Day 5, SPb SU LOUD Enough Contest 2

February 4, 2023

Courses

- We may write natural dynamic programming $d p[i][j]$ with states - money spend and IQ.

Courses

- We may write natural dynamic programming $d p[i][j]$ with states - money spend and IQ.
- Tranisitions $-d p[i][j]=\sum n[i][j] * d p[i-c][j-d]$. Time is $n^{2}(\max c)^{2}$.

Courses

- Let's look to the generating function $F_{i}(x)=\sum d p[i][j] x^{j}$

Courses

- Let's look to the generating function $F_{i}(x)=\sum d p[i][j] x^{j}$
- We need to calculate sum of some coefficients of F_{i} for every $i \leq n$.

Courses

- Let's look to the generating function $F_{i}(x)=\sum d p[i][j] x^{j}$
$■$ We need to calculate sum of some coefficients of F_{i} for every $i \leq n$.
■ Let's remember the Fourier transform. This sum of coefficients may be rewritten as $\sum_{t} c_{t} F_{i}\left(\epsilon_{t}\right)$, where ϵ_{t} - roots of unity.

Courses

- Let's look to the generating function $F_{i}(x)=\sum d p[i][j] x^{j}$
$■$ We need to calculate sum of some coefficients of F_{i} for every $i \leq n$.
■ Let's remember the Fourier transform. This sum of coefficients may be rewritten as $\sum_{t} c_{t} F_{i}\left(\epsilon_{t}\right)$, where ϵ_{t} - roots of unity.
■ But how the $F_{i}\left(\epsilon_{t}\right)$ looks like?

Courses

- Consider the generating function $F_{i}\left(\epsilon_{t}\right) y^{i}$.

Courses

- Consider the generating function $F_{i}\left(\epsilon_{t}\right) y^{i}$.
- It is some rational function with degree of denominator and numerator no more then max c.

Courses

- Consider the generating function $F_{i}\left(\epsilon_{t}\right) y^{i}$.
- It is some rational function with degree of denominator and numerator no more then max c.
- We just need to calculate linear combination of such rational functions, it can be done by divide-and-conquer. It is $O\left(n(\max c) \log ^{2} n\right)$.

Young

■ We have graph, vertices are Young tableuxes, edge between them - if they differ in one cell. The task is to calculate number of ways to reach one vertex from another in the given number of steps.

Young

■ We have graph, vertices are Young tableuxes, edge between them - if they differ in one cell. The task is to calculate number of ways to reach one vertex from another in the given number of steps.

- Lets say that the edge goes up, if it decreases number of cells, else down.

Young

- We have graph, vertices are Young tableuxes, edge between them - if they differ in one cell. The task is to calculate number of ways to reach one vertex from another in the given number of steps.
- Lets say that the edge goes up, if it decreases number of cells, else down.
- Main observation - for every vertex number of edges going up is less by 1 then number of edges going down.

Young

■ We have graph, vertices are Young tableuxes, edge between them - if they differ in one cell. The task is to calculate number of ways to reach one vertex from another in the given number of steps.

- Lets say that the edge goes up, if it decreases number of cells, else down.
- Main observation - for every vertex number of edges going up is less by 1 then number of edges going down.
- Moreover, if 2 vertices have common neighbor, they have both common up neighbor and down neighbor.

Young

■ Let's call a signature sequence of letters U and D. Path satisfies it, if in letter U it goes up, and in letter D it goes down.

Young

■ Let's call a signature sequence of letters U and D. Path satisfies it, if in letter U it goes up, and in letter D it goes down.

- Let's calcualte number of paths of some signature $(F(S))$. Suppose it has two adjacent letters DU in this order (sequence is $S_{1} D U S_{2}$). Then we can see that $F(S)=F\left(S_{1} U D S_{2}\right)+F\left(S_{1} S_{2}\right)$.

Young

■ Let's call a signature sequence of letters U and D . Path satisfies it, if in letter U it goes up, and in letter D it goes down.

- Let's calcualte number of paths of some signature $(F(S))$. Suppose it has two adjacent letters DU in this order (sequence is $S_{1} D U S_{2}$). Then we can see that $F(S)=F\left(S_{1} U D S_{2}\right)+F\left(S_{1} S_{2}\right)$.
■ In this manner we can express all $F(S)$ by linear combination of $F(U U \ldots U D D \ldots D)$. Coefficients in expression have combinatorial sence.

Young

■ Let's call a signature sequence of letters U and D . Path satisfies it, if in letter U it goes up, and in letter D it goes down.

- Let's calcualte number of paths of some signature $(F(S))$. Suppose it has two adjacent letters DU in this order (sequence is $S_{1} D U S_{2}$). Then we can see that $F(S)=F\left(S_{1} U D S_{2}\right)+F\left(S_{1} S_{2}\right)$.
■ In this manner we can express all $F(S)$ by linear combination of $F(U U \ldots U D D \ldots D)$. Coefficients in expression have combinatorial sence.
- Then we can represent sum of all $F(S)$ by linear combination of $F(U U \ldots U D D \ldots D)$. Coefficients may be found explicitly.

Young

- Values of all $F(U U \ldots U D D \ldots D)$ can be found in dynamic programming, where states are Young subdiagrams of one of the two initial diagrams.

Young

- Values of all $F(U U \ldots U D D \ldots D)$ can be found in dynamic programming, where states are Young subdiagrams of one of the two initial diagrams.
- Asymptotics is $O(k+$ "Number of Young subdiagrams of the given one" $)$, which is small enough.

Endless road

- We have 3 guys, every second random one moves 1 step in the positive direction. Task is to calculate expectation of maximal coordinate of them.

Endless road

- We have 3 guys, every second random one moves 1 step in the positive direction. Task is to calculate expectation of maximal coordinate of them.
■ This number is indeed $F(n)=\sum_{x+y+z=n} \max (x+a, y+b, z+c) \frac{n!}{3^{n} x!y!z!}$.

Endless road

- We have 3 guys, every second random one moves 1 step in the positive direction. Task is to calculate expectation of maximal coordinate of them.
- This number is indeed $F(n)=\sum_{x+y+z=n} \max (x+a, y+b, z+c) \frac{n!}{3^{n} x!y!z!}$.
- Consider simpler sum: $S(n)=\sum_{x+y+z=n, x+a \geq y+b, x+a \geq z+c} \frac{1}{x!y!z!}$. Logic wih initial one is the same.

Endless road

- We have 3 guys, every second random one moves 1 step in the positive direction. Task is to calculate expectation of maximal coordinate of them.
- This number is indeed $F(n)=\sum_{x+y+z=n} \max (x+a, y+b, z+c) \frac{n!}{3^{n} x!y!z!}$.
- Consider simpler sum: $S(n)=\sum_{x+y+z=n, x+a \geq y+b, x+a \geq z+c} \frac{1}{x!y!z!}$. Logic wih initial one is the same.
- Let's try to calculate $S(n)$ from $S(n-1)$.

Endless road

- Denote $A(x, y, z)=\frac{1}{x!y!z!}$. Then we can see that $n A(x, y, z)=A(x, y, z-1)+A(x, y-1, z)+A(x, y, z-1)$. That is, we can see that if we sum up this equality for whole region, in the right side will be almost $3 S(n-1)$!

Endless road

- Denote $A(x, y, z)=\frac{1}{x!y!z!}$. Then we can see that $n A(x, y, z)=A(x, y, z-1)+A(x, y-1, z)+A(x, y, z-1)$. That is, we can see that if we sum up this equality for whole region, in the right side will be almost $3 S(n-1)$!
- Problems will be only on borders. So we need to decrease or increase $S(n)$ by some sums where $x+a$ is almost equal $y+b$ or $z+c$.

Endless road

- Denote $A(x, y, z)=\frac{1}{x!y!z!}$. Then we can see that $n A(x, y, z)=A(x, y, z-1)+A(x, y-1, z)+A(x, y, z-1)$. That is, we can see that if we sum up this equality for whole region, in the right side will be almost $3 S(n-1)$!
- Problems will be only on borders. So we need to decrease or increase $S(n)$ by some sums where $x+a$ is almost equal $y+b$ or $z+c$.
■ It is the sums like $\sum_{x+a \geq y+b} B(x, y)$, where $B(x, y)=\frac{1}{x!(x+t)!y!}$

Endless road

■ Denote $A(x, y, z)=\frac{1}{x!y!z!}$. Then we can see that $n A(x, y, z)=A(x, y, z-1)+A(x, y-1, z)+A(x, y, z-1)$. That is, we can see that if we sum up this equality for whole region, in the right side will be almost $3 S(n-1)$!

- Problems will be only on borders. So we need to decrease or increase $S(n)$ by some sums where $x+a$ is almost equal $y+b$ or $z+c$.
■ It is the sums like $\sum_{x+a \geq y+b} B(x, y)$, where $B(x, y)=\frac{1}{x!(x+t)!y!}$
■ How to calculate this? Almost the same! We can express $B(x, y)$ as a linear combination of $B(x-1, y), B(x, y-1), B(x, y-2)$ and pass to the borders, which are where all $x+a, y+b, z+c$ are almost equal, and these are just binomial coefficients.

Endless road

- Denote $A(x, y, z)=\frac{1}{x!y!z!}$. Then we can see that $n A(x, y, z)=A(x, y, z-1)+A(x, y-1, z)+A(x, y, z-1)$. That is, we can see that if we sum up this equality for whole region, in the right side will be almost $3 S(n-1)$!
- Problems will be only on borders. So we need to decrease or increase $S(n)$ by some sums where $x+a$ is almost equal $y+b$ or $z+c$.
■ It is the sums like $\sum_{x+a \geq y+b} B(x, y)$, where $B(x, y)=\frac{1}{x!(x+t)!y!}$
■ How to calculate this? Almost the same! We can express $B(x, y)$ as a linear combination of $B(x-1, y), B(x, y-1), B(x, y-2)$ and pass to the borders, which are where all $x+a, y+b, z+c$ are almost equal, and these are just binomial coefficients.
- Time is $O(n)$ with big constant. This idea works for any number of points.

Sets may be good

- Given a graph, we need to calculate number of sets of vertices with even number of edges between them.

Sets may be good

- Given a graph, we need to calculate number of sets of vertices with even number of edges between them.
- We can look at it as follows: we have some quadratic polynomial $P\left(x_{1}, \ldots x_{n}\right)$ over \mathbb{F}_{2}, we need to calculate number of solutions of equation $F\left(x_{1}, \ldots, x_{n}\right)=0$.

Sets may be good

- Given a graph, we need to calculate number of sets of vertices with even number of edges between them.
- We can look at it as follows: we have some quadratic polynomial $P\left(x_{1}, \ldots x_{n}\right)$ over \mathbb{F}_{2}, we need to calculate number of solutions of equation $F\left(x_{1}, \ldots, x_{n}\right)=0$.
- We can suppose F does not contain term x_{i}^{2}, cause $x_{i}^{2}=x_{i}$

Sets may be good

- Given a graph, we need to calculate number of sets of vertices with even number of edges between them.
- We can look at it as follows: we have some quadratic polynomial $P\left(x_{1}, \ldots x_{n}\right)$ over \mathbb{F}_{2}, we need to calculate number of solutions of equation $F\left(x_{1}, \ldots, x_{n}\right)=0$.
- We can suppose F does not contain term x_{i}^{2}, cause $x_{i}^{2}=x_{i}$
- Let's take one variable x_{1}. If there is no monomials with it, then in doesn't have any influence to polynomial.
■ In the other case, we can say that $P=x_{1} L\left(x_{2}, \ldots x_{n}\right)+Q\left(x_{1}, \ldots, x_{n}\right)$, where L is linear.

Sets may be good

- Lets divide all variable substitutions on 2 cases - $L=0$ and $L=1$.

Sets may be good

- Lets divide all variable substitutions on 2 cases - $L=0$ and $L=1$.
- In the second variant, there is equal number of solutions with $P=0$ and $P=1$, cause when we change x_{1}, P is also changing.

Sets may be good

■ Lets divide all variable substitutions on 2 cases - $L=0$ and $L=1$.

- In the second variant, there is equal number of solutions with $P=0$ and $P=1$, cause when we change x_{1}, P is also changing.
- So we reduce the problem to the following one: how many solutions of system $P=0, L=0$ are.

Sets may be good

- Lets divide all variable substitutions on 2 cases $-L=0$ and $L=1$.
- In the second variant, there is equal number of solutions with $P=0$ and $P=1$, cause when we change x_{1}, P is also changing.
- So we reduce the problem to the following one: how many solutions of system $P=0, L=0$ are.
- But we can make a variables changing to make L new variable. So we reduced the problem to the same problem with less number of variables. We can continue this process further.

Sets may be good

- Lets divide all variable substitutions on 2 cases - $L=0$ and $L=1$.
- In the second variant, there is equal number of solutions with $P=0$ and $P=1$, cause when we change x_{1}, P is also changing.
- So we reduce the problem to the following one: how many solutions of system $P=0, L=0$ are.
- But we can make a variables changing to make L new variable. So we reduced the problem to the same problem with less number of variables. We can continue this process further.
- Time is $O\left(n^{3}\right)$.

