
The Left-Right Planarity Test1

Ulrik Brandes ?2

Department of Computer & Information Science, University of Konstanz3

Abstract4

A graph is planar if and only if it can be embedded in the plane without crossings.5

I give a detailed exposition of simple and efficient, yet poorly known algorithms6

for planarity testing, embedding, and Kuratowski subgraph extraction based on the7

left-right characterization of planarity.8

Key words: Graph algorithms, planarity, algorithm review9

1 Introduction10

Two things appear to constitute the folklore about graph planarity testing:11

(1) There are two main strands of linear-time algorithms, the vertex-addition12

approach pioneered by Lempel, Even, and Cederbaum (1967), and the13

path-addition approach pioneered by Hopcroft and Tarjan (1974).14

(2) Both are a real challenge to understand, implement, and teach.15

This is not a review of the exciting history of planarity testing at large, how-16

ever, but of the lesser known left-right approach, which is seemingly different17

and usually associated with de Fraysseix and Rosenstiehl (1982). Even though18

the developments from its origins in Wu (1955) to its latest version in de Frays-19

seix, Ossona de Mendez, and Rosenstiehl (2006) and de Fraysseix (2008) is20

interesting in itself, my main goal here is to meet the apparent demand for an21

accessible exposition.22

The left-right approach is remarkably elementary and does not require tricky23

data structures (e.g., Booth and Lueker 1976), a complicated embedding phase24

? I would like to thank Sabine Cornelsen, Giuseppe Di Battista, Daniel Kaiser,
Martin Mader, and Maurizio Patrignani for helpful comments, suggestions, and
corrections.

Preprint submitted to journal (26 April 2009) 26 April 2009

(e.g., Mehlhorn and Mutzel 1996), or even special treatment of biconnected25

components. Moreover, it was found to be extremely fast (Boyer, Cortese,26

Patrignani, and Di Battista, 2004) and can be augmented easily to return a27

Kuratowski subgraph if the input is not planar.28

This work is motivated by the stark contrast between the elegance and sim-29

plicity of the left-right approach and its minimal adoption. It yields, I am30

convinced, the simplest linear-time planarity algorithms known to date, but31

to the best of my knowledge, there is not a single exposition or implementation32

independent from the original group of authors.33

The absence of an easily readable, yet fully detailed description may be the34

main cause for its lack of popularity. In an attempt to remedy this situation,35

the original description of de Fraysseix, Ossona de Mendez, and Rosenstiehl36

(2006) is simplified with minor corrections, and it is extended by a new mo-37

tivation, implementation-level pseudo-code, and more straightforward Kura-38

towski subgraph extraction. While the planarity test given here differs from39

the original paper, similar improvements have been introduced independently40

into the only previous implementation, available in PIGALE (de Fraysseix and41

Ossona de Mendez, 2002).42

From the present description it should be possible to teach the algorithm in no43

more than two sessions of an advanced algorithms course. With a planar graph44

data structure art hand, transforming the pseudo-code into an implementation45

should be a matter of hours.46

The remainder is organized such that readers solely interested in understand-47

ing the left-right approach can stop reading after Section 5. Therefore, only48

minimal background on graph planarity and the associated algorithmic prob-49

lems is provided in Section 2. A new motivation for the left-right approach is50

given in Section 3, and the planarity characterization on which it is based in51

Section 4. The left-right algorithm for planarity testing and planar embedding52

is given in Section 5, including detailed pseudo-code. Kuratowski subgraph53

extraction for non-planar graphs is treated separately in Section 6, and the54

relation to other planarity criteria and algorithms as well as some notes on55

the history of the left-right approach are postponed until Section 7.56

2 Planarity57

We consider simple undirected graphs G = (V,E), since directions, loops and58

multiple edges have no effect on planarity, and denote n = n(G) = |V | and59

m = m(G) = |E| throughout.60

2

A drawing of a graph is a mapping of its vertices onto points in the plane, and61

of its edges onto curves connecting their endpoints. Where possible without62

confusion, we neglect the distinction between vertices, edges, etc., and their63

drawings. A drawing of a graph is planar, if edges do not intersect except at64

common endpoints. A graph is planar, if it admits a planar drawing.65

A planar drawing divides the plane into connected regions, called faces. Each66

bounded face is an inner face, and the single unbounded one is called the67

outer face.68

A (combinatorial) embedding consists of cyclic orderings of the incident edges69

for every vertex. An embedding is realized by a drawing, if the clockwise order-70

ing of the edges around each vertex in the drawing agrees with the embedding.71

Note that an embedding represents an equivalence class of drawings that re-72

alize it. An embedding is planar, if it can be realized in a planar drawing.73

Given a graph G, there are four major algorithmic problems related to pla-74

narity:75

(1) Decide whether G is planar.76

(2) If G is planar, find a planar embedding.77

(3) If G is not planar, find a Kuratowski subgraph.78

(4) Given a planar embedding of G, realize it in a planar drawing.79

A Kuratowski subgraph is an inclusion-minimal subgraph certifying non-planarity.80

Since it is of less general interest, the topic is deferred to Section 6.81

Our focus will be on the first two problems and we only note that, given82

a planar embedding, realizations may be subject to various criteria such as83

integer coordinates, straight-line edges, small area, polygonal edges with few84

bends and/or slopes, etc., and there are many algorithms for drawing planar85

graphs according to such criteria (see, e.g., Nishizeki and Rahman 2004).86

The linear-time testing and embedding algorithm described in Section 5 is87

based on a rather intuitive criterion that is motivated and established in the88

next two sections.89

3 Motivation90

Since planarity is about the absence of crossings, cycles are the root cause of91

difficulties: cycles yield closed curves that disconnect regions of the plane, and92

one has to be careful about where to place which part of the graph.93

There are only two significantly different ways to draw a simple cycle planarly,94

3

(a) planar graph (b) planar drawing

(c) DFS orientation (d) LR partition

Fig. 1. Example of a planar graph (from Cai, Han, and Tarjan 1993). In both the
planar and non-planar drawing, the same depth-first search (DFS) orientation is
shown with thick tree edges and curved back edges. In any planar drawing the back
edges can be partitioned into left and right, depending on whether their fundamental
cycle is counterclockwise or clockwise. Note that the non-planar drawing contains
self-intersecting fundamental cycles for both back edges entering the DFS root.

namely clockwise or counterclockwise. It turns out that fixing the orientation95

of some cycles may impose constraints on the choices for overlapping others96

via the ordering of edges around vertices. We will show that testing planarity97

amounts to deciding whether there is a consistent orientation of all cycles.98

Despite a potentially exponential number of cycles, this can be done efficiently,99

because constraints need not be resolved for all cycles, but only for a small100

set of cycles that represent the entire cycle structure.101

Representative cycles are determined from a depth-first search as described102

next. This is followed by some apparent orientation constraints that also relate103

4

cycle orientations to embeddings. In Section 4, more precise versions of these104

constraints are proven to characterize planarity. The proof is constructive and105

immediately yields a planar combinatorial embedding, if one exists.106

3.1 Depth-first search107

The left-right planarity criterion is inherently related to depth-first search108

(DFS). Important aspects of this relation are hinted at in this section, and109

DFS terminology is introduced along the way.110

Recall that a depth-first search on a connected undirected graph Ḡ = (V, Ē)111

yields a DFS orientation of Ḡ, i.e. a directed graph ~G = (V, ~E) in which112

each undirected edge is oriented according to its traversal direction. Once113

the graph is oriented, we will only work with its directed version and hence114

neglect the distinction between Ē and ~E. In the oriented graph, we denote115

by E+(v) = {(v, w) ∈ E} the set of all outgoing edges of v ∈ V , so that116

E =
⋃

v∈V E
+(v).117

In addition to an orientation, a DFS traversal yields a bipartition of the edges118

into E = T] B, where those in T are called tree edges and induce a rooted119

spanning tree (the DFS tree), and the non-tree edges in B are called back120

edges. See Fig. 3. We write u → v and v ↪→ w for (u, v) ∈ T and (v, w) ∈ B.121

Also, we use
+→ for the transitive, and

∗→ for the reflexive and transitive closure122

of → and call the unique sequence inducing u
∗→ v a tree path.123

If v
∗→ w (v

+→ w), v is said to be (strictly) lower than w, and w (strictly)124

higher than v. A vertex is lowest (highest) in a set of vertices, if no other125

member of that set is lower (higher). The height of a vertex v is its distance126

from the root.127

The characterizing property of DFS orientations is that the target w of every128

back edge v ↪→ w is a tree ancestor of (i.e., strictly below) its source v. Thus,129

each back edge v ↪→ w induces a fundamental cycle C(v ↪→ w) = w
+→ v ↪→130

w, and these will be our primary objects of interest. Two cycles are called131

overlapping, if they share an edge, and it is the overlap of cycles that makes132

planarity testing challenging.133

Lemma 1 Let G = (V, T]B) be a DFS-oriented graph.134

(1) The fundamental cycles are exactly the simple directed cycles of G.135

(2) Two distinct fundamental cycles are either disjoint, or their intersection136

forms a tree path.137

5

v
e1 e2

u

(a) original graph

v

u
e

lowpt(e)

e1 e2

(b) sketch

Fig. 2. A fork with branching point v in the graph of Figure 1, and a sketched
representation showing only those back edges that are return edges of e = u → v.
Note that edges to the lowpoint of e are dashed, and that e2 is chordal but e1 is
not.

PROOF.138

(1) All fundamental cycles are simple and, because of DFS, directed. Now139

consider any simple directed cycle and let v ∈ V be lowest on that cycle.140

Since every cycle contains at least one back edge, let x ↪→ u be the first141

back edge after v. Vertex v is lowest, so that u must be in v
∗→ x. Since142

the cycle is simple, u = v and there are no more edges.143

(2) Let w
∗→ v ↪→ w and u

∗→ x ↪→ u be two fundamental cycles. Since they144

are distinct, v ↪→ w 6= x ↪→ u. Since there is exactly one path between145

any pair of vertices in a tree, tree paths can join and fork at most once.146

A non-empty intersection of w
∗→ v and u

∗→ x must, therefore, be a147

treepath itself. 2148

For two overlapping cycles, the last edge u → v on the shared tree path149

together with the succeeding edge e1 = (v, w1), e2 = (v, w2) on each cycle is150

called their fork, and v its branching point. We will see that finding a planar151

combinatorial embedding reduces to finding an appropriate ordering of all152

triplets of edges that form a fork.153

It will be convenient to fix a linearization of the cyclic ordering of outgoing154

edges around a vertex. Since every vertex v has at most one incoming tree155

edge, the clockwise order of outgoing edges is split at the incoming tree edge,156

or between any two consecutive outgoing edges if v is the root of a DFS tree.157

In the next section, two simple observations help understand how cycle orien-158

tations impose fork orderings.159

6

v

root

e1 e2 v

root

e1 e2 v

root

e1 e2 v

root

e2e1

Fig. 3. In a planar drawing, overlapping fundamental cycles are nested, if and only
if they are oriented alike. If the root is on the outer face, the lowest vertex of their
union is contained in the outer of the two cycles.

3.2 Orientation and nesting of fundamental cycles160

Recall that there are two classes of directed cycles in a planar drawing, because161

each is oriented either clockwise or counterclockwise. Since the intersection of162

overlapping fundamental cycles is a tree path containing at least one edge, the163

four possible configurations in Figure 3 can be summarized as follows.164

Observation 1 In a planar drawing of a DFS-oriented graph G = (V, T]B),165

two overlapping cycles are nested, if and only if they are oriented alike.166

By assigning orientations we essentially determine whether the inside is to the167

left or to the right of a directed cycle, but the above observation does not168

specify which of two nested cycles is enclosed by the other.169

For disambiguation we use the convention that roots of DFS trees are incident170

to the outer face and measure the nesting depth of a fundamental cycle using171

the following concepts.172

The return points of a tree edge v → w ∈ T are the ancestors u of v with173

u
+→ v → w

∗→ x ↪→ u for some descendant x of w. A back edge v ↪→ w has174

exactly one return point, its target w. The return points of a vertex v ∈ V are175

formed by the union of all return points of outgoing edges (v, w) ∈ E+(v) ⊆176

T] B. A back edge x ↪→ u is a return edge for every tree edge v → w with177

u
+→ v → w

∗→ x ↪→ u, and for itself.178

The lowpoint of an edge is its lowest return point, if any, or its source if179

none exists. Note that the lowpoint of a back edge is the lowest vertex of its180

fundamental cycle, and therefore also called the lowpoint of that cycle.181

7

The second important observation establishes nesting constraints induced by182

lowpoints of cycles. It is justified by noting that if the root is on the outer183

face and there is a proper tree path from the lowpoint of one cycle to that of184

another cycle, this path can not be part of the inner cycle.185

Observation 2 In a planar drawing of a DFS-oriented graph G = (V, T]B)186

with all roots of DFS trees on the outer face, overlapping fundamental cycles187

are nested according to their lowpoint order.188

3.3 Relation to planar embeddings189

The above two observations about orientations have immediate consequences190

for planar embeddings. This becomes obvious by considering the single fork191

in each of the four configurations in Figure 3.192

First consider the fork of a pair of differently oriented cycles. Clearly, the193

outgoing edge of the left cycle is before the outgoing edge of the right cycle in194

the linearized order at branching point v.195

Next consider the fork of a pair of likewise oriented cycles. In case they are right196

cycles and one contains a vertex that is strictly lower than those in the other197

cycle, the cycles outgoing edge (e1 in Figure 3) comes first in the linearized198

order at branching point v. The converse is true when v is the branching point199

of left cycles.200

A vertex may be the branching point for several pairs of overlapping cycles.201

Combining both observations yields a (for now partial) embedding at branch-202

ing points: outgoing edge of left cycles need to be before those of right cycles,203

and the internal ordering in each subset is determined by lowpoints. Note that204

there may be ties, and that outgoing tree edges may be part of several, differ-205

ently oriented cycles. We will have to resolve these ambiguities, but otherwise206

the whole approach rests entirely on Observations 1 and 2.207

4 The Left-Right Planarity Criterion208

With the above motivation in mind, we say that the side of a back edge in209

a planar drawing is right, if its fundamental cycle is oriented clockwise, and210

left otherwise. Assigning a side to a back edge thus corresponds to orienting211

a fundamental cycle, and this will be all that needs to be done.212

The following definition summarizes all constraints resulting from sets of over-213

lapping fundamental cycles in terms of their respective back edge. It is worth214

8

v

e

lowpt(e2)

lowpt(e1)

e2e1 v

e

lowpt(e1)
=

lowpt(e2)

e2e1

Fig. 4. LR constraints associated with e = u→ v.

noting that all constraints are generated by a single type of configuration215

associated with forks.216

Definition 2 (LR partition) Let G = (V, T]B) be a DFS-oriented graph.217

A partition B = L] R of its back edges into two classes, referred to as left218

and right, is called left-right partition, or LR partition for short, if for every219

fork u→ v ∈ T and e1, e2 ∈ E+(v)220

(1) all return edges of e1 ending strictly higher than lowpt(e2)221

belong to one class and222

(2) all return edges of e2 ending strictly higher than lowpt(e1)223

to the other.224

The LR partition constraints are illustrated in Figure 4. Each group of con-225

straints is associated with a tree edge u → v, and the system of constraints226

can be broken down into two sets of pairwise requirements: same-constraints227

forcing two back edges to be on the same side, and different-constraints forc-228

ing them to be on opposite sides. Note that two back edges are subject to229

a constraint only if their fundamental cycles overlap. 1 It is rather striking230

that these partition constraints (based on an arbitrary DFS orientation) are231

equivalent to planarity.232

Theorem 3 (Left-Right Planarity Criterion) A graph is planar if and233

only if it admits an LR partition.234

While necessity of the LR constraints is straightforward, we prove sufficiency235

in the next section by constructing a planar embedding from a given LR parti-236

tion. The construction is guided by the constraints that orientation and nesting237

of fundamental cycles impose on an embedding.238

1 The configurations inducing either type of constraint are considered in Section 6.

9

Removing the following ambiguity will simplify both argumentation and al-239

gorithm. An LR partition is called consistent, if all back edges of a tree edge240

that end at its lowpoint are on the same side.241

Lemma 4 Any LR partition can be made consistent.242

PROOF. Consider two return edges b1, b2 of a tree edge e = u→ v that end243

at lowpt(e). If one of them is involved in any LR constraint as specified in244

Definition 2, this constraint must be associated with a tree edge e′ = u′ → v′245

such that v′
∗→ v and lowpt(e′) is strictly lower than lowpt(e). Since b1, b2246

originate from a common subtree entered by e and have the same return247

point, actually both are involved in this constraint and even required to be on248

the same side. Thus, consistency does not lead to contradictions. 2249

4.1 Combinatorial embedding250

Consider Figure 3 again and recall that the orientation of overlapping funda-251

mental cycles induces a partial ordering of edges around forks.252

We linearize clockwise cyclic orderings of edges around non-root vertices by253

starting from the unique incoming tree edge. Outgoing edges belonging to254

a counterclockwise cycle then need to appear before those belonging to a255

clockwise cycle branching at the respective fork. Moreover, outgoing edges of256

clockwise (counterclockwise) cycles must be ordered outside in (inside out)257

around their branching point.258

Given a DFS-oriented graph G = (V, T]B) together with an LR partition of259

all back edges, a planar embedding can be obtained from extending the par-260

tition to cover tree edges as well, and a linear order defined on the outgoing261

edges of each vertex. This order will represent the nesting of cycles outside in262

(with the root fixed to be on the outer face). It is used without modification as263

the embedding order for right outgoing edges, and reversed for left outgoing264

edges when flipping them to appear before any right edges. In an implemen-265

tation, this can be realized by assigning its order rank to each edge, changing266

the sign of left edges to minus, and a final sorting.267

Extension of LR partitions to tree edges is straightforward. If a tree edge has268

any return edges (i.e., its source is neither the root nor a cut vertex), it is269

assigned to the same side as one of its return edges ending at the highest270

return point (i.e., according to an innermost fundamental cycle it is part of).271

Otherwise, the side is arbitrary.272

To define a partial nesting order ≺, assume for a moment that all edges are273

10

on the right side and consider a fork consisting of u → v and outgoing edges274

e1, e2 of v. If both have return edges, v is a branching point of overlapping275

fundamental cycles sharing u → v. Since both cycles are clockwise for now,276

we must properly nest them to avoid edge crossings. Since we fixed the root277

of the DFS tree to be in the outer face, we have to define e1 ≺ e2 if and278

only if the lowpoint of e1 is strictly lower than that of e2. If both have the279

same lowpoint, but, say, only e2 has another return point, we say that e2 is280

chordal and let e1 ≺ e2, because cycles containing e2 and a return edge ending281

higher than lowpt(e2) can only lie inside of cycles containing e1 and a return282

edge ending at lowpt(e1) = lowpt(e2). If both e1 and e2 are chordal, the tie283

is broken arbitrarily, because eventually these two edges must be on different284

sides anyway.285

In the planarity testing algorithm, ≺ will be mimicked by defining the nesting286

depth of an edge e to be twice the height of the highest lowpoint of any cycle287

containing e, plus one if e is chordal.288

The partial nesting order ≺ is extended to a combinatorial embedding by289

LR ordering, i.e. by flip-reversing left edges before right ones and placing290

incoming back edges on the appropriate side of the tree edge leading into the291

subtree of their source. Some care is needed to avoid crossings of back edges,292

but we will see that, algorithmically, this embedding is almost trivial to realize.293

Definition 5 (LR Ordering) Given an LR partition, let eL
1 ≺ · · · ≺ eL

` be294

the left outgoing edges of a vertex v, and eR
1 ≺ · · · ≺ eR

r its right outgoing edges.295

If v is not the root, let u be its parent. The clockwise left-right ordering, or296

LR ordering for short, of the edges around v is defined as follows:297

v

u
e

eL
`

eL
1 eR

1

eR
r

(u, v),

L(eL
`), eL

` , R(eL
`), . . . , L(eL

1), eL
1 , R(eL

1),

L(eR
1), eR

1 , R(eR
1), . . . , L(eR

r), eR
r , R(eR

r)

v

u
e

298

where (u, v) is absent if v is the root, and L(e) and R(e) denote the left and299

right incoming back edges whose cycles share e. For two back edges b1 = x1 ↪→300

v, b2 = x2 ↪→ v ∈ R(e) let z → x, (x, y1), (x, y2) be the fork of C(b1) and C(b2).301

Then, b1 comes after b2 in R(e) if and only if (x, y1) ≺ (x, y2). If b1, b2 ∈ L(e),302

the order is reversed.303

Lemma 6 Given any LR partition, LR ordering yields a planar embedding.304

PROOF. Let G = (V, T]B) be a DFS-oriented graph with an LR partition305

B = L]R. We assume that it is consistent and extend it to also cover the tree306

edges as described above. Now consider the embedding defined by LR ordering307

11

v

u

u1

u2

lowpt(e2)
lowpt(e1)

e2e1

(a) same side

v

u

lowpt(e1)

e2e1

(b) different sides

Fig. 5. Two types of crossings in proof of Lemma 6.

the edges around each vertex.308

Since a graph with a spanning tree can always be drawn in such a way that309

a given embedding is respected, no two edges cross more than once, and none310

of the crossings involves a tree edge, the embedding is either planar, or any311

such drawing yields a simple crossing of two back edges (a crossing of more312

than two edges can be resolved into pairwise crossings). Only two cases are313

possible.314

Case 1: (crossing back edges in same class)315

Assume x1 ↪→ u1, x2 ↪→ u2 ∈ R cross (the other case is symmetric). If316

u1 = u2, the crossings contradicts our definition of LR ordering the edges317

around that vertex.318

W.l.o.g. we may therefore assume that u1 is strictly higher than u2, and u2319

therefore outside of the clockwise cycle u1
+→ x1 ↪→ u1. Since the crossing is320

simple, x2 in turn must be inside this cycle, and u1
+→ x1 and u2

+→ x2 cannot321

be disjoint (because we must enter the cycle somewhere along u2
+→ x2).322

Let v be their highest common vertex, and e1, e2 the first edges on v
∗→ x1323

and v
∗→ x2.324

Since x2 is inside of the clockwise cycle, e1 comes before e2 in the order325

around v. On the other hand, the LR partition requires that all return edges326

of e1 ending higher than u2 are on the same side as x1 ↪→ u1, so that also e1327

is a right edge. LR ordering at v then implies that e2 must be a right edge328

as well with e1 ≺ e2.329

By definition of≺, either lowpt(e1) is strictly lower than u2, or lowpt(e1) =330

u2 = lowpt(e2) and e2 is chordal as well. In the former case, x1 ↪→ u1 and331

x2 ↪→ u2 had to be assigned different sides. In the latter case, the highest332

ending return edge of e2 is right as is e2, but conflicting with x1 ↪→ u1 which333

is also right. In either case a contradiction.334

12

Case 2: (crossing back edges in different classes)335

Assume x1 ↪→ u1 ∈ R and x2 ↪→ u2 ∈ L (the other case is symmetric).336

Since the crossing is simple, the tree paths u1
+→ x1 and u2

+→ x2 cannot be337

disjoint and we define v, e1, e2 as in Case 1.338

Again, e1 must be before e2 in the LR ordering of v for the back edges to339

cross. If u1 = lowpt(e1) = lowpt(e2) = u2, the LR partition is not consistent.340

Otherwise, we may assume that lowpt(e1) is strictly lower than u2 (the341

case that lowpt(e2) is strictly lower than u1 is symmetric). Then, all return342

edges of e2 ending at u2 or higher must be on the same side as x2 ↪→ u2 ∈ L,343

so that e2 is left as well. Since e1 comes before e2, it must also be left and344

e2 ≺ e1.345

Due to the way we define sides for tree edges, e1 is left only if it has a346

left return edge ending strictly higher than lowpt(e1) (because it must end347

at least as high as x1 ↪→ u1 ∈ R and the LR partition is consistent). On348

the other hand, e2 ≺ e1 implies that lowpt(e2) is lower than or equal to349

lowpt(e1). This is a contradiction, since the LR constraints rule out that e1350

and e2 have return edges ending strictly higher than lowpt(e2) and lowpt(e1)351

that are both on the left.352

Since both types of crossings contradict our assumptions, the embedding is353

planar. 2354

We have thus proved constructively the non-obvious implication of the Left-355

Right Planarity Criterion (Theorem 3).356

5 Algorithm357

We can now give the linear-time algorithm for testing planarity and for de-358

termining a planar embedding or a minimal non-planar subgraph. After a359

high-level description of its three main phases shown in Algorithm 1, full im-360

plementation details are provided for all operations but those concerning the361

specific data structure used to represent a graph and its embedding.362

Orientation. The algorithm is based on the Left-Right Planarity Criterion363

and therefore starts with a depth-first search (DFS) to orient the input graph.364

For each connected component, the root of its spanning DFS tree is stored in365

a list, Roots . The tree-path distance of a vertex from its root is stored in an366

array height, so that roots of unexplored components are identified by still367

having the initial value 0. Different from other planarity algorithms, there is368

no need to worry about biconnected components.369

13

variable type purpose initially

height integer node array tree-path distance from root ∞

lowpt integer edge array height of lowest return point n.a.

lowpt2 integer edge array height of next-to-lowest
return point (tree edges only)

n.a.

nesting depth integer edge array proxy for nesting order ≺
given by twice lowpt
(plus 1 if chordal)

n.a.

(a) orientation phase

variable type interpretation initially

ref edge array of
edges

edge relative to which
side is defined

⊥

side edge array of
signs {−1, 1}

side of edge, or modifier for
side of reference edge

1

I =
[low, high]

pair of
edges

interval of return edges
represented by its two edges
with extremal lowpoints

n.a.

P =
(L,R)

pair of
intervals

overlapping intervals,
i.e., a conflict pair

n.a.

S stack of
conflict pairs

conflicting intervals formed
by current return edges

∅

stack bottom edge array of
conflict pairs

top of stack S when traversing
the edge (tree edges only)

n.a.

lowpt edge edge array of
edges

next back edge in traversal
(with lowest return point)

n.a.

(b) testing phase

variable type interpretation

leftRef vertex array
of edges

leftmost back edge from current DFS subtree
(i.e. after next incoming left back edge)

rightRef vertex array
of edges

tree edge leading into current DFS subtree
(i.e. before next incoming right back edge)

(c) embedding phase

Fig. 6. Main variables used in the algorithm.

14

Algorithm 1: Left-Right Planarity Algorithm

input: simple, undirected graph G = (V,E)
output: planar embedding (halts if graph is not planar)

if |E| > 3|V | − 6 then HALT: not planar

H orientation
for s ∈ V do

if height[s] =∞ then
height[s]← 0; append Roots ← s
DFS1(s) /* see Algorithm 2 */

H testing
sort adjacency lists according to non-decreasing nesting depth
for s ∈ Roots do DFS2(s) /* see Algorithm 3 */

H embedding
for e ∈ E do nesting depth[e] = sign(e) · nesting depth[e]
sort adjacency lists according to non-decreasing nesting depth
for s ∈ Roots do DFS3(s) /* see Algorithm 6 */

where
integer sign(edge e)

if ref [e] 6= ⊥ then
side[e]← side[e] · sign(ref [e])
ref [e]← ⊥

return side[e]

During DFS, the partial nesting order ≺ is determined by assigning to each370

edge an integer value nesting depth such that e1 ≺ e2 =⇒ nesting depth[e1] <371

nesting depth[e2].372

Testing. To determine whether there exists a consistent LR partition, the373

DFS forest is traversed for a second time. The traversal is modified, however,374

such that outgoing edges are visited in the order induced by nesting depth.375

The second traversal halts if the graph is not planar, and we discuss at the376

end of Section 5.2 how to extract one or more Kuratowski subgraphs in that377

case.378

The tentative side of edges may change often during the test, so that the379

bipartition is returned only implicitly for efficiency reasons. An edge array ref380

specifies for each edge a reference edge relative to which its side is defined,381

and in an edge array side a value of 1 or −1 indicates whether the side of382

the edge is the same as, or different from, the side of its reference edge. If the383

reference edge of e is undefined, i.e. ref [e] = ⊥, the value of side[e] specifies384

15

the side directly, where −1 is for left and 1 is for right.385

Embedding. Given an LR partition, flip-reversal of left edges is performed386

by sorting the outgoing edges in all adjacency lists once again according to387

their nesting order, though now modified by the side sign. Since the multi-388

plication of nesting depth with side only changes the sign of left edges to389

negative, they are effectively placed before all right edges, in reverse order. To390

complete the LR ordering, incoming edges are placed during a third traversal391

of the DFS forest that is guided by the order of outgoing edges.392

For each of the three main phases, we provide detailed pseudo-code with ample393

comments in the subsequent sections.394

5.1 Phase 1 – Orientation395

The purpose of the first DFS is to orient the graph, and to determine lowpoints396

and nesting order ≺. It is therefore a standard DFS computing the auxiliary397

variables given in Table 6(a). Except for height, all are determined during398

backtracking.399

Our use of lowpoints is slightly non-standard in two ways. Firstly, we have400

defined lowpoints for edges rather than vertices, and, secondly, we do not401

assign DFS numbers, but heights. The latter induce the same ordering of402

ancestors as DFS numbers, but are related to the tree more intuitively and in403

general results in a smaller range of values which may in turn speed up the404

subsequent sorting of adjacency lists according to nesting depth.405

Second lowpoints stored in lowpt2 only serve to determine whether an edge406

has more than one return point (i.e., it is chordal), and are not needed by407

themselves.408

The rationale for representing ≺ via nesting depth is two-fold: firstly, we can409

apply a linear-time sorting algorithm such as counting sort on the set of edges,410

because the range of values is linear in the size of the graph, and secondly, flip-411

reversal of left edges after the second phase can be performed by sign changes412

with subsequent re-sorting.413

16

Algorithm 2: Phase 1 – DFS orientation and nesting order

DFS1(vertex v)
e← parent edge[v]
while there exists some non-oriented {v, w} ∈ E do

orient {v, w} as (v, w)
lowpt[(v, w)]← height[v]; lowpt2[(v, w)]← height[v]
if height[w] =∞ then /* tree edge */

parent edge[w]← (v, w)
height[w]← height[v] + 1
DFS1(w)

else /* back edge */
lowpt[(v, w)]← height[w]

H determine nesting depth
nesting depth[(v, w)]← 2 · lowpt[(v, w)]
if lowpt2[(v, w)] < height[v] then /* chordal */

nesting depth[(v, w)]← nesting depth[(v, w)] + 1

H update lowpoints of parent edge e
if e 6= ⊥ then

if lowpt[(v, w)] < lowpt[e] then
lowpt2[e]← min{lowpt[e], lowpt2[(v, w)]}
lowpt[e]← lowpt[(v, w)]

else if lowpt[(v, w)] > lowpt[e] then
lowpt2[e]← min{lowpt2[e], lowpt[(v, w)]}

else
lowpt2[e]← min{lowpt2[e], lowpt2[(v, w)]}

5.2 Testing414

The second phase is the working horse of the algorithm. It determines a consis-415

tent LR partition extended to all edges, if one exists; the code can be extended416

to otherwise identify fundamental cycles whose union yields a Kuratowski sub-417

graph as sketched in Section 6.418

The main challenge is to detect and maintain all pairwise constraints among419

back edges. Recall that constraints are associated with a tree edge and that420

there are only two types of constraints. According to Definition 2, a pair of421

back edges with overlapping fundamental cycles is placed on the same or on422

different sides.423

The following observation may help in building a better intuition. Consider a424

signed constraint graph, in which vertices represent back edges of the original425

DFS-oriented graph, and edges are introduced and labeled +1 or −1 when two426

17

interval I:

high : edge

low : edge
h
ig
h

lo
w

ref

ref

ref

⊥

(a) Return edges subject to pairwise
same-constraints are represented in a list
linked by ref -pointers and ordered by
height of return point

conflict pair P :

RL

L : interval R : interval

(b) Two intervals of return edges
subject to pairwise different-
constraints

Fig. 7. The main data structure is a stack S storing overlapping pairs of intervals.

back edges are constrained to be on the same or on different sides. Finding an427

LR partition that satisfies all LR constraints is equivalent to testing whether428

this graph is balanced, i.e. there is a bipartition such that the corresponding429

cut is crossed exactly by the edges labeled −1. Balancedness of signed graphs430

is introduced in Harary (1953).431

Clearly, we cannot afford to maintain all pairwise constraints explicitly, be-432

cause their number may be quadratic in the size of the original graph. We will433

hence represent them implicitly to test for contradictions. To be able to real-434

ize a bipartition it is sufficient to maintain a spanning forest of the constraint435

graph. We therefore construct a rooted tree for each of its component using a436

reference pointer ref for every edge. This is including tree edges, since their437

side is determined by reference to a return edge ending at the highest return438

point, anyway.439

A second array, side, is used to store the side of all edges that are roots440

in the spanning forest of the constraint graph. For all other edges the array441

holds the sign of the unique outgoing constraint-graph edge linking them to442

their corresponding reference edge. As indicated earlier, values +1 and −1 will443

therefore be interpreted either as right and left, or as same and different.444

To reduce the number of constraints that need to be represented explicitly,445

observe that the same-constraints induced by a fork u → v, e1, e2 ∈ E+(v)446

in Definition 2 involve two sets of return edges with a simple structure. For,447

say, e1 let h = xh ↪→ uh and ` = x` ↪→ u` be the two (possibly equal) return448

edges ending at the highest and lowest return point of e1 that is strictly higher449

than lowpt(e2). Then we know that h` and all return edges x′ ↪→ u′ of e1 with450

a return point in u`
∗→ uh are in the same group of same-constraints. This451

18

interval of edges can thus be represented by its two extreme members, h and `,452

as shown in Figure 7(a). Return edges belonging to an interval are maintained453

in a singly-linked list, from highest to lowest return point, using the ref -array.454

Different-constraints can be summarized similarly, because by transitivity455

they always involve all pairs of edges in a pair of intervals. A conflict pair456

therefore consists of two intervals of edges subject to different-constraints as457

shown in Figure 7(b). It represents their tentative assignment to the left and458

right, and thus a partial bipartition.459

The second DFS traversal is designed to build the entire bipartition of edges460

incrementally by merging conflict pairs. Its main data structure is a stack S461

of conflict pairs representing all constraints associated with a tree edge that462

has been traversed, but not yet backtracked over. Note that these constraints463

involve only back edges that have already been traversed, but return to a464

vertex below the current one. In other words, each back edge in the stack is a465

return edge for at least one tree edge in the current DFS path.466

By processing DFS trees bottom-up, the constraints associated with an edge467

can be determined by merging those associated with its outgoing edges. Two468

main invariants are maintained. We will not prove them explicitly, but rather469

let them serve as an orientation for understanding the implementation. The470

first invariant eventually yields correctness of the implementation,471

Partitioning Invariant: The additional conflict pairs accumulated
at the top of the stack between traversing a tree edge and backtrack-
ing over it represent a partial bipartition satisfying all non-crossing
constraints associated with that edge.

472

and the second one ensures that constraint merging can be carried out effi-473

ciently.474

Ordering Invariant: Return edges forming an interval are repre-
sented in singly-linked lists ordered from highest to lowest return point,
and the lowest edge in a conflict pair is not lower than the highest edge
in another conflict pair deeper in S.

475

5.2.1 Ordered traversal476

Pseudo-code for the second DFS is given in Algorithms 3–5. Since all edges477

have been oriented during the first DFS, they are again traversed in the same478

direction. The traversal order differs, though, since adjacency lists have been479

rearranged according to nesting depth, so that outgoing edges with lower low-480

points are traversed first. This reordering is crucial for the ordering invariant.481

19

Algorithm 3: Phase 2 – Testing for LR partition

DFS2(vertex v)
e← parent edge[v]
for ei ∈ E+(v) = 〈e1, . . . , ed〉 do /* ordered by nesting depth */

stack bottom[ei]← top(S)
if ei = parent edge[target(ei)] then /* tree edge */

DFS2(target(ei))
else /* back edge */

lowpt edge[ei]← ei; push (∅, [ei, ei])→ S

if lowpt[ei] < height[v] then /* ei has return edge */

if ei = e1 then
lowpt edge[e]← lowpt edge[e1]

else
I add constraints of ei (Algorithm 4)

if e 6= ⊥ then /* v is not root */
u← source(e)
I trim back edges ending at parent u (Algorithm 5)
H side of e is side of a highest return edge

if lowpt[e] < height[u] then /* e has return edge */
hL ← top(S).L.high; hR ← top(S).R.high
if hL 6= ⊥ and (hR = ⊥ or lowpt[hL] > lowpt[hR]) then

ref [e]← hL

else
ref [e]← hR

When visiting a vertex v during the DFS traversal, the high-level task is to482

recursively determine the constraints for all outgoing edges and integrate them483

into those associated with parent edge e = u→ v (if v is not a DFS root).484

Before traversing an outgoing edge ei ∈ E+(v), we therefore remember the top485

conflict pair stack bottom[ei] on S (where top(S) = ⊥ if S is empty). If ei was a486

tree edge in the first traversal, all constraints associated with ei are recursively487

determined and pushed onto S. If ei is a back edge, it is pushed onto S in a488

conflict pair of its own because it may be involved in later constraints. Recall489

that our goal is to determine a consistent LR partition. We therefore store in490

an edge array lowpt edge the first back edge not traversed earlier. For edges491

that have return edges, this is the first return edge to their lowpoint and can492

thus be used as a reference for other return edges that have to be assigned to493

the same side to meet the consistency requirement. A back edge ei is its own494

unique return edge to its lowpoint so that we let lowpt edge[ei] = ei.495

From the partitioning invariant we known that when returning from the traver-496

20

sal of ei, the conflict pairs above stack bottom[ei] represent a partial LR parti-497

tion of all return edges of ei. While processing the first outgoing edge e1 we sim-498

ply leave them on the stack, if any, and pass on lowpt edge[e1] to lowpt edge[e].499

Note that, since e1 has a return edge, parent edge[v] = e 6= ⊥, i.e. v is not500

a root. For each of the other outgoing edges ei = e2, . . . , ed ∈ E+(v), the501

constraints above stack bottom[ei] are merged into those which have already502

been accumulated for e and are directly beneath in S. Constraint integration503

is the most essential step and described separately in Algorithm 4 and below.504

After all outgoing edges have been traversed, we trim all those back edges505

from the top of S that are return edges of some ei ∈ E+(v), but not of e,506

i.e. which end at u. This requires some annoyingly lengthy but simple case507

distinctions given in Algorithm 5 and explained below. Observe that, if v is508

a DFS root, then there is no parent edge e = u → v, but there are also no509

remaining constraint pairs on S, since a DFS root does not have outgoing back510

edges and there is more than one outgoing tree edge only if each leads into a511

different biconnected component.512

If existent, parent edge e is finally assigned to the side of a back ending at the513

highest return point as suggested by the LR ordering procedure of Section 4.1.514

By the ordering invariant, this edge is the highest return edge in one of the two515

intervals in the top conflict pair, and we have already removed all non-return516

edges. Observe that the stack cannot be empty if there is a return edge.517

5.2.2 Adding constraints associated with the next outgoing edge518

We have to merge all constraints associated with the next outgoing edge, ei,519

with those already accumulated from e1, . . . , ei−1. The involved intervals are520

therefore gathered one by one in an initially empty conflict pair P as illustrated521

in Figure 8.522

Merge return edges of ei into right interval. All return edges of ei have523

been traversed since traversing ei, and they are represented in the top conflict524

pairs on stack S down to, but not including, stack bottom[ei]. All of these525

intervals have to be merged on one side because of the fundamental cycle of526

lowpt edge[e]. If there is a conflict pair with two non-empty intervals, merging527

on one side violates an earlier constraint and the graph is not planar.528

There is at least one conflict pair above stack bottom[ei] for otherwise we529

would not have entered this section. The non-empty interval of each such pair530

is merged in the right interval P.R of P without changing their order by having531

the lowest edge of P.R refer to the highest edge of the next conflict pair and532

replacing it accordingly. An exception is the interval containing a return edge533

21

Algorithm 4: Adding constraints associated with ei (part of Alg. 3)

H add constraints of ei

P ← (∅, ∅)
H merge return edges of ei into P.R

repeat
Q← pop(S)
if Q.L 6= ∅ then swap Q.L, Q.R
if Q.L 6= ∅ then

HALT: not planar
else

if lowpt[Q.R.low] > lowpt[e] then /* merge intervals */
if P.R = ∅ then P.R.high← Q.R.high

else ref [P.R.low]← Q.R.high
P.R.low ← Q.R.low

else /* make consistent */
ref [Q.R.low]← lowpt edge[e]

until top(S) = stack bottom[ei]

H merge conflicting return edges of e1, . . . , ei−1 into P.L
while conflicting(top(S).L, ei) or conflicting(top(S).R, ei) do

Q← pop(S)
if conflicting(Q.R, ei) then swap Q.L, Q.R
if conflicting(Q.R, ei) then

HALT: not planar
else /* merge interval below lowpt(ei) into P.R */

ref [P.R.low]← Q.R.high
if Q.R.low 6= ⊥ then P.R.low ← Q.R.low

if P.L = ∅ then P.L.high← Q.L.high
else ref [P.L.low]← Q.L.high

P.L.low ← Q.L.low

if P 6= (∅, ∅) then push P → S

where
boolean conflicting(interval I, edge b)

return (I 6= ∅ and lowpt[I.high] > lowpt[b])

to the lowpoint of e; to make the LR partition consistent, we make it refer to534

the lowpt edge directly.535

Merge conflicting return edges of e1, . . . , ei−1 into left interval. Re-536

turn edges of e1, . . . , ei−1 with lowpoints higher than lowpt[ei] are subject537

to pairwise same-constraints and to a different-constraint with respect to538

some return edge of ei. (If lowpt[ei] = lowpt[e] this is not lowpt edge[ei] but,539

22

e.g., a back edge returning to lowpt2[ei] which must exist, because apparently540

lowpt2[ei−1] exists as well by the way outgoing edges are ordered).541

So while there are conflict pairs on the stack that contain return edges with542

lowpoints higher than lowpt[ei], these have to be merged on one side. If such543

v

e

lowpt(ei)

lowpt(e)

eie1 v

e

lowpt(ei)

lowpt(e)

eie1

∅
∅
∅

∅
∅

...

P.R

∅
∅

...

m
erge

on
righ

t

m
er

ge
on

le
ft

P.R

P.L

...

P :

...

v

e

lowpt(e)

ei
v

e

lowpt(e)

ei v

e

lowpt(e)

Fig. 8. In the core step of the algorithm, the constraints of ei are merged into those
of e1, . . . , ei−1. Horizontal lines indicate where the top of stack S is divided by
stack bottom[ei] and the topmost pair that is not conflicting with lowpt edge[ei]. If
lowpt(ei) = lowpt(e), the pair containing only lowpt edge[ei] is discarded and the
bipartition is made consistent by assigning ref [lowpt(ei)]← lowpt(e). Note that in
this case, P.R is not growing when merging on the left.

23

a pair contains two intervals ending above lowpt[ei], we again have a contra-544

diction with a previous constraint and thus non-planarity. If only one side545

ends above lowpt[ei], we merge the other into P.R (effectively closing these546

constraints under transitivity).547

The actual merging of intervals is performed in the same way as above, and548

the final pair can be placed on the stack.549

5.2.3 Trimming back edges550

The purpose of Algorithm 5 is to remove all those back edges from conflict551

pairs on the stack that have the parent of the current tree edge e = u→ v as552

their lowpoint, because they are no return edges of e or any lower tree edge,553

and therefore not subject to any constraint associated with a tree edge still to554

be processed.555

Algorithm 5: Removing back edges ending at parent u (part of Alg. 3)

H trim back edges ending at parent u
H drop entire conflict pairs

while S 6= ∅ and lowest(top(S)) = height[u] do
P ← pop(S)
if P.L.low 6= ⊥ then side[P.L.low]← −1

if S 6= ∅ then /* one more conflict pair to consider */
P ← pop(S)
H trim left interval

while P.L.high 6= ⊥ and target(P.L.high) = u do
P.L.high← ref [P.L.high]

if P.L.high = ⊥ and P.L.low 6= ⊥ then /* just emptied */
ref [P.L.low]← P.R.low
side[P.L.low]← −1
P.L.low ← ⊥

I trim right interval
push P → S

where
integer lowest(conflictpair P)

if P.L = ∅ then return lowpt[P.R.low]
if P.R = ∅ then return lowpt[P.L.low]
return min{lowpt[P.L.low], lowpt[P.R.low]}

Dropping entire conflict pairs. If the lowest lowpoint on either side of a556

conflict pair P is the source of the current tree edge u → v, all lowpoints of557

24

back edges in P are the same and the edges will not be involved in any future558

constraints. The pair is finalized by assigning the lowest back edge of the left559

interval to the left side. Since side is initialized with 1, the lowest back edge560

in the right interval P.R is already assigned correctly to the right side, and all561

other back edges b in P to the same side as ref [b].562

Trimming a left interval. Since back edges in an interval are concatenated563

by ref -pointers in an order monotonic in the height of their lowpoints, we564

can simply remove back edges from the upper end of the left interval until565

the highest lowpoint is no longer u, or the interval has become empty. In the566

latter case the lower end of the interval is still defined and made to refer to567

an edge on the other side, setting its side to −1 accordingly. Note that the568

right interval cannot be empty for otherwise the entire conflict pair had been569

removed in the first while loop. All other removed back edges still refer to a570

back edge on the same side, so that the initial 1 of their side-entry must not571

be changed.572

Trimming a right interval. This is symmetric to the previous operation.573

Note, however, that the assigned side in case the right interval becomes empty574

is −1 as well, because this indicates that the side of the lowest back edge is575

different from the side of the lowest back edge in the left interval. Again, the576

left interval cannot be empty.577

Assigning a side to a tree edge. After trimming all back edges ending578

at source u of the current tree edge e = u → v in Algorithm 3, the side of579

e is determined by reference to a highest return edge. There is a return edge580

only if lowpt[e] < height[u]. Otherwise the u is a cutvertex or root and it581

does not matter, which side e is assigned to. Since the existence of a return582

edge renders S non-empty, the ordering invariant asserts that we have to583

compare the lowpoints of the highest back edges in the two intervals of the584

top constraint pair on S (checking for existence).585

At the end of the testing phase, a non-crossing LR partition is given implicitly586

by edge arrays ref and side, if and only if the graph is planar. These define the587

side of an edge e relative to another, where side[e] indicates whether the side588

is the same or different from that of ref [e]. Since ref [e] always has a strictly589

lower target than e, the referrals are acyclic and form a rooted spanning forest590

of the constraint graph. The roots of that forest refer to ⊥, and their side is591

determined explicitly by side. After dereferencing all referrals at the beginning592

of the embedding phase, the LR partition is known explicitly.593

25

e

(a) K3,3

e

(b) K5

Fig. 9. The algorithm testing K3,3 and K5 for planarity. In either case, the status
before starting the second DFS is depicted in the middle, and the algorithm halts
in the configuration on the right while processing e.

Two small examples are shown in Figure 9. Even though both graphs are non-594

planar, the workings of the algorithm are nicely illustrated, since coloring and595

embedding correspond to the current (implicitly represented) bipartition and596

LR ordering.597

5.3 Embedding598

Compared to other planarity algorithms, the embedding phase is extremely599

simple. LR ordering the outgoing edges of the DFS-oriented graph is achieved600

by sorting them according to their nesting depth on both sides. It is known601

that a partial embedding like this already determines a complete combinatorial602

embedding (see, e.g., Cai 1993), but for completeness we provide full details603

in Algorithm 6.604

The DFS forest is traversed for the third time. Since outgoing edges are already605

ordered in the desired way, back edges are encountered exactly as required in606

the definition of LR ordering. As described in Table 6(c) we therefore maintain,607

for each vertex v, the two positions next to which the next left or right back608

edge needs to be inserted.609

Observe that the incoming back edges from the same subtree actually appear610

in counterclockwise order. If the data structure available for embedded graphs611

does not provide a constant-time method for direct neighbor insertion, the612

now obsolete array ref can be used to build a singly-linked list of all edges613

incident to a vertex in counterclockwise order.614

26

Algorithm 6: Phase 3 – Embedding

DFS3(vertex v)
for ei ∈ E+(v) = 〈e1, . . . , ed〉 do

w ← target(ei)
if ei = parent edge[w] then /* tree edge */

make ei first edge in adjacency list of w
leftRef [v]← ei; rightRef [v]← ei

DFS3(w)
else /* back edge */

if side[ei] = 1 then
place ei directly behind rightRef [w] in adjacency list of w

else
place ei directly before leftRef [w] in adjacency list of w
leftRef [w]← ei

5.4 Running time and implementation615

Theorem 7 Algorithm 1 can be implemented to test in O(n) time whether a616

graph is planar and return a planar combinatorial embedding if it is.617

PROOF. We have argued throughout this section that the algorithm cor-618

rectly yields an LR ordering if the graph admits an LR partition. Hence,619

correctness is established by the Left-Right Planarity Criterion (Theorem 3).620

Since a graph cannot be planar if m > 3n−6, we may assume that the number621

of edges is at most linear in the number of vertices.622

The algorithm performs three DFS traversals, and rearranges the edges twice623

in between. Both rearrangements are obtained from sorting the edges accord-624

ing to nesting depth, which can be done in linear time using bucket sort625

because all entries are integers with absolute value less than 2n.626

The first DFS clearly requires constant time per edge traversal and backtrack-627

ing step, and hence linear time overall.628

During the second traversal, every back edge is pushed onto the stack ex-629

actly once (when it is traversed), so that the number of newly generated con-630

straint pairs is bounded by the number of back edges. If more than a constant631

number of constraint pairs is inspected during the addition of constraints, a632

corresponding number of them is merged. Since also the total time spent on633

trimming back edges that return to the parent is linear in the number of edges,634

the overall running time is linear.635

27

Dereferencing ref -pointers takes linear time, because it is performed only once636

before the third DFS traversal, which also requires linear time if the graph637

data structure provides a constant-time operation to move an edge next to638

another in the embedding order. If it does not, the algorithm can be altered639

to re-use ref -pointers for the embedding as described in Section 5.3. 2640

The left-right approach can be implemented as described above 2 and our expe-641

riences with its performance essentially confirm the results of Boyer, Cortese,642

Patrignani, and Di Battista (2004). A special edge numbering scheme used643

in PIGALE (de Fraysseix and Ossona de Mendez, 2002) serves to avoid re-644

peated DFS traversals, but we have found the sorting of adjacency lists to645

be even more costly. Note, however, that both sorting and DFS traversal can646

be avoided during the testing phase by splitting the stack into singly-linked647

lists associated with edges and processing edges (i.e., merging their final list648

of constraints into that of another edge) in the order given by nesting depth.649

This order is determined by creating two buckets for each height and adding650

an edge to its respective bucket when its lowpt is known during the initial651

DFS, i.e. when it is backtracked over. Since lowpt is determined bottom-up,652

edges added to the same bucket end up being in the desired order.653

6 Non-Planarity654

The algorithm halts, if and only if the input graph is non-planar. The initial655

test on the number of edges is justified by the fact that in any planar graph,656

m ≤ 3n−6 (a well-known consequence of Euler’s formula; see, e.g., Chiba and657

Nishizeki 1988).658

If the algorithm does not halt, a planar embedding constructed as described659

in Section. 5.3 can serve as a certificate for planarity. If it does halt after660

the initial condition, though, the graph is non-planar and we would like a661

certificate for this case as well. The earliest characterization of planarity is662

due to Kuratowski (1930) and provides for exactly that. It is described in the663

following.664

Recall the two non-planar graphs in Figure 9 and let us call a subdivision of a665

graph G any graph that can be obtained from G by repeatedly splitting edges666

using new vertices of degree two.667

Theorem 8 (Kuratowski’s Planarity Criterion) A graph is planar, if and668

only if it does not contain a subdivision of K3,3 or K5.669

2 The version described here has been implemented almost literally in C/C++
using LEDA by Daniel Kaiser, and in Java using yFiles by Martin Mader.

28

e′

lowpt(e′)

eL eR

`L `R

(a) Type 1:
lowpt(`L) > lowpt(`R)

e′

lowpt(e′)

eL eR

`L `R

(b) Type 2:
lowpt(`L) = lowpt(`R),
lowpt(eL) = lowpt(eR)

e′

lowpt(e′)

b

hL

`L

`R

(c) Type 3:
lowpt(`L) ≤ lowpt(`R),
lowpt(eL) < lowpt(eR)

Fig. 10. A different-constraint between the two lowest edges `L, `R of a new con-
straint pair associated with e′ is caused by one of three inclusion-minimal configu-
rations (assuming w.l.o.g. that lowpt(eL) ≤ lowpt(eR)).

Each subgraph that is a subdivision of K3,3 or K5 is called a Kuratowski sub-670

graph (or planarity obstruction), and we show how to extract such a subgraph671

if the planarity test of the previous section fails.672

Algorithm 1 halts when a pair P = (L,R) at the top of S contains two673

conflicting intervals L 6= ∅ 6= R that prevent merging on the right or left674

side. In other words, a same-constraint associated with the current tree edge675

e contradicts a previously found different-constraint involving the same two676

intervals. Let `L = P.L.low and P.R.low = `R be the lowest edges in L and R.677

A Kuratowski subgraph can be determined from the union of the fundamental678

cycles of `L, `R and at most four others.679

Different-constraint. Since both `L, `R are return edges of e, their funda-680

mental cycles are overlapping. Let e′, eL, eR be the respective fork as shown681

in Figure 10, and let lowpt(eL) ≤ lowpt(eR) (otherwise exchange names). The682

different-constraint between `L, `R is introduced while backtracking over e′,683

and we have lowpt(e′) < lowpt(`R) because lowpt(e′) = lowpt(`R) implies684

that `R is not involved in a constraint associated with e′. We distinguish three685

types of different-constraints (depicted in Figure 10) and show how to extract686

an inclusion-minimal subgraph preserving them.687

Type 1: If lowpt[`L] > lowpt[`R], then lowpt edge[eL] 6= `L since lowpt(eL) <688

lowpt(`R) ≤ lowpt(`L). Moreover, lowpt(`R) > lowpt(eL) = lowpt(e′), be-689

cause if lowpt(eL) > lowpt(e′), then `L and lowpt edge[eL] are subject to a690

same-constraint and thus `L is not the lowest edge in P.L. Hence, the funda-691

29

e

lowpt(e)

ei

`L

`R

(a) while merging on right side

e

lowpt(ei)

`L `R

(b) while merging on left side

Fig. 11. One of these inclusion-minimal configurations is present when a subsequent
same-constraint on `L, `R causes the planarity test to halt during constraint merg-
ing.

mental cycles of `L, `R and lowpt edge[eL] preserve the constraint forcing `L692

and `R on different sides; another cycle is added due to the same-constraint693

to form a subdivision of K3,3.694

Type 2: If lowpt[`L] = lowpt[`R] and lowpt(eL) = lowpt(eR), arguments sym-695

metric to Case 1 imply that `R 6= lowpt edge[eR] and that, in addition to the696

three cycles above, C(lowpt edge[eR]) is needed to preserve the constraint.697

The overlap of C(`L) and C(`R) is removed to obtain a subdivision of K3,3698

when adding the final cycle.699

Type 3: The final case is lowpt[`L] ≤ lowpt[`R] and lowpt(eL) < lowpt(eR),700

since lowpt[eL] = lowpt[eR] yields Case 2 if lowpt(`L) = lowpt(`R), or Case 1701

with the roles of L and R exchanged if lowpt[`L] < lowpt[`R]. It follows702

that `R = lowpt edge[eR] for otherwise both would be subject to a same-703

constraint and `R would not be lowest in P.R. Hence, `L is in indirect704

conflict with `R via an edge hL 6= `L which we can choose to be the highest705

in P.L. For `L and hL to be forced into an interval, however, there must706

have been another back edge returning to lowpt(e′) (a back edge to a return707

point between lowpt(e′) and lowpt(`L) would replace `R as lowest in P.R).708

In addition to the four fundamental cycles of `L, `R, lowpt edge[e
′] and hL709

we therefore include C(b), where b is the last edge that was made consistent710

with lowpt edge[e′]. With the additional cycle added later due to the same-711

constraint we obtain a K5 minor, i.e. a subgraph that can be turned into K5712

by contracting edges. Note that every K5 minor that is not a subdivision of713

K5 contains a subdivision of K3,3.714

All conditions distinguishing the three types can be tested in constant time715

using information obtained during the testing phase.716

30

Same-constraint. There are only two straightforward cases illustrated in717

Figure 11. Either the constraint is induced by the fundamental cycle of lowpt edge[e]718

while merging the constraints associated with ei on the right, or by lowpt edge[ei]719

while merging on the left. In either case only one cycle needs to be added to720

the subgraph extracted for the different-constraint.721

The fundamental cycles forming a Kuratowski subgraph are extracted easily722

by traversing the DFS tree from the source of each of the at most six critical723

back edges downwards using parent edge pointers. Forks of overlapping cycles724

are found along the way, and only the cycle with lower lowpoint needs to725

be continued. The time needed to extract a Kuratowski subgraph after the726

planarity test determined a constraint violation is thus proportional to the727

size of the union of at most six fundamental cycles.728

Note that the failure configurations in Figure 9 are the prototypical combi-729

nation of Type 1 and Type 3 different-constraints with a subsequent same-730

constraint that initiates merging on the left.731

7 Discussion732

We have reviewed the Left-Right Planarity Criterion (Theorem 3) and de-733

scribed a simple linear-time algorithm (Algorithm 1) based on it. While this734

is not a review of graph planarity, and many important references and devel-735

opments are left out, some notes on closely related work seem in place.736

7.1 Characterization737

Historically, Kuratowski (1930) provides the first characterization of graph738

planarity. Given the discussion in Section 6, this characterization in terms of739

minimal forbidden subgraphs can be re-interpreted as identifying the cycle740

structures of K3,3 and K5 as the two minimal overlap configurations that741

prevent planar drawing.742

Among various later characterizations, the seemingly most closely related cri-743

terion is due to Mac Lane (1937), because it is also formulated in terms of744

a representative set of cycles. Consider the set of all undirected cycles of a745

graph, and define the sum of two cycles as the symmetric difference of their746

edge sets. These together form a vector space, called cycle space. A basis of747

the cycle space is a minimum-cardinality set of cycles such that every cycle is748

the sum of some basis cycles.749

31

Theorem 9 (Mac Lane’s Planarity Criterion) A graph is planar, if and750

only if it has a cycle basis in which every edge appears at most twice.751

For a better intuition, consider a planar drawing of a connected planar graph.752

Traversing each face in the drawing (say, inner faces clockwise, the outer face753

counterclockwise) yields the set of (directed) facial cycles forming a basis of754

the cycle space. As required, every edge is traversed exactly twice (once in755

each direction).756

Any cycle basis for a graph G has cardinality µ(G) = m − n + κ(G), where757

κ(G) is the number of connected components of G and µ(G) is called the758

cyclomatic number of G. This is exactly the number of non-tree edges of a759

spanning forest and, in fact, the fundamental cycles of any spanning forest760

induce a cycle basis.761

The left-right criterion thus also asks for a cycle basis with a special property,762

namely that its elements, the (directed) fundamental cycles of a DFS orienta-763

tion, can be bipartitioned such that all constraints associated with forks are764

satisfied.765

The cycle bases considered in these criteria are therefore maximally distinct.766

While the basis cycles in Mac Lane’s criterion are as different as possible (with767

each edge in at most two cycles), the basis cycles in the left-right criterion are768

as concentrated as possible (with their overlap forming a spanning forest).769

7.2 Development770

The earliest precursor of the left-right approach is a planarity characterization771

of Wu (1955), which states that a graph is planar, if and only if a certain772

system of linear equations has a solution. It was complemented by the concept773

of crossing chains in Tutte (1970), and refined to Boolean variables and fewer774

equations in the 1970s (see Wu 1985, 1986; Liu 1990). The variables in this775

smaller system are associated with the edges, and the equations represent776

constraints generated from configurations of overlapping cycles obtained from777

a spanning DFS forest. An alternative interpretation of the existence of a778

solution is that of balancing a constraint graph as in Section 5.2. Rosenstiehl779

(1980) gives an algebraic proof for this characterization.780

This work was further developed in several papers, but the descriptions are781

rather incomplete, in particular with respect to linear-time implementation782

(de Fraysseix and Rosenstiehl, 1982, 1985; Xu, 1989; Cai, Han, and Tarjan,783

1993).784

32

Finally, de Fraysseix, Ossona de Mendez, and Rosenstiehl (2006) simplified785

the approach even further by concentrating on the single constraint-inducing786

configuration of Definition 2. While this paper is still incomplete and difficult787

to read, the linear-time implementation is described in just enough detail to788

provide a basis for replication. Among the differences to the present description789

is the maintenance and merging of constraints, since intervals are described as790

stacks rather than their extreme pairs of edges and there is a constraint stack791

for each edge rather than our global stack S. It turns out, however, that the792

most recent implementation in PIGALE (de Fraysseix and Ossona de Mendez,793

2002) uses a similar representations.794

The characterization of Kuratowski subgraphs in terms of configurations along795

a DFS spanning tree given in de Fraysseix and Ossona de Mendez (2003) and796

de Fraysseix (2008) leads to a linear-time extraction algorithm associated with797

the left-right approach. To the best of my knowledge, the version given here798

is original, and it is more directly based on the left-right characterization.799

7.3 Algorithms800

The first published polynomial-time planarity testing algorithm is due to Aus-801

lander and Parter (1961). It is based on an observation already noted above,802

namely that in a planar drawing of a graph every simple cycle forms a closed803

curve partitioning the plane into an inside and an outside region.804

Consider the graph obtained by removing the edges of some simple cycle, but805

retaining copies of vertices on the cycle for every incident non-cycle edge. These806

vertices are called attachments and the connected components of the resulting807

graph are called segments. Clearly, each segment must be drawn completely808

inside or completely outside of the removed cycle, but a pair of segments must809

not be placed in the same region if their attachments interleave on the cycle.810

Planarity can thus be tested by recursively choosing cycles and sides. The811

related algorithm of Demoucron, Malgrange, and Pertuiset (1964) also starts812

from a simple cycle, but then iteratively chooses a path that can be added into813

one of the current faces. The algorithm is not only simple, but also has the814

unusual property to eagerly maintain a partial embedding that is not changed815

later on. Both algorithms require Ω(n2) time, though.816

In a graph-algorithmic milestone, the first linear-time planarity test was pre-817

sented by Hopcroft and Tarjan (1974). Their approach is called path-addition818

because it refines that of Auslander and Parter (1961) by adding paths rather819

than segments, and in an order determined from a depth-first search of the820

graph. It took many years, though, until finally Mehlhorn and Mutzel (1996)821

complemented the algorithm with an O(n) embedding phase.822

33

Recall how we observed in Section 3 that likewise-oriented cycles are nested823

if they overlap. Maybe because de Fraysseix and Rosenstiehl (1982) phrased824

the notions of left and right in terms of angles with the DFS tree rather825

than orientations of fundamental cycles, it has gone almost unnoticed that826

the left-right approach is yet another refinement of Auslander and Parter827

(1961) and Hopcroft and Tarjan (1974), progressing from segments to paths828

to edges. Together with Canfield and Williamson (1990) and Haeupler and829

Tarjan (2008) this observation instills hope that there may be a useful and830

elegant unification of path- and vertex-addition approaches including the two831

most efficient versions of de Fraysseix, Ossona de Mendez, and Rosenstiehl832

(2006) and Boyer and Myrvold (2004).833

References834

Auslander, L., Parter, S. V., 1961. On imbedding graphs in the sphere. Journal835

of Mathematics and Mechanics 10 (3), 517–523.836

Booth, K. S., Lueker, G. S., 1976. Testing for the consecutive ones property,837

interval graphs, and graph planarity using PQ-tree algorithms. Journal of838

Computer and System Sciences 13, 335–379.839

Boyer, J. M., Cortese, P.-F., Patrignani, M., Di Battista, G., 2004. Stop mind-840

ing your P’s and Q’s: Implementing a fast and simple DFS-based planarity841

testing and embedding algorithm. In: Liotta, G. (Ed.), Proc. Intl. Symp.842

Graph Drawing (GD ’03). Vol. 2912 of LNCS. Springer-Verlag, pp. 25–36.843

Boyer, J. M., Myrvold, W. J., 2004. On the cutting edge: Simplified O(n)844

planarity by edge additon. Journal of Graph Algorithms and Applications845

8 (3), 241–273.846

Cai, J., 1993. Counting embeddings of planar graphs using DFS trees. SIAM847

Journal on Discrete Mathematics 6 (3), 335–352.848

Cai, J., Han, X., Tarjan, R. E., 1993. An O(m log n)-time algorithm for the849

maximal planar subgraph problem. SIAM Journal on Computing 22 (6),850

1142–1162.851

Canfield, E. R., Williamson, S. G., 1990. The two basic linear time planarity852

algorithms: Are they the same? Linear and Multilinear Algebra 26, 243–265.853

Chiba, N., Nishizeki, T., 1988. Planar Graphs: Theory and Algorithms. North-854

Holland.855

de Fraysseix, H., 2008. Trémaux trees and planarity. Electronic Notes in Dis-856

crete Mathematics 31, 169–180.857

de Fraysseix, H., Ossona de Mendez, P., 2002. Pigale: Public implemen-858

tation of a graph algorithm library and editor, software project at859

pigale.sourceforge.net (GPL License).860

de Fraysseix, H., Ossona de Mendez, P., 2003. On cotree-critical and DFS861

cotree-critical graphs. Journal of Graph Algorithms and Applications 7 (4),862

411–427.863

34

de Fraysseix, H., Ossona de Mendez, P., Rosenstiehl, P., 2006. Trémaux trees864

and planarity. International Journal of Foundations of Computer Science865

17 (5), 1017–1029.866

de Fraysseix, H., Rosenstiehl, P., 1982. A depth-first characterization of pla-867

narity. Annals of Discrete Mathematics 13, 75–80.868

de Fraysseix, H., Rosenstiehl, P., 1985. A characterization of planar graphs by869

Trémaux orders. Combinatorica 5 (2), 127–135.870

Demoucron, G., Malgrange, Y., Pertuiset, R., 1964. Graphes planaires: Recon-871

naissance et construction de représentations planaires topologiques. Revue872

Fran cais Recherche Opérationnelle 8 (30), 33–47.873

Haeupler, B., Tarjan, R. E., 2008. Planarity algorithms via PQ-trees. Elec-874

tronic Notes in Discrete Mathematics 31, 143–149.875

Harary, F., 1953. On the notion of balance of a signed graph. Michigan Math-876

ematical Journal 2, 143–146 (with addendum).877

Hopcroft, J. E., Tarjan, R. E., 1974. Efficient planarity testing. Journal of the878

ACM 21 (4), 549–568.879

Kuratowski, K., 1930. Sur le problèm des courbes gauches en Topologie. Fun-880

damenta Mathematicae 15, 271–283.881

Lempel, A., Even, S., Cederbaum, I., 1967. An algorithm for planarity testing882

of graphs. In: Rosenstiehl, P. (Ed.), Proc. Intl. Symp. Theory of Graphs883

(Rome, July 1966). Gordon and Breach, pp. 215–232.884

Liu, Y., 1990. A Boolean characterization of planarity and planar embeddings885

of graphs. Annals of Operations Research 24, 165–174.886

Mac Lane, S., 1937. A combinatorial condition for planar graphs. Fundamenta887

Mathematicae 28, 22–32.888

Mehlhorn, K., Mutzel, P., 1996. On the embedding phase of the hopcroft and889

tarjan planarity testing algorithm. Algorithmica 16 (2), 233–242.890

Nishizeki, T., Rahman, M. S., 2004. Planar Graph Drawing. Vol. 12 of Lecture891

Notes Series on Computing. World Scientific.892

Rosenstiehl, P., 1980. Preuve algèbrique du critère de planarite de Wu-Liu.893

Annals of Discrete Mathematics 9, 67–78.894

Tutte, W. T., 1970. Toward a theory of crossing numbers. Journal of Combi-895

natorial Theory 8, 45–53.896

Wu, W., 1955. On the realization of complexes in Euclidean space I. Acta897

Mathematica Sinica 5, 505–552, English version in American Mathematical898

Society Translations, Series 2 78:137–184, 1968.899

Wu, W., 1985. On the planar imbedding of linear graphs. Journal of System900

Sciences and Mathematical Sciences 5 (4), 290–302.901

Wu, W., 1986. On the planar imbedding of linear graphs (continued). Journal902

of System Sciences and Mathematical Sciences 6 (1), 23–35.903

Xu, W., 1989. An improved algorithm for planarity testing based on Wu-Liu’s904

criterion. Annals of the New York Academy of Sciences 576, 641–652.905

35

