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Abstract.

Let G be any n-vertex planar graph. We prove that the vertices

of G can be partitioned into three sets A, B, C such that no edge

joins a vertex in A with a vertex in B , neither A nor B contains

more than 2n/3 vertices, and C contains no more than 2&& vertices.-.

We exhibit an algorithm which finds such a partition A, B, C in O(n)

time.
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1. Introduction.

A useful method for solving many kinds of combinatorial problems is

"divide-and-conquer" [l]. In this method the problem of interest is

divided into two or more smaller problems. The subproblems are solved

by applying the method recursively, and the subproblem solutions are

combined to give the solution to the original problem. Three things are
. .

necessary for the success and efficiency of divide-and-conquer:

(i) the subproblems must be of the same type as the original and

independent of each other (in a suitable sense); (ii) the cost of

solving the original problem given the solutions to the subproblems must

be small; and (iii) the subproblems must be significantly smaller than

the original. One way to guarantee that the subproblems are small is to

make them all roughly the same size [l].

We wish to study general conditions under which the divide-and-conquer

approach is useful. Consider problems which are defined on graphs. Let

S be a class of graphs*-/ closed under the subgraph relation (i.e., if

Gl E S and G2 is a subgraph of Gl , then G2eS ). An f(n) -separator

theorem for S is a theorem of the following form:

There exist constants a < 1 , f3 >0 suchthatif G is any

n-vertex graph in S , the vertices of G can be partitioned

into three sets A, B, C such that no edge joins a vertex in A
e

with a vertex in B , neither A nor B contains more than on

vertices, and C contains no more than @f(n) vertices.

If such a theorem holds for the class of graphs S , and if the appropriate

vertex partitions A, B, C can be found fast, then a n-umber of problems

defined on graphs in S can be solved efficiently using divide-and-conquer.

For a given graph G in S , the sets A and B define the subproblems.

The cost of combining the subproblem solutions is a function of the size

of C (and thus of f(n) ).
*
-/ The appendix contains the graph-theoretic definitions used in this paper.
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Previously known separator theorems inciude the following:

(A) Any n-vertex binary tree can be separated into two subtrees, each with

no more than 2n/3 vertices, by removing a single edge. For an

application of this theorem, see [13].

(B) Anyn-vertextree can be divided into two parts, each with no more

than 2n/3 vertices, by removing a single vertex.

(C) A grid graph is any subgraph of the infinite two-dimensional square grid

illustrated in Figure 1. A &-separator theorem holds for the class

of grid graphs. For an application, see [5].

(D) A one-tape Turing machine graph [16] is a graph representing the

computation of a one-tape Turing machine. A &-separator theorem

holds for such graphs. For an application, see [15].

One might conjecture that the class of all suitably sparse graphs has

an f(n) -separator theorem for sOme f(n) = o(n) . However, the following

result of Erdijs, Graham, and Szemer&i [4] shows that this is not the case,

Theorem C. For every E > 0 there is a positive constant c = C(E) such

f*that almost all graphs G with n = (2+e)k vertices and ck edges

have the property that after the omission of any k vertices, a connected

component of at least k vertices remains.

f
*

By "almost all" we mean that the fraction of graphs possessing the
property tends with increasing n to one.
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Although sparsity by itself is not enough to give a useful separator

theorem, planarity is. In Section 2 of this paper we prove that a

Ifn -separator theorem holds for all planar graphs. In Section 3 we provide

a linear-time algorithm for finding a vertex partition satisfying the

theorem. This algorithm and the divide-and-conquer approach cambine to

give efficient algorithms for a wide range of problems on planar graphs.

Section 4 mentions some of these applications, which we shall discuss more

fully in a subsequent paper.



2. Separator Theorems.

To prove our results we need to use three facts about planarity.

Theorem 1 (Jordan Curve Theorem [6]). Let C be any closed curve in

the plane. Removal of C divides the plane into exactly two connected

regions, the "inside" and the "outside" of C .

Theorem 2 [7]. Any n-vertex planar graph with n 2 3 contains no more

than 3n-6 edges.

Theorem 3 (Kuratowski?s  Theorem [12]). A graph is planar if and only if

it contains neither a complete graph on five vertices (Figure 2(a)) nor

a complete bipartite graph on two sets of three vertices (Figure 2(b))

as a generalized subgraph.

[Figure 21

From Kuratowski's  Theorem we can easily obtain the following lemma

and its corollary.

Lemma 1. Let G be any planar graph. Shrinking any edge of G to a

single vertex preserves planarity.

Proof. Let G* be the shrunken graph, let (x1,x2) be the edge shrunk,

and let x be the vertex corresponding to x1 and x2 in G* . If G*

: is not planar then G* contains a Kuratowski graph as a generalized

subgraph. But this subgraph corresponds to a Kuratowski  graph which is

a generalized subgraph of G . Figure 3 illustrates the possibilities. 0

[Figure 31



Corollary 1. Let G be any planar graph. Shrinking any connected

subgraph of G to a single vertex preserves planarity.

Proof. Immediate from Lemma 1 by induction on the number of vertices

in the subgraph to be shrunk. 0

In some applications it is useful to have a result more general than

the kind of separator theorem described in the introduction, We shall

therefore consider planar graphs which have non-negative costs on the

vertices. We shall prove that any such graph can be separated into two

parts, each with cost no more than two-thirds of the total cost, by

removing 06 > vertices. The desired separator theorem is the special

case of equal-cost vertices.

Lemma 2. Let G be any planar graph with non-negative vertex costs

summing to no more than one. Suppose G has a spanning tree of radius r .

Then

such

nor

2r+l

the vertices of G can be partitioned into three sets A, B, C ,

that no edge joins a vertex in A with a vertex in B , neither A

B has total cost exceeding 2/3 , and C contains no more than

vertices, one the root of the tree.

Proof. Assume no vertex has cost exceeding l/3 ; otherwise the lemma is

true. Rnbed G in the plane. Make each face a triangle by adding a

suitable number of additional edges. Any non-tree edge (including each

of the added edges) forms a simple cycle with some of the tree edges. This

cycle is of length at most 2r+l if it contains the root of the tree, at

most 2r-1 otherwise. The cycle divides the plane (and the graph) into

two parts, the inside and the outside of the cycle. We claim that at

least one such cycle separates the graph so that neither the inside nor



the outside contains vertices whose total cost exceeds Z/3 , This

proves the lemma.

Proof of claim. Let (x,z) be the non-tree edge whose cycle minimizes

the maximum cost either inside or outside the cycle. Break ties by

choosing the non-tree edge whose cycle has the smallest number of faces

on the same side as the maximum cost. If ties remain, choose arbitrarily.

Suppose without loss of generality that the graph is embedded so

that the cost inside the (x,z) cycle is at least as great as the cost

outside the cycle. If the vertices inside the cycle have total cost not

exceeding 213 t the claim is true. Suppose the vertices inside the cycle

have total cost exceeding Z/3 . We show by case analysis that this

cases.

contradicts the choice of (x,z) . Consider the face which has (x,z)

as a boundary edge and lies inside the cycle. This face is a triangle;

let y be its third vertex. The properties of (x,y) and (y,z)

determine which of the following cases applies. Figure 4 illustrates the

[Figure 43

) Both (x,y) and (y,z) lie on the cycle. Then the face (x,y,z)

is the cycle, which is impossible since vertices lie inside the

cycle.

(2) one of (X,Y) and (y,z) (say (x,y) ) lies on the cycle. Then

(Y., 4 is a non-tree edge defining a cycle which contains within it

the same vertices as the original cycle but one less face. This

contradicts the choice of (x,z) .



(3) Neither (x,y) nor (y,z) lies on the cycle.

(a) Both (x,y) and (y,z) are tree edges. This is impossible

since the tree itself contains no cycles.

w One of (X,Y> and (y,z) (say (x,y) ) is a tree edge. Then

( >C

(YJ 4 is a non-tree edge defining a cycle which contains one

less vertex (namely y ) within it than the origir&L cycle.

The inside of the (y,z) cycle contains no more cost and one

less face than the inside of the (x,z) cycle. Thus if the

cost inside the (y,z) cycle is greater than the cost outside

the cycle, (y,z) would have been chosen in place of (x,z) .

On the other hand, suppose the cost inside the (YJ 4

cycle is no greater than the cost outside. The cost outside

the (y,z) cycle is equal to the cost outside the (x,z)

cycle plus the cost of y . Since both the cost outside the

(x,z) cycle and the cost of y are less than l/3 , the cost

outside the (y,z) cycle is less than Z/3 , and (y,z) would

have been chosen in place of (x,z) .

Neither (x,y) nor (y,z) is a tree edge. Then each of (x,y)

and (y,z) defines a cycle, and every vertex inside the (x,z)

cycle is either inside the (x,y) cycle, inside the (y,z)

cycle, or on the boundary of both. Of the (x,y) and (y,z)

cycles, choose the one (say (x,y) ) which has inside it more

total cost. The (x,y) cycle has no more cost and strictly

fewer faces inside it than the (x,z) cycle. Thus if the cost

inside the (x,y) cycle is greater than the cost outside,

(x,y) would have been chosen in place of (x,z) .



On the other hand, suppose the cost inside the b, $7

cycle is no greater than the cost outside. Since the inside

of' the (x,z) cycle has cost exceeding q3 I t-he (XJY)

cycle and its inside together have cost exceeding l/3 , and

the outside of the (x,y) cycle has cost less than 2/3 .

Thus (x,y) would have been chosen in place of (x,z) .

Thus all cases are impossible, and the (x,z) cycle satisfies the claim. 0

Lemma 3. Let G be any n-vertex connected planar graph having non-negative

vertex costs summing to no more than one. Suppose that the vertices of

G -are partitioned  into levels according to their distance from some

vertex v , and that L(a) denotes the number of vertices on level p .

If r is the maximum distance of any vertex from v , let r+l be a.n

additional level containing no vertices. Given any two levels Bl and a2

such that levels 0 through Pl-1 have total cost not exceeding 2/3 and

levels ~~i-1 through r+l have total cost not exceeding 213 f it is

possible to find a partition A, B, C of the vertices of G such that

no edge joins a vertex in A with a vertex in B , neither A nor B

has total cost exceeding 2/3 , and C contains no more thane

L(Ll)+ L(12)+max[0, 2(12-al-l)] vertices.

- Proof. let A be all vertices on levels.- If I1 > I- 2' 0 through Ll-l ,

B all vertices on levels al+1 through r , and C all vertices on

level Pl . Then the lemma is true. Thus suppose ll < B2 . Delete the

vertices in levels 5 and I2 from G . This separates the remaining

vertices of G into three parts (all of which may be empty): vertices

on levels 0 through al-l, vertices on levels al+1 through 12-1 ,
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and vertices on levels i2+1 and above. The only part which can have

cost exceeding 2/3 is the middle part,

If the middle part does not have cost exceeding 2/3 , let A be the

most costly part of the three, let B be the remaining two parts, and let

C be the set of vertices on levels ll and 12 . Then the lemma is

true.

Suppose the middle part has cost exceeding 2/3 . Delete all vertices

on levels I2 and above and shrink all vertices on levels pl and below

to a single vertex of cost zero. These operations preserve planarity by

Corollary 1. The new graph has a spanning tree of radius 12-Pl-1 whose

root corresponds to vertices on levels ll and below in the original

graph.
--_

Apply Lemma 2 to the new graph. Let A*, B*, C* be the resulting

vertex partition. Let A be the set among A* and B* having greater

cost, let C consist of the vertices on levels
5 and 1 2 in the original

graph plus the vertices in C* minus the root of the tree, and let B

contain the remaining vertices in G . By Lemma 2, A has total cost

not exceeding 213 . But AUC* has total cost at least l/3 , so B

also has total cost not exceeding 2/3 . Furthermore C contains no
-
more than L(11)+L(82)+2(12-Pl-1) vertices. Thus the lemma is true. 0

Theorem 4. Let G be any n-vertex planar graph having non-negative

vertex costs summing to no more than one. Then the vertices of G can

be partitioned into three sets A, B, C such that no edge joins a vertex

in A with a vertex in B , neither A nor B has total cost exceeding

q3 3 and C contains no more than 2, 2& vertices.d-
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Proof. Assume G is connected. Partition the vertices into levels

according to their distance from some vertex v . Let L(1) be the

number of vertices on level 1 . If r is the maximum distance of any

vertex from v , define additional levels -1 and r+l conttining no

vertices.

Let R, be the level such that the sum of costs in levels 0 through

,el-1 is less than l/2 , but the sum of costs in levels 0 through $

is at least l/2 . (If no such R, exists, the total cost of all vertices

is less than l/2 , and B = C = fl satisfies the theorem.) Let k be

the number of vertices on levels 0 through I1 ' Find a level p. such

that lo 5 Bl and IL(RO)(  +2(yo) 5 2&

that al+1 <=I2 and- Il;(a2)I +2(12-p1-1) 5

. Find a level f2 such

2&z. , If two such levels

exist, then by Lemma 3 the vertices of G can be partitioned into three

sets A, B, C such that no edge joins a vertex in A with a vertex in B

neither A nor C has cost exceeding 2/3 , and C contains no more than

2(& + &j vertices. But 2(& + Jn-k) _< 2(~77+ &p) = 2$2&k

Thus the theorem holds if suitable levels lo and I2 exist.

Suppose a suitable level a, does not exist. Then, for i < PI ,

L(i) 1 22/k -2(Ll-i) . Since L(0) = 1 , this means 1 > 2,JI;-25,-
e

a n d  11+1/2  > &. Thus I1 = L.l,+1/2J > L&J 7 and

5 5
-k= C L(i) > C

i=O - i= Rl- L’\rkJ
P&-2$-i)  2 (4&-2p&)(L&~+1)/2  2

& (L&J+l)  > k . This is a contradiction. A similar contradiction

arises if a suitable level l2 does not exist. This completes the

proof for connected graphs.
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Now suppose G is not connected. Let Gl,G2,...,Gk be the connected

components of G, with vertex sets Vl,V2, l . ., 'k ' respectively. If no

connected component has total vertex cost exceeding l/3 , let i be the

minimum index such that the total cost of-. V,UV,U... UVi exceeds l/3 .

Let A = VlUV2U... UVi 1 let B = Vi+lUVi+2U~~~UVk  > and let C = $ l

Since i is minimum and the cost of Vi does not exceed l/3 , the cost

of A does not exceed 2/3 . Thus the theorem is true.

If some connected component (say Gi ) has total vertex cost between

l/3 and 2/3 1 let A = Vi y B = VlU8.0 UVi-lUVi+lU.~.  Uvk 9 ad

c .= $ Then the theorem is true.

Finally, if scnae connected component (say Gi ) has total vertex

cost exceeding 2/3 , apply the above argument to Gi . Let A*, B*> C*

be the resulting partition. Let A be the set among A* and B* with

greater cost, let C = C* , and let B be the remaining vertices of G .

Then A and B have cost not exceeding 2/3 and the theorem is true,

This proves the theorem for all planar graphs. In all cases the

separator C is either empty or contained in only one connected component

of G. 0

Corollary 2 (&Y-Separator Theorem). Let G be any n-vertex planar

graph. The vertices of G can be partitioned into three sets A, B, C

such that no edge joins a vertex in A with a vertex in B , neither

A nor B contains more than 2n/3 vertices, and C contains no more

than 2&g vertices.

Proof. Assign to each vertex of G a cost of l/n . The corollary

follows from Theorem 4. il



It is natural to ask whether the constant factor of 2/3 in

Theorem 1 can be reduced to l/2 if the constant factor of 2.~5 is

allowed to increase. The answer is yes.

Corollua. Let G be any n-vertex planar graph having non-negative

vertex costs summing to no more than one. Then the vertices of G can

be partitioned  into three sets A, B, C such that no edge joins a vertex in

A with a vertex in B , neither A nor B has total cost exceeding l/2 ,

and C contains no more than
2\/-i& vertices.
1-m

Proof. Let G = (V,E) be an n-vertex planar graph. We shall define

sequences of sets (Ai) Y (Bi) Y (Ci)  9 (Di) SUCh that

( >i Ai , Bi , Ci , Di partition  V .

(ii) No edge joins Ai with Bi , Ai with Di , or Bi with Di .

(iii) The cost of Ai is no greater than the cost of Bi and the cost

of B.1 is no greater than the cost of AiUCiUD. .1

Civ> IDi 1 5 21Di-lj /3 ’

Let % = B. = Co = 6 , Do = V . Then (ij-(iv) hold. If %,1 ,

Bi-1' 'i-1 ' Di-l have been defined and Di 1 # $ , let G* be the

- subgraph of G induced by the vertex set Diwl . Let A* , B* , Cx- be

a vertex partition  satisfying Corollary 2 on G* . Without loss of

_ generality, suppose A* has no more cost than B* . Let Ai be the set

among Ai-1 U A* .y Bi-l with less cost, let Bi be the set among

Ai-lUA* ' Bi-l with greater cost, let C. = C
1 i-lU’* ? and let Di = B* .

Then (i), (ii), (iii), and (iv) hold for Ai , Bi , Ci , Di .

Let k be the largest index for which plc , s , Ck , Dk are defined.

Then Dk = $ . Let A = % , B = Bk , C = Ck . BY (i), A, BY C
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partition V . By (ii), no edge joins a vertex in A with a vertex in B ,

By (iii), neither A nor B has cost exceeding l/2 . By (iv), the total

number of vertices in C is bounded by E 2&G (~/3)~/~ = 2'6L . c]
.1= 0 1-m

Another natural question is whether graphs which are "almost" planar

have a I$I1 -separator theorem. The finite element method of numerical

analysis gives rise to one interesting class of almost-planar graphs.

We shall extend Theorem 4 to apply to such graphs.

A finite element graph is any graph formed from a planar embedding

of a planar graph by adding all possible diagonals to each face. (The

finite element graph has a clique corresponding to each face of the

embedded planar graph.) The embedded planar graph is called the skeleton

of the finite element graph and each of its faces is an element of the

.finite element graph.

Theorem 5. Let G be an n-vertex finite element graph with non-negative

vertex costs summing to no more than one. Suppose no element of G has

more than k boundary vertices. Then the vertices of G can be

partitioned into three sets A, B, C such that no edge joins a vertex

‘in A with a vertex in B , neither A nor B has total cost exceeding

2/3 , and C contains no more than 4Lk/2 J 6 vertices.

ProoTf. Let G* be the skeleton of G . Form G** from G* by inserting

one new vertex into each face of G* containing four or more vertices

and connecting the new vertex to each vertex on the boundary of the face.

Then G** is planar. Apply Theorem 4 to G** . Let A**, B**, C** be

the resulting vertex partition. This partition satisfies the theorem

except that certain edges in G but not in G** may join A** and B** .

14



These edges are diagonals of certain faces of G* ; call these bad faces.

Each bad face must contain one of the new vertices added to G* to form

G** , and this vertex must be in C** .

Form G from C** by deleting all new vertices and adding to G** ,

for each bad face, either the set of vertices in A** on the boundary of

the bad face, or the set of vertices in B** on the boundary of the bad

face, whichever is smaller. Let A be theremainingold vertices in A**

and let B** be the remaining old vertices in B"" . Then no edge in G

joins A and B , neither A nor B contains more than 2n/3 vertices,

and C contains no more than 2& Lk/2 J t/x vertices, where a is

the nwnber of faces of G* containing four or more vertices. Using

Euler's theorem, it is not hard to show that the number of faces of G*

containing four or more vertices is at most n-2 . Thus ICI 2 Lk/zJ& >

and the theorem is true. a

Corollary 4. Let G be any n-vertex finite element graph. Suppose no

element of G has more than k boundary vertices. The vertices of G

can be partitioned into three sets A, B, C such that no edge joins a

vertex in A with a vertex in B , neither A nor B contains more

than 2n/3 vertices, and C contains no more than 4Lk/2 J & vertices.
-

The last result of this section shows that Theorem 4 and its

. corollaries are tight to within a constant factor; that is, if

f(n) = 0(&j , no f(n) -separator theorem holds for planar graphs.

15



Theorem 6. For any k , let G = (V,E) be a kxk square grid graph

(a kxk square section of the infinite grid graph in Figure 1). Let

A be any subset of V such that m < \A\ 5 n/2 , where n = k2

and a is a positive constant less than l/2 . Then the number of

vertices in V-A adjacent to some vertex in A is at least

k*min(1/2 , 61 .

Proof. Without loss of generality, suppose that the number r of rows

of G which contain vertices in A is no less than the number c of

columns of G which contain vertices in A . Then m

and r> ak.-d--

If r* is the-nmber of rows of G which contain

in A, then kr* 5 IA\ 5 n/2 , and r* 5 k/2 . If

only vertices

r* = 0 , then

IA\ >r>&k. If r* + 0 , then r = k and IA\ > r-r* = k-r*

>k/2. c3-

It is an open problem to determine the smallest constant factor

which can replace 245 in Theorem 4.

16



3. An Algorithm for Finding a Good Partition.

The proof of Theorem 4 leads to an algorithm for finding a vertex

partition satisfying the theorem. To make this algorithm efficient, we

need a good representation of a planar embedding of a graph. For this

purpose we use a list structure whose elements correspond to the edges

of the graph. Stored with each edge are its endpoints and four pointers,

designating the edges immediately clockwise and counter-clockwise around

each of the endpoints of the edge. Stored with each vertex is some

incident edge. Figure 5 gives an example of such a data structure.

[Figure 5 1

Partitioning Algorithm.

Step 1:

2 :Step

Step 3:

Find a planar embedding of G and construct a representation

for it of the kind described above.

Time: o(n) Y using the algorithm of [lo].

Find the connected components of G and determine the cost of

each one. If none has cost exceeding 2/3 , construct the

partition as described in the proof of Theorem 4. If some

component has cost exceeding 2/3 , go to Step 3.

Time: o(n) [Yl.

Find a breadth-first spanning tree of the most costly component.

Compute the level of each vertex and the number of vertices

L(f) in each level & .

Time: a-4 .

17



Step 4:

Step 5:

Step 6:

Find the level 5 such that the total cost of levels 0

through 11-1 does not exceed l/2 , but the total cost

of levels 0 through pl does exceed l/2 . Let k be

the number of vertices in levels 0 through I1 .

Time:
o(n) l

Find the highest level Jo 5 il such that L(10)+2(11-Lo) 5

2fi . Find the lowest level I2 2 Rl+l such that

L(12)+2(P2-p1-1)  5 2&5 .

Time:
o(n) l

Delete all vertices on level l2 and above. Construct a new

vertex x to represent all vertices on levels 0 through lo .
--

Construct a Boolean table with one entry per vertex. Initialize

to true the entry for each vertex on levels 0 through lo and

initialize to false the entry for each vertex on levels Lo+1

through a,-1 . The vertices on levels 0 through lo
L

correspond to a subtree of

generated in Step 3. scan

clockwise around the tree.

the breadth-first spanning tree

the edges incident to this tree

When scanning an edge (v,w) with

V in the tree, check the table entry for w . If it is true,

delete edge (v,w) . If it is false, change it to true,

construct an edge (x,w) , and delete edge (v,w) . The result

of this step is a planar representation of the shrunken graph

to which Lemma 2 is to be applied. See Figure 6.

Time:
o(n) l

[Figure 61

18



Step 7: Construct a breadth-first spanning tree rooted at x in the

new graph. (This can be done by modifying the breadth-first

spanning tree constructed in Step 3.) Record, for each vertex

v , the parent of v in the tree, and the total cost of all

descendants of v including v itself. Make all faces of the

new graph into triangles by scanning the boundary of each face

and adding (non-tree) edges as necessary.

Time:
o(n) l

Step 8: Choose any non-tree edge (vl,wl) . Locate the corresponding

cycle by following parent pointers from v1 and w1' Compute

the cost on each side of this cycle by scanning the tree edges

--_
incident on either side of the cycle and summing their associated

costs. If (v,w) is a tree edge with v on the cycle and w

not on the cycle, the cost associated with (v,w) is the

descendant cost of w if v is the parent of w , and the

cost of all vertices minus the descendant cost of v if w is

the parent of v . Determine which side of the cycle has greater

cost and call it the "inside". See Figure 7.

Time: o(n) '

fFigure  71

9:Step Let (vi,wi) be the non--tree edge whose cycle is the current

candidate to complete the separator. If the cost inside the

cycle exceeds 213 t find a better cycle by the following method.

Locate the triangle (vi,y,wi) which has (v.,w.) as a
1 1

boundary edge and lies inside the CviY "i) cycle. If either

Cvi,Y) Or (YYwi) is a tree edge, let (vi+l,wi+l) be the

non-tree edge among CviY Y> and (YYwi) l Compute the cost

19



3

inside the (vi+lY "i+l> 'Ycle from the cost inside the (vi,wi)

cycle and the cost of viJYY md wi* See Figure 4.

If neither CviY Y> nor (YY wi> is a tree edge, determine

the tree path from y to the (vi,wi) cycle by following parent

pointers from y . Let z be the vertex on the CviY wi > cycle

reached during this search. C&pute the total cost of all

vertices except z on this tree path. Scan the tree edges

inside the (YY wi > 'YcleY alternately scanning an edge in one

cycle and an edge in the other cycle. Stop scanning when all

edges inside one of the cycles have been scanned. Compute the

cost inside this cycle by summing the associated costs of all

scanned edges. Use this cost, the cost inside the CviY wi >

cycle, and the cost on the tree path from y to z to compute

the cost inside the other cycle. Let (v~~,,w;~,) be the edgeI’A A’ I

monQ CviY Y > and (y,wi) whose cycle has more cost

Repeat Step 9 until finding a cycle whose inside

not exceeding 2/3 .

Time: O(n) (see proof below).

Step 10: Use the cycle found in Step 9 and the levels found in Step 4

inside it.

has cost

to construct a satisfactory vertex partition as described in

the proof of Lemma 3. Extend this partition from the connected

component chosen in Step 2 to the entire graph as described in

the proof of Theorem 4.

Time:
o(n) l

This completes our presentation of the algorithm. All steps except

Step 9 obviously run in O(n) time. We urge readers to fill in the

details of this algorithm; we content ourselves here with proving that

Step 4 requires O(n) time.
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Proof of Step 9 Time Bound. Each iteration of Step 9 deletes at least

one face from the inside of the current cycle. Thus Step 9 terminates

after O(n) iterations. The total running time of one iteration of

Step 9 is O(1) plus time proportional to the length of the tree path

from y to z plus time proportional to the number of edges scanned

inside the CviY Y> and (y,wi) cycles. Each vertex on the tree path

fram y to z (except z ) is inside the current cycle but on the

boundary or outside of all subsequent cycles. For every two edges

scanned during an iteration of Step 9, at least one edge is inside the

current cycle but outside all subsequent cycles. It follows that the

total time spent traversing tree paths and scanning edges, during all

iterations of Step 9, is
o(n) l

Thus the total time spent in Step 9

is O(n) . G

By making minor modifications to this algorithm, one can construct

an O(n) -time algorithm to find a vertex partition satisfying Theorem 5,

and O(n) -time algorithms to find vertex partitions satisfying

Corollary 2 and Corollary 4.
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4. Applications.

The separator theorem proved in Section 2 allows us to obtain many

new complexity results since it opens the way for efficient application

of divide-and-conquer on planar graphs. We mention a few such applications

here; we shall present the details in a subsequent paper.

Generalized nested dissection. Any system of linear equations whose

sparsity structure corresponds to a planar or finite element graph can

be solved in O(n312 ) time and O(n log n) space. This result

generalizes the nested dissection method of George [5].

Pebbling. Any n-vertex planar acyclic directed graph with maximum

in-degree k can be pebbled using O(& +k log n) pebbles. See

[8,16] for a description of the pebble game.

.The Post Office Problem. Knuth's "post office" problem [ll] can be

solved in O((log n)2) time and O(n) space. See [3,17] for previous

results.

Data Structure Embedding Problems. Any planar data structure can be

efficiently embedded into a balanced binary tree. See [2,14] for a

-description of the problem and some related results.

Lower Bounds on Boolean Circuits. Any planar circuit for computing

Boo5ea.n convolution contains at least cn2 gates for sOme positive

constant c .

Acknowledgments.

We would like to thank Stanley Eisenstat, Robert Floyd, Donald Rose,

and Daniel Sleator for many helpful discussions and much thoughtful criticism.

22



Appendix:

A graph G = (V,E)

of edges. Each edge is

If (v,w) is an edge,

to both v and w . A

sequence of vertices v

Graph-Theoretic Definitions

consists of a set V of vertices and a set E

an unordered pair (v,w) of distinct vertices.

V and w are adjacent and (v,w) is incident

pathl e n g t hof k with endpoints v, w is a

= vo,vl,v2, . . ..Vk = w

an edge for 1 < i < k . If all the vertices- -

the path is simple. If v=w, the path is a

such that (vial,vi) is

vo,vl,...,vk-l  are distinct,

cycle. The distance from

v to w is the length of the shortest path from v to w . Ohe

distance is infinite if v and w are not joined by a path.)  The

level of a vertex v in a graph G with respect to a fixed root r is

the distance from r to v .

If Gl = (Vl,E2) and G2 = (V2,E2) are graphs, c;1 is a subgraph

of G2 if VlcV2 and ElcE .
-2' Gl is a generalized subgraph of G

2

if VlEV2 and there is a mapping f from El into the set of paths of

G9 such that, for each edge (VYWjEE, Y f((v,w)) has endpoints v andL

v t and no two paths

possibly an endpoint

v1 c v2 ’ the graph

the subgraph of G2

A

fUvp+ and fuv2’w2)) share a vertex except

of both paths. If G = (Vl,El) is a graph and

Gl = (Vl,El) where El = E2n {(v,w) I v,we~J is

induced by the vertex set
vl l

If Gl = (Vl,El) is

- a subgraph of G2 = (V2,E2) , then shrinking Gl to a single vertex in G2

means forming a new graph G$ from G2 by deleting from G2 all vertices

in vl and all their incident edges, adding a new vertex x to G2 , and

adding a new edge (x,w) to G2 for each edge (v,w> c E2 such that

v E v1 and w{Vl .
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A graph is connected if any two vertices in it are joined by a path.

The connected components of a graph are its maximal connected subgraphs.

A clique is a graph such that any two vertices are joined by an edge.

A tree is a connected graph containing no cycles. We shall generally-.

assume that a tree has a distinguished vertex, called a root. If T is

a tree -with r!Jot r and v is on the (unique) simple path from r to w ,

V is an ancestor of w and w is a descendant of v . If--o-p -

(v, 4 isanedgeof T, then v is the parent of w and--

of v . The radius of a tree is the maximum distance of any

in addition

W is a child---a

vertex fr3n

the root. A spanning tree T of a graph G is a subgraph of

is a tree and w!.lich cor:tains all -t,ie vertices of G . T isa

G which

breadth-first

spuming tree with respect to a root r if, for any vertex v , the- - - - - - -

distance from

ir in G.

A graph

from v into

curves in the

has endpoints

r to v in T is equal to the distance from r to

G = (V,E) is planar if there is a one-to-one map-a 5

points in the plane and a ma? f2 from E into simple

plane such that, for each edge (VYW) CE Y f2(b,w))

fl(v) and f,(w) , and no two curves f2((v1,wl)) ,

f*UV2’W2)) share a point exce--t  possibly a common endpoint. Such a

pair of maps fl , f2 is a planar embedding of G . The connected

planar regions formed when the ranges of fl and f2

tne ilane are called the faces of the embedding. Each

by a curve corresponding to a cycle of G , called the

are deleted frarn

face is bounded

boundary of the

face. We shall sometimes not distinguish between a face and its

boundary. A diagonal of a face is an edge (v,w) such that v and w- -

are non-adjacent vertices on the boundary of the face.
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Figure 1. Infinite two-dimensional square grid.
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Figure2. Kuratowski subgraphs.
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(b)

Figure 3. Shrinking an edge to form a Kuratowski graph.

Original graph must contain a Kuratowski graph

as a generalized subgraph.



(3 >a

(2)

(3b)

or

/- -\

/ \

/- -\

Fi,ve 4. Cases for proof of Lemma 2, Solid edges are tree

edges; dotted edges are non-tree edges.
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Vertex incidences Edges and neighbors

1 Iel

2
i-l

el --

3 0e2

4 clE3

r .

5 1 2 e3 e2 e4 e5

e2 1 3 el e3 e6 e4t .
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e3 , IL

4 e2 el e5 e6

f
e4 2 3 e5 el e2 e6

.

e5 2 4 el e2 e6 el

k

e6 3 4 e4 e2 el, e5

Figure 5. Representation of an embedded planar graph.

( C = clockwise, cc = counter-clockwise.)



( >a

Figure 6. Shrinking a subtree of a planar graph.

(a) Original graph. Subtree denoted by WMA+UW+ .

(b) Edges scanned around subtree. Those forming loops

and multiple edges in shrunken graph are crossed out.

(c) Shrunken graph. Vertex 0 replaces sub-tree.
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J
root

Figure 7. Cycle constructed in Step 8. All vertices have cost .02 .
Numbers on vertices are descendant costs. The total cost
inside the cycle is .48 , outside the cycle is .34, and
on the cycle is .18 .
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