is the barycenter of its neighbors. Moreover,
this holds for any prescribed representation of the outer cycle.
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1. INTRODUCTION

We define a spring graph as follows. Let G be a connected graph. We select a

cycle C in G, and, for each edge e not in C, we let ce be a positive real number

which we call the spring constant of e. We then define a spring representation of

this spring graph as follows. First, let C0 be a representation of C as a convex

polygon in the plane. Each other vertex of G is represented by a point in the

plane, and each edge is the straight line segment joining its ends. The energy of

the edge e ¼ xy is defined as cel
2
e , where le is the length of e. The energy of the

representation of G is the sum of the energies of the edges not in C. As the

energy is a convex function of the vertex coordinates, there is precisely one

representation which minimizes the energy. This representation is called a spring
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representation of the spring graph G with respect to the cycle C. If G has a block

distinct from the block containing C, then that block is clearly represented by a

single point. Therefore we shall assume that G is 2-connected. If G has a set of

two vertices u; v such that some component of G� u� v has no vertex in C, then

that component is represented by the straight line segment between u and v.

Therefore, the 3-connected case is the most interesting.

A plane representation of a graph is a drawing of a graph in the plane such that

distinct vertices are represented by distinct points, the edges are straight line

segments, and two edges intersect only in a common end.

Tutte [1] proved that, if G is planar and 3-connected, and C is any facial cycle

(i.e., C is a cycle bounding a face), then any spring representation of G with

respect to C is a plane represention of G. This is a representation with nice

features: all faces are bounded by convex polygons, and if C is a regular polygon,

then any isomorphism of G which takes C to C and preserves spring constants,

can be extended to an isometry of the plane.

Tutte’s proof of this remarkable result is based on the equations expressing the

equilibrium conditions (see below) and makes repeated use of the fact that K3;3

is nonplanar. We shall here present an alternative short proof based only on

elementary continuity and a reduction lemma for 3-connected graphs.

2. THE SPRING THEOREM

As the energy is a convex function of the coordinates of the vertices, it has only

one stationary point. By putting all partial derivatives equal to zero, we conclude

that the total force acting on a vertex p of the spring graph but not in C is zero,

where the force of an edge pq acting on p is the vector from p to q multiplied by

the spring constant cpq. This is the equilibrium condition at a vertex. Clearly, if

the sum of a collection of vectors starting at a vertex p is zero, then no angle

between consecutive vectors is greater than 180 degrees. From this follows the

following observations: first, no vertices are represented by points outside C.

Second, if the spring representation is a plane representation, then all faces are

bounded by convex polygons. Finally, if an interior vertex p of a spring graph G

has degree 2, and the two edges incident with p have spring constants c1; c2,

respectively, then the representation of G is also the spring graph representation

of the graph obtained from G by replacing p and its two incident edges with one

edge with spring constant c1c2=ðc1 þ c2Þ.
We shall apply the following slight extension of a reduction lemma due to

Barnette and Grünbaum [2].

Lemma 2.1. Let C be any cycle of a 3-connected graph G distinct from K4.

Then G has an edge e not in C such that G� e is a subdivision of a 3-connected

graph unless C has length 3, and G is obtained from C by adding a set of

independent vertices each joined to precisely the three vertices of C.
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Proof. A short proof is given in Reference [3]. For the sake of completeness

we sketch the idea. We extend successively C to a bigger subgraph such that the

current graph is always a subdivision of a 3-connected graph. If C has length 3

and is contained in a K4, then we first add all those vertices which are joined to all

three vertices of C, and we add all edges from these vertices to C. Otherwise, we

use Menger’s theorem to extend C to a subdivision of K4. Then we successively

add shortest paths to the current graph such that, at each stage, we have a

subdivision of a 3-connected graph. If the current graph is 3-connected, we add

instead a new vertex and three paths from that vertex to the current graph. If the

last step is the addition of a path, then this path has length 1 and can play the role

of e. If the last step is the addition of a vertex z of degree 3 with neighbors

x1; x2; x3 (say), then we may add xizxiþ1 followed by zxiþ2 unless xixiþ1 is present

in G. If all three edges xixiþ1 are present in G, then we may assume one of them,

say xjxjþ1, is not an edge of C (since otherwise, z would have been added in the

first step) and now xjxjþ1 can play the role of e. &

Theorem 2.1. Let C be any facial cycle of a 3-connected planar graph G. For

each edge e not in C, let ce be a positive real number. Let C0 be a representation

of C as a convex polygon in the plane. Let G0 be the spring representation of G

with spring constants ce, e 2 EðGÞnEðCÞ. Then G0 is a plane graph.

Proof. The proof is by induction on the number of edges of G. The theorem

is easily verified for K4 so we proceed to the induction step. As G is planar and C

is a facial cycle in G, the last statement of Lemma 2.1 does not hold. By Lemma

2.1, G has an edge e not in C such that G� e is a subdivision of a 3-connected

graph H. In other words, G is obtained from H by adding e possibly after

subdividing one or two edges. If h is an edge of H which corresponds to two

edges i; j in G, then we let cicj=ðci þ cjÞ be the spring constant of h. If h is an edge

in H which is also an edge in G, then we let ch be the spring constant of h in H.

By the induction hypothesis, the spring representation H0 of H is a plane graph.

For each positive real number t, let Gt be the spring graph which is isomorphic to

G and whose spring constants are the same as those in G except that e has the

spring constant t. Let G0
t be the spring representation of Gt. If x is a vertex of G,

then we denote by xt the vertex of G0
t which represents x. For each vertex x in G,

xt is a continuous function of t. Moreover, G0
t converges to H0 (with the edge e

added) as t tends to 0, and G0
t converges to G0 as t tends to ce. Both of these

statements are easy consequences of the uniqueness of the spring representation

combined with the fact that if a bounded real function f defined on a real interval

has no limit as t tends to t0, then there exist two sequences of real numbers both

tending to t0 such that the image sequences (under f ) tend to distinct numbers.

Now suppose (reductio ad absurdum) that G0 is not plane. Then there exists a

smallest t0 such that G0
t0
¼ M is not plane. Informaly, t0 is the first time G0

t is not a

drawing of G.

We claim that t0 is positive. In other words, if we add e to the plane graph H0,
then we obtain a plane graph. First, observe that the two ends of e are on the same
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facial cycle of H0. (They are clearly on the same facial cycle of a plane graph

obtained from a plane representation of G by deleting e. But Whitney’s theorem

on uniquenes of plane representations of 3-connected planar graphs says that the

facial cycles are the same in all plane representations of H.) Second, all faces of

H0 are bounded by convex polygons. Moreover, these polygons are strictly convex

in the sense that all angles around a vertex are less than 180 degrees. (Again, this

is a consequence of the equilibrium condition mentioned in the ‘‘Introduction.’’)

If G� e has two vertices of degree 2, then they must be the ends of e, and

therefore they are not on the same edge in H0, and so it is possible to add e to H0

and preserve a plane representation. Therefore t0 6¼ 0.

As M is a finite union of straight line segments, we may think of M as a plane

graph (which is not isomorphic to G) whose vertex set consists of all points xt0
where x is a vertex of G. (As edges do not cross we do not introduce new

vertices.) Also, all faces of M are bounded by convex polygons, because M is a

spring representation. If x is a vertex of G we now write xM instead of xt0 .

Consider two edges xy and uv with no common end in G. The minimality of t0
implies that the edges xMyM and uMvM do not cross in M. But, some (or all) of

the vertices xM; yM; uM; vM may coincide. It is also possible that xM; yM; uM are

distinct and that uM is a point on the edge xMyM. It is also possible that

xM; yM; uM; vM are all distinct and that the edges xMyM and uMvM intersect and are

contained in a common straight line. However, we shall prove that none of these

degeneracies occur. We first prove that no interior vertex of G is represented by a

vertex of C in M. More precisely:

If c is a vertex of C and x is a vertex of G� C, then xM 6¼ cM: ð1Þ

Proof of (1). Suppose (reductio ad absurdum) that (1) is false. Let V be the

set of vertices x in G� C such that xM ¼ cM. Since c is not a cutvertex of G, some

x in V has a neighbor not in V [ fcg. But then the total force acting on x is non-

zero (as it is the sum of non-zero vectors all strictly on one side of a line).

This contradiction proves (1). &

If cd is an edge of C and x is a vertex of G� C, then

xM is not a point on cMdM: (2)

Proof of (2). Suppose (reductio ad absurdum) that (2) is false. We repeat the

proof of (1) with a minor modification: let V be the set of vertices x in G� C such

that xM is a point on cMdM. By (1), xM is distinct from each of cM; dM. Since

G� fc; dg is connected, some x in V has a neighbor not in V [ fc; dg. But then

the total force acting on x is non-zero.

This contradiction proves (2). &

If p is a vertex of degree at least 3 in M, then there exists

precisely one vertex x in G such that xM ¼ p (3)
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Proof of (3). Only the uniqueness needs a proof, and by (1) and (2), we may

assume that p is in the interior of C. Let V be the set of vertices x in G� C such

that xM ¼ p, and suppose (reductio ad absurdum) that V has at least two

elements. We claim that there exists a line L through p and there exists some

vertex x in V such that all edges of G incident with x are contained in the

same closed halfspace of L, and moreover, at least one edge of G incident with

x goes into the open halfspace. Once this claim has been established, we obtain

a contradiction as in (1) and (2), because then the total force acting on x is

non-zero.

So in order to complete the proof of (3) it suffices to prove the claim. Consider

first any vertex x in V having a neighbor not in V . As the total force acting on x is

zero, there are at least two edges incident with x and going out from V . The edges

incident with x and going out from V divide a small disc around p in angular

sections. If one of these is strictly greater than 180 degree, then x satisfies the

claim. If they are all strictly smaller than 180 degree, then we consider any vertex

y in V which is distinct from x and which has a neighbor outside V . (Such a vertex

exists because V has at least two elements, and x is not a cutvertex of G.) As no

edge incident with y crosses an edge incident with x in Gt when t < t0, it follows

that the claim is satisfied with y instead of x. Finally, if two consecutive edges

incident with x form an angle of 180 degree in M, then we use the assumption that

p has degree at least 3 in M. We consider a third edge g of M incident with p, and

we let y be any vertex in V which is incident with g (or, more precisely, y is

incident with an edge in G which in M is represented by g). That vertex y satisfies

the claim, and the proof of (3) is complete. &

If u; y; v are vertices in G, such that uM; yM; vM are distinct,

uv is an edge of G, and yM is a point on the edge uMvM;
then yM has degree 2 in M: (4)

Proof of (4). Suppose (reductio ad absurdum) that (4) is false. We repeat the

proof of (3) with a minor modification: let V be the set of vertices x in G� C such

that xM ¼ yM, and let L be the line containing the edge uMvM. Repeating the

argument of (3) completes the proof of (4). &

We are now ready for the final contradiction. Combining (1–4) with the

assumption that M is not a plane representation of G implies that M has at least

one vertex of degree 2. In other words, M has a path P : p1p2 � � � pk, k � 3, such

that p1; pk have degree at least 3 in M, and all the intermediate vertices have

degree 2 in M. Moreover, the path P is in M represented by a straight line

segment which has no point, except possibly the ends, in common with C. By (3),

G has precisely one vertex x such that xM ¼ p1 and precisely one vertex y such

that yM ¼ pk. By (4), G has no edge going through xM. More precisely, G has no

edge uv such that xM; uM; vM are distinct and xM is a point on the edge uMvM. A

similar statement holds for yM. But then every path in G from x2 to C (where x2 is
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a vertex represented by p2) contains one of x; y which contradicts the assumption

that G is 3-connected.

This completes the proof. &
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