Day 5, SPbSU LOUD Enough Contest 2

February 4, 2023

▲口 > ▲母 > ▲目 > ▲目 > → 目 → のへぐ

Day 5, SPbSU LOUD Enough Contest 2

D 00

- There is always the same number of good and lucky $n \times n$ matrices.
- Construct a good matrix row-by-row.
- Each new row should *not* be in some linear space.
- The total number of good matrices is $(2^n 2^0) \cdot (2^n 2^1) \cdot \ldots \cdot (2^n 2^{n-1})$.
- A lucky matrix: at least one 1 in the first row, the corresponding column can be arbitrary. Repeat on the $(n-1) \times (n-1)$ matrix.
- The total number of lucky matrices is $(2^n-1)\cdot 2^{n-1}\cdot (2^{n-1}-1)\cdot 2^{n-2}\cdot \ldots\cdot (2-1)\cdot 2^0.$
- These numbers are the same.

- OK, but how to solve the problem?
- An "uglier" way : good matrices \leftrightarrow sequences of binary blocks \leftrightarrow lucky matrices.
- Requires implementing four conversions, but works.
- The intended solution converts good matrices to lucky matrices (and vice versa) directly, so you only need to implement two conversion procedures.

D 00

- \blacksquare Good \rightarrow lucky: run Gauss, but don't swap the rows.
- Instead, for each row *i*, find the first yet-unused column *j* with $A_{i,j} = 1$.
- Now, "freeze" the following items into the answer: $A_{i,k}$ for each unused column k and $A_{r,j}$ for each $r \ge i$.
- Now, proceed with the usual step of the Gauss algorithm: ensure that the new values of $A_{r,j}$ are all zero when r > i. Notice that we already "froze" these matrix entries into the answer.
- The result is a lucky matrix, with $i \rightarrow j$ being exactly the greedy matching.

D 00

- Good \rightarrow *lucky*: run Gauss, but don't swap the rows.
- Instead, for each row *i*, find the first yet-unused column *j* with $A_{i,j} = 1$.
- Now, "freeze" the following items into the answer: A_{i,k} for each unused column k and A_{r,i} for each r ≥ i.
- Now, proceed with the usual step of the Gauss algorithm: ensure that the new values of $A_{r,j}$ are all zero when r > i. Notice that we already "froze" these matrix entries into the answer.
- The result is a good matrix, with $i \rightarrow j$ being exactly the greedy matching.

- Lucky \rightarrow good: recover the greedy matching and then reverse the above process, starting from the lower rows and then going to the upper ones.
- The process was specifically made to be reversible: we remember A_{r,j} before the row-xor operations, therefore we know whether or not we have actually done them during the Gauss algorithm.

D •0

Two Missing Numbers/Nimbers

- There was an unintentional hint: the problem was named "Two Missing Nimbers" in the testing system and in the contest standings.
- Interpret the elements of the input as elements of the field of size 2^{64} .
- This field has several interpretations, they are all isomorphic and have characteristic 2 (meaning that x + x = 0 for any x).
- Suppose that the target numbers are x and y.
- The sum of all input numbers is x + y (all other numbers cancel out).
- We can also compute the sum of squares, but it is not useful: $(x + y)^2 = x^2 + 2xy + y^2 = x^2 + y^2$, because 2 = 0.
- The sum of cubes is better: $(x + y)^3 (x^3 + y^3) = 3(x^2y + xy^2) = xy(x + y)$.
- Recover *xy* through division.

Two Missing Numbers/Nimbers

- Alternatively: compute 1/x + 1/y = (x + y)/(xy) (zeroes are improbable).
- Or compute x²y + xy² directly and not through the sum of cubes: when we add z to the list, this value increases by z² · s + z · s² (again, here we use that (x₁ + ... + x_k)² = x₁² + ... + x_k²).
- In the end, we know x + y and xy.
- Need to solve a quadratic equation. There are multiple methods.
- The following should work: to solve p(x) = 0, where $p(x) = x^2 + ax + b$, compute the GCD of $(x + r)^{(2^{64}-1)/3} 1$ and p(x) (r is random here).
- This way, we filter out exactly one third of all non-zero elements of the field.
- A common heuristic suggests that we will recover all roots in O(1) iterations.