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- 

Embedding Planar Graphs on the Grid 

Walter Schnyder*+ 

Abstract. We show that each plane graph of order n 2 3 
has a straight line embedding on the n-2 by n-2 grid. This 
embedding is computable in time O(n). A nice feature of 
the vertex-coordinates is that they have a purely 
combinatorial meaning. 

1. Introduction 

A straight Iine embedding of a plane graph G 

is a plane embedding of G in which edges are 

represented by straight line segments joining their 

vertices. Theorems of Fary F 1, Stein [St] and 

Wagner [W] show that each plane graph has straight 

line embeddings. 

As each straight line embedding of a graph is 

completely specified by giving the positions of its 

vertices, many algorithms for the construction of 

these embeddings concentrate uniquely on the 

determination of the vertex positions. 

This paper presents another approach to the 
problem of constructing straight line embeddings. Its 

origin can be found in [Se] where it was used to 

characterize the planar graphs as graphs whose 

incidence relation is the intersection of three total 

orders. 
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In this approach, rather than directly 

determining the vertex positions, at first only their 

relative positions are considered. It is in a second 

phase that the relative positions are implemented by 

an actual placement of the vertices. 

The actual vertex positions will be expressed in 

terms of three barycentric coordinates. Therefore, 

given a plane graph G, the determination of relative 

positions should result in three partial orders cl, c2, 

c3 on the vertex set of G. These orders will be so 

defined, that every placement of the vertices in 
which the vertex coordinates satisfy the conditions 

U <i v + Ui < Vi yields a straight line embedding of 

the graph G. 

This method will be applied to the case of 

triangular graphs G (pIane graphs whose faces are 

triangles). In this case, determining cl, c 2, < 3 is 

equivalent to constructing a partition of the set of 

interior edges in three trees with special orientation 

properties. This construction is achieved in linear 

time. Actual coordinates are then easily computed 

also in linear time: with each vertex v are associated 

three regions of G, the coordinates of v are 

essentially the numbers of vertices (or triangles, 

edges, . ..) in each of the three regions. 
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This approach has the following advantages. (1) 
Straight line embeddings are represented in a 
coordinate free manner. (2) Both this representation 
and the actual coordinates are interpreted in terms of 
struclural graph theoretic properties. (3) The 
resulting embeddings have nice separation 
properties. For example, the following theorem will 
directly result from the construction. 

THEOREM 1.1. Let ill, AZ, ;ljl be three 

pairwise non parallel straight lines in the plane. 

Then, each plane graph has a straight line 

embedding in which any two disjoint edges are 

separated by a straight line parallel to AI, ?Q or AJ. 

A straight line embedding on the m by n grid 

is a straight line embedding in which vertices v have 
integer valued (Cartesian) coordinates (vt ,v2) in the 

range Olvt Sm, 05v25n. In relation with the 

drawing of graphs on finite display devices, it is 
natural to ask for embeddings on grids of “small” 
size [ RT]. Here we show: 

THEOREM 1.2. Each plane graph with n 2 3 

vertices has a straight line embedding on the n - 2 

by n - 2 grid. 

This theorem improves on the previous bound 
2n - 5 by 2n - 5 presented in [SC]. It also improves 

on the bound n - 2 by 2n - 4 obtained by 
de Fraysseix, Path and Pollack [FPP], with a 
different approach. 

2. Barycentric representations 

DEFINITION. A barycemric representation 

of a graph G is an injective function 
v E V(G) + (v 1 ,vz,v3) E R3 that satisfies the 
conditions: 

(1) VI +v2 +v3 = 1 for all vertices v , 
(2) For each edge {x,y J and each vertex z P (x,y} , 
there is some k E (1,2,3) such that xk czk and 

Yk < Zk- 

We view vl, v2 and v3 as barycentric 
coordinates of the vertex v and obtain: 

LEMMA 2.1. Let v E V(G) + (vr ,v2,vJ) be 

a barycentric representation of a graph G. Then 

given any three noncolinear points a, p and y, the 

mapping f: v cV(G) +vI a+vzp+vj y is a 

straight line embedding of G in the plane spanned 

by a, Pati y. 
PROOF. By definition f is injective. Also, for 

an edge (x,y] and a vertex z e { x,y] the point f(z) 

does not lie on the segment f(x)f(y) since the 
condition xk < zk and yk c zk must be satisfied for 

some k. 
Suppose now that (x,y) and (u,v} are disjoint 

edges. There exist indices i,j,h,k E (1,2,3) 
satisfying the conditions: 

xi >ui,vi 7 yj >U’;V’ 9 uh >xh,Yh 9 Vk >XkyYk - 
These condiiois imply { ij ) n [ h,k) = 0 . As 

i,j,h,k E { 1,2,3] there holds i=j or h=k. 
Therefore the segments f(x)f(y) and f(u)f(v) are 

separated by a straight line parallel to ~$3, ay or Pr 

and do not intersect. 

Thus only a planar graph G can have 
barycentric representations and each of these 
representations induces a natural embedding of G in 

the plane. We consider the plane oriented by 
requiring that the ordering 01, p, y be 
counterclockwise. 

3. Labeling the angles and interior edges of a 

triangular graph 
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Recall that a plane graph is an abstract graph 
together with an embedding of this graph in the 

plane, A burycentric representation of a plane 

graph G is a barycentric representation f of its 
underlying abstract graph such that the given 

embedding of G and the embedding induced by f are 
equivalent. The next sections will show that each 
plane graph has a barycentric representation, 
implying theorem 1.1. We shall use the following 
terminology. 

A triangular graph G is a maximal plane 
graph with at least three vertices. The vertices and 
edges on the exterior face of G are the exterior 

r,ertices urzd edges of G, the other vertices and 

edges of G are the interior vertices and edges of G. 
The interior faces of G are its elementary triangles. 

The aogles of G are the angles of its elementary 

triangles. 

If v E V(G) + (v 1 ,v2,v3) E R3 is a 

barycentric representation of a triangular graph G, 
then each angle L(xy,xz) of G determines a unique 
label k E { 1,2,3) such that xk >yk,zk (the label is 

unique since the inequalities yj >xi,zi and Z; >x;*y; 
must also be satisfied). It can be shown that this 
labeling is a mrmul labeling: 

DEFINITION. A normal labeling of a 
triangular graph G is a labeling of the angles of G 

with the labels 1,2,3 satisfying the conditions: 
(1) Each elementary triangle of G has an angle 
labeled 1, an angle labeled 2 and an angle labeled 3. 

The corresponding vertices appear in 
counterclockwise order. 
(2) The labels of the angles of each interior vertex 
v of G form, in counterclockwise order, a nonempty 
interval of l’s followed by a nonempty interval of 
2’s followed by a nonempty interval of 3’s. 

Fig. 1 

The following sections will demonstrate that 
every triangular graph has normal labelings and that 

each normal labeling is induced by a barycentric 
representation. Presently, we introduce another 
equivalent form of labelings: labelings of interior 

edges. 
Consider a normal labeling of a triangular 

graph G. Each interior edge of G belongs to two 
elementary triangles and must therefore have at one 

of its ends two distinct labels j + k and at the other 
end the thiid label i repeated twice (figure 2a). We 
call this distinguished i the label of the edge and 
direct this edge from the end with distinct labels to 
the end with identical labels (figure 2b). 

x4$LE$Jy 
Fig. 2a 

X04 
1 

QY 

Fig. 2b 
Note, in particular, that if the normal labeling of G is 

induced by a barycentric representation, an edge 
(x,y 1 is labeled with label i and directed from y to x 

ifaudonlyif yi<Xi and yj7Xj for jfi. 

EXAMPLE 3.2. In figure 3, the thick edges are 

the edges labeled with 1. 

EXAMPLE 3.1. (figure 1). 
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Fig. 3 

For i = 1,2,3 let Ti consist of all (directed) 

interior edges having the label i. Condition 2 of the 

definition of normal labelings implies that T,, T, 

and T, satisfy the following definition. 

DEFINITION. A realizer of a triangular graph 

G is a partition of the interior edges of G in three 

sets T, , T,, T, of directed edges such that for each 

interior vertex v there holds: 

(1) v has outdegree one in each of T,, T,, T3. 

(2) The counterclockwise order of the edges 

incident on v is: leaving in T,, entering in T3, 

leaving in T,, entering in T, , leaving in T, , entering 

in T,. 

Fig. 4 

Thus each normal labeling of a triangular graph 

induces a realizer of this graph. Conversely, it is 

easy to see that each realizer of a triangular graph 

with at least four vertices is induced by a unique 

normal labeling. Therefore realizers and normal 

labelings are equivalent notions. We will henceforth 

simply write labeled graph to mean a triangular 

graph with both a normal labeling and the equivalent 

realizer. 

LEMMA 3.3. In a labeled triangular graph, 

all angles at an exterior vertex have the same label 

and angles at distinct exterior vertices have distinct 

labels. The exterior vertices whose angles are 

labeled I, 2, 3 appear in this order 

counterclockwise. 

PROOF. Consider a labeled triangular graph 

with n vertices. This graph has 3n-9 interior edges, 

directed by the labeling. Define the outdegree of a 

vertex as the number of interior edges leaving this 

vertex. Then 3n-9 is the sum of the outdegrees of 

the vertices. As each of the n-3 interior vertices has 

outdegree 3, the exterior vertices must have 

outdegree 0. Each interior edge incident on an 

exterior vertex is therefore entering this vertex. This 

implies that all angles at an exterior vertex have the 

same label. The other statements of the lemma 
follow from the definition of normal labelings and 

the fact that each exterior edge belongs to an 

elementary triangle. 

Using first lemma 3.3, then conditions (1) and 

(2) of the definition of normal labelings, it is easy to 

manually label all angles of a triangular graph (try it 

on a large example). The next section shows that this 

can always be done. 

4. Constructing normal labelings 

We now prove that each triangular graph has a 

normal labeling. From this we will deduce in section 

6 that each plane graph has barycentric 

representations. There follows in particular that each 

plane graph has straight line embeddings, a result of 

F&y, Stein and Wagner. Our proof is based on their 
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methods, as analyzed by Kampen [K], and will be 

transformed to a linear time algorithm in section 8. 

We first review the method of edge 

contraction. For a vertex x of a graph G, N(x) 

denotes the set of neighbors of x in G. If {x,y} is an 

edge of G, the contracted graph Gl(x,y) is obtained 

from G by removal of the vertex y and the edges 

incident on y and by insertion of an edge {x,z} for 

each vertex z E N(y)-N(x). The edge {x,y) is 

contractible if x and y have exactly two common 

neighbors. If G is a triangular graph on at least 4 

vzrtices and [ x,y] is a contractible edge of G, then 

G/(x,y) is a triangular graph. 

LEMMA 4.1 [K]. Let G be a triangular graph 

011 n 24 vertices. If a, b aud c denote the exterior 

vertices of G, then there exists a neighbor n # b,c of 

a such that the edge {a& is contractible. 

Thus to each triangular graph corresponds a 

sequence of “allowed contractions” transforming 

this graph into a triangle. And, conversely, each 

triangular graph can be obtained from a triangle by a 
sequence of “expansions**. 

THEOREM 4.2. Each triangular graph has (I 

normal labeling. 

PROOF, We show that given a triangular 

graph G and an exterior vertex a of G, there is a 

normal labeling of G in which all angles at a have 

the label 1. The proof is by induction on the number 
n of vertices of G. The case n = 3 is trivial. Let 

n 2 4 and assume that our claim is true for all 

triangular graphs having less than n vertices. 

Lemma 4.1 implies the existence of an interior 

vertex x adjacent to a such that the edge (a,x) is 

contractible. Let a,v l,v2,...,vr be the vertices of the 

wheel of x, listed in counterclockwise order. 

a 

Fig. 5 

By induction hypothesis, the graph G/(a,x) has 

a norma labeling in which all angles at a have the 

label 1. v4 v3 

3 3 

b 
2 vz 

’ , *3 
VI 

a 

Fig. 6 

Without destroying the topology of the labels at 

Vl,V2,..., vr this labeling can be extended to a normal 

labeling of G by labeling the angles L(xvi,xvi+l) and 

L(av*,ax), L(ax,av,) with 1: 

a 

Fig. 7 

REMARK 4.3. In terms of realizers, the proof 

of theorem 4.2 expands a realizer TI , T,, T3 of 

G/(a,x) to a realizer of G by the operations 

Tt:= T1- ((V;,a)l i+Jl,r) U {ka>) U ((Vi,X)l i;fls), 

T2 := T2 u IOL~~)) , T3 := T3 u Kx,v,)l 

in which ordered pairs denote directed edges. This is 

illustrated in figure 8 where only the edges involved 

have been directed and labeled. 
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I V. V, 4 J 

Li2izL 
1 v2 

9 
a 

is transformed to 

v4 v3 

Lb!!sL 3 ‘1 v2 

1 x2 
Y 

a 
Fig. 8 

We claim that the algorithm presented in the 

proof of theorem 4.2 can generate every normal 

labeling. That is, given a labeled triangular graph G 

on at least four vertices, it must be verified that: (1) 

G contains an exterior vertex a all of whose angles 

have the label 1 and (2) there is a contractible 

interior edge (a,x) such that the labeling of G results 

from a labeling of G/(a,x) by the method used in the 

proof. 

The first of these statements was established in 

lemma 3.3. The second statement foIlows from 

lemma 4.4. 

LEMMA 4.4. Let G be a labeled triangular 

graph with at least four vertices and let a be the 

exterior vertex of G all of whose angles have the 

label 1. Then G has an interior vertex x adjacent to 

a such that {a& is contractible and that, except for 

the angles of the two elementary triangles 

containing {a,x}, all angles at x have the label 1. 

PROOF. Let x(-+1 ‘..“XS be the 

counterclockwise list of the neighbors of a in which 

x0 and x, are exterior vertices. (figure 9). 

Note that each edge [ Xi++1 1 is either labeled 

with 2 (if directed from Xi+1 to Xi) or with 3 (if 

directed from xi to xi+t). In particular, lemma 3.3 

implies that (x0,x1 ) and (x~-~,x~} are respectively 
labeled with 2 and 3. There exists therefore a vertex 

xk (Ckk<s) such that (xk-1 ,xk) has the label 2 and 
{xk,xk+l } has the label 3. This implies that except 

for L(xka&xk-l) and L(xkxk+l,xka) all angles at xk 

have the label 1. 

a 

Fig. 9 

There remains to Verify that {a,xk] is 
contractible. Suppose on the contrary that some 

vertex Xi (i # k-l,k+l) is adjacent to xk. The 

topology of the angles at xk implies that { xi,xk} is 

labeled with 1 and directed from Xi to xk. By lemma 

3.3 there holds i # 0,s. Therefore {X;,a) and (Xi,Xk} 

are two interior edges labeled with 1 and leaving Xi 

in contradiction to condition 1 of the definition of 

realizers. 

Properties of realizers can therefore be proved 

by verifying their invariance under the expansions 

used in the proof of theorem 4.2. The statements of 

the following theorems 4.5 and 4.6 originate in the 

interpretation of labelings by barycentric 

representations. 

THEOREM 4.5. Let G be a triangular graph 

with at least four vertices and let T, , T, , T, be a 

realizer of G. Then each Ti is a tree including all 

interior vertices and exactly one exterior vertex and 

all edges of T; are directed toward this exterior 

vertex. The exterior vertices belonging to T,, Tl, 

TJ are distinct and appear in counterclockwise 

order. 

PROOF. This statement clearly holds for a 

graph with exactly four vertices and remains valid 
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under the expansions described in the proof of 

theorem 4.2 (see remark 4.3). 

We call the exterior vertex belonging to Ti the 

root ofTi . Note that this is the exterior vertex all of 

whose angles have the label i. We will call this 

exterior vertex the root of Ti even when G only has 

three vertices (i.e. T, = T2 = T, = 021). 

THEOREM 4.6. If TI, Tz, T3 is a realizer of 

a trianguIar graph, then for i = 1,2,3 the relation 

T; u Ti;; UT,.. has no directed cycle (indices are 

module 3). 

PROOF. Due to the cyclic nature of realizers, it 

suffices to verify this statement for i = 1, i.e., for 

T, uTil UT;‘. The claim is then trivially true in a 

triangular graph with three vertices and will remain 

valid under the expansions described in the proof of 

theorem 4.2 as the only edge of T, uT;‘uTi’ 

leaving the new vertex x is entering a (see remark 

4.3) and a has outdegree 0 in T, uT;‘uTi’. 

5. The three regions of a vertex 

Let G be a labeled triangular graph with realizer 

T, , T,, T,. Given an interior vertex v of G, we 

define the i-path Pi(V) starting at v as the path in Ti 

from v to the root of Ti. Theorem 4.6 implies that for 

i f j , Pi(v) and Pj (VI have v as only common vertex. 

Fig. 10 

Therefore, P,(v), P2 (v) and P3 (v) divide G in 

three regions RI(v), R2(v) and R 3(v) where R;(v) 

denotes the closed region opposite to the root of Ti 

(figure 10). 

LEMMA 5.2. For any two distinct interior 

vertices u and v of a labeled triangular graph there 

holds the implication u E R;(V) 3 R;(U) c R;(V) . 

The inclusion is proper. 

PROOF. It suffices to prove the lemma for 

i = 3, thus u E Rs(v). We only consider the case 

where u does not lie on the boundary of R~(v), the 

other case is similar. Let x denote the first vertex of 

PI(u) that belongs to the boundary of Rg(v). 

Condition 2 of the definition of realizers, applied to 

the edges incident on x implies that x P P*(v), thus 

x E PI(v)-(v}. Similarly the first vertex y of P2(u) 

belonging to the boundary of R~(v) must lie on 

P2(v)-[ v). Hence R3(u) c R3 (v). This inclusion is 

proper as v E R3 (v) - R3(u). 

Fig. 11 

6. Coordinates that count triangles 

In this section we consider a fixed labeled 

triangular graph G on n vertices with realizer T I, T2, 

T,. For an interior vertex v of G let Vi be the 

number of elementary triangles in region Ri(V)s For 

example, in figure 12 we have (x i,xi,x3) = (1,2,4) . 

We extend this definition to the exterior vertices by 

defining Vi = 2n - 5, Vi+1 = v i+2 = 0 for the root v 

of Ti (as will always be the case, indices are modulo 

3). For example, in figure 12 there holds 

CC 1 ,C2$3) = NLO.7) . 
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a b 

Fig. 12 

Notice that OIvI,vz,v3 and v1 +v2 +v3 = 

2n-5 (with 1 Ivl,v2,v3 12n-7 ifv is an interior 

vertex). 

PROPOSITION 6.3. The mapping 

v E V(G) + (VI ,vz) is a straight line embedding of 

G on the 2n-5 by 2n-5 grid. 

THEOREM 6.1, The function f : v E V(G) + 

$-&VI, 5, v3) is a barycentric representation of 

G and the labeling of G that is induced by f is 

identical to the given labeling of G. 

PROOF. The first condition of the definition of 

barycentric representations is clearly satisfied. There 

remains to verify the second condition (which in turn 

will imply the injectivity of f). Consider an edge 

{ x.y] and a vertex z P (x,y} . If z is an exterior 

vertex, the root of T,, there holds 

zk = h-5 > x k9yk . Else, z is an interior vertex and 

‘LY E Rk(Z) for some k. This again implies 

zk > xkvyk (see lemma 5.2). 

REMARK 6.4. The first statement of theorem 

6.1 is actually a consequence of its second statement. 

This explains the description of our method in 

section 1: the orders <t, c2, c 3 are the transitive 

closures of the relations Tiu TI;: v T.&. 

7. Coordinates that count vertices 

More compact layouts will be obtained under 

relaxation of the constraints imposed on the vertex 

coordinates by the definition of barycentric 

representations: we allow for restricted equalities in 

condition 2 of this definition. 

Furthermore, the labeling induced by f and the 

given labeling of G are trivially identical if G only 

has three vertices. If G has four or more vertices it 

suffices to verify that for each interior edge (x,y) 

labeled with i and directed from y to x there holds 

Yi cxi and yi > Xj for j f i . This follows from 

lemma 5.2 since x E Ri (y) for j f i . 

We may therefore apply lemma 2.1. As the 

roots a,b,c of TI,T2,T3 are thereby mapped to the 

reference points a,P,y, there follows: 

DEFINITION. A weak barycen tric 

representation of a graph G is an injective function 

v E V(G) + (v~,vz,v~) E R3 that satisfies the 

conditions: 

(1) Vl +v2 +v3 = 1 for all vertices v , 

(2) For each edge {x,y} and each vertex z e (x,y} , 

there is some k E (1,2,3} such that 

(Xk~xk+l)<lex tZkJk+l) md b’kd’k+l)clex cZkTzk+l) - 

Lemma 2.1 also applies to weak barycentric 

representations (with a similar proof). 

COROLLARY 6.2. Let a, b and c denote the Consider now a fixed labeled triangular graph 

roots of T,, TZ and TJ. Then for any choice of 

noncolinear positions of a, b and c the mapping 

f: v+ & (vI a+v2b+v3c) 

is a straight line embedding of G in the plane 

spanned by a,b,c. 

Choosing, in particular, the gridpoints 

a = (2n-5,0) , b = (0,2n-5) and c = (0,O) we obtain: 
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G on n vertices with realizer T 1, Tz, T,. For an 

intuior vertex v of G we let Vi' be the number of 

~crtices in region Ri(V) from which the i-l path 

starting at v has been removed, thus 

\‘i ’ = IRi(V)l - IPi-, (v)J . For example, in figure 12 we 

have (x1’,x~‘,x3’) = (1 ,1,3). This definition is 

extended to the exterior vertices of G by setting 

vi ’ = n-2, Vi+l' = 1, Vi+2' = 0 for the root V Of Tim 

For each vertex v there thus holds 

vl’+v2’+v3’=n-1 and OIv 1’,v2’,v3’In-2 (with 

1 I v 1’,v2’,v3’ I n-3 for the interior vertices). 

LEMMA 7.1. Let u and v be distinct vertices 

of G. If v is an interior vertex and u E Ri(v) there 

hOldS (U i’*U i+] ‘) <[ex (Vi’pVi+l’) a 

PROOF. Notice first that there holds the 

implication u E Rk (v)-Pk-f (v) * uk’ < vk’ . This is 

clear if u is an exterior vertex as then u is the root of 

Tk+l and uk’ = 0 whereas vk’ 2 1 and follows from 

lemma 5.2 if u is an interior vertex. 

Suppose now that u E l$(v) . Lemma 5.2 

implies Ui’ I V i’ . If u E Pi-1 (v) we have U{ < V{ . 

Else u E Pi-*(v) thus u E R~+I(v) -Pi(V) and 

Ui+l’ < Vi+l’ 9 by the preceding observation with 

k = i+l . 

Lemma 7.1 implies that the function 

v E V(G) + (vl ‘,vZ’,v3’) is injective and, by an 

argument similar to the argument used in the proof 

of theorem 6.1, that v E V(G) -+ --& (v 1 ‘,v&v3’) 

is a weak barycentric representation. Lemma 2.1 can 

therefore be applied. The choice a = (n-l ,O) , 

P = W-1) , y = (0.0) in this lemma yields theorem 

7.2, from which theorem 1.2 will follow. 

THEOREM 7.2. The mapping 

v E V(G) + (VI ‘,vz ‘) is a straight line embedding 

of G on the n-2 by n-2 grid. 

8. Description of an embedding algorithm 

Given a plane graph with n 2 3 vertices, the 

calculation of an embedding may be decomposed in 

three stages: 

(1) Determination of a triangular supergraph G of 

the input graph. 

(2) Computation of a realizer T, , T,, T3 of G. 

(3) Count of combinatorial objects (vertices, 

triangles,...) in each region R;(V) for every vertex v 

of G. 

The first stage can be completed in time O(n) 

resulting in a n-vertex triangular graph G whose 

embedding is given by specification of the three 

exterior vertices a, b, c in counterclockwise order 

and of a rotation for every vertex v (i.e., a list of the 

neighbors of v in counterclockwise order is 

available) [RI. 

The second stage is then performed by 

successive expansions leading from the triangle a, b, 

c to the full graph G, as described in the proof of 
theorem 4.2. 

To begin, the vertices of G are ordered in an 

expansion sequence x1, x2, . . . . x, where xl = b, 

x2 =c,x, = a and x3, .,,, x,-~ describes an order in 

which the interior vertices may successively be 

inserted. This can be done in time O(n) (see for 

example [FPP], where expansion sequences are 

called canonical labelings ). 

The trees T,, T2, T3 are then constructed 

using the operations given in remark 4.3. Notice 

that, thereby, the vertices vl, . . . . v, are the 

neighbors of x that precede x in the expansion 

sequence and can be found by inspection of the 

rotation of x. The construction of T,, T2. T3 may 

first be done in form of three arrays indicating the 

unique parent of every vertex in each of the trees. 

This phase requires time O(deg(x)) for each x thus a 

total time O(n). The arrays are then used, again in 
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time O(n), to create linked lists that will enable 

traversals of T,, T2, T, from roots to leaves. 

In stage 3, we are given a realizer T t, T2, T, 

of G and want to count combinatorial objects. Of 

particular interest are the quantities: 

pi(V) := IPi(v)l the number of vertices on the i-path 

starting at interior vertex v. 

t&v) := the number of vertices in the subtree of Ti 

that is rooted at interior vertex v. 

ri(V) := IRi(V)I the number of vertices in region 

Ri(V) for an interior vertex v. 

We claim that these quantities can be computed 

globally (that is for each v and each i) by traversing 

the trees Tt,T,, Ts a constant number of times, 

thus at a total cost of time O(n). From there follows, 

in particular, that the function v E V(G) -+ (vl’,v2’) 

defined in theorem 7.3 is computable in time O(n) as 
Vi’ = ri(V) - pi-l(V) for an interior vertex v. 

The claim is clearly true for the quantities pi(V) 

and ti(V). Concerning the quantities ri(v> notice that 

for each interior vertex u E q(v), the path Pi(u) 

must intersect Pi+,(V) or Pi-l(V). Thus u belongs to 

the subtree of Ti rooted at some vertex 

X E Pi+1 UPi- n 

Fig. 13 

Furthermore, each of these subtrees is entirely 

contained in Ri(v). Therefore, extending the 

definition of t i(X) to the exterior vertices x ti Ti by 

k(x) = 1 , we obtain the expression 

ri(v) = c p + c p - ‘$4 
xE ‘i+lC’> x E pi_lw 

whose sums can be computed by a constant number 

of traversals of the trees T t , T,, T3 . 

REMARK 8.1. 

(1) Another approach performing stage 2 and a 

large part of stage 3 simultaneously is also possible 

as the changes in counting are predictable at each 

insertion of a new vertex. A related method was used 

by M. Chrobak and T.H. Payne [CP] in their O(n) 

implementation of the n-2 by 2n-4 grid embedding. 

(2) Stage 2 can be performed in many other 

ways. For example, the algorithm presented in [R] 

constructs straight line embeddings in linear time by 

successively removing vertices of degree at most 5. 

It may, however, require a very high precision 

arithmetic. This problem can be avoided by 

converting the given algorithm to an algorithm for 

computing realizers (the conversion is easy) and 

then applying stage 3. 
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