
AN O(N 2 . S) ALGORITHM FOR MAXIMUM MATCHING IN GENERAL GRAPHSt

s. Even* and o. Kariv**

Abstract

This work presents a new efficient algo
rithm for finding a maximum matching in an
arbitrary graph. Two implementations are sug-

gested, the complexity of the first is O(n2 . 5)
and the complexity of the second is

O(m;n-·log n) where n,m are the numbers of the
vertices and the edges in the graph.

O. Introduction

A matching M in an undirected graph G is
a subset of the edges of the graph such that
no two edges of M have a cornmon vertex. The
problem of finding a maximum matching in a
graph means finding a matching M whose number
of edges is maximum. This problem was dis
cussed in detail by J. Edmonds [1], who in
vestigated the properties of graphs which de
termine the maximum matching, and described
an efficient algorithm for finding a maximum
matching in an arbitrary graph. The complex-

ity of his algorithm is O(n4). C. Witzgall
and C. T. Zahn [2] suggested an improvement
of Edmonds' algorithm but it still had the

complexity O(n4). H. Gabow [3] gave an imple
mentation of Edmonds' algorithm which works in

o(n3) steps.

All the above algorithms are based on
Berge's theorem [4] which states that a given
matching is not maximum if and only if there
exists an augmenting path which joins two ex
posed vertices in the graph. Such a path can
be used to improve the present matching by
changing each free edge on the augmenting
path to be a matched edge and vice-versa.

J. E. Hopcroft and R. M. Karp [5] showed
that it is possible to carry out the con
struction of a maximum matching in In phases,
when in each phase a maximal set of vertex
disjoint minimum length augmenting paths is
found. For bipartite graphs they showed how
to carry out each phase in Oem) steps (where
m is the number of edges in the graph) and
thus achieved an algorithm which finds a maxi
mum matching in o (min) steps. The construc
tion of such an algorithm for the general case
still remained an open question. Our algo
rithm uses at most O(n2.~) steps, and by

t This paper describes the results of a Ph.D.
thesis of o. Kariv, to be submitted to the
Feinberg Graduate School of the Weizmann
Institute of Science, Rehovot, Israel.
S. Even is the thesis supervisor.

* Department of Computer Science, Technion,
Haifa, Israel. On leave of absence from
the Weizmann Institute of Science, Rehovot,
Israel.

** Department of Applied Mathematics, the
Weizmann Institute of Science, Rehovot#
Israel.

100

changing the data structure we get a version
which uses at most o(min log n) steps.

Definitions.

Let G be an arbitrary graph and let M be a
matching of this graph. We refer to the edges
of the graph as if they are directed (i.e. XY
is distinct from YX). The following termino
logy is used:

Matched (free) edge - an edge which belongs
(does not belong) to M.

MATE (X) - the other end of a matched edge
which is incident to X.

Exposed vertex - a vertex which is not inci
dent to any edge of M.

An alternating path to a matched vertex X
(from an exposed vertex A) - a path* whose
edges are alternatingly matched and free
such that in one end of the path there is
a matched edge (which meets X) and in the
other end there is a free edge (which
meets A) .

An augmenting path ~ a path which connects two
exposed vertices and whose edges are
matched and free alternatingly.

(Odd) loop - a simple circuit containing k
matched edges and k+l free edges. (Clear
ly, each matched edge lies between two
free edges).

The base of an odd loop - the (only) vertex of
the odd loop in which two free edges of
the loop are adjacent.

Illegal alternating (augmenting) path - an
alternating (augmenting) path which con
tains an odd loop.

The length of a path - the number of free
edges in the path.

The level of a matched (exposed) vertex - the
length of a shortest legal alternating
(augmenting) path which leads to this
vertex.

General ideas

As in all the attempts known to us to find
a maximum matching, we too search for augment
ing paths in the graph. The main difficulty
in constructing an augmenting path arises in
the case where the path "closes on itself",
thus creating an odd loop. Edmonds [1] over
comes this difficulty by "shrinking" all the
loops which are discovered. Witzgall and
Zahn [2] as well as Gabow [3] register these
loops in a special data structure. In our al
gorithm we use some techniques based on the
principles of Breadth First Search (BFS) and
Depth First Search (DFS) (with slight differ
ences forced by the characteristics of the
problem). We perform shrinking of certain

* By the term "path" we mean a sequence of
vertices. Since we assume that there are no
parallel edges in the graph, the sequence of
vertices defines unambiguously a sequence of
edges.

We

Description of the first stage.

The goals of the first stage are: finding
for each matched vertex X a minimum alternat
ing path leading to it from an exposed vertex
and defining the level of X as the length of
this minimum path; finding the length of a mi
nimum augmenting path in the graph and identi
fying all the exposed vertices at the ends of
minimum augmenting paths.

al graph from which the path of the reduced
graph was derived. We improve the matching by
converting each free edge on the path to a
matched one and vice-versa. Once the tracing
and the utilization of all the augmenting
paths found is done the phase ends.

1. The First Stage

Let ST be an edge lying on p(O+X) such
that on this path T is closer to X than S.
say that ST is forward-lying (f-Iying) on
p(O+X). If ST is a matched edge we say that T
is f-lying on p(O+X). Let X be a vertex and
let ST be a free edge f-lying on p(O+X) such
that p(O+X) = p(O+S)·p(T+X). Then p(O+S) is
called a head of p(O+X).

Notations of levels and alternating paths.
Assume that we find a minimum alternating path
leading from a I-exposed vertex to the vertex
X. We refer to this path as the (minimum) al
path leading to X and we denot it p(O+X). Let
Q be a vertex which lies on p(O+X): We use
the notation p(Q+X) to denote the segment from
Q to X on the path p(O+X). While referring to
this segment in the opposite direction (from X
to Q) we use the notation p(Q+X).

Representation of exposed vertices. For
the performance of the first stage it is con
venient to replace every exposed vertex V by a

matched edge v(l)v(2), such that the vertex

v(l) meets all the (free) edges which are in

cident to V, while v(2) meets no free edges.

We shall refer to the vertex v(1)(v(2» as a
I-exposed vertex (2-exposed vertex). During
the first stage the level of the I-exposed
vertices is O. By this definition the treat
ment of the exposed vertices during the first
stage will be the same as if they are matched,
and we can reformulate the goals of the first
stage to be: Finding for each vertex X in the
graph a minimum alternating path leading to it
from a I-exposed vertex, and defining the level
of X as the length of this minimum path

12
) (In

particular if X is a 2-exposed vertex B ,
then a (minimum) alternating path leading to

it from a I-exposed vertex A(l) is really a
fuinimum) augmenting path leading from the ex
posed vertex A to the exposed vertex B).

odd loops (resembling the blossoms' shrinking
of Edmonds) and we define a data structure (si
milar to that defined by Gabow) which serves
to restore the augmenting paths. Yet, the use
of these techniques alternates according to an
arranged and well defined system, in order to
improve the efficiency of each stage. The
data structure enables to trace minimum aug
menting paths and yet it contains chains of
information which make it possible to find a
new augmenting path in case one of the former
paths fails. This is done without searching
the graph again.

Description of a phase. Our algorithm
works in phases (using Hopcroft and Karp's re
sults [5]). Each phase consists of four stages:

In the first stage we simultaneously start
from all the exposed vertices and we search
the graph by BFS. We find for each vertex one
of the minimum alternating paths leading to it.
(These alternating paths are all loop-free and
thus are legal. This is achieved without loop
shrinking. The method is similar to that of
Gabow except that it is performed in parallel
from all exposed vertices and information
about alternative alternating paths is stored.)
Paths are registered in a special data struct
ure which makes it restorable later on. Find
ing minimum alternating paths enables to de
termine the level of vertices. During the
search the first return to an exposed vertex
indicates a minimum augmenting path. There
fore, at the end of the first stage we know
the level of each vertex and the length r of
a minimum augmenting path in the graph (if
there is no such path the matching is maximum
and the algorithm terminates).

In the second stage we use the levels de
fined for the vertices and the minimum alter
nating paths found for them in the first stage,
in order to shrink all the odd loops which lie
on illegal augmenting paths whose length is
less than r. Each such odd loop is replaced
by its base. We also remove from the graph
all the edges which do not lie on minimum
(legal) augmenting paths. In the end of the
second stage we have a reduced graph in which
each vertex lies on a minimum augmenting path
(of the original graph), and the place of the
vertex on this graph is identical to its level.
Every maximal set of disjoint legal augmenting
paths of the reduced graph corresponds to a
maximal set of disjoint and legal minimum aug
menting paths (of length r) of the original
graph.

Assume that we find an alternating path
leading to a vertex X from a I-exposed vertex.
In order to define the level of X as the length
of this alternating path we have to be sure
that this alternating path is both legal and
minimum. Until these two conditions are veri
fied we refer to this alternating path and to

In the fourth stage we restore the augment- its length as the potential aI-path p(O+X) and
ing paths found in the third stage. At first the potential level of X, respectively. When
we trace the path as it appeared in the reduced we know that p(O+X) is legal and minimum we re
graph and then we trace the path in the origin- fer to it as the (well-)defined aI-path p(O+X)

101

In the third stage we construct a maximal
set of disjoint legal augmenting paths of the
reduced graph. For each exposed vertex we
search the reduced graph by the DFS method (or
rather by the HLFS method - Highest Level First
Search) in order to find a legal augmenting
path leading from it to another exposed vertex.
Each edge is searched at most once in each di
rection. It is shown that if an edge is not
used on a legal augmenting path in the current
search, then it is not useful in the following
searches. The paths are registered in a data
structure similar to the one used in the first
stage.

and we refer to its length as the (well-) de
fined level of X. We use the notation £(X) for
the level of the vertex X, potential or well
defined, as the case may be.

It is convenient to assume that in the be
ginning of the first stage all the vertices
(except the I-exposed vertices) have a poten
tial level of L¥J + 1. Since this level is
greater than any actual level that may ~e de
fined by an alternating path, we can th1nk of
the process of finding levels as a process of
minimizing levels of vertices. For each of
the possible values of the levels, o,l, ... L~J,

L~J+l, a LIST is defined which contains all
v~rtices of the same level.

The BFS method. The first stage of the al
gorithm is performed in substages. On the j-th
substage we search all free edges incident to
vertices whose well-defined level is j-l, find
all vertices whose well-defined level is j and
possibly label some vertices with higher po
tential levels.

Let X be a vertex whose well-defined level
is j-l, let XY be a free edge, and let U and Z
be the mates of X and Y respectively. If the
present (potential) level of Z is greater than
j we try to replace the present potential al
p~th p(O~Z) by a shorter alternating path de
fined by the concatenation: p(O~Z)=p(O~X)·Y·Z.

The length of the new aI-path is j, thus the
new potential level of Z will be j. However,
we do not discard the information which enabled
the previous level but we keep it in a special
data structure as will be explained later.

The registration of an aI-path. In order
to record an aI-path p(O~Z) in an economical
yet traceable way, we use a recursive rec?rd:
Each vertex Z to which an aI-path p(o~Z) 1S
found, is given a link through which we are
able to recursively retrace p(o~Z). Following
Gabow [3] there are two types of links: If Y
(the mate of Z) has no link yet, Z is given ~

first-type link (denoted,by I-link). Else ~

is given a second-type llnk (d~noted by 2-l1nk).

As we shall see, if the vertices Y and Z
are mates, then the first of them to get a link
is given a I-link which well-defines its level.
If the other vertex is given (later on) a link,
it must be a 2-link, and it defines a poten
tial level. When a potential aI-path p(o~Z)

and a potential level of Z are replaced by a
shorter potential aI-path and a lower level,
the former 2-link of Z is also replaced by the
new one. The former 2-link is recorded in a
data structure to be described later.

I-link. A I-link is a link to a vertex
whose level is already well-defined: Let Z be
a vertex which has a I-link to vertex X
(LINK(Z)=X), and let Y=MATE(Z). Then the al
path p(o~Z) leading to Z is defined by the con
catenation:

p(o~Z) = p(O~X)·Y·Z (1.1)

The I-link is given to Z in the j-th sub
stage when we search the free edge XY where X
has a (well-defined) level j-l and Y and Z
both have no link yet (thus, both have the ini
tial level l~J +1). Since X has a well-defined

level, the aI-path p(O~X) is legal. Since Y
and Z have the initial level, the edge YZ can

not lie on p(O~X). Thus, p(O~Z) is legal and
£(Z) is well-defined.

Bridge. Let XY be a free edge where X and
Y both have well-defined levels, and let U and
Z be the mates of X and Y respectively. If
neither LINK(U)=Y nor LINK(Z)=X then XY is a
well-defined bridge which connects the two al
paths p(O~X) and p(O~Y). Clearly YX is then a
well-defined bridge too.

If X has a well-defined level while LINK(Y)
is still not well-defined and LINK(Z)fX, then
LINK(U)=Y can not hold and we call XY a pot~n

tial bridge. When LINK(Y) becomes well-deflned
XY becomes a well-defined bridge.

2-link. A 2-link of a vertex Z whose mate
is y is a well-defined bridge PQ such that
p(O~Y) is a head of p(O~Q). The aI-path de
fined by this link is:

p(o~Z) = p(O~P) ·p(Z+Q) (1.2)

In the algorithm a 2-link may be defined
through two possible' methods. The first me
thod is as follows: Let XY be a free edge
which is searched in the j-th substage (thus,
X has a well-defined level j-l). Let U=MATE(X)
and Z=MATE(Y). Assume that Y has a I-link
while £(Z»j. Since Z cannot have a I-link,
LINK(Z)~X. Thus XY is not a (well-defined)
bridge if and only if LINK(U)=Y. In this case
X must have a 2-link to some bridge PQ. We
assign:

{

if LINK(U)fY
Q, (Z) = j ; LINK (Z) = Xy (1. 3)

LINK(X) if LINK(U)=Y

This assignment can be proved, by induction
on j,to be consistent with (1.2). A 2-link
assigned through the first method is denoted
by 2(1)-link.

The second method of assigning a 2-link to
a vertex Z is performed when the former 2-link
of Z (which was assigned through either method)
is found to be illegal. In that case Z is giv
en a 2-link to a (well-defined) bridge PQ such
that (in addition to (1.2)) all the vertices
which are f-lying on p(Q~Z) (except Z itself)
have already well-defined levels. The exact
application of the second method will be de
scribed later. A 2-link assigned through the
second method is denoted by 2(2)-link.

Notice that if Z is assigned a 2-link then
p(o~Z) as defined by (1.2) is still potential,
unless a further check of its legality is
carried out. For example, assume that both
p(O~P) and p(O~Q) emerge from the same exposed
vertex, and let p(O~M) be their longest common
head. Then if Z is f-lying on p(O~M), the al
path p(O~Z) as defined by (1.2) contains an
odd loop (whose base is M) and therefore is
illegal. As we shall see, the structure of
the 2-link enables a simple check of the lega
lity of p(O~) when the search of t~e edges in
the j-th substage is ended. Thus, ln the end
of the j-th substage either p(O~Z) ~ecomes .
well-defined or it is found to be lilegal; ln
the latter c~se an attempt is made to define a
(new) 2(2)-link for Z, or (if the attempt
fails) LINK(Z) is left undefined.

(See Fig. 1 for example of I-links and
2-links.)

102

Y

U

s
PQ

PQ

PQ

QP

QP

LinkVertex Link-
Example of I-links and 2-links: type

B (2)
Y 1A(\: B<7 u I

Q I

,, S 1,
/ P 1Z

,
Y W 2

\
X 2

-'VVV' matched edge Z 2

-- free edge R 2

-- = bridge T 2

Figure 1.

The three following lemmas are derived
from the definition of LINK(Z):

Lemma 1.1: In the end of the j-th sub
stage the vertices whose levels are well-de
fined are exactly the vertices whose levels are
not greater than j.

Proof: By induction on j.

unique, thus we define TOP(Z)=Z.

TOP(Z) is f-Iying on p(O+MATE(Z». It is
clear that all the vertices lying on
p(O+MATE(Z» between Z and TOP(Z) must have
well-defined levels less than £(TOP(Z» (by
corollary 1.1). At the end of the j-th sub
stage TOP(Z) itself has a level not less than
j .

(1.5)

(1.4)

QED

TOP(Z) = TOP(MATE(Q»

T(R) = {ZITOP(Z) = R}

Lemma 1.3: If LINK(Z)=PQ then:

The set T(R). Define:

Proof: According to corollary 1.1 all the
edges between P and Z have already been search
ed in both directions. Thus TOP(MATE(Q» is
not lying on p(O+Q) between Q and Z. Since
p(O+MATE(Z» is a head of p(O+Q) (definition
(1.2» one may conclude that (1.4) holds.

QED

Lemma 1.4: Let R=TOP(Z) and let Y=MATE(Z).
Then p(O+MATE(R» is a head of p(O+Y).

Proof: By induction on £(Y). If Y has a
I-link to a vertex W then p(O+Y)=p(O+W) ·Z·Y.
According to the definition, either TOP(Z)=Z
in which case the lemma holds, or
TOP(Z)=TOP(MATE(W». In the latter case
R=TOP(MATE(W» thus by the induction
p(O+MATE(R» is a head of p(O+W) and therefore
of p(O+Y). If Y has a 2-1ink to the well
defined bridge PQ, then p(O+Y)=p(O+P)·p(Y+Q)
and according to the definition
TOP(Z)=TOP(MATE(P». Thus R=TOP(MATE(P» and
by the induction p(O+MATE(R» is a head of
p(O+P) and therefore of p(O+Y).

Corollary 1.1: If LINK(Z)=PQ, then all
the vertices lying on p(P+Z) have well-defined
levels less than £(Z), and all the free edges
on p(P+Z) were already searched in both direc
tions.

Lemma 1.2: If a vertex Z has a link, then
all the vertices which are f-lying on p(O+Z)
(except Z itself) have well-defined levels less
than £(Z), and all the free edges which are f
lying on p(O+Z) were already searched.

Proof: By induction on £(Z).

TOP(Z). For the purpose of checking the
legality of an aI-path defined by a 2-link and
defining an alternative aI-path in case the
former is illegal - we define for each vertex
a variable called TOP as follows:

(a) Let Z be a vertex with a 2-link and let
RT be the first free edge f-lying on
p(O+MATE(Z» which has not been searched
yet (in this direction) during the present
performance of the first stage. Then
TOP(Z)=R.

(b) Let Z be a vertex with a I-link. If
MATE(Z) has a well-defined level through a
link to PQ, then TOP(Z)=TOP(MATE(P».

(c) Else (if Z or MATE(Z) have no well-defined
link), TOP (Z) =z.

The intuitive meaning of TOP(Z) is the
"farthest" vertex on the "continuation" of
p(O+Z) which has been reached so far during
the search of the edges of the graph. Clearly
this is true in case (a). If Z has a I-link
and its mate has a well-defined 2-link to the
bridge PQ (case (b» then the "continuation"
of p(O+Z) is along p(O+MATE(Z» and thus along
p(O+P). The segment p(P+Z) has already been
searched (corollary 1.1) thus
TOP(Z)=TOP(MATE(P». Finally, if Z or MATE(Z)
have no well-defined link yet (case (c», the
"continuation" of p(O+Z) may still not be

In the beginning of the first stage each
vertex R satisfies T(R)={R}. But during the
search of the free edges the set T(R) is
changed as follows:

(a) Assume we are in the j-th substage and the
free edge XY is being searched. Let
R=TOP(MATE(Y». If LINK(MATE(X»=Y then by
Lemma 1.4 and the definition of TOP, the
sets T(X) and T(R) are updated as follows:

T(R)+T(R) U T(X) ; T(X)+¢ (1.6)

103

(b) Let Y and Z be mates. If at the end of
the j-th substage LINK(Z}=PQ and £ (Z)=j
are found to be well-defined then by the
definition of TOP, T(TOP(MATE(P») and
T(Y) are updated as follows:

T(TOP(MATE(P»)+T(TOP(MATE(P) »U{Y}i
T(Y)+¢ (1.7)

order of their searching, and thus in nonde
creasing order of their values. The value of
the first bridge is therefore the least, and
is defined as VAL (Z) (the value of Z). If
CH(Z)=¢ then VAL(Z)=n. Clarly, if the first
bridge is found to close a loop it is dropped
from CH(Z) and VAL(Z) has to be updated per
the amended CH(Z).

Theorem 1.1:

(a) Let LINK(R)=XY and Z=MATE(Y). If
TOP(R)=R then ZET(R).

(b) Let ZET(R), Y=MATE(Z) and XY be a well
defined bridge. If MATE(R) has a I-link,
then an alternating path to R can be de
fined by LINK (R)=XY.

Proof: (a) by Lemma 1.3.

(b) by Lemma 1.4, p(O~MATE(R» is a
head of p(O~Y), thus LINK(R)=XY is consist
ent with the definition of a 2-link.

Therefore when a 2-link of a
vertex R fails, we have to look for the
alternative 2-link among the well-defined
bridges XY such that MATE(Y)ET(R).

By the discussion following the definition
of TOP, if TOP(Z)tz then all the bridges of
CHeZ) are already well-defined. If the bridge
XY can define a level j for TOP (Z) (where
Z=MATE(Y» then X must have a level less than
j, thus in the beginning of the j-th substage
XY has already been searched and thus belongs
to CH (Z) .

Checking the legality of a 2-link.

Theorem 1.2: Let Z be a vertex which has
a 2-link to the bridge PQ, and let £(Z)=j.
Then the aI-path p(O~Z) defined by LINK(Z)=PQ
is illegal if and only if at the end of the
search of the edges in the j-th substage the
following equation holds:

The value of an edge. Let XY be an edge.
The value of XY is defined to be the sum of
the levels of X and Y: or equivalently, by (1.4) (since at the end of

the search in the j-th substage TOP(Z)=Z):£(XY)=£(X)+£(Y) (1.8)

TOP(MATE(P»=TOP(NATE(Q» (1.10)

The chain of a vertex. For the purpose of
realizing part (b) of the 2(2)-link assignment
we define for each vertex Z a chain CH(Z) which
is a list of (potential or well-defined)
bridges XY, such that Y=MATE(Z), as follows:

The definition of a 2-link. The reader may
turn to the claims following the 2(1)-link as
signment to observe that they remain valid
under this broader assignment. Also, both the
2(l)-link and the 2(2)-link are consistent
with the definition of a 2-link.

The assignment of a 2(2)-link. Theorem 1.1
and Eq. (1.9) enable the assignment of a
2(2)-link:

(a) If an edge XY is being searched such that
TOP(MATE(Y»=R, and £(R»£(XY)-£(MATE(R»+l
then assign LINK(R) by eq. (1.3) and £(R)
byeq. (1.9). (If R=MATE(Y) then this as
signment coincides with the 2(1)-link
assignment).

(b) If a 2-link of a vertex R fails and there
are well-defined bridges XY which so far
have not been found to close a loop and
such that MATE (Y)ET(R), then assign one of
these bridges whose value is minimum as
the new link of R and assign £(R) by
eq. (1.9); else LINK(R) is left undefined

and £(R)=L~J+l.

If LINK(R)=XY then

£(R)=£(XY)-£(MATE(R»+l (1.9)

TOP(MATE(P»=Z (1.11)

Proof: (a) Assume that (1.11) holds.
Then Z is f-lying on p(O+P). But by (1.2)

p(O~Z)=p(O~P)·p(Z+Q). Thus Z is f-lying on
p(O+Z) and therefore p(O~Z) is illegal.

(b) The proof that if p(O~Z) is
illegal then (1.11) holds is complex since sev
eral cases must be considered. However the
main idea is that if p(O~Z) is illegal and
(1.11) does not hold, then a shorter and legal
aI-path to Z can be found - contrary to the
assumption that £(Z)=j at the end of the search
of the edges in the j-th substage.

Corollary 1.2: Let Z be a vertex such that
LINK(Z)=PQ and £(Z)=j. In order to make sure
that the link and the level of Z are well
defined it is enough to check eq. (1.11) at
the end of the search of the j-th substage: If
TOP(MATE(P»)~Z then LINK(Z)=PQ and (Z)=j are
declared well-defined. Otherwise PQ is deleted
from CH(MATE(Q» and VAL(MATE(Q» is reassigned:
If CH.(MATE(Q))=¢ then VAL(MATE(Q»=n, else
VAL (MATE (Q) is assiqned .,Q,(P'Q) where P'Q is the
first bridge in the-updated CH(MATE(Q». Also,
let V be a vertex in T(Z) for which VAL(V) is
minimum and let ST be the first bridge in CH(V).
If TOP(MATE(S»=Z then delete ST from CH(V) and
repeat the search for a V in T(Z) etc. If
TOP(MATE(S»~Z then assign LINK(Z)=ST (assign
ment of a 2(2)-link, case (b»; £(Z) is assign
ed by (1.9). If £(Z)=j then it becomes well
defined; else it remains potential.

o. (Initialization).
(a) For i=1,2 ... L~J assign:

LIST(i)+¢.

For each vertex Z assign:
TOP(Z)+Z; LINK(Z)+O;
VAL(Z)+n; T(Z)+{Z}i CH(Z)+¢.

(b)

The algorithm of the first stage.
In the beginning of the first stage all the

chains are empty. When a (potential or well
defined) bridge is searched, the bridge XY is
attached to the end of CH(Z). If the bridges
of type XY (both potential and well-defined)
are searched in the order XIY, X2Y••. XkY, then
£(X l)(£(X2),···(£(Xk)· Thus £(XIY)~£(X2Yr,...

£(XkY). The bridges are listed in CH(Z) in the
104

(c) For each vertex Z such that Z is not

I-exposed, insert Z into LIST(L~J+l)

and assign £(z)+LTJ+l.

(d) For each I-exposed vertex B, insert B
into LIST(O) and assign £(B)~O ;

(e) j+l.

UBSTAGE:

1. If LIST(j-l)=¢ then go to VERIFICATION.

EARCH:

else let UT be the first edge in CH(V),
then assign: VAL(V)~£(U)+£(T).

15. (Find a new link for Z). Let VET(Z)
such that VAL (V) is minimum. If
CH(V)=<P then assign: LINK(Z)+O,

£(Z)~L~J+l, insert Z into LIST(l~J+l)

and return to 12; else, let ST be the
first edge in CH(V). If TOP(MATE(S»=Z
then return to 14; else assign (2(2)
link assignment): LINK(Z)~ST,

£(Z)~£(ST)-£(MATE(Z»+l; insert Z into
LIST(£(Z». If £(Z»j then return to 12.

2.

3.

If all the vertices in LIST(j-l) have
already been searched then go to VERIFI
CATION; else, let X be a vertex in
LIST(j-l) which has not been searched yet.

If all the free edges XY have already
been searched, return to SEARCH; else let
XY be a free edge which has not been
searched yet.

16. (Update T(MATE(Z»). Let Y=MATE(Z) and
let ST=LINK(Z). Execute:
T(TOP(MATE(S»)~T(TOP(MATE(S»)U T(Y);
T(Y)~<p. If CH(Y)=<p then assign:
VAL(Y)~n; else let WZ be the first edge
in CH(Y), then assign: VAL(Y)~£(W)+£(Z).

Return to 12.

END OF VERIFICATION.

(The matching is maximum).19. Halt.

17. If LIST(j) contains a 2-exposed vertex
assign r~j and proceed to the second
stage.

18. Assign: j+j+l. If j~L~J then go to
SUBSTAGE.

END OF SUBSTAGE.

Validity and complexity of the first stage.

Comments on the validity of the first
stage. The goal of the first stage is to de
fine for each vertex its level, i.e., to find
for each vertex Z a legal aI-path leading to Z
whose length is minimum. The problem of lega
lity is solved by using the TOP variable. But
the question of minimality needs further expla
nation.

For example, in the following figure 2, the
al-path p(O+P) is emerging from the l-exposed

vertex A(l), while the al-path p(O+Q) is emerg

ing from the l-exposed vertex B(l). Our treat

ment discovers the alternating paths from A(l)
to L and to M (through the bridges PQ and WR

respectively), from B(l) to K and to N (through

the bridges QP and TS respectively), from c(l)

to L (through the bridge ST) and from 0(1) to K
(through the bridge RW). Our treatment cannot

discover the alternating paths from c(l) to M

and from 0(1) to N. (See Fig. 2.)

As one can see, during the first stage we
construct and deal only with alternating paths
which can be described Cy a l-link or a 2-link.
But there are many alternating paths which can
not be described by these links. In fact, any
alternating path which is a concatenation of
several segments of different al-paths defined
by 2-1inks - is not referred in our treatment.

Let Z=MATE(Y). If LINK(Y)~O go to 7.

If LINK(Z)=O then go to 6; else (XY is a
(potential) bridge), insert XY into
CH(Z), and return to 3.

(I-link assignment). Assign: LINK(Z)~X;

£(Z)+j; delete Z from LIST(L~J+l) and in-

sert Z into LIST(j). Return
2
to 3.

5.

4.

8. (xY is a bridge). If CH(Z)=<P and
(£(Y)<j or Y has I-link) then assign:
VAL(Z)~j-l+£(Y).

Insert XY as the last bridge in CH(Z).
Let PQ~XY and go to 10.

7. (Y has a link). If LINK(MATE(X»=Y then
go to 9; else (XY is a bridge), if
TOP(MATE(X»=TOP(MATE(Y» then return to
3.

9. (XY is not a bridge). Execute:
T(TOP(Z»~T(TOP(Z» U T(X); T(X)~<P. Let
LINK(X)=PQ.

6.

11. If LIST(j)=¢ then go to 18.

12. If all the vertices in LIST(j) have al
ready been verified then go to END OF
VERIFICATION; else let Z be a vertex in
LIST(j) which has not been verified yet.
If Z has a I-link (it is verified) re
peat 12.

13. (Z has a 2-link). Let ST=LINK(Z), and
let V=MATE(T). If TOP(MATE(S»r Z then
go to 16; else delete Z from LIST(j).

14. (ST is found to close a loop). Delete
ST from CH(V). If CH(V)=¢ then VAL(V)~n;

105

10. (A 2-link assignment). Let
£l~£(PQ)-£(MATE(TOP(Z»)+~if £(TOP(Z» '£1

then return to 3. Else, delete TOP(Z)
from LIST(£(TOP(Z») and insert TOP(Z)
into LIST(£l). Assign: £(TOP(Z»~£l;

LINK(TOP(Z»+PQ. Return to 3.

END OF SEARCH.

VERIFICATION:

free edge
bridge

~ matched edge

Figure 2.

T p Q W

L

M

(I)
D

in substages where a constant number of opera
tions are performed per each edge. Thus the
complexity of the search is O(m). Since the
complexity of the operations on the sets {T(R)}
is always not less than O(m), the complexity of
the whole first stage is thus equal to the com
plexity of the implementation of the operations
on the sets {T(R)}. (In fact, this implementa
tion is the bottle-neck of the first stage and
of the whole algorithm.) Therefore, the com-

plexity of the first stage is O(n
2

) if we use
the simple data-structure for T(R), or it is
O(m·log n) if we use 2-3 trees.

Yet it can be proved that those paths
which are not discovered by our algorithm, are
not essential for the definition of levels
since other paths which are not longer are
used. The proof is by contradiction: We as
sume that Z is the vertex with the least real
level for which a wrong (higher) level has been
defined by our algorithm. Then there is a real
alternating path p(O+Z) leading to Z which is
shorter than the aI-path defined by LINK(Z).
By searching the levels of the vertices along
p(O+Z) a contradiction is reached. We omit
further details.

The complexity of the first stage. We need
efficient algorithms and data structures to
perform the following:

(1) Changes of VAL(Z); at most m such changes
may be called for.

(2) Finding a vertex Z in T(R) such that
VAL(Z) is minimum; at most m such opera-
tions may be required.

(3) Merging T(Rl) with T (R2); at most n unions

may be required.

2. The Second Stage

General description.

The final goal of each phase of the algo
rithm is to find a maximal set of disjoint mi
nimum augmenting paths. In the second stage
we reduce the original graph by removing some
of its edges and by shrinking others. The re
duced graph will have the following property:
Any maximal set of disjoint augmenting paths
in the reduced graph corresponds to a maximal
set of disjoint minimum augmenting paths in the
original graph. Clearly the renouncement of
the requirement that the augmenting paths be
minimum makes the search of a maximal set of
disjoint paths simpler.

In the beginning of t.he second stage we
know the length r of the minimum augmenting
paths in the graph. For each i, i~r, we also
know the list LIST(i) of all the vertices Z
whose levels are i, and we can retrace the al
paths p(O+Z) leading to these vertices. The
other vertices are not relevant for the pres
ent phase since they are not lying on any mi
nimum augmenting path.

Then, if d(XY»r it is clear that XY is not
lying on any minimum augmenting path and thus
it is removed from the graph.

If d(XY)<r then the augmenting path
p(O+X) .p(O+Y) can not be legal but must con
tain an odd loop on which XY is lying. We re
fer to a loop which is formed by an illegal
augmenting path whose length is less than r as
a small loop. An edge XY is lying on a small
loop if and only if d(XY)<r.

The irrelevant edges. Let XY be J free
(or a matched) edge. Any augmenting path
passing through XY consists in fact of two al
ternating paths, one leading to X and the
other leading to Y. Thus the length of an
augmenting path passing through XY must be at
least £(X)+£(Y)+l (or £(X)+£(Y) if XY is
matched). Define:

Let XY be an edge lying on a small loop and
let M be the base of this loop. We shall show
that if a minimum augmenting path is passing
through XY then it must pass also through M.
Thus, if XIY l and X2Y2 are two edges lying on

two small loops whose con~on base is M, and if
there are two minimum augmenting paths such
that one is passing through XlY l and the other

is passing through X2Y2 then these paths are

if XY is free
if XY is matched

d(Xy)={£(XY)+l
£(XY)

Another implementation is by replacing
each change of VAL(Z) by the two operations
DELETE and INSERT (delete Z with its old value
and insert Z with its new value). An efficient
implementation using 2-3 trees (described by
Aho, Hopcroft and Ullman [6]) works in m·log n
steps.

The simplest implementation is to record
T(R) just as a simple list. Each change of
VAL then costs one step while each merging
costs n steps. In this implementation steps
14-15 of the algorithm are performed as fol
lows: The set T(Z) is searched. For each
vertex VET(Z), VAL (V) is verified and updated
if necessary (by deleting the first bridges of
CH(V) which close odd loops). Then we find in
T(Z) a vertex V such that VAL(V) is minimum
and the first bridge of CH(V) becomes the link
of Z. Thus, each finding of a vertex V in T(Z)
whose VAL is minimum costs n steps and at most
n such operations are performed. The complex
ity of the whole implementation is therefore

2o (n).

As one can see, except for the implementa
tion of the operations on the sets {T(R)}, the
whole first stage is just a search of the edges

A more complicated implementation, not de
scribed here, has complexity O(g) where
g=min(m·log n, max(m,n l + S

)) where s>O may have
any positive small value.

106

(2.2)

not disjoint but have M as a common vertex.
Therefore, for the purpose of finding a set of
disjoint minimum augmenting paths we CC::"irt tbink
of the Lwo edges XIY I and X2Y2 as if they are

identical with the base M, or as if they are
"shrunk" to the vertex M. Thus, the basic
idea of the secon<l stage is to shrink each
vertex X which is lying on a small loop to the
base of this loop. But since this statement
may be ambiguous (X may lie on two or more
different small loops) we use the following
definitions (here we assume that edges XY for
which d(XY»r have already been removed).

The base of a vertex. Let X be a vertex
and let Y be its mate. Define:

{

X if d (XY) =r
BASE(X)= BASE (V) if d(XY)<r and LINK(X)=V

BASE(P) if d(XY)<r and LINK(X)=PQ

Lemma 2.1: Let XY be a matched edge such
that d(X,Y)<r and X has a 2-link, LINK(X)=PQ.
Then d(PQ)=d(XY) and for every edge ST on the
loop formed by p(O~P)·p(O~Q), d(ST)~d(PQ).

Proof: By eq. (1 . 9) •

Corollary i.l: By lemma 2.1 and by induc
tion on £(X), one can prove the following
properties:

(a) M=BASE(X) if and only if M is the last
vertex on p(O~X) for which
d(M,MATE(M))=r; also p(O~M) is the
longest head of p(O~X) for which
d(M,MATE(M))=r.

(b) If d(XY)<r than BASE(X)=BASE(Y) and
BASE (X) is the base of least level
among the bases of small loops which
include X; also, all vertices on
p(BASE(X)~X) have the same base.

The reduced graph: Let G(M) be the sub
graph of the origlnal graph G(V,E) defined as
follows: The set of vertices VM is given by

vM={xIBASE(X)=M} and the set of edges is given

by EM = {XY IX, YEVM and XYEE}.

The basic idea of the second stage is to
shrink G(M) into M where all edges of EM are

deleted and if parallel edges between M and M'
are created, all but one are deleted: The re
sulting graph is called the reduced graph and
is denoted by G.

(Notice that the process of shrinking the
graph in our algorithm resembles the process
of blossoms' shrinking performed by Edmonds [1].
But there are some distinctions between the two
processes: Edmonds shrinks each loop when it
is discovered. In our algorithm only those
loops which cause troubles, namely the small
loops, are shrunk. The shrinking in Edmonds'
algorithm is performed separately for each
loop, thus each vertex may participate in many
shrinks, while in our second stage each vertex
and each edge is shrunk only once and our book
keeping is much simpler.)

The algorithm of the second stage.

1. (Initialization). j~O; VLIST~¢ (VLIST is
the list of all vertices of G) .

107

FIND VERTICES OF G:
2. (Search the vertices of LIST (j)). If all

vertices of LIST(j) have been searched
go to 4; else let X be a vertex in
LIST(j) which has not been searched yet.

3. If BASE(X) is undefined return to 2.
Else define BASE(X) by (2.2). If
BASE(X)=X add X at the end of VLIST and
open a new list BASLIST(X) and put X as
its only item. (BASLIST(X) is the list
of all vertices V in G such that
BASE(V)=X). Else, add X to the end of
BASLIST(BASE(X)). Return to 2.

4. If j=r go to 5 (VLIST contains all ver
tices of G listed in nondecreasing order
of their levels). Else assign: j~j+l

and return to 2.

FIND EDGES OF G:

5. (Search the vertices of VLIST). If all
vertices of VLIST have been searched go
to 8; else let M be the first vertex in
VLIST which has not been searched yet.
Open a list ELIST(M)=~ (ELIST(M) is the
list of all edges of G which are inci
dent to M). Assign V~M.

6. (Search the edges VU in G). If all the
edges of G which are incident to V have
been searched go to 7; else let VU be an
edge of G which has not been searched
yet. If BASE (U)=M repeat 6 (VU reduces
to a self-loop). If the last edge in
ELIST(BASE(U)) is (BASE(U) ,M) repeat 6
(VU reduces to an edge which is parallel
to another edge in G). Else, add the
edge (BASE(U),M) at the end of
ELIST(BASE(U)). Assign:
SOURCE(BASE(U) ,M)~UV and repeat 6.

7. If V is the last element of BASLIST(M)
then return to 5; else, let VI be,the
next element on BASLIST(M). Asslgn:
V~Vl and return to 6.

8. (The vertices of G are listed in VLIST
according to nondecreasing order of
their levels. For each vertex M in VLIST
the edges MN of G are listed in ELIST(M)
according to nondecreasing order of the
levels of N, i.e. according to nondecreas
ing order of their values)~ For each
vertex M in VLIST invert the order of
the edges in ELIST (M), (these edges are
now listed in non-increasing order of
their values) and proceed to the third
stage.

Validity and complexity of the second stage.

The Complexity. The second stage consists
in fact of two parts, where in the first part
(steps 2-4) we search the vertices of G and in
the second part we search its edges (steps 5-7).
The number of steps per each vertex and edge is
constant, thus the complexity of the second
stage is O(m+n).

The validity.~ Lemma 2.2: The set of the
matched edges ln G is exactly the set of the
matched edges UV, of G, such that d(UV)=r.

CorOllary 2.2: The set of the exposed ver
tices 1n ~ 1S exactly the set of the exp?s~d

vertices in G which lie at the ends of mln1mum
augmenting paths.

Proof: Recall that an exposed vertex A
which lies in G at the end of a minimum aug
menting path is represented by a matched edge

A(1)A(2) where £(A(l))=O and £(A(2))=r, thus

d (A (1) A (2)) =r.

Lemma 2.3: Let XY be a free edge in G and
let UV be its source in G. Then UV is a free
edge in G such that d(UV)=r.

Proof: UV is a free edge in G. If
d(UV)<r then BASE(U)=BASE(V) and UV would not
be a source of an edge in G.

Lemma 2.4: Let XY be a free edge in G and
UV its source. Then the path p(X~U) ·p(Y+V) is
an alternating path in G which contains £-1
matched edges and £ free edges where £=r-£(XY).

Proof: The path p(X~U)·p(Y+V) is alternat
ing (by the definition) and the two edges at
its ends are free (by the definition of
X=BASE(U)). Thus it contains £-1 matched edges
and £ free edges. The length of the segment
p(X~U) is £(U)-£(X), i.e. it contains £(U)-£(X)
free edges. The segment p(Y+V) contains
£(V)-£(Y) free edges. Including the edge UV
there are £=£(U)-£(X)+ £(V)-£(Y)+l free edges
thus £=£(UV)+l-£(XY)=d(UV)-£(XY)=r-£(XY).

QED

Corollary 2.3: Let TI be a legal augmenting
path in ~ which connects the exposed vertices
A and B. Replace each free edge XY on IT by the
path p(X~U)·p(Y+V) where UV=SOURCE(XY). Then
the result is a legal augmenting path in G
which connects A and B (this augmenting path is
referred to as the augmenting path correspond
ing to TI.).

Proof: By Lemma 2.4 the resulting path is
an augmenting path. If Xl and X2 are two dif-

ferent vertices on TI, then P(Xl~Ul)EG(Xl) while

P(X2~U2)EG(X2)' thus these segments are dis

joint and the augmenting path in G is also
legal.

Lemma 2.5: Let X be a vertex f-lying on an
augmenting path rr(A,B) in G. Then the length
of the segment p(A~X) on the corresponding aug
menting path in G is £(X).

Proof: By induction on £(X), and Lemma 2.4.

Corollary 2.4: Let n be a legal augmenting
path in~. Then the corresponding augmenting
path in G is legal and minimum.

Corollary 2.5: Any set of disjoint augment
ing paths in ~ corresponds to a set of disjoint
minimum augmenting paths in G.

Theorem 2.1: Let p(A~B) be a minimum aug
menting path in G which connects the exposed
vertices A and B and passes through a vertex W.
Then p(A~B) must also pass through BASE(W), and
all the vertices on p(A~B) between Wand
BASE(W) belong to G(BASE(W)).

Proof: Let us outline the proof. Assume
that p(A~B) is not passing through M=BASE(W).
Let X be the first vertex on p(A~B) such that
BASE(X)=M, then X~M. Let Y be the vertex which
precedes X on p(A~B), then YX is a free edge.
Similarly let T be the last vertex on p(A~B)

such that BASE(T)=M and let S be the vertex
which follows T on p(A~B), then TS is a free
edge. Since BASE(Y)~M thus d(XY)=r. Similarly
d(TS)=r.

Denote the length of a path p in G by Ipl.
Assume that Ip(X~B) I>£(X). Since
Ip(A~B)-p(X~B) 1~£(Y)+l then

Ip (A~B) I~£ (Y) +1+ Ip (X~B) I>£ (X) +£ (Y) +l=d (XY) ==r
(a contradiction). Therefore Ip(X~B) I=£(X).

By concatenating p(X+B) to p(O~MATE(X)) we
find that p(O~M) and p(X+B) have a cornmon head.
Similarly p(O~M) and p(A~B)-p(T~B) have a com
mon head. Thus p(A+B) and p(A~B) have a cornman
bead which leads to contradiction.

Corollary 2.6: Let p be a minimum augment
ing path in G. Then by the shrinking process
it reduces to an augmenting path in G.

Corollary 2.7: Let PI and P2 be two dis

joi~t minimum augmenting paths in G. Then
thelr reductions are two disjoint augmenting
paths in G.

Corollary 2.8: Let S be ~ maximal set of
disjoint augmenting paths in G. Then the set
of the corresponding disjoint minimum augment
ing paths in G is also maximal.

Thus instead of looking for a maximal set
of disjoint minimum augmenting paths in the
original graph G, we look for a maximal set of
disjoint augmenting paths in the reduced graph
G. This is done in the third stage.

3. The Third Stage

General description.

The goal of the third stage is to find a
maximal set of disjoint augmenting paths in the
reduced graph. This is achieved by performing
a search of the free edges in the graph, simi
lar to the process of the first stage, trying
to build alternating paths leading to the ver
tices. (We denote such an alternating path
which leads to the vertex Z by rp(O~Z)). In
order to record those paths we use the same
method as used in the first stage,namely the
I-link and the 2-link. However, while in the
first stage the length of each alternating path
must be minimum, here it is arbitrary. Thus,
we do not define levels for the vertices but
use the levels which were defined in the first
stage (by Lemma 2.5 these levels are in fact
the places of vertices on the corresponding
augmenting paths). The fact that the alternat
ing paths, in the reduced graph, may not be
minimum, enables to check the legality of a
2-link before it is defined. In fact, when we
identify a bridge XY we search immediately both
paths rp(O+X) and rp(O+Y), assigning a 2-link
(YX or XY) to the vertices along the paths which
have no link yet. This search which is called
a loop-search is carried out simultaneously on
both paths, and it is done step by step accord
ing to the levels which were defined in the
first stage. As in the first stage, we use the

lU8

variable TOP (denoted here by RTOP) in order
to avoid repeated search of an edgef when we
meet a vertex Z we skip to RTOP(Z) to continue
the search from there. We shall show later
that if XY is a bridge then rp(O+X) ·rp(O+Y)
contains a loop. Let M be the base of this
loop. As one can see, by performing the loop
search we shall always reach RTOP(MATE(M» in
the same step from both directions of the loop.
This terminates the loop-search and no more 2
links which point to the bridges XY or YX are
assigned. Therefore, when a vertex is given a
link (either I-link or 2-link) we are sure it
is well-defined and the case of a potential
link does not happen in the third stage. The
search of the edges in the third stage always
proceeds from a low level to a higher one, as
one can conclude from the following Lemma:

Lemma 3.1: Let XY be a free edge in the
reduced graph and Z=MATE(Y). Then £(Z»£(X).

Proof: Let UV=SOURCE(XY) (see second
stage). Then £(X)'£(U), £(y),£(V) and thus
£(X)+£(Y)'£(U)+£(V)=d(UV)-I<r=d(YZ)=£(Y)+£(Z) .
Therefore £(X)<£(Z). QED

Corollary 3.1: Let IT be an alternating
path which connects the vertices X and S in the
reduced graph such that X is incident to a free
edge of IT and S is incident to a matched edge
of IT. Then £(S»£(X).

HLFS method. In the first stage we wanted
to find minimum augmenting paths and thus used
the BFS method. In the third stage the re
quirement is to find disjoint paths and for
that purpose we use the DFS method (Depth First
Search) or rather the HLFS method (Highest Le
vel First Search): Assume that the edge XY is
being searched. If this search is not a loop
search then X is a vertex for which a link has
already been defined and it is the vertex with
the highest level such that not all the free
edges XY have already been searched. Assume
that the search started from a certain I-ex
posed vertex A. The HLFS means that we shall
not search an edge BV (where B is another 1
exposed vertex) until we either find an aug
menting path emerging from A or find that such
a path does not exist. Thus, the search of the
edges is performed in parts, where in the i-th
part we try to find an augmenting path emerging
from the i-th I-exposed vertex. As we shall
see, all vertices and edges which have been
searched during the i-th part are not relevant
any more to the following parts, and they are
ignored. This fact assures that the set of
augmenting paths found in the third stage is
really maximal, and that no edge must be
searched more than once (in each direction) .
Thus, the cost of the search of the edges is
O{ml) where ml is the number of edges of the

reduced graph.

Because of the HLFS method and the search
of the edges by parts, when a bridge XY is
searched, both rp(O+X) and rp(O+Y) emerge from
the same I-exposed vertex and therefore
rp(O+X) ·rp{O+Y) must contain a loop. Thus a
loop-search always determines a loop, as we
noted above. Let M be the base of this loop.
After the loop-search is completed, all the
vertices which lie on the loop will have the
same RTOP as MATE(M). thus, for each vertex X
which lies on the loop the following relation
holds: RTOP(X)=RTOP(MATE(X». A new meaning

can be given to the RTOP variable, namely:
RTOP(X) is the mate of the vertex of minimum
level among all the bases of loops on which X
is lying and which have already been searched.
Since the search is performed in the HLFS meth
od we can also define MATE(RTOP(X» as a vertex
which is f-Iying on rp(O+X) whose level is the
highest such that its mate has no link yet. As
in the first stage we define RT(V) to be the
set of all vertices Z such that RTOP(Z)=V.
Also, as in the first stage, n operations of
merging sets RT{V

1
) and RT(V 2) may be required.

However, because we are not interested in a mi
nimum path, no operations of finding a minimum
in RT(V) or changing the value of a vertex are
required (the term "value of a vertex" is not
even defined here). Thus, an efficient algo
rithm for handling the operations on the class
of sets {RT(V)} have a complexity of O(nlg(n l »

where n
l

is the number of vertices of the re

duced graph and g(nl) is the reciprocal Acker

man function [6]. The complexity of the third
stage is therefore O(ml+nlg(n l ».

The data structure. From the second stage
we have VLIST which contains the vertices of
the reduced graph ordered according to their
levels. For each of these vertices Z we have
a list ELIST(Z) of the edges which are incident
in the reduced graph to Z, where these edges
are listed in non-increasing order of their
values (i.e., in non-in·creasing order of their
other end points). For each vertex Z we use
an additional variable called LIFE(Z): In the
beginning of the third stage for each vertex Z,
LIFE(Z)=n+l. If vertex Z is reached during the
search of the i-th part we assign LIFE(Z)=i.
Thus, during the search of the i-th part we
ignore all vertices Z for which LIFE(Z)<i.

In order to handle the HLFS we define for
each of the levels j=O,l r-l,r a list
RLIST(j), which contains all vertices Z whose
level is j, Z has already been reached but not
all free edges ZW have been searched yet.

The algorithm of the third stage.

The algorithm of the third stage consists
of a main procedure and a subroutine SRCHLOOP
which implements the loop-search. As one can
see, the following algorithm is in fact a
slight improvement of Gabow's algorithm [3].

The main procedure.

1. (Initialization): For each vertex Z in
the reduced graph assign: RLINK(Z)+O;
LIFE(Z)+n+l; RT(Z)={Z}, RTOP(Z)=Z. For
each level j (j=O,l ... r-l,r) assign
RLIST(j)+¢. Assign: io+O.

NEW-PART:

2. Assign io+io+l (The io-th part is start
ed). Assign: X+VLIST(i o). If £(X)fO
then proceed to the fourth stage (all
the I-exposed vertices of the reduced
graph have already been searched). If
LIFE(X)<n+1 return to NEW-PART (the ver
tex X has already been reached in a
former part) .

3. Assign: j+O (j is the level of the ver
tex from which the search will continue).

109

4 •

5.

6.

Lnsert x to RLIST(O). Assign: LIFE(X)+i o
LIFE(MATE(X»~io.

(Search from vertex X). If all the
edges in ELIST(X) have already been
searched then remove X from RLIST(j) and
go to 6; else let XY be the first edge
in ELIST(X) which has not been searched
yet. If LIFE(Y)<i o then repeat 4; e~se

let Z=MATE(Y). If Z=X (the edge XY 1S
matched) repeat 4; else assign: LIFE(Y)~io

LIFE(Z)~io. If RLINK(Y)~O call
SRCHLOOP(X,Y) and go to 6.

(Search of the edge XY where RLINK(~)=O).

If RLINK(Z)~O return to 4; else ass1gn:
RLINK(Z)~X. j~~(Z). Insert Z to
RLIST(j). If j=r return to NEW-PART ,
(the present part is successfully term1
nated); else assign: X~Z and go to 4.

(Find a new vertex whose level is j to
continue the search). If RLIST(j)=¢ go
to 7; else let X be the first vertex in
RLIST(j). If LIFE(X)<i o then remove X
from RLIST(j) and repeat 6; else return
to 4.

s. (Update A and B). Assign: B~A:

A~RTOP(MATE(RLINK(MATE(A»». If
B=U l assign: Vl+B, U1+A; else assign:

V2~B, U2~A;

6. If Ul~U2 return to 3; else (U l =U 2 is

the RTOP of the whole loop formed by
the bridge XY) assign: j+max(j,jl)

and return to the main procedure.

(Remark: Let M be the base of the loop
formed by the bridge XY. It can be shown
as a result of the following Lemma 3.2 and
Lemma 3.3 that when SRCHLOOP(X,Y) is acti
vated, all the vertices on rp(M+Y) already
have a RLINK, and RTOP(MATE(Y»=
RTOP(MATE(M». Thus, the loop-search is
actually performed only on rp(M+X) and in
step 3 of SRCHLOOP we always assign ~~Ul'

RLINK(A)+YX, in step 4 we always asslgn
B~Vl and in step 5 we always assign

Vl+B, Ul+A. Therefore SRCHLOOP(X,Y) can

be simplified).

The subroutine SRCHLOOP(X,Y):

(For all vertices X whose level is j,
all the free edges XY have already been
searched. Find a new level to continue
the search). If j=O go to NEW-PART (the
present part is terminated with?ut find
ing an augmenting path: There 1S no,
augmenting path passing thr~ugh ~e~t1ces

whose LIFE is i o); else ass1gn: J~J-l

and return to 6.

4. (Update the sets {RT (V)}). Assign:

{

VI if A=U l
B+ V

2
if A=U

2
(A was reached by

searching from B). Merge: RT(A)+
RT (A) U RT (B). Assign RT (B) +¢.

(j is the highest level of a vertex
whtch has been linked through the pre
sent activation of SRCHLOOP). Insert
A to RLIST(jl).

The validity of the third stage

As we already mentioned, the algorithm of
the third stage is in fact a slight improve
ment of Gabow's algorithm [3]. Therefore we
shall not prove here that the links which are
ass~gned in the third stage are really defin
ing legal augmenting paths. We only show here
that vertices whose LIFE is less than i are
not relevant to the i-th part; i.e. we show
that there is no augmenting path which is dis
joint from previously discovered augmenting
paths and which uses vertices whose LIFE is
less than i.

The proof is by contradiction. Assume
that Z is the first vertex which has become
active for which the Lemma does not hold. It
can be shown that if RLINK(Z)=W then X is lying
on rp(O+W) and thus on rp(O+Z); and if
RLINK(Z)=PQ then X is lying on rp(O+M),where
M is the base of the loop which is on
rp(O+P) ·rp(O+Q), and thus X is lying on
rp(O+Z) .

Corollary 3.2: Let LIFE(X)=i. If at the
end of the i-th part X is still active while
MATE (X) is passive, then an augmenting path
which passes through X has been found in the
i-th part.

Proof: X is active at the end of the i-th
part, thus this part has terminat~d success
fully and an auqmenting path lead1ng to a

Let X be a vertex. If RLINK(X) is not de
fined yet we call X a passive vertex. If X is
included in RLIST(£(X» we call X an active
vertex. If X has already been removed from
RLIST(£(X» we call X a dead vertex.

Lemma 3.2: Let X be an active vertex,
MATE (X) be a passive vertex and Z be an active
vertex such that £(Z)~£(X) and LIFE(Z)=LIFE(X).
If the procedure is not in SRCHLOOP, then the
alternating path rp(O+Z) defined by RLINK(Z)
passes through X. (If £(Z)=£(X) then Z=X).

110

(A is[

Ul if £(U l)'£(U 2)
Assign: A+ U

2
if £(U

2
)<Z (U

l
)

a vertex of minimum level on the loop
formed by XY whose RLINK is still un
defined). (Give a 2-link to A):

{
XY if A=U 2 ,

Assign: RLINK(A)+ YX if A=U
l

; Jl~£(A)

Assign Vl+Y, V2+X (VI and V2 are the

last vertices f-lying on rp(O+X) and
on rp(O+Y) respectively which have
been reached so far during the loop
search) .

Assign: Ul+RTOP(MATE(X»;

U
2

+RTOP(MATE(Y». (U l and U2 are the

new candidates on rp(O+X) and on
rp(O~Y) to get a 2-link to YX and XY
respectively). If Ul =U 2 then return
to the main procedure (the edges of
the loop formed by the bridge XY have
already been searched).

3.

2.

1.

7.

2-exposed vertex B(2) has been found. By
(2). X· thLemma 3.2 X is on rp(O~B),l.e. lS on e

augmenting path.
QED

Lemma 3.3: If X is dead while MATE(X) is
still passive, then MATE (X) will remain
passive.

Proof: X has a I-link, thus MATE (X) can
have only 2-link. But if RLINK(MATE(X))=PQ
then X is f-lying on rp(O~Q) and thus by Co
rollary 3.1 £(Q»£(X), and Q became dead be
fore X. Therefore, QP is searched before X
becomes dead. If at this time P has a link
then MATE (X) would get a link while X is still
not dead. If P has no link then QP and PQ are
not bridges. QED

Lemma 3.4: If X is dead, MATE (X) is pas
sive and LIFE(X)=i, then there exists no aug
menting path which passes through X and the
LIFE of each of its vertices is greater than
or equal to i.

Proof: Assume X is a vertex of highest
level f-lying on an augmenting path n, which
contradicts the Lemma. Let W be a vertex of
highest level, f-lying on IT, whose LIFE has
become i while X has been active. Let WT be
the free edge on IT and let U=MATE(W),
S=MATE(T). When X becomes dead neither W nor
U can be passive: For, let V be the vertex
among Wand U which has l-link; by the choice
of W, when RLINK(V) is assigned X is active
and thus £(V»£(X). Therefore V becomes dead
before X and by the assumptions on X, MATE (V)
cannot be passive. By Corollary 3.1
~(W»£(X) and thus W becomes dead before X
and WT is searched while X is still active.

Now let us show that, when WT is searched,
T cannot be passive. By Corollary 3.1
£(S»£(W»£(X). Assume that when WT is
searched T is passive. If S is passive then
by searching WT LIFE(S) becomes,i, co~tra

dicting the choice of W. If S 1S act1ve,
since £(S»£(W) we cannot be searching WT.
If S is dead then the choice of X is wrong.
Thus, when WT is searched T already has a link.
This implies (by the assumption on n) that
when WT is searched LIFE(T)=LIFE(S)=i. By the
choice of W,LIFE(S) and LIFE(T) has become i
before X becomes active and therefore X is not
on rp(O~T). Thus WT is a bridge whi~h forms
a loop which contains MATE (X) and ~h1S co~tra

dicts the assumption that MATE (X) lS passlve.

QED

Lemma 3.5: If X is active, £(x)~r71,

then rp(O~X) passes through all the active
vertices V for which £(X)~£(v)~r~l and

LIFE (V) =LIFE eX) .

Proof: Assume that X is the first vertex
which becomes active for which the Lemma does
not hold. First we show that when X becomes
active it is in accord with the Lemma: If
RLINK(X)=W then the Lemma holds for Wand
thus for X. Assume RLINK(X) has been assigned
during SRCHLOOP(P,Q). Let V be a vertex which
is active when SRCHLOOP(P,Q) is activated,

£(V)~r¥l and LIFE(V)=LIFE(X). Then, ,Q (P)~£(V)

III

and V is on rp(O~P). If RLINK(X)=PQ then V is
also on rp(O~X). Assume RLINK(X)=QP and V is
not on rp(X~P). In case V is f-lying on
rp(O+P) then (by corollary 3.1) £(V»£(X) and
in case V is f-lying on rp(O~P) then

£(V)<£(MATE(x))~r¥l. Therefore if

£(X)~£(v)~r~l then V is on rp(X~P) and thus on

rp(O~X). If V becomes active durin~

SRCHLOOP(P,Q) and £(X)~~(V) then V 1S on
rp(O~X).

Next, let V be a vertex for which RLINK(V)
is assigned while X is already active,
LIFE(V)=LIFE(X) and £(X)~£(v)~rfl. It fol-

lows that V cannot get a l-link and thus
MATE (V) has a l-link. By Lemma 3.3 MATE(V) is
still active when RLINK(V) is assigned.

£(MATE(V))'r~l~£(X) and thus by Lemma 3.2

MATE (V) (and V) are lying on rp(O~X).

QED

Corollary 3.3: If during the i-th part
an augmenting path is found, then it passes
through all vertices V such that LIFE(V)=i,

£(v)~r¥l and V is active at the end of the

i-th part.

Theorem 3.1: Let X be a vertex such that
LIFE(X)=i. Then there exists no augmenting
path. which passes through X and is disjoint
from all augmenting paths which have been
found in the first i parts.

Proof: By induction on i: Assume X is a
vertex o,f highest level for which the Lemma
does not hold. Let us show that at the end
of the i-th part both X and MATE (X) have a
link. For if one of them is passive then the
other cannot be dead by Lemma 3.4, and cannot
be active, by Corollary 3.2. By the assump-

tion on X, £(X)~£(MATE(X)) and thus £(x)~r~l .

Thus, by Corollary 3.3 X must be dead at the
end of the i-th part. Let XY be the free edge
on the augmenting path which is assumed to
pass through X and let Z=MATE(Y). By the in
duction and the assumption on X, at the end of
the i-th part LIFE(Y)=LIFE(Z»i, a contradic
tion to the fact that XY was searched.

QED

Corollary 3.4: ln the i-th part, all the
vertices X such that LIFE(X)<i may be ignored.

4. The Fourth Stage

In the fourth stage the augmenting paths
which have been found in the third stage are
retraced and the matching is improved by con
verting every free edge which is lying on
these paths to a matched one and vice versa.
The 2-exposed vertices at the ends of those
augmenting paths, are removed from the graph.

The fourth stage is performed as follows:
We search the list RLIST(r) which contains all
the 2-exposed vertices which are lying at the
ends of the augmenting paths which have been
found in the third stage. Let B be a vertex
in RLIST(r) and let i=LIFE(B). Then the ori
gin of the augmenting path leading to B is a
l-exposed vertex A, which is the i-th vertex

in VLIST. In order to perform the restoration
of the whole augmenting path which leads from
A to B in the reduced graph we use a recursive
procedure RBUILD(W,Z,k) (where k=O,I). This
procedure returns an alternating path from W
to Z, where W is incident to a free edge of
the path and Z is incident to a matched
edge of the path. The alternating path from
W to Z is a segment of the whole required
augmenting path from A to B where their direc
tions coincide if k=l and are opposite if k=O.
Thus in order to retrace the augmenting path
from A to B we call RBUILD(A,B,I).

The algorithm of RBUILD(W,Z,k):

1. If W=Z then return Z.

2. If RLINK(Z)=X then do;
if k=l then return

RBUILD(X,W,l)·MATE(Z) ·Z;
else return Z·MATE(Z) ·RBUILD(W,X,O).

3. If RLINK(Z)=PQ then do;
if k=l then return

RBUILD(W,P,l) ·RBUILD(MATE(Z) ,Q,O) ·Z;
else return

Z·RBUILD(MATE(Z) ,Q,l) ·RBUILD(W,P,O).

After the augmenting path from A to B in
the reduced graph is retraced, each free edge
XY on it must be replaced by the segment
p(X+U) ·p(Y+V) where UV=SOURCE(X,Y) (see second
stage). The paths p(X+U) and p(Y+V) are re
traced by the recursive procedure BUILD(W,Z,k)
which is similar to RBUILD(W,Z,k) but uses
LINK(Z) instead of RLINK(Z). This completes
the restoration of the minimum augmenting path
from A to B in the original graph. The ver
tices on this path are rematched and we pro
ceed to the next augmenting path.

During the restoration of an augmenting
path, each of the procedures RBUILD and BUILD
may be called at most r times and the number
of steps per each call is constant. Thus,
the number of steps performed in restoring
one augmenting path is proportional to rand
the complexity of the whole fourth stage is
°(n).

5. References

1. Edmonds, J., "Pa ths, Trees and F lowers II ;

Canadian J. 1965, Volume 17, pp. 449-467.

2. Witzgall, C. and Zahn, C. T., Jr.
"Modification of Edmonds' Maximum Match
ing Algorithm"; Journal of Research of
the National Bureau of Standards, Jan
June 1965, Volume 69B, pp. 91-98.

3. Gabow, H., "An Efficient Implementation
of Edmonds' Maximum Matching Algorithm";
June 1972, Technical Report No. 31,
Stan-CS, pp. 72-328.

4. Berge, C. "The Theory of Graphs and its
Applications"; (English translation
from French), John Wiley and Sons Inc.,
New York; "Two Theorems in Graph Theory"
Proceedings of the National Academy of
Science 1957, Volume 43, pp. 842-844.

5 f d "An n 5/ 2
. Hopcro t, J. E. an Karp, R. M.

Algorithm for Maximum Matching in
Bipartite Graphs"; SIAM J. on Comp. 2,
December 1973, pp. 225-231.

6. Aho, A. V., Hopcroft, J. E., and Ullman,
J. D., "The Design and Analysis of
Computer Algorithms"; Addison-Wesley
Publishing Company, 1974, Chapter 4,
pp. 124-163.

112

