Day 5, SPbSU LOUD Enough Contest 2

February 4, 2023

Good and Lucky Matrices

- There is always the same number of good and lucky $n \times n$ matrices.
- Construct a good matrix row-by-row.
- Each new row should not be in some linear space.
- The total number of good matrices is $\left(2^{n}-2^{0}\right) \cdot\left(2^{n}-2^{1}\right) \cdot \ldots \cdot\left(2^{n}-2^{n-1}\right)$.
- A lucky matrix: at least one 1 in the first row, the corresponding column can be arbitrary. Repeat on the $(n-1) \times(n-1)$ matrix.
- The total number of lucky matrices is

$$
\left(2^{n}-1\right) \cdot 2^{n-1} \cdot\left(2^{n-1}-1\right) \cdot 2^{n-2} \cdot \ldots \cdot(2-1) \cdot 2^{0}
$$

- These numbers are the same.

Good and Lucky Matrices

- OK, but how to solve the problem?

■ An "uglier" way : good matrices \leftrightarrow sequences of binary blocks \leftrightarrow lucky matrices.
■ Requires implementing four conversions, but works.

- The intended solution converts good matrices to lucky matrices (and vice versa) directly, so you only need to implement two conversion procedures.

Good and Lucky Matrices

- Good \rightarrow lucky: run Gauss, but don't swap the rows.
- Instead, for each row i, find the first yet-unused column j with $A_{i, j}=1$.

■ Now, "freeze" the following items into the answer: $A_{i, k}$ for each unused column k and $A_{r, j}$ for each $r \geqslant i$.

- Now, proceed with the usual step of the Gauss algorithm: ensure that the new values of $A_{r, j}$ are all zero when $r>i$. Notice that we already "froze" these matrix entries into the answer.
- The result is a lucky matrix, with $i \rightarrow j$ being exactly the greedy matching.

Good and Lucky Matrices

■ Good \rightarrow lucky: run Gauss, but don't swap the rows.
■ Instead, for each row i, find the first yet-unused column j with $A_{i, j}=1$.
■ Now, "freeze" the following items into the answer: $A_{i, k}$ for each unused column k and $A_{r, j}$ for each $r \geqslant i$.

- Now, proceed with the usual step of the Gauss algorithm: ensure that the new values of $A_{r, j}$ are all zero when $r>i$. Notice that we already "froze" these matrix entries into the answer.
- The result is a good matrix, with $i \rightarrow j$ being exactly the greedy matching.

Good and Lucky Matrices

■ Lucky \rightarrow good: recover the greedy matching and then reverse the above process, starting from the lower rows and then going to the upper ones.

- The process was specifically made to be reversible: we remember $A_{r, j}$ before the row-xor operations, therefore we know whether or not we have actually done them during the Gauss algorithm.

Two Missing Numbers/Nimbers

- There was an unintentional hint: the problem was named "Two Missing Nimbers" in the testing system and in the contest standings.
- Interpret the elements of the input as elements of the field of size 2^{64}.
- This field has several interpretations, they are all isomorphic and have characteristic 2 (meaning that $x+x=0$ for any x).
- Suppose that the target numbers are x and y.
- The sum of all input numbers is $x+y$ (all other numbers cancel out).
- We can also compute the sum of squares, but it is not useful: $(x+y)^{2}=x^{2}+2 x y+y^{2}=x^{2}+y^{2}$, because $2=0$.
- The sum of cubes is better: $(x+y)^{3}-\left(x^{3}+y^{3}\right)=3\left(x^{2} y+x y^{2}\right)=x y(x+y)$.
- Recover $x y$ through division.

Two Missing Numbers/Nimbers

- Alternatively: compute $1 / x+1 / y=(x+y) /(x y)$ (zeroes are improbable).
- Or compute $x^{2} y+x y^{2}$ directly and not through the sum of cubes: when we add z to the list, this value increases by $z^{2} \cdot s+z \cdot s^{2}$ (again, here we use that $\left.\left(x_{1}+\ldots+x_{k}\right)^{2}=x_{1}^{2}+\ldots+x_{k}^{2}\right)$.
- In the end, we know $x+y$ and $x y$.
- Need to solve a quadratic equation. There are multiple methods.
- The following should work: to solve $p(x)=0$, where $p(x)=x^{2}+a x+b$, compute the GCD of $(x+r)^{\left(2^{64}-1\right) / 3}-1$ and $p(x)$ (r is random here).
■ This way, we filter out exactly one third of all non-zero elements of the field.
- A common heuristic suggests that we will recover all roots in $O(1)$ iterations.

