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Summary. Nested dissection is an algorithm invented by Alan George for 
preserving sparsity in Gaussian elimination on symmetric positive definite 
matrices. Nested dissection can be viewed as a recursive divide-and-conquer 
algorithm on an undirected graph; it uses separators in the graph, which 
are small sets of vertices whose removal divides the graph approximately in 
half. George and Liu gave an implementation of nested dissection that used 
a heuristic to find separators. Lipton and Tarjan gave an algorithm to find 
hi~Z-separators in planar graphs and two-dimensional finite element graphs, 
and Lipton, Rose, and Tarjan used these separators in a modified version 
of nested dissection, guaranteeing bounds of O(nlogn) on fill and O(n 3/2) 
on operation count. We analyze the combination of the original George- 
Liu nested dissection algorithm and the Lipton-Tarjan planar separator 
algorithm. This combination is interesting because it is easier to implement 
than the Lipton-Rose-Tarjan version, especially in the framework of exist- 
ing sparse matrix software. Using some topological graph theory, we prove 
O(nlogn) fill and O(n 3/2) operation count bounds for planar graphs, two- 
dimensional finite element graphs, graphs of bounded genus, and graphs of 
bounded degree with nl/Z-separators. For  planar and finite element graphs, 
the leading constant factor is smaller than that in the Lipton-Rose-Tarjan 
analysis. We also construct a class of graphs with n~/Z-separators for which 
our algorithm does not achieve an O(n log n) bound on fill. 
Subject Classifications: AMS(MOS): 05C10, 65F05, 65F50, CR: G.1.3, 
G.2.2 

1. Introduction 

Suppose that we want to solve a sparse system of n linear equations in n 
unknowns, 
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m x ~ - - b ,  

where M is an n by n symmetric, positive definite matrix. We can use a version 
of Gaussian elimination to find the Cholesky factorization M = LL r, where L is 
a lower triangular matrix with positive diagonal. We then solve for x by 
solving the two triangular systems Ly =b  and L r x =  y. 

The complexity of this procedure depends on the sparsity of the matrices M 
and L. Suppose column j of L contains d~ nonzeros. Using algorithms and data 
structures described in George and Liu [4], we can factor and solve the system 
in space proportional to ~ d~ (which is the number of nonzeros in L) and time 

J 
proportional to ~ d  2. Ignoring cancellation due to numerical coincidence, L 

J 
will have nonzeros below the diagonal everywhere that M does, and also some 
other places. We define the fill to be the set of below-diagonal positions in 
which L is nonzero and M is zero. 

If P is a permutation matrix, P M P  r is a symmetric, positive definite matrix 
obtained by permuting the rows and columns of M. The fill in the triangular 
factor of PMP r may be drastically different for different choices of P. We can 
think of P as a choice of an order in which to eliminate the variables of the 
system. 

Finding the order that gives the smallest possible fill is an NP-complete 
problem [22]. Most sparse matrices do not have elimination orders with small 
fill: For  any positive e there is a constant c(e) such that almost all n by n 
symmetric matrices with c(e)n nonzeros have at least ( 1 - e )  2 n2/2-O(n) fill for 
every order [14]. Gilbert [5] presents a class of symmetric matrices with four 
nonzeros per row that have O(n 2) fill for every elimination order. 

Although the outlook is gloomy for general elimination algorithms with 
low fill, good elimination orders can be found for some classes of problems. 
George [2] invented an algorithm called nested dissection for ordering the 
variables in a system that comes from finite differences on a regular square 
grid. George and Liu [3] gave a heuristic nested dissection algorithm for 
general matrices. Lipton, Rose, and Tarjan used the planar separator theorem 
[14, 15] in a modified version of the George-Liu algorithm, which they called 
generalized nested dissection. Their order gives O(n log n) fill and O(n 3/2) oper- 
ation count on any system whose subgraphs have na/2-separators, which in- 
cludes planar graphs and two-dimensional finite element meshes. (See Sect. 2 
for definitions.) These bounds are within a constant factor of the best possible. 

In this paper, we analyze what happens when the planar separator theorem 
is applied to the original George-Liu algorithm. This combination is easier to 
implement than the LRT algorithm, since it fits nicely into George and Liu's 
Sparspak package [4]. We prove O(nlogn) fill and O(n 3/2) operation count 
bounds on a large class of graphs, including planar graphs and two-dimension- 
al finite element meshes but not including all graphs whose subgraphs have 
nl/Z-separators. For planar graphs, the leading constant in the analysis is 
smaller than that in Lipton, Rose, and Tarjan's analysis of the LRT algorithm. 
The analysis itself is interesting because it uses more topological information 
than does the LRT analysis. 

The remainder of the paper is organized as follows. Section 2 gives graph- 
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theoretic definitions and lemmas. Section 3 presents the nested dissection algo- 
rithm we analyze in the rest of the paper. Sections4 through 7 give upper 
bounds on the performance of this algorithm. Section 8 discusses how tight this 
analysis is. Section 9 presents two examples to show that the hypotheses of the 
fill bounds are necessary. Section 10 consists of remarks and conclusions. The 
appendix solves a recurrence relation that is used in the analysis. 

We use the following notation to describe the asymptotic behavior of 
nonnegative functions of nonnegative integers. We say f(n)=O(g(n)) if there is 
a constant c such that f(n)<cg(n) for all but finitely many n. We say f(n) 
=Q(g(n)) if g(n)=O(f(n)). We say f(n)=O(g(n)) if f(n)=O(g(n)) and g(n) 
=O(f(n)). We use lgx to denote the logarithm of x to the base 2. 

A preliminary version of this paper has appeared as a technical report [5, 
Sects. 2.1-2.11]. 

2. Graph Theory and Gaussian Elimination 

We shall state and analyze our algorithm by using a graph theoretic model 
that was proposed by Parter [18] and studied in detail by Rose [20]. Recently 
this model has seen wide use [4, 21]. 

Let M =(mgj) be an n by n symmetric, positive definite matrix. The graph G 
=G(M)  associated with M is an undirected graph with vertex set V 
= {v I . . . . .  v,} and edge set 

E =  {{vl, vj}: i+j and mij4--O }. 

Thus G has a vertex for each variable in the system M x = h  and an edge for 
each symmetric pair of nonzero coefficients. Figure 1 shows a matrix and its 
associated graph. 

If we use the i-th equation to eliminate the i-th variable from the system 
M x = b  - that is, we pivot on m i i -  then the n - 1  by n - 1  matrix of the 
coefficients of the remaining variables in the remaining equations is still sym- 
metric and positive definite. Its graph, which has n - 1  vertices, is obtained 
from G by first adding edges to make all of v{s neighbors mutually adjacent, 
and then deleting v i and all edges incident on vl. (Here and henceforth we 
assume that no zeros are created by numerical cancellation.) 

An elimination order on G is a permutation of the vertices, which is a 
bijection ~: {1 . . . . .  n} ~ V. Reducing G to the null graph by sucessively elim- 
inating vertices ~(1) . . . .  ,~(n) is precisely analogous to performing Gaussian 
elimination on M, choosing as pivots the diagonal elements that correspond to 
~(1),.. . ,  ~(n). Figure2 is an example. The zeros of M that become nonzero 
during this elimination correspond to the edges that are added to the graph at 
each step. These are the fill edges, and the number of such edges is the size of 
the fill, or simply the fill. The filled graph G*(M), or just G*, is the graph 
obtained from G by adding the fill due to 7z, as in Fig. 3. The filled graph is the 
graph of the matrix L + L T. 
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Fig. 1. A matrix M and its graph G(M) 
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Fig. 2. Eliminating the graph 
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Fig. 3. The filled graph for the matrix in Fig 1 

The problem of finding a permutation of M that gives a sparse factor L is 
therefore the same as the problem of finding an elimination order for the 
vertices of G that gives small fill. One way to decide which edges will fill in 
without actually performing the elimination is given by a lemma of Rose, 
Tarjan, and Lueker, which says that edge {v, w} fills in if and only if there is a 
path from v to w in G that contains only vertices eliminated earlier than both v 
and w. 

Lemma 1 [21]. I f  G is a graph with elimination order ~, then {v, w} is an edge 
of G* if and only if there is a path v=va,v  2 . . . . .  Vk=W in G such that 

rc-t(vi)<min{rc-l(v),Tr-l(w)} for l < i < k .  [] 
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Dissection algorithms are based on separators in graphs: The idea is to find 
a set of vertices that separates the graph and eliminate them last. Following 
Lipton and Tarjan [15], we say that a class S of graphs satisfies an f(n)- 
separator theorem for constants e < 1 and fl> 0 if every n-vertex graph in S has 
a vertex partition A w B u C such that 

[AI, IB[<=~n, 

I Cl_-< flf(n), 

and no edge has one endpoint in A and the other in B. 
Most sparse graphs do not have nontrivial separator theorems (in a sense 

made precise in Lipton et al. [14]), but some useful classes of graphs do. 
Separator theorems are known for trees [11], outerplanar graphs [13], graphs 
of bounded genus [6], hypercubes [5], chordal graphs [7], and several graphs 
that are useful in parallel computation [10, 13]. Lipton and Tarjan proved a 
nl/Z-separator theorem for planar graphs. 

Theorem 1 [15]. Planar graphs satisfy a nl/2-separator theorem with constants a 
2 and f l = 8  1/2. []  - -3  

Lipton and Tarjan also gave a linear-time algorithm to find such a sepa- 
rator in a planar graph. Djidjev [1] improved the constant fl=81/2 to 61/2 and 
gave a lower bound of (4n31/2/9)1/2; the best possible value is not known. 
Miller [16] proved a nl/2-separator theorem for maximal planar graphs in 
which the separator is a single simple cycle in the graph. 

We are most interested in the graphs of matrices that arise when using 
finite element methods on two-dimensional surfaces. These are planar graphs 
and finite element graphs. A finite element graph is obtained from a planar 
graph as follows: Embed the graph in the plane. Identify certain points (ver- 
tices, points on edges, points in faces) as "nodes". Add edges between all nodes 
that share a face. If the number of nodes per face is bounded by k, finite 
element graphs satisfy a knl/E-separator theorem [15]. 

For a recursive divide-and-conquer algorithm based on separators to work, 
the subgraphs into which the original graph is separated must themselves have 
separators, and so on. We say that a class of graphs is closed under subgraph if 
it contains all subgraphs of all its members. The class of planar graphs is 
closed under subgraph. 

We say that a graph G has a nl/Z-separator decomposition (with constants ct 
and fl) if G has a nl/2-separator C with those constants and every connected 
component of G - C  has a nl/Z-separator decomposition. Having a n U2- 

separator decomposition is a weaker condition than having nl/E-separators for 
all subgraphs. (An example is the graph with a n~/2-vertex clique and n - - n  1/2 

isolated vertices.) Leighton [12] discusses this difference for separators that 
consist of edges rather than vertices. A n~/:-separator decomposition (for edges) 
is a (fin 1/2, 1/al/2)-bifurcator in his terminology. 

The fill bounds for planar graphs (and, more generally, graphs of bounded 
genus) follow from two facts about such graphs. First, they are sparse. 
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Lemma 2 [9]. I f  G is a graph of genus g with n > 2 vertices and m edges, then 
m<__3n-6+6g. If  in addition G is bipartite, then m<=2n-4+4g. [] 

Second, a planar graph remains planar when two adjacent vertices and the 
edge between them are contracted into a single vertex. Let G be a graph, and 
let {v,w} be an edge of G. Let G' be the graph that is obtained from G by 
replacing v and w with a single vertex adjacent to every vertex that is adjacent 
to either v or w in G. We say that G was transformed into G' by contracting 
the edge {v, w}. A contraction of G is any graph obtained from G by contract- 
ing a set of edges. Equivalently, a contraction can be got by selecting a set of 
connected subgraphs of G and shrinking each to a single vertex. A contraction 
of a planar graph is still planar; in fact, any contraction of a graph embedded in 
a surface can be embedded in the same surface, since an edge can be shrunk 
continuously without disturbing the embedding. 

The essential property for the fill analysis is that contractions must be 
sparse. A class S of graphs is said to be sparse-contractible (with density 6 > 0) 
if every n-vertex contraction of a graph G in S has at most 6n+O(1) edges. 
Thus planar graphs are sparse-contractible with density 3, and trees are sparse- 
contractible with density 1. 

3. The Nested Dissection Algorithm 

Nested dissection operates by finding a separator in the graph, ordering its 
vertices last, and then recursively ordering the vertices in the subgraphs left by 
removal of the separator. In this section we present two nested dissection 
algorithms. The first is due to Lipton, Rose, and Tarjan; the second is the one 
we analyze in the remainder of this paper. 

Let ~ <  1 and f l > 0  be the constants in a nl/Z-separator theorem, and let n o 
be a positive constant. The first algorithm assumes that all of G's subgraphs 
satisfy a nl/2-separator theorem, while the second just assumes that G has a 
na/2-separator decomposition. 

Algorithm 1. Given an integer a and an n-vertex graph G whose subgraphs all 
satisfy a nl/2-separator theorem, number the vertices of G up to a. In general 
this algorithm assumes that some of the vertices of G (say l of them) are 
already numbered, and numbers the other n -  l from a -  n + l +  1 up to a. 

If n is not more than no, number the unnumbered vertices arbitrarily. 
Otherwise, proceed as follows. 

1. [separate] Choose a set C of at m o s t  fin 1/2 vertices whose removal 
divides the rest of G into two (not necessarily connected) components A and B 
with at most an vertices each. Suppose that C has s unnumbered vertices. 
Number  them arbitrarily from a - s  + 1 up to a. 

2. [form components]  Let Gx be (A w C, E(Aw C)-E(C)), that is, the sub- 
graph of G induced by the vertices in A and C less any edges with both 
endpoints in C. Similarly, let G 2 be (BwC, E(Bw C)-E(C)) .  Suppose that G~ 
and G 2 have s~ and s 2 unnumbered vertices respectively. 

3. [number  components recursively] Call the algorithm recursively twice to 
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number G 1 from a - s - s  1 + 1 up to a - s ,  and to number G 2 from a - s - s  1 - s  2 

+1 up t o a - s - s ~ .  

To begin, call algorithm with all vertices unnumbered and a = n. []  

This is Lipton, Rose, and Tarjan's original version of the generalized nested 
dissection algorithm [14]. We shall call this the L R T  algorithm and refer to 
the elimination order it produces as the LRT order. It guarantees O(n lgn) fill 
and O(n 3/2) operation count for a graph all of whose subgraphs satisfy a n 1/2- 
separator theorem. Notice that the algorithm is not called recursively on every 
connected component  of G - C ,  but that the components are divided into two 
groups and exactly two recursive calls are made at each step. Also notice that 
the vertices of the separator are included in the recursive calls, but are not 
renumbered. 

Algorithm 2. Given an integer a and an n-vertex graph G with a nl/2-separator 
decomposition, number the vertices of G up to a. 

If n is not more than n o, number the unnumbered vertices arbitrarily. 
Otherwise, proceed as follows. 

1. [separate] Find a separator C with s ~=fln 1/2 vertices that divides the rest 
of G into connected components A~ . . . . .  A k, where A i has s i < a n  vertices. 
Number  the vertices of C arbitrarily from a -  s + 1 up to a. 

2. [number  components recursively] Call the algorithm recursively k times 
for i=  1, 2, ..., k to number the vertices of A i up to a - s -  ~ sj. 

j<i  
To begin, call the algorithm with a = n. [] 

This algorithm, which we call the N D  algorithm, leaves the vertices of C 
out of the recursive call and does one recursive call per component. The N D  
algorithm does not give the same fill bounds as the LRT algorithm for all 
classes of graphs with n~/2-separators; in Sect. 9 we shall present a class for 
which L R T  gives O(n lg n) fill but N D  can give O(n 5/4) fill. However, N D  does 
give O(n lgn) fill and 0(/'/3/2) operation count for planar graphs, finite element 
graphs, graphs of bounded genus, and graphs of bounded degree with n ~/2- 
separators. 

We feel it is interesting to study the N D  algorithm for a number of reasons. 
First is the theoretical question whether including the separator in the re- 
cursive calls of LRT is really necessary. The analysis showing that the answer 
is "sometimes, but not on the graphs we are most interested in" is rather 
different in flavor from the analysis of the LRT algorithm. The N D  version of 
the algorithm should be a little easier to implement than the L R T  version; in 
particular, it fits nicely into the nested dissection routines in the Waterloo 
Sparspak sparse matrix package [4]. Finally, the constants in the fill bounds 
for N D  are somewhat smaller than those in LRT. 

4. Separator Trees 

Suppose the graph G has a nl/2-separator decomposition with constants ~ <  1 
and f l>0.  The recursion in the N D  algorithm decomposes G into a tree of 
separators. Figure 4 shows a graph and the separators used by the algorithm, 
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Fig. 4. Separators used by the ND algorithm 
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Fig. 5. The separator tree 

and Fig. 5 shows the same graph drawn to exhibit the tree structure. The 
separator tree produced by nested dissection for a graph G is the tree whose 
internal nodes are the separators and whose external nodes are the bottom- 
level divisions of G (with at most n o vertices each); each separator has as 
children the separators of the parts into which it separates its subgraph. To 
keep things straight, the vertices of G are called vertices, and the vertices of the 
separator tree are called nodes. Thus a node is a subgraph of G, and may 
contain many vertices. 

Much of the structure of G is reflected in the separator tree. An edge {v, w} 
can be in G only if the node containing v is an ancestor or descendant of the 
node containing w. (A node is its own ancestor.) The N D  elimination order is 
a postorder  on the tree, so all the vertices in one node are eliminated before 
any vertex in that node's parent. The vertices of each node are ordered 
consecutively. 

Lemma 1 says that if {v,w} is a fill edge, there is a path from v to w 
through vertices with lower numbers than either v or w. Since the vertices in 
the separator of a subgraph have higher numbers than the other vertices in the 
subgraph, this means that no fill edge can cross a separator. This in turn 
implies that fill edges, like edges of G, must follow tree paths. 
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Lemma3. In the ND order on G, if {v,w} is a fil l  edge and v has a higher 
number than w, then the node of  the separator tree containing v is an ancestor o f  
the node containing w. [] 

This lemma limits the number  of possible fill edges to O(n 3/2) (since there 
are O(n 3/2) possible edges to the top-level separator, and the sum of this over 
the whole tree is O(n 3/2) by L e m m a  12), but we can do a lot better. The key 
observat ion is the following lemma. 

L e m m a 4 .  In the N D  order on G, if {v,w} is a fil l  edge and v's node is an 
ancestor o f  w's node, then there is an edge o f  G from v to a vertex in some node 
that is a descendant o f  w's node. 

Proof. By L e m m a  1, there is a path from v to w through vertices with lower 
numbers  than w. Let {v,x} be the first edge on that path. Vertex x cannot  be 
in a node that is a proper  ancestor of w's node, since x has lower number  than 
w. If  x's node were neither an ancestor nor  a descendant  of  w's node, the path 
from x to w would have to include a vertex in a node that is an ancestor of 
both x's node and w's node;  but such a vertex would have a higher number  
than w. Therefore x's node must  be a descendant of  w's node, and {v,x} 
satisfies the statement of  the lemma. [ ]  

The levels of the separator  tree are numbered from zero, which is the level 
of the root. A basic proper ty  of  the separator  tree is that  a subtree rooted on 
level k has at mos t  max {n o, ~kn} vertices of  G in it, and hence the root  of  such 
a subtree has at most  c~k/2flnl/2 vertices if it is an internal node. 

L e m m a  5. Let  G be as above, and let T be the separator tree produced for  G by 
the N D  algorithm. Let  N i be a level-i node o f  T for O<i<m.  The number o f  
vertices o f  G in N o • N 1 u ... • N m is less than 

]~1/2 
1 --0~ t/2 nll2+n~ 

Proof. The size of a separator  at the k-th level of the tree is at most  ~k/2flnl/2, 
so the total size of nodes N o . . . . .  N,, is less than 

. . . - n  + fl~1/2 nod-~l/2flnl/2-k-~fl nl/2-}- -- o 1_~1/2n1/2, 

where the first term is for an external node. [ ]  

5. Planar and Sparse-Contractible Graphs 

The main  result of this section is that  if G is a planar graph, then fill for the 
N D  elimination order is O(nlgn) .  Planar  graphs do not  necessarily have 
bounded  degree, but  they are sparse; a planar  graph with n vertices has at 
most  3 n - 6  edges. Thus the average degree of the vertices is bounded.  This 
alone is not enough to prove an O(n lgn) fill bound,  as the example in Sect. 9 
shows. However,  planar  graphs are also sparse-contractible:  They remain 
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Fig. 6. Contracted graph for Lemma 6 

sparse when two adjacent vertices and the edge between them are contracted 
into a single vertex. This and a nl/2-separator theorem are enough to imply 
the fill bound. 

Sparsity, contractibility, and separability are related in devious ways. If a 
class S of graphs is closed under subgraph and is sparse-contractible with 
density 6, then any subgraph of a contraction of a graph in S also has at most 
~n+O(1)  edges. This follows because any subgraph of a contraction of G can 
be obtained by deleting edges from a contraction of a subgraph of G. If S is 
closed under subgraph and satisfies a nl/2-separator theorem, then graphs in S 
are sparse [15]. Therefore if S satisfies a nl/2-separator theorem and is closed 
under subgraph and contraction, it is also sparse-contractible. It is not known 
whether sparse contractibility implies a nontrivial separator theorem. 

The first bound on fill in this section will be stated for a class of graphs 
that satisfies a nU2-separator theorem and is closed under subgraph and 
contraction, but the proof will use only the facts that it has a nl/2-separator 
decomposition and is sparse-contractible. 

Lemma 6. Let S be a class of  graphs that satisfies a nU2-separator theorem with 
constants ct< 1 and f l>0  and is closed under subgraph and contraction. As 
remarked above, this implies that graphs in S are sparse. Suppose no n-vertex 
graph in S has more than 6 n + c  edges. When the ND algorithm is applied to a 
graph G in S with n> n o vertices, the number of  fill edges with at least one 
endpoint in C, the top-level separator, is O(6n). 

Proof. Let JV be the set of nodes of the separator tree for G, and let JV k be the 
set of nodes on level k of the tree. Thus JV o = { C}, and Jr = Jff0 u JV 1 w .... For  
a given node N, let s N be the number of vertices in N. 

We begin by counting fill to the root C of the separator tree from the 
nodes on level k of the tree. Each subtree whose root is on level k is connected. 
Consider the graph that is obtained from G by contracting each such subtree 
into a single vertex, Throw out all the vertices of this graph except contracted 
vertices and vertices in C. Also throw out edges between vertices in C. Call the 
resulting graph G k. Figure 6 shows G 2 from the graph in Figs. 4 and 5. Graph 
G k is in S, so it has at most ~lGkl+C edges. 

By Lemma 4 there can be fill to a vertex v~ C from a level-k node N only if 
there is an edge in G k from v to the contracted vertex corresponding to N. 
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Each such edge accounts  for at  mos t  one fill edge f rom each vertex of  G in N, 
or s N fill edges in all. If  fk is the size of  the fill to C from level-k nodes, and e N 
is the degree in G k of the contracted vertex corresponding to node N, this 
means  that  

L ~ Z ensn. 
NeXu 

Let ~ k  be {N~.Ark: sN>6},  the set of level-k nodes with degree greater  than 
in the cont rac ted  graph. Then 

<=5 ~ sn+R k ~ (en--5), (1) 
�9 ~ k  ~qk 

where sk = max  s N. 
N ~ ,/e"k 

Consider  the subgraph  of G k that  is induced by the vertices of C and the 
contracted vertices in dg k. This graph is in S, and it has at most  fln~/2+lJgk[ 
vertices, so 

E elq<5(flnl/2b['/[/[kl)q-c, 
,4r 

and 

~, (e N --6) < 6fin l/z + c. (2) 
-%/k 

Equat ions  (1) and (2) imply 

Z sN+ B''/2 k+C k �9 (3) 
.Nk 

Therefore  the total  fill to C is 

k_>_O k > O  k > O  

Certainly ~sN=n,  and (lCl)<fl2n/2. ByLemma5,  
W 

^ flO~ 1/2 h i / 2  
E S k < ~  +nO" 

k > O  

Substi tut ing these est imates into equat ion (4) gives a bound  on fill to C of 

3 2n 6fl 2~1/2 1/2 
+ ~ n + ~ n + O ( n  ). (5) 

This is the bound  claimed in the s ta tement  of the lemma.  [ ]  

Theorem 2. Let S be a class of graphs that satisfies a nl/2-separator theorem and 
is closed under contraction and subgraph. Suppose that no n-vertex graph in S 
has more than 6n+c edges. I f  G in S has n>n o vertices, the ND order causes 
O(6n lgn) fill. 
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Proof  The fill when eliminating G is the union over every internal separator 
tree node of the fill edges whose higher-numbered vertex is in that node, plus 
the fill edges within the external nodes of the tree. A fill edge whose higher- 
numbered endpoint is in a given internal node has its other endpoint in a 
descendant of that node. Thus if a given internal node is the root of a subtree 
containing m vertices, by Lemma 6 the number of fill edges with higher- 
numbered endpoints in that node is at most 

2 2 1/2 
m+O(ml")- 

By Lemma 12 (in the Appendix), the sum of this function over the internal 
nodes of the separator tree is at most 

fl2/2 + t~ + (~ f12 ~ 1/2/( 1 __ 0~1/2) 
n lg n + O (n). 

- ~  lg ct--(1 -~ )  lg (1 -~ )  

Fill within an external node is at most ( 2  ~ edges, for a total over the whole 

graph of O(n) edges. Thus the expression above bounds the fill for the entire 
graph. [] 

Planar graphs are the most interesting graphs to which Theorem 3 applies. 
To finish this section we shall compute the leading coefficient of the bound for 
planar graphs, after first tightening the analysis slightly. 

Theorem 3. I f  G is a planar graph with n vertices then the N D  order causes fill  
at most 

/~2/2 + 2 +/~2 21/2/(1 _ ~,/2) 
n l g n + O ( n ) .  

- ~ l g ~ - - ( 1 - ~ ) l g ( 1 - ~ )  

Proof  This is a slight improvement of the bound in Theorem 3, and we get it 
by tightening the proof of Lemma 6. First, the graph whose edges we counted 
in the proof of the lemma (the subgraph of G k induced by the vertices of C and 
the contracted vertices) is planar and bipartite, so by Lemma 2 we can take 6 
= 2  and c=0 .  

Now we can be more careful in the analysis of ~ (eN-2)s N in Eq. (1) of 
,-gCk 

Lemma6.  Since there are at most fin 1/2 vertices in C, no single eN can be 
greater than fin 1/2. Thus if Sk is the size of the largest node on level k, and s~ is 
the size of the second-largest node on level k, then 

Z ( e~v - -2 ) sN<=f ln l /2 s t§  (eN--2)--flnl/Z)'~k 
..gtk ./dk 

< flnl/z(gk +'~k). (6) 

Lemma6 used the bound gk<~k/Zfln 1/2. Now, however, we can reason as 
follows. Suppose that N is the largest node on level k and M is the second- 
largest. Nodes N and M have a lowest common ancestor P in the separator 
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tree. Suppose that P is on level 1. The number of vertices in P's subtree is at 
most etn. If P has children P1 and P2, the numbers of vertices in their subtrees 
are at most et~,n and ~ ( 1 - 7 ) n  respectively, for some 7 between 0 and 1. 
Following on down to level k, this means that the numbers of vertices in N's 
and M's subtrees are at most ~k-17n and ~k-l(1 --7)n respectively. Thus gk + s~, 
which is su+sM, is at most fle(k-1)/2(71/2+(1--7)t/2)n 1/2. This is largest when 7 
1 
-- 2, SO 

S~ +S~ ~ 21/2 fl~ (k- 1)/2nl/2. 

With Eq. (6) this gives 

(e u -- 2) SN <=f12 21/2 g (k -1)/2 n. (7) 
dCk 

Summing this for k > 0  as in Lemma5 yields f l z2UZn/ (1  _~1/2), and putting it 
all together gives a bound on fill to C of 

B B221/2 \ 

This is summed by Lernma 12 to give the bound in the statement of the 
theorem. [] 

The constants in Djidjev's version of the planar separator theorem [1] are 
e=2 /3  and fl=61/2. Plugging these into the leading coefficient of the bound in 
Theorem 4 yields about 55.8. The coefficient derived by Lipton et al. [14] for 
their algorithm, which includes the separator in both recursive calls, is about 
96.4 (using Djidjev's separators). It seems likely that both numbers are some- 
what larger than the best possible bounds. One reason is that the coefficients 
are proportional to the square of// ,  and /~=6  t/2 is probably an overestimate of 
the best possible value. Section 8 contains further discussion of the leading 
coefficient in the fill bound. 

6. Graphs of Bounded Degree 

Let G be a graph with a nt/Z-separator decomposition and maximum vertex 
degree d. Techniques similar to those in Sect. 5 can be used to prove the 
following. 

Theorem 4. I f  G is as above, then the ND order causes fill at most 

/~2/2 + d/~2 ~1/2/(1 _ ~1/2) 
nlgn+O(dn). [] 

- ~ l g ~ - ( 1 - ~ ) l g ( 1 - ~ )  

Details are given in Gilbert [5]. For  ~=2/3 and fl=6 ~/2 the leading constant is 
approximately 29d + 3. Roman [19] independently obtained this result with the 
leading constant (f12/2+dflZ~l/z/(1-~l/2))/-lg~, which is approximately 46d 
+5. 
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7. Bounds on Operation Count 

Until now we have been concerned only with the fill incurred by an elim- 
ination order, which is a measure of the space required to factor the matrix. 
Here we analyze the time taken by the factorization in N D  order. The entire 
factorization can be done in time proportional to the number of arithmetic 
operations performed on matrix elements [4], so we will just analyze the 
operation count. 

In practice storage is more expensive than time. We might therefore con- 
centrate on fill bounds and have faith that, since operation count is at least 
loosely related to fill, a low fill algorithm will have a small operation count. 
However, it is comforting to know at least the order of growth of the oper- 
ation count. Dense Gaussian elimination requires O(n 3) operations on an n by 
n matrix. George's nested dissection on a square grid requires O(n 3/2) oper- 
ations, as does the Lipton-Rose-Tarjan algorithm on a graph whose subgraphs 
satisfy a hi/Z-separator theorem. We will show that the N D  algorithm also 
requires O(i'/3/2) operations on all the classes of graphs discussed in Sects. 5 and 6. 

Pivoting on the diagonal element corresponding to vertex v in a graph G 
(that is, eliminating vertex v) requires arithmetic operations proportional to the 
square of the degree of v I-4]. One way to count operations for an elimination 
order is based on the filled graph G*. The filled graph has G's edges plus the 
fill edges. Let us make G* a directed graph by orienting each edge from the 
lower-numbered to the higher-numbered endpoint. Then the cost of eliminating 
v is O(od(v)2), where od(v) is the out-degree of v in this directed version of G* 
(and also one less than the number of nonzeros in the column of L correspond- 
ing to v). The operation count for the whole elimination is 0 ( ~  od(v)2). 

v 

Notice that the space required for elimination is on the order of the 
number of edges in G*, which is ~ od(v). Thus space is a first moment  of the 

v 

out-degree, and time is a second moment.  This gives an easy way to get a 
rough bound on operation count. Suppose G is a graph with a hi/Z-separator 
decomposition and suppose the N D  algorithm gives O(n lgn) fill on G. If (v, w) 
is a directed edge in G*, the node of the separator tree containing w is an 
ancestor of the node containing v. Therefore od(v) is at most the number of 
vertices on a path in the tree from the root to a leaf, which is O(n ~/2) by 
Lemma 5. Then the operation count is at most 

~] od (v) 2 < max od (v) ~ od (v) = 0 (r/3/2 lg n). 
t) V V 

Getting rid of the extra lgn in this loose bound requires some careful 
argument along lines similar to those of the O(n lgn) fill bound. Again we will 
contract subtrees of the separator tree and use the sparsity of the resulting 
graph. In the space bound we counted fill edges by their higher-numbered 
vertices, which amounts to computing fill as ~ id (v) in G*. Using the lower- 

v 

numbered vertices makes things look a little bit different. To keep the proof 
from getting too unwieldy, we shall begin by stating it for planar graphs; we 
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shall then indicate how to modify it for degree-bounded and sparse-con- 
tractible graphs. 

A planar bipartite graph has fewer than twice as many edges as vertices. 
The first lemma says that we can actually associate each edge with one of its 
endpoints so that no vertex is associated with more than two edges. 

Lemma 7. Let G be a planar bipartite graph with n vertices (and hence at most 
2 n - 4  edges). There is a function dp from the edges of G to the vertices of G 
such that for all edges e, (a(e) is an endpoint of e; and for all vertices v, q~(e)=v 
for at most two different edges e. 

Proof Define the arboricity of a graph to be the minimum number of edge- 
disjoint spanning forests into which the graph can be decomposed. Thus if the 
arboricity of G=(V,E) is k, it is possible to write E = E I W . . . w E  k in such a 
way that (V, Ei) is acyclic for 1 < i <  k. A theorem of Nash-Williams [17] is that 
if q, is the maximum number of edges in any r-vertex subgraph of H, then the 
arboricity of H is max [qr/(r-2)]. Any subgraph of a planar bipartite graph is 

r 

planar and bipartite, so the arboricity of G is at most 2. Therefore G can be 
written as (V, EIWE2) where G I=(V,E1)  and G2=(V,  E2) a r e  forests. To find 
the required function ~b, proceed as follows. Any forest with at least one edge 
has at least one vertex of degree one. Choose an edge {v, w} in E 1 such that v 
has degree one in G 1. Set q~({v, w})=v, and delete {v, w} from E 1. Repeat until 
E~ is empty, and then carry out the same process with G 2. This assigns a value 
to ~b(e) for every edge e of G, and uses each vertex at most twice. [] 

Incidentally, if we only require that q~(e)= v for at most three different edges 
e, the result follows immediately from the fact that the average vertex degree of 
every subgraph of G is less than four. Simply find a vertex of degree three or 
less, associate with it its incident edges, delete that vertex and those edges from 
the graph, and repeat until the graph is empty. 

Lemma 8. Let G be a planar graph, and let G* be the filled graph consisting of 
G plus the fill from the ND order. Direct the edges of G* from lower to higher 
numbered vertices. Then ~, od (v) 2 = 0(n3/2). 

v 

Proof This proof will use much of the same notation as in the proof of the fill 
bound in Lemma 6. 

Let Y be the set of nodes of the separator tree for G, and let JV k be the set 
of nodes on level k of the tree. We will bound the operation count separately 
for each level of the tree. Let Pk= ~ od(v) 2 be the sum over all vertices on 

v e N e X k  

level k of the square of the out-degree. 

Each subtree whose root is on level k is a connected subgraph of G. Let G k 
be the graph obtained from G by contracting each such subgraph into a single 
vertex, and deleting any edges of G that are not incident on contracted vertices. 
Figure 7 shows G 2 from the graph in Figs. 4 and 5. (This is not quite the same 
G k a s  we defined in the proof of Lemma 6; there we also deleted all vertices on 
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! 'i 

Fig. 7. Contracted graph for Lemma 8 

levels 1 through k - 1 . )  This graph is planar  and bipartite. Now let v be a 
vertex of  G in node N on level k of the separator  tree, and let (v, w) be an edge 
of G* (thus {v, w} is an edge of G or  a fill edge, and v is eliminated before w). 
The node containing w is an ancestor of N, and by L e m m a  4 there is an edge 
in G joining w and some vertex in the subtree rooted at N. Therefore either v 
and w are both  in node N, or in G k there is an edge joining w and the 
contracted vertex corresponding to N. If  s N is the number  of vertices in node N 
and e N is the number  of edges incident on contracted vertex N in G k, then 
od (v) is at mos t  s N + eN, so 

pk < ~ SN(SN+eN) 2. (1) 
N~X~ 

L e m m a  7 says we can associate each edge of  G k with one of its endpoints in 
such a way that  at mos t  two edges are associated with each vertex. Let  us call 
those edges associated with contracted vertices " red"  edges and those edges 
associated with vertices of G on levels 0 through k - 1  of the separator  tree 
"b lue"  edges. Then the e N edges incident on contracted vertex N consist of at 
most  two red edges and some blue edges. Suppose that  there are r N red edges 
and b N blue edges, so rN<2  and eN=rN+b N. Equat ion  (1) can be written as 

Pk <= ~ SN(SN+rN+bN) 2. 
NE,/('k 

Now if a, b, and c are real numbers,  then 

SO 

(a+b+c) z <(a+b +c) 2 +(a - b )  2 +(b - c )  z + (c  - a )  z = 3(a 2 + b  2 +c2), 

Pk --<3 Z s 3 + 3  2 SNr~+3 Z SN b2 
NeXk N ~ X k  N e X k  

_<-3 Z s 3 + 1 2  L SN+3S~ 2 b~r r 
N E J f  k Ns,Ark N E X k  

where sk = max s N. 
NaXk 

The first two terms of expression (2) are easy to handle. The main job is to 
bound  

2 bg. (3) 
N E ,W" k 
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To do this we will pair each contracted vertex N with a node on some level 
from 0 to k - 1 ,  and then dominate  sum (3) by a sum over the nodes on levels 
0 through k - 1 .  Consider some node M on level r < k  of the separator tree. 
The vertices in M are vertices of  G k, each with at most  two incident blue 
edges. The other  endpoints  of these blue edges are contracted vertices. We shall 
argue that  it suffices to bound  sum (3) under the assumption that all the blue 
edges with one endpoint  in M have the same contracted vertex as their other 
endpoint,  possibly allowing multiple edges. Suppose that  the blue edges from 
vertices in M are incident on at least two different contracted vertices N and 
N', with bN>bN,. Then sum (3) can only be made larger if each blue edge 
{v, N'} with vEM is replaced by a blue edge {v,N}. Thus we shall assume 
henceforth that  all the blue edges coming from the vertices in the same node 
go to the same contracted vertex. 

N o w  let N be a contracted vertex. Blue edges incident on N may come 
from nodes on several levels. Let M be the node closest to the root  such that a 
blue edge {v, N} exists for v~M. Then all the blue edges incident on N come 
from nodes on the tree path from M to N. If the number  of vertices of  G in the 
subtree rooted at M is n M, the number  of vertices of G on this tree path is at 
most  

fln~i2 q_ fl(o~nM)l/2 + fl(~2 rtM)l/2 -F . . . .  O (n~2), 

SO b N, the number  of blue edges incident on N, is also O(n~2). 
The mapping that takes a contracted vertex N to the node M described above 

is one-to-one since each node M on levels 0 through k - 1  has blue edges to 
only one contracted vertex. Therefore, since b 2 =O(nM), 

E E cnM 
N e W k  M e X r  

O<=r<k 

for some c > 0 .  L e m m a l 3  (in the Appendix) says that  the second sum is at 
most  ckn, so 

b~<ckn. (4) 

N o w  we can put it all together. Substituting Eq.(4) into Eq.(2) and sum- 
ming over all levels k yields 

Z ~ 2--<3 E s 3 + 1 2  E sN+3 ~, dk ckn" (5) 
vEG* N~, / r  N e , #  k > 0 

Since sN<=fln~/2 and Sk<=e k/2 fin 1/2, this is at most  

3fl 3 ~ n3/2 +12fl • n~/2 + 3fl cn3/z Z k~ 
N e W  N e W  k > 0 

By L e m m a  12, the first sum is O(n a/2) and the second is O(n). The third sum 
converges to a constant,  so the entire expression is 0(n3/2), as we set out  to 
prove. []  
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Theorem5. I f  G is a planar graph with n vertices then the ND order gives an 
O(n 3/2) operation count. [] 

This bound can be extended to the other classes of graphs for which we 
have proved fill bounds. We sketch the proofs below. 

Corollary 1. Let S be a class of graphs that is closed under contraction and 
subgraph, and satisfies a nilE-separator theorem. I f  G is an n-vertex graph in S 
then the ND order gives an O(n 3/2) operation count. 

Proof Recall from Sect. 6 that graphs in S must be sparse; suppose that no n- 
vertex graph in S has more than 6 (n -1 )  edges. Then the arboricity of any 
member of S is at most 6, so we can associate each edge of a member of S with 
one of its endpoints so that no vertex is associated with more than 6 edges. 
The proof of Lemma 8 now applies, with at most 6 red edges incident on each 
contracted vertex of G k and at most 6 blue edges incident on each noncon- 
tracted vertex. []  

Corollary 2. Let G be an n-vertex graph with a na/Z-separator decomposition and 
with vertex degree bounded by d. The ND order gives an O(n alE) operation count. 

Proof The proof of Lemma 8 applies again with minor changes. The con- 
tracted graphs G k do not necessarily have bounded degee. However, the de- 
grees of the noncontracted vertices are still at most d. We can apply the 
analysis in the lemma by coloring all the edges blue. Each noncontracted 
vertex has at most d incident blue edges, and each contracted vertex has no 
incident red edges. []  

Jean Roman [19] has independently proved an O(n 3/2) bound on operation 
count for the ND order on graphs of bounded degree. 

8. Remarks on the Constants 

In Sect. 6 we saw that the ND order on a planar graph gives less than 56n lgn 
+O(n) fill. Here we exhibit a class of planar graphs for which fill is about 
32n lgn in the worst case. 

First let us make clear what we mean by "the worst case". The ND 
algorithm treats the planar separator algorithm as a black box that returns a 
set of at most fin 1/2 vertices. The graph we construct below has large fill for 
one specific elimination order that comes from one specific nl/Z-separator 
decomposition of the graph. In this sense the separator algorithm is considered 
an adversary. 

Let n o and fl be fixed. We shall construct a family of graphs (with separator 
trees) with parameter k, the number of levels in the separator tree. Each graph 
has one or two distinguished vertices called terminal vertices. For k = 0  the 
graph is a star with n o vertices. The vertex of degree n 0 - 1  is the terminal 
vertex, and it is eliminated first. Now suppose we have constructed the graph 
whose tree has k levels, and that it has n k vertices. To construct the tree with k 
+1 levels, take two copies of the k-level tree and add Sk+l new vertices to 
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t 
Fig. 8. A parachute graph 

395 

form a top-level separator ,  where Sk+ 1 is m a x i m u m  subject to Sk+l<=fl(2n k 
+Sk+ 1) 1/2. Add  two edges incident on each top-level vertex, one to a terminal  
vertex of each subgraph.  These two terminal  vertices of  the subgraphs  are the 
terminal  vertices of the k + l-level graph. Figure 8 shows the g raph  for n o = 4, fl 
=61/2, and k = 2 .  We call this the parachute graph. 

It is not immedia te ly  clear how to count  the vertices in the parachute  
graph. The  leading coefficient of the fill can be computed  without  knowing  
exactly how big the graph is, however.  Let n k be the number  of  vertices in the 
k-level parachute ,  and let s k be the number  of vertices in its top-level separator .  
(Notice that  we are now number ing  levels from the bo t t om of  the separa tor  
tree rather  than, as usual, f rom the top. This is useful because now, in any 
parachute  graph,  s i is the size of a separa tor  at level i and nl is the size of the 
subtree rooted  there.) Solving Sk+ 1 ~ fl(2nk + Sk+ 1) 1/2 for Sk+ 1 leads to the fol- 
lowing recurrence, which holds for k__> 0. 

Sk + 1 = E(2 f12 nk + fl4/4) 1/2 + fl2/2 ] 
(1) 

nk+ 1 = 2nk "~-Sk+ 1" 

L e m m a 9 .  Let  s k be given by recurrence (1) above. Then there is a positive 
constant 7 such that s k = ~2 k/2 + O(1). 

Proof  First  we el iminate n k from the recurrence. Since S k ~ [ f l n l / 2 ] ,  we can 
substi tute ( S k + O ( 1 ) )  2 for f lEn  k in the recurrence. Then  some simplification 
yields 

Sk+ 1 =21/2Sk +0(1) .  

Defining t k = 2-k/Esk, we can mult iply this equat ion by 2 -(k+ 1)/2 to get 

tk+ 1 = tk + 0(2-k /2)"  
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From this it follows that lim tk= 7 exists, and that Iy--tkl is O ( ~  2-i/2), which 
k - * ~  i > k  

is 0(2-k/2). Thus t k = ~ + O ( 2  -k/2) and Sk=~2k/2 +O(1). [] 

Now we use this estimate of s k to get an estimate of the fill for a k-level 
graph. 

Lemma 10. I f  a k-level parachute graph is eliminated in ND order, the size of  
the fil l  is ~2(5 + 81/2)k2k+ o(2k), where 7 is the constant from Lemma 9. 

Proof First consider fill edges that are incident on vertices in the top-level 
separator. A vertex in the top-level separator fills in to every other vertex in 
that separator, and also to every vertex in every separator on the two tree 

paths to the terminal vertices. Thus fill to the top-level separator is (2k) within 

that separator, plus 2s k E s i+n  o - 1  to vertices in other separators. This all 
0 < i < k  

sums  to  72 (5+  81/2)2k-[ - 0(2k/2), using the estimate of s k from Lemma 9. 
It remains only to sum this over the whole separator tree. For 1 <_i<_k 

there are  2 k-i  separators on level i. Fill within level 0 is less than 2kn 2, which 
is o(2k). Therefore the total fill is 

2k-i(72(~+81/Z)2' +O(2'/2))+o(2k)=TZ(~ +81/Z)k2k +o(2k). [] 
l <-i <-k 

The estimates from the last two lemmas contain a constant y whose value 
we do not know how to compute. Fortunately, this does not matter. We can 
compute the leading coefficient of the fill without knowing the number of 
vertices in the graph. 

Theorem 6. Let  G be a k-level parachute graph. I f  G has n k vertices, the fil l  
caused by the ND order is 

(5+ 81/2)fl2 nk lg n k + O(nk). 

Proof First, n k is (Sk+O(1))2/fl z. The estimate of s k in Lemma9 then implies 
that nk___ ];Z2k/fl2.k_O(2k/2), and therefore lgn k = k +0(1 )  and n k lgn k = 
(v2k2k/fl2)(l+O(1/k)). Dividing this into the fill estimate from L e m m a l 0  
yields (-~ + 8 x/2)/32 + O(1/k). Since 1/k = O(1/lg nk), this proves the theorem. [] 

The leading coefficient of the parachute graph's fill is independent of n o , the 
size below which fragments are not separated further. The constant ~ that 
bounds the unevenness of the split does not appear because all the splits are 
exactly in half; it might be possible to get slightly larger fill by splitting the 
graph unevenly, but the calculations become messy. 

For  /3=61/2 the parachute fill comes to about 32.0nigh, as compared to 
our upper bound of about 55.8 n lg n. 

Of course, this is "worst-case" behavior in its most negative sense. We are 
assuming not only a particularly bad graph as input, but also the worst 
possible behavior of the separator algorithm. (We note, though, that the 
George-Liu automatic nested dissection algorithm would produce this worst- 
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case order for the parachute graph.) The top-level separator in the parachute is 
a minimal separator but it is far from a minimum separator: The terminal 
vertices are a two-vertex separator. A nested dissection order using these 
separators would give only O(n) fill. This suggests that adding some heuristics 
to the separator algorithm might improve the constant in the worst case, or at 
least in many cases. 

9. Graphs with Larger Fill 

The hypotheses of the O(nlgn) fill bound for the ND algorithm are a n I/z- 
separator decomposition and either bounded degree or sparse contractibility. 
In this section we show that a nl/2-separator decomposition alone is not 
enough to imply the fill bound, and that in fact even nl/2-separators for all 
subgraphs are not enough. 

Any graph with a n~/2-separator decomposition has no more than O(n a/2) 
fill under the ND order, because fill edges must follow tree paths. However, 
having a nl/2-separator decomposition does not imply that a graph is sparse, 
much less that its filled graph has O(nlgn) edges. Consider the complete 
bipartite graph with n 1/2 vertices in one part and n - n  1/2 vertices in the other 
part. This graph has a n~/2-separator decomposition, but it has O(n 3/2) edges. 
We conclude that an O(n lg n) fill bound does not follow from a n~/2-separator 
decomposition. 

We suspect that there are sparse graphs with n~/2-separator decompositions 
for which every elimination order gives (2(n 3/2) fill. Indeed, we conjecture that 
for any ~<1,  f l>0,  and 7 > 0  there exists c > 0  such that almost all cn-edge 
graphs that have a nl/2-separator decomposition for constants ~ and fl will 
have at least 7 n  3/2 fill for every elimination order. 

The Lipton-Rose-Tarjan generalized nested dissection algorithm, which in- 
cludes the separator vertices in each recursive call, gives O(n lgn) fill on every 
graph whose subgraphs all satisfy a nl/2-separator theorem. This is a stronger 
hypothesis than the existence of a n~/2-separator decomposition. Does the ND 
algorithm give O(n lgn) fill on every graph whose subgraphs all satisfy a n ~/2- 
separator theorem? The answer is no; below we present a class of such graphs 
for which, in one particular ND order, fill is t2(nS/4). 

Let k be a positive integer. We define graph V k to have k 2 vertices 
Vll,Vl2 . . . .  ,Vkk. The edges are {vij, vlj+l } for l<_i<_k and l < j < k - 1 ,  and 
{v~j, vij } for 2<_i<k and l < j < k .  This graph is a k by k grid graph in which 
the top end of each vertical edge has been detached from its vertex and 
reattached to the vertex at the head of its column. Figure 9 shows V 5. "Column 
c" of V k means the vertices vic for 1 <i<_k, and "row r" means the vertices vrj 
for l < j < k .  This graph is sparse, but not sparse-contractible: If each row 
except the first is contracted into a single vertex, the result contains as a 
subgraph the complete bipartite with k vertices in one part and k - 1  in the 
other. 

Theorem 7. All subgraphs of the graph V k defined above satisfy a nl/2-separator 
theorem for constants ~ = 2/3 and fl = 3. 
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I/I 

Fig. 9. Graph V s for Theorem 7 

Proof Let G be a subgraph of  V k with n vertices. There is at least one column c 
such that  removal  of all the vertices of G in that  co lumn separates G into two 
parts with at mos t  n/2 vertices in each. If  column c has fewer than n 1/2 vertices 
of  G, it is the required separator. Otherwise let c l < c  be the min imum and 
c 2 > c  be the max imum  such that  every column from c a through c 2 contains at 
least n 1/2 vertices of  G. If  columns ci - 1 and c 2 + 1 are deleted (which deletes at 
most  2n x /2-2  vertices of  G), then G falls into parts A~, B, and A 2, with at 
most  n/2 vertices in each of  Ax and A 2. If  A x has at least n/3 vertices then 
column c a - 1  is the required separator;  similarly for A 2 and column c 2 +  1. 
Suppose that A 1 and A 2 each have less than n/3 vertices. Removal  of  vertices 
v~c 1 through v~c~ causes B to fall into separate rows, and removal  of  at most  
one more  vertex from one of  those rows ensures that  no remaining componen t  
of  B has more  than n/2 vertices. Since G has only n vertices and each of 
columns cl through c 2 has at least n ~/2 of them, c 2 - c ~  is less than n 1/2 and 
this last step deletes at mos t  n a / 2 + l  vertices. Thus in all at most  3 n l / 2 - 1  
vertices of  G have been deleted. These vertices are the separator. [ ]  

Theorem 8. Let k be a positive integer, let n=k  2, and let V k be the n-vertex 
graph defined above. I f  the ND algorithm is run on V k and an appropriate 
adversary is allowed to choose the separators and the order of elimination within 
each separator, then f2(n 5/4) fill will occur. 

Proof The adversary 's  choice of a top-level separator  is the first row of V k. 
Removal  of these n ~/2 vertices leaves k -  1 components ,  each of  which is a row 
with k vertices. The adversary chooses to separate each row by removing its 
middle k ~/2 vertices; more  precisely, row i is separated by removing vls, ..., v ,  
where s=[(k-k l /2) /2]  and t=[(k+kl/2)/2]. (This is definitely not  a good  
separator.) These vertices are eliminated in order  f rom v~s to v, .  The rest of  the 
adversary's  choices do not  matter.  

Consider  the fill between vertices in the first row and vertices in the 
separator  of  another  row, say row 2. Let v~ be a vertex in the first row with 
i<s, and let v2~ be a vertex in the separator  of  the second row, so s< j<t .  All 
of  v2i . . . . .  v2j-x are eliminated before va~ or  v2j, so {vx~, v 2 .} is a fill edge. The 
number  of  such edges is ( s - 1 ) ( t - s + l ) ,  which is O(ka/2). Similar fill edges 
appear  f rom each of rows 3 th rough  k, for a total  of O(k 5/2) edges. Since n = k  2, 
this is O(n 5m) fill just between separators on levels 0 and 1. [ ]  
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Fig. 10. Graph V 5 modified to use minimal separators 

This example is a little bit fishy. A minimal separator for an individual row 
is a single vertex, and with this choice the fill is only O(nlgn). We can modify 
the example by duplicating the middle vertex of each row k 1/2 times as shown 
in Fig. 10. This graph and its subgraphs still satisfy a n~/2-separator theorem. 
Now each row has a minimal separator with k 1/2 vertices, and fill is still 
f2(n 5/+) using these separators. However, it is still clear that the best row 
separator to choose has only one or two vertices. 

The Lipton-Rose-Tarjan algorithm will give O(nlgn) fill for this graph, 
since its subgraphs all satisfy a nl/2-separator theorem. Recall that that algo- 
rithm does not do a recursive call for every component  into which the sepa- 
rator divides the graph, but collects the components into two pieces, adds the 
separator vertices to each piece, and does exactly two recursive calls. If the 
LRT algorithm called itself for each component,  the adversary could make the 
same choice of separators for this example and fill would still be ~2(nS/+). 
Therefore the fact that there are exactly two recursive calls is essential to the 
fill bound for the L R T  algorithm. On the other hand, making the N D  algo- 
rithm do exactly two recursive calls would not limit fill to O(nlgn): The 
adversary could choose row 1 as the top-level separator, and then choose 
about lg k levels of empty separators until each subgraph was a single row of 

As we observed above, the N D  algorithm gives O(n 3/2) fill on any graph 
with a n~/2-separator decomposition. We do not know whether there are such 
graphs for which fill is asymptotically more than n s/4. 

I0. Conclusion 

We have presented and analyzed a nested dissection algorithm that can be 
considered either as an extension of the George-Liu heuristic nested dissection, 
or as a variation of the Lipton-Rose-Tarjan generalized nested dissection. The 
LRT algorithm achieves O(n lgn) fill on graphs whose subgraphs all have n 1/2- 
separators; the N D  algorithm presented here achieves O(n lgn) fill bounds for 
graphs with n~/2-separator decompositions and either bounded degree or sparse 
contractions. Both classes include planar and finite-element graphs, which are 
probably the most  useful applications of nested dissection with n~/2-separators. 
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The constant factor in the ND fill bound is a bit less than 2/3 of that in 
Lipton, Rose, and Tarjan's analysis of the LRT algorithm [14]. Both constants 
are probably overestimates, and which (if either) version will be more practical 
can probably be decided only by experiment. Experiments on the ND algo- 
rithm are underway, using the Waterloo Sparspak sparse matrix package 
developed by Alan George and his colleagues [4]. Jean Roman [19] inde- 
pendently proved an O(nlgn) fill bound for the ND algorithm on planar 
graphs of bounded degree; his experiments suggest that the algorithm may be 
practical. 

Another class of graphs with sparse contractions and nl/2-separators is 
graphs of genus bounded by a constant g. Such graphs may be useful in using 
finite element methods to solve problems on the surface of a three-dimensional 
object with holes in it. Graphs of genus at most g satisfy a (gn)l/Z-separator 
theorem [6], and the separator can be found in O(n+g) time from an 
embedding of the graph. This leads immediately to an O(gn lgn) fill bound for 
the ND algorithm. A graph of genus g has a plane reducer (which is a set of 
vertices whose removal leaves a planar graph) of size O((gn) 1/2 lgg) [6]. This 
gives an O(nlgn+gnlg2g)  fill bound by a proof like that in Gilbert [5, Sect. 
2.9]. If, as seems likely, graphs of genus g actually have plane reducers of 
O((gn) l/z) vertices, this fill bound could be improved to O(n lg n+gn). 

We do not know of a class of graphs that is sparse-contractible and does 
not satisfy a nt/Z-separator theorem. It is interesting to ask whether sparse 
contractibility implies a nontrivial separator theorem. 

Miller [16] has proved a new version of the planar separator theorem: A 
maximal planar graph (one in which every face has three sides) has a n 1 /z -  

separator that is a simple cycle. This may have theoretical or practical impli- 
cations for nested dissection algorithms. 

Throughout this paper we have avoided discussing numerical problems by 
assuming that the coefficient matrix is symmetric and positive definite. Gilbert 
and Schreiber [5, 8] have investigated an algorithm that combines a version of 
nested dissection with partial pivoting for stability. They show that this dissec- 
tion pivoting algorithm limits fill to O(n lgn) on some classes of indefinite 
matrices with symmetric structure, including planar and finite-element graphs 
of bounded degree. 

Appendix. Recurrences on the Separator Tree 

The following lemmas solve a recurrence relation that will let us bound sums 
over the nodes of the separator tree. 

Lemma l l . L e t  f (x) be a real-valued function that is continuous on the closed 
interval [0, 1] and twice differentiable on the open interval (0, 1), and suppose 
that f (O)=O and f " (x )>O for O < x < l .  Let c~ be a real number with � 8 9  

Consider sequences {x 1 . . . . .  xk} of real numbers that satisfy O<=xi<=e for 
1 < i < k  and ~ x i =  1. The maximum over all k and all such sequences {xl} of 
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f (xi) 
l <_i<_k 

is attained when k = 2 ,  x 1 = 1 - ~ ,  and x2=~ .  

Remark. If f " ( x ) <  0, the min imum is attained when k = 2, x 1 = 1 -  ~, and x 2 = ~. 

Proof The proof  is based on the following Fact. If  O<_a<b<c<_d<_l and a + d  
= b + c < 1, then f (a) + f  (d) > f (b) + f  (c). To prove the Fact, let g(x) = f (x) + f  (a 
+ d - x ) .  Then g " ( x ) = f " ( x ) + f " ( a + d - x ) ,  which is positive for a<x<_d. 
Therefore the only maxima of g(x) in this interval are at its endpoints, x = a  
and x=d ,  and by definition g(a)=g(d). Therefore g(a)>g(b). Substituting into 
the definition of g (x) gives f (a) + f  (d) > f (b) + f  (c). 

The proof  of the lemma consists of three applications of the Fact. Let 
{x I . . . .  , xg} be a sequence of real numbers  with O<x 1 < ... <Xk<~ and ~] x i = 1. 

i 

We shall shorten the sequence without  increasing ~] f (x l )  until k = 2 ,  and then 
i 

we shall see that x~ = 1 - ~  and x 2 = ~  minimize the sum in that case. 
First, suppose that k > 2  and x l + x 2  <1. The Fact  says that f ( x l ) + f ( x 2 )  

is at m o s t  f (O)+f (x l+x2)  , which is equal to  f (x l+x2) .  Therefore we can 
get a shorter sequence by replacing x 1 and x 2 with xl  + x  2. 

Second, suppose that k > 2  and X l + X 2 >  �89 If k were at least 4, this would 
imply that  x I + x  2 + x  3 + x  4 > 1, contrary to the hypothesis of the lemma. Thus 
k = 3 ,  XI~X2~X3~�89 and Xx+XE+X3=l .  N o w  X1 -~-X3--1~0, SO the Fact  says 
that . f (xO+f(x3)<=f(x l  + x  3 - �89189 The Fact  also says that f ( x 2 ) + f ( x  1 + x  3 
- �89189 Adding  the last two inequalities and cancelling terms gives 
f ( x O + f ( x 2 ) + f ( x 3 ) < 2 f ( � 8 9  Therefore we can get a shorter sequence by re- 
placing {xl, x2, x3} with {�89 �89 

Finally, suppose that  k = 2 .  Then 1-ct<=x~<x2<=c~, so the Fact  says that 

f(xl)+f(x2)<=f(1--oO+f(oO. [] 

Lemma 12. Let G be an n-vertex graph with a nl/Z-separator decomposition (for 
constants ~ < 1, fl > O, and n o > 0), and let f be a nonnegative real-valued function 
on the nodes of the separator tree for G. Suppose that f is zero on external 
nodes, and f (N)<=cm z whenever N is an internal node whose subtree contains m 
vertices (not nodes), for some ) .>0.  Then the sum of f ( S )  over all nodes N of 
the separator tree is at most 

C 

1 - ~ -  1 

- ct lg c~ - ( 1  - e )  lg (1 -c~)  

O(n) 

nlgn  

/f 2 > 1 ,  

f i R = l ,  

/f 2 < 1 .  

Proof Let p(n) be the max imum of ~ f ( N )  over all separator  trees for all such 
graphs with n vertices. Then 
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p ( n ) = 0  

p(n) < max  {p(nl) + . . .  + P(nk) } + cn a 

for O<_n<_no, 
(1) 

for n > n o ,  

where the m a x i m u m  is taken over  all k and nl . . . . .  rt k satisfying 

n l + . . . + n k = n ,  O<=n~<=~n for l < i < k .  (2) 

We m a y  assume that  the sum of the n~ is exactly n because p(n) is nonnegative,  
so the sum in Eq. (1) is not  made  smaller by adding more  terms. N o w  we 
consider the recurrence case by case. 

Case 1. 2 > 1. P roof  is by induct ion on n. The  l e m m a  holds for 0_< n < n o since 
then p (n)=0 .  If  n>no, there is a set {nl} satisfying Eq. (2) such that  

C 
p(n)_-<l_cC~_ 1 ~, n.a, +cn a. (3) 

~<i<k 

The sum is at mos t  (ma xn i )~ - l~n i ,  which is at mos t  (ctn)a-ln or ~ - l n X .  
i i 

Substi tuting this into Eq. (3) gives p(n)<cna/(1 -~t ~- 1). 

Case 2. 2 = 1. P roo f  is again by induction, and  the case n < n o is again trivial. If  
n > n o, there is a set {n~} satisfying Eq. (2) such that  

C 
P ( n ) - - < _ ~ l g ~ _ ( l _ ~ ) l g ( l _ ~  ) ~ nilgni+cn. (4) 

l < _ i ' < k  

Define the function f ( x ) - - x n  lgxn to be 0 at x - - 0 ,  which makes  it cont inuous  
there. Then  L e m m a  11 applies, and says that  

ni lg ni < ctn lg ~n + (1-ct)n lg (1-ct)n. 
l<=i<_k 

Substi tut ing this into Eq. (4) gives the desired result. 

Case 3. 2 < 1. If  n > no, there is a set {nl} satisfying Eq. (2) such that  

p(n)< ~ P(ni)+cn ~. (5) 
l < i < = k  

In this case we t ransform Eq.(5) to get rid of the cn a term. The  second 
derivat ive of  f ( x ) = x  ~ is negative. Thus  by the r emark  in L e m m a  11, n ~ + . . .  

a is at  least ( ~ n ) a + ( ( 1 - ~ ) n )  a. Let 6 = ~ a + ( 1 - ~ ) a - 1 .  Then 6 > 0 ,  and n ~ + . . .  -I- n k 

+ nk a >(1 + 6)n a. This inequali ty can be writ ten as 

~/~, <~ e ~, 
~. -~ ni --cn a. (6) 

1 <-i<-k v 

N o w  we add Eqs.(5) and (6), and define q(n)=p(n)+cna/6 in the sum. The  
result is 
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q(n)< ~ q(ni) for n>n  o. (7) 

[] T h e  so lu t ion  to r e c u r r e n c e  (7) is l inear ,  so q(n)=O(n) a n d  p(n)=O(n). 

Lemma 13. Let G and f be as in Lemma 12, and suppose f ( N ) < c m  (that is, )~ 
=1) .  Then the sum of f ( N )  over all nodes N on levels 0 through k - 1  of the 
separator tree is at most ckn. 

Proof Le t  ~ be  the  set of  nodes  on  level  i of  the  s e p a r a t o r  tree,  a n d  let n N be  
the  n u m b e r  o f  ver t ices  of  G in the  sub t ree  r o o t e d  at  N.  T h e n  the  s u m  in the  
s t a t e m e n t  o f  the  l e m m a  is equa l  to. 

Z Z c n N  " 
0 ~ i < k N ~ / ~  

T h e  sub t rees  r o o t e d  on  level  i a re  d is jo in t ,  so the  inne r  s u m  a b o v e  is at  m o s t  

cn. T h e r e f o r e  the  w h o l e  s u m  is at m o s t  ckn. [] 
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