Contents

Warm-up 2
Problem A. The Sum [0.5 sec] 2
Easy Problems 3
Problem B. Fabrozavrs-designers [1.1 sec] 3
Problem C. Count Online [4.8 sec] 4
Problem D. Substring Query [1.4 sec] 5
Not so easy 6
Problem E. Yet another k-th statistic [5 sec] 6
Problem F. Tin-plate [4.3 sec] 7
Problem G. Points in halfplane [0.9 sec] 8

Warm-up

Problem A. The Sum [0.5 sec]

You are given an array of N elements.
You have to calculate sum of elements on the segment several times.

Input

The first line contains two integers N and K - length of the array and number of queries. $(1 \leqslant N \leqslant 100000),(0 \leqslant K \leqslant 100000)$. The next K lines contain queries

1. A i $\mathrm{x}-$ set i-th element of the array equal to $x\left(1 \leqslant i \leqslant n, 0 \leqslant x \leqslant 10^{9}\right)$.
2. Q l r - calculate sum of all numbers on positions from l to $r(1 \leqslant l \leqslant r \leqslant n)$.

Initially array contains N zeroes.

Output

For each query of type "Q 1 r" output unique integer number - the sum.

Examples

		sum.in	
5	9		0
A	2	2	
A	3	1	
A	4	2	
Q	1	1	
Q	2	2	2
Q	3	3	
Q	4	4	
Q	5	5	5
Q	1	5	

Tutorial

Solved in the lection.

Easy Problems

Problem B. Fabrozavrs-designers [1.1 sec]

You are given an array of N elements. You have to perform queries
"+= [L,R]", "bool containsIn(x, [L..R])".

Input

The first line contains two integers N and M - length of the array and number of queries $\left(1 \leqslant N, M \leqslant 10^{5}\right)$. The second line contains N integers, divided by spaces - initial numbers in the array. All numbers do not exceed 10^{4} by absolute value. Next M lines contain queries. One per line.
Query "+ L R X" means, numbers from L to R should be increased by $X .1 \leqslant L \leqslant R \leqslant N$, and $|X| \leqslant 10^{4}$.

Query "? L R X" means, you should check is there any number eqaul to X on the segment $[L, R]$. It's garantued $1 \leqslant L \leqslant R \leqslant N$, and $|X| \leqslant 10^{9}$.

Output

For each query of the second type output «YES» (without quotes), the number X meets on the segment $[L, R]$, and «NO» in the other case.

Examples

fabro.in									fabro.out
10	5				NO				
0	1	1	3	3	3	2	0	0	1

Tutorial

SQRT decomposition on array.
$[L, R]=$ head + body + tail. Process head and tail by hands in time $\mathcal{O}(\sqrt{n})$. For every block you may store sorted array or hash table. Also you should store add [block] - value to add to all numbers in the block.

Problem C. Count Online [4.8 sec]

You are given multiset of points on the plane.
You have to perform queries of two types:

- "? $x_{1} y_{1} x_{2} y_{2}$ " - how many points are in $\left[x_{1} . . x_{2}\right] \times\left[y_{1} . . y_{2}\right]$?

Notice, points on the border and in the corner are also in. $x_{1} \leqslant x_{2}, y_{1} \leqslant y_{2}$.

- "+ $x y^{\prime \prime}$ - add to the multiset the point ($\mathrm{x}+\mathrm{res} \% 100, \mathrm{y}+\mathrm{res} \% 101$). Here res is the answer to the last query of type ?, and $\%$ - residue modulo.

Input

Number of points $N(1 \leqslant N \leqslant 50000)$. Then N points. Then number of queries $Q\left(1 \leqslant Q \leqslant 10^{5}\right)$. Then Q queries. All coordinares are from 0 to 10^{9}.

Output

For each query of type "?" output one integer - number of points in the rectangle.

Example

countonline.in	countonline.out
5	3
00	3
10	1
01	0
11	0
11	3
9	
? 01112	
+ 12	
+ 22	
? 1002	
? 0000	
+ 33	
? 3333	
? 4343	
? 4455	

Note

Tutorial

SQRT decomposition on queries.
To solve the problem without new points, lets use "range tree of sorted arrays".
Lets rebuild our structure each $\sqrt{n \log n}$ time.
$\operatorname{time}($ add $)=\sqrt{n \log n}$
time (get) $=\sqrt{n \log n}+\log ^{2} n$

Problem D. Substring Query [1.4 sec]

Bobo has n strings $S_{1}, S_{2}, \ldots, S_{n}$. One day, his friend yiyi comes and asks him q questions: how many strings in $S_{l_{i}}, S_{l_{i}+1}, \ldots, S_{r_{i}}$ containing P_{i} as a substring?
Help Bobo find out the answer.

Input

The first line contains two integers $n, q(1 \leq n, q \leq 200000)$.
Each of the following n lines contains 1 string $S_{i}\left(\left|S_{1}\right|+\left|S_{2}\right|+\cdots+\left|S_{n}\right| \leq 200000\right)$.
Each of the last q lines contains 2 integers l_{i}, r_{i} and string P_{i}.
$\left(1 \leq l_{i} \leq r_{i} \leq n,\left|P_{1}\right|+\left|P_{2}\right|+\cdots+\left|P_{n}\right| \leq 200000\right)$
All strings consist of " a " and " b ".

Output

For each question output single integer, which denotes the answer.

Examples

	str-qry.in	str-qry.out
42	2	
a	2	
b		
ab		
bab		
13 a		
14 ab		

Tutorial

SQRT decomposition on strings.
Lets iterate length of P_{i}. For each length the solution is:

1. Precalculate in $\mathcal{O}\left(\left|S_{1}\right|+\cdots+\left|S_{n}\right|\right)$ hash table v [hash].
2. $\mathrm{v}[\mathrm{h}]$ - sorted vector of indeces i of S_{i} that has substring with hash equal to h .
3. Query: two binary searches in $v\left[\right.$ getHash $\left.\left(P_{j}\right)\right]$.

Not so easy

Problem E. Yet another k-th statistic [5 sec]

Initially you have an array of integer numbers.
You have to perform three types of queries:

- + i x - Insert the number x to the i-th position (size of the array increases by one)
- - i - Erase the number on i-th position of array (size of the array decreases by one)
- ? L R x - Say, how many numbers y on positions $L \leqslant i \leqslant R$ such, that $y \leqslant x\left(|x| \leqslant 10^{9}\right)$

All indeces i, L, R are numbered from zero. All numbers in queries are integer. All queries are correct. Example of the query: "+ 0 x " means "insert x to the beginning of the array". Initially amount of elements in array is $N\left(0 \leqslant N \leqslant 10^{5}\right)$. Numbers in array do not exceed 10^{9} by absolute value. Amount of queries is $K\left(1 \leqslant K \leqslant 10^{5}\right)$.

Example

kthstat.in	kthstat.out
10	1
455184306359222813948543704	2
914773487861885581253523	2
770029097193773919581789266	0
457415808	2
- 1	
? 25527021001	
? 05490779085	
? 05722862778	
+ 9448694272	
- 5	
? 12285404014	
- 4	
? 34993634734	
+ 0414639071	

Tutorial

Solved in the lection.
Short description:
SQRT decomposition with split \& rebuild; for each block lets store "sorted array".

Problem F. Tin-plate [4.3 sec]

You are given an array of N integers. You have to perform queries of three types:

- get (L, R, x) - calculate amount of elements in $[L . . R]$ that are not less than x.
$\circ \operatorname{set}(\mathrm{L}, \mathrm{R}, \mathrm{x})-$ set to all elements in $[L . . R]$ value x.
- reverse (L, R) - reverse segment $[L . . R]$.

Input

The first line contains number $N\left(1 \leqslant N \leqslant 10^{5}\right)$. The second line contains array of N integers. Then number of queries $M\left(1 \leqslant M \leqslant 10^{5}\right)$ follows. Accurate format of queries you may gather from the sample. All segments in queries satisfy $1 \leqslant L \leqslant R \leqslant N$. All numbers in initial array and all new values are integers from 0 to 10^{9}.

Output

For each query of type "get" output the answer.

Example

		sqrtrev.in		sqrtrev.out
5				3
1	2	3	4	5
6				1
get	1	5	3	
set	2	4	2	
get	1	5	3	
reverse	1	2		
get 2	5	2		
get	1	1	2	

Tutorial

Solved in the lection.
Short description:
SQRT decomposition with split \& rebuild; for each block lets store "sorted array".

Problem G. Points in halfplane [0.9 sec]

You are given N points on the plane. Points have integer coordinates and are uniformly distributed inside square $[0 . . C] \times[0 . . C]$. You have to perform queries kind of "how many points are in the halfplane?".

Input

Number of points $N(1 \leqslant N \leqslant 50000)$, number of queries $M(1 \leqslant M \leqslant 50000)$, integer constant $C\left(1 \leqslant C \leqslant 10^{4}\right)$. Then N points $\left(X_{i}, Y_{i}\right)$ with integer coordinates from 0 to C. Then M halfplanes (a, b, c). Numbers a, b, c are integers from -10^{4} to $10^{4} . a^{2}+b^{2} \neq 0$. We say, point is inside halfplane iff $a x+b y+c \geqslant 0$.

Output

For each of M queries output the only integer - number of points inside the halfplane.

Example

	semiplane.in		semiplane.out
3	4	10	2
5	5	2	
1	7	1	
7	4	0	
1	1	-9	
1	1	-10	
1	1	-11	
1	1	-12	

Tutorial

SQRT decomposition on plane. Lets split our grid $[0 . . C] \times[0 . . C]$ into cells of size $k \times k$, here $k=\left\lceil\frac{C}{\sqrt{n}}\right\rceil$. We have 2D array A of these cells. In each cell there are $\mathcal{O}(1)$ different points. For each cell we know amount of points inside. The solution:

1. Precalculate partial 2D sums for array A.
2. Query. Let $|a| \leqslant|b|$, so the line is more vertical than horizontal.
3. Query. For each row of A there are at most two cells, which are intersected by the line.
4. Query. In $\mathcal{O}(1)$ get sum of all cells except these two; iterate all points in these two cells in \mathcal{O} (numberOfPoints) time. Do not forget, numberOfPoints $=\mathcal{O}(1)$.

Be careful with $C=\mathcal{O}(1)$.
In this case you should compress pack of k equal points into triple $\langle x, y, k\rangle$.

