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1. Flows

1.1. Definitions

Let we have oriented graph 𝐺 of 𝑛 vertices and 𝑚 edges. Between each two vertices 𝑣 and 𝑢 of
𝐺 there is edge with capacity 𝑐𝑣,𝑢 ≥ 0. If we want to say "there is no edge", let 𝑐𝑣,𝑢 = 0.

Def 1.1.1. Flow from 𝑠 to 𝑡 – function 𝑓𝑣,𝑢 ∈ R, which satisfies three propetries

1. ∀𝑣, 𝑢 𝑓𝑣,𝑢 ≤ 𝑐𝑣,𝑢 (flow is not greater than capacity)
2. ∀𝑣, 𝑢 𝑓𝑣,𝑢 = −𝑓𝑢,𝑣 (antisymmetry)
3. ∀𝑣 ̸= 𝑠, 𝑡

∑︀
𝑢 𝑓𝑣,𝑢 = 0 (conservation of flow)

The 𝑠 is called source, and the 𝑡 is called sink.
Let denote 𝑓𝑒 and 𝑐𝑒 – flow and capacity for edge 𝑒.

Def 1.1.2. Cut between 𝑠 and 𝑡 – partition of vertices of the graph 𝑉 : 𝑉 = 𝑆 ⊔ 𝑇, 𝑠 ∈ 𝑆, 𝑡 ∈ 𝑇 .
(𝑆 ∩ 𝑇 = ∅, source is in 𝑆, sink is in 𝑇 )

Let denote cut as (𝑆, 𝑇 ).

Def 1.1.3. Value of flow |𝑓 | =
∑︀

𝑣 𝑓𝑠,𝑣 (sum of flow from source 𝑠).

Value of flow may be negative. It does not contradict the definition.

Def 1.1.4. Value of cut 𝐶(𝑆, 𝑇 ) =
∑︀

𝑣∈𝑆,𝑢∈𝑇
𝑐𝑣,𝑢 (sum of capacities of edges throw the cut).

Def 1.1.5. Denote 𝐹 (𝐴,𝐵) =
∑︀

𝑣∈𝐴,𝑢∈𝐵
𝑓𝑣,𝑢

This is just a notation. 𝐴 and 𝐵 may intersect or even coincide.

Def 1.1.6. Max flow – 𝑓 : |𝑓 | = max

Def 1.1.7. Min cut – (𝑆, 𝑇 ) : 𝐶(𝑆, 𝑇 ) = min

Def 1.1.8. Edge 𝑒 is saturated ⇔ 𝑓𝑒 = 𝑐𝑒

Def 1.1.9. Residual network 𝐺𝑓 – graph of edges 𝑐𝑒 − 𝑓𝑒 > 0.
Capacities of edges in residual network are 𝑐𝑒 − 𝑓𝑒.

Def 1.1.10. Augumenting path – path from 𝑠 to 𝑡 throw edges 𝑒 : 𝑓𝑒 < 𝑐𝑒.
In other words “path in residual network”

Def 1.1.11. Circulation – flow of zero value.

For example, any cycle is a circulation.
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1.2. Theorem and algorithm of Ford-Fulkerson

Lm 1.2.1. Value of flow equals to value of the flow, flowing throw the cut:
∀ cut (𝑆, 𝑇 ), ∀ flow 𝑓 |𝑓 | = 𝐹 (𝑆, 𝑇 )

Proof. |𝑓 | = 𝐹 ({𝑠}, 𝑉 ) = 𝐹 (𝑆, 𝑉 ) = 𝐹 (𝑆, 𝑆) + 𝐹 (𝑆, 𝑇 ) = 0 + 𝐹 (𝑆, 𝑇 ) = 𝐹 (𝑆, 𝑇 ) �

Lm 1.2.2. Any flow is no more than any cut: ∀ cut (𝑆, 𝑇 ), flow 𝑓 |𝑓 | ≤ 𝐶(𝑆, 𝑇 )

Proof. |𝑓 | = 𝐹 (𝑆, 𝑇 ) ≤ 𝐶(𝑆, 𝑇 ) �

Lm 1.2.3. About augumenting path. If there is an augumenting path, flow is not max flow.

Proof. Let there is an augumenting path. Let increase flow along the path, and decrease flow in
opposite direction. All 3 propetries are satisfied, value of the flow is increased. �

Algorithm of Ford-Fulkerson.

The algorithm searches for max flow in graph with integer capacities.

𝑓 ← 0
while augumenting path exists:

find it using dfs, which uses only not saturated edges

let path is: 𝑠 = 𝑣1, 𝑣2, . . . , 𝑣𝑘 = 𝑡
𝑥 = min𝑖=1..𝑘−1

[︀
𝑐𝑣𝑖+1,𝑣𝑖 − 𝑓𝑣𝑖+1,𝑣𝑖

]︀
(𝑥 > 0; 𝑥 = how much flow we may push along the path)

increase the flow along the path by 𝑥
return 𝑓

If 𝑐𝑣,𝑢 are integer then 𝑥 ≥ 1, so the algorithm somewhen finishes.
Maximality of resulting flow follows from the theorem:

Теорема 1.2.4. Ford-Fulkerson’s. max |𝑓 | = min𝐶(𝑆, 𝑇 ).

Proof. Let show cut, whose value is same as value of the flow. It follows (use Lm 1.2.2) that flow is
max flow and cut is min cut. Let take flow obtained by Ford-Fulkerson’s algorithm. Let launch dfs

from 𝑠 using only not saturated edges (𝑓𝑢,𝑣 < 𝑐𝑢,𝑣). Such dfs finishes in 𝒪(𝑛+𝑚). It does not reach
𝑡, because there is no augumenting path. Vertices of the graph are splitted into two sets – marked
by dfs (𝑆), and not marked (𝑇 ). All edges from 𝑎 ∈ 𝑆 to 𝑏 ∈ 𝑇 satisfy 𝑓𝑎,𝑏 = 𝑐𝑎,𝑏, in other case dfs
would go throw the edge and visit 𝑏. So 𝐹 (𝑆, 𝑇 ) = 𝐶(𝑆, 𝑇 )⇒ |𝑓 | = 𝐶(𝑆, 𝑇 ). �

Implication 1.2.5. Algorithm to find min cut.
If we already have max flow then we may build min cut in 𝒪(𝑛+𝑚) time.

Working time of Ford-Fulkerson’s algorithm is 𝒪(|𝑓 | ·𝑚), but in practice it is smaller. Any way
there are tests such that even Ford-Fulkerson with randomizatin in dfs (iterate edges in random
order) works in exponential of 𝑛 time.

Algorithm of Ford-Fulkerson is applicable for integer capacities.
For ratio capacities it can work infinitely long.
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1.3. Problems

Problem about maximum matching in bipartite graph

It may be solved in 𝒪(𝑛𝑚), using max flow. Add source to the first part of vertices, add sink to
the second part, find max flow. |𝑓 | ≤ 𝑛. Edges of bipartite graph (edges between parts), wich are
saturated by the max flow are edges of the maximum matching.

Problem about matrix recovery

You are given sums in rows and columns of square matrix. All numbers in the matrix are from 0 to
100. The problem: recovery the matrix. The solution: let consider bipartite graph with source and
sink. The first part – rows, the second part – columns. Let add edges from source to rows witch
capacity "sum in the row". Also let add same edges from columns to sink. Cell of the matrix – edges
between row and column with capacity 100. Let find max flow in this graph. If all edges from source
and all edges to sink are saturated then matrix exists and flow between rows and columns describes
the matrix.

Problem about people and flights

There is an airport. Some flights are going the same direction, each can transfer 𝑘𝑖 and will flight
out at 𝑡𝑖. There are some people, each human has range of acceptable times [𝑙𝑖..𝑟𝑖], when he wants
to flight out. The problem is to distribute humans to flights. Let build graph: from source edges to
humans with capacity 1, from humans edges to flights, from flights to sink edges with capacity 𝑘𝑖.

1.4. Implementation

To make dfs work in 𝒪(𝑛+𝑚) time, let store lists of adjacent edges for each vertex. To maintain
antisymmetry of flow, each edge has paired backward edge.

1 struct Edge {

2 int from , to;

3 int next; // number of the next edge from vertex "from"

4 int f; // flow

5 int c; // capacity

6 };

7 int n, m;

8 vector <Edge > edges;

9 vector <int > head; // number of the first edge for each vertex

10

11 void add_edge( int a, int b, int capacity ) {

12 edges.push_back(Edge {a, b, head[a], 0, capacity });

13 head[a] = edges.size() - 1;

14 }

15 void read() {

16 cin >> n >> m; // number of vertices and edges

17 edges.reserve (2 * m); // each edge has paired backward edge

18 head = vector <int >(n, -1); // -1 means empty list

19 while (m--) {

20 int a, b, c;

21 cin >> a >> b >> c, a--, b--; // in input vertices usually are numbered 1..n

22 add_edge(a, b, c); // forward edge

23 add_edge(b, a, 0); // backward edge

24 }

25 }
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Now that edge number i has paired backward edge number i ˆ 1. To iterate all edges from
vertex i you should start from edge head[i]: for (int e = head[i]; e != -1; e = edges[e].next). In
Ford-Fulkerson algorithm we should find path and increase flow throw the path. We will increase
the flow while backtracking.

1 int cc;

2 vector <int > u; // Iff u[i] = cc then vertice is marked

3

4 int dfs( int v, int flow ) {

5 if (v == t)

6 return flow;

7 u[v] = cc; // do not visit any vertice twice

8 for (int x, i = head[v]; i != -1; i = edges[e].next) {

9 Edge &e = edges[i];

10 if (e.f < e.c && u[e.to] != cc && (x = dfs(e.to , min(flow , e.c-e.f))) > 0) {

11 e.f += x, edges[i ^ 1].f -= x; // incerease forward edge , decrease backward

12 return x;

13 }

14 }

15 return 0;

16 }

17 int maxFlow () {

18 read();

19 cc = 1, u = vector <int >(n, 0);

20 int f = 0, add;

21 while ((add = dfs(s, INT_MAX)) > 0)

22 f += add , cc++; // command "cc++" unmarks all vertices

23 return f;

24 }

Optimizations:

1. You may store c-f instead of storing both f and c.
2. Almost always you should not store from.

Remark: without backward edges algorithm fails:

If the first dfs finds the red path, the second dfs can not find a path without backward edges.
Using backward edges it can find the blue path.
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1.5. Flow decomposition

Decompose flow into paths .

Path from 𝑠 to 𝑡, through which flows 𝑥 items is a flow of value 𝑥. Ford-Fulkerson algorithm works
as Алгоритм Форда-Фалкерсона works as "let add small paths-flows and obtain big flow". Now
that we should solve opposite problem:

Def 1.5.1. Decomposition: you have to describe flow as sum of some pathes and a circulation.
Additional restricton: in the decomposition there are no opposite edges.

Red and blue paths on the picture above are not correct decomposition, because one edge is used
in both directions.

Algorithm to build decomposition: cleave another path by dfs using edges with non zero flow.

1 int getPath( int v, int flow ) {

2 if (v == t)

3 return flow;

4 u[v] = cc;

5 for (int x, i = head[v]; i != -1; i = edges[e].next) {

6 Edge &e = edges[i];

7 if (e.f > 0 && u[e.to] != cc && (x = getPath(e.to, min(flow , e.f))) > 0) {

8 e.f -= x, edges[i ^ 1].f += x; // cleave the path

9 return x;

10 }

11 }

12 return 0;

13 }

Working time is 𝒪(𝑚2), because getPath works in 𝒪(𝑚) time
and after each launch of getPath number of edges with zero flow incereases.
Exercise: improve working time up to 𝒪(𝑛𝑚).

1.6. Problem about 𝑘 paths

Now that using decomposition of flow into paths we can solve following problems:

1. Find 𝑘 disjoint by edges paths from 𝑠 to 𝑡 in oriented graph.
2. Find 𝑘 disjoint by edges paths from 𝑠 to 𝑡 in not oriented graph.
3. Find 𝑘 disjoint by vertices paths from 𝑠 to 𝑡 in oriented graph.
4. Find 𝑘 disjoint by vertices paths from 𝑠 to 𝑡 in not oriented graph.

We can solve all these problems in 𝒪(𝑘𝑚): launch Ford-Fulkerson’s algorithm, then decompose the
flow. In not oriented graph a not oriented edge can be described as two oriented edges. To make
pathes disjoint by vertices, let make a copy for each vertex:

−→

Disjoint by edges path in new graph are disjoint by vertices path in initial graph.
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1.7. Several sources and sinks

We have to find several disjoint paths. Each path should begin in a vertex from set 𝐴. Each path
should end in a vertex from set 𝐵. In other words we have to find flow in graph with several sources
and sinks. Let add global source – vertex 𝑠 with edges from 𝑠 to all 𝐴. Add global sink – vertex 𝑡
with edges from 𝐵 to 𝑡. Find flow from 𝑠 to 𝑡.

1.8. Algorithms for max flow problem

Edmonds–Karp algorithm – let use bfs instead of dfs. It turns out, number of augumenting

paths do not exceed 𝑛𝑚
2
, so algorithm works in time 𝒪(𝑛𝑚2) and also works for graphs with ratio

capacities.

We won’t prove asymptotic of working time, you may read it here.

Scaling flow algorithm – let look for augumenting path, along which we can push 𝑘 = 2𝑡 extra

flow. Main condition in dfs is transformed:
if (e.f + k <= e.c && u[e.to] != cc && (x = dfs(e.to, min(flow, e.c - e.f)))> 0){

Main loop of algorithm is transformed:

1 int maxFlow () {

2 read();

3 cc = 1, u = vector <int >(n, 0);

4 // MAX_CAPACITY <= 2^t <= 2* MAX_CAPACITY

5 for (int k = (1 << t); k > 0; k = k / 2, cc++)

6 while ((add = dfs(s, k, INT_MAX)) > 0)

7 f += add , cc++;

8 return f;

9 }

Теорема 1.8.1. On graphs with integer capacities Scaling algorithm works in time 𝒪(𝑚2 log𝑈),
where 𝑈 – maximal capacity.

Proof. We iterate log𝑈 different 𝑘, dfs works in 𝒪(𝑚), now we have to show that for each 𝑘 we’ll
get only 𝒪(𝑚) paths. Denote flow before looking for paths of value 𝑘 as 𝑓1. Denote flow after looking
for all paths of size 𝑘 as 𝑓2. For 𝑓1 there is no "augumenting paths of size 2𝑘", so there is such cut
that all edges 𝑒, going throw the cut, satisfy 𝑐𝑒 − 𝑓𝑒 < 2𝑘. Consider decomposition of flow 𝑓2 − 𝑓1.
Each path in decomposition has size at least 𝑘 and goes throw the cut. So there are no more than
𝑚·2𝑘
𝑘

= 2𝑚 = 𝒪(𝑚) paths. �

Remark. In practice Scaling algorithm works in 𝒪(𝑚2). ;)
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1.9. Advertisement

There are some cool and quiet easy algorithms:

1. Dinic’s algorithm

a) Finds max flow in 𝒪(𝑛2𝑚), with Scaling idea works in 𝒪(𝑛𝑚 log𝑈).
b) Gives Hopcroft–Karp algorithm to find matching in bipartite graph in time 𝒪(𝑚

√
𝑛).

c) Finds max flow in networks with unit capacities in 𝒪(min(𝑚1/2, 𝑛2/3)𝑚) time.

2. Family of algorithms based on "preflow" idea and using "global relabeling" optimization.
In practice these algorithms are good. Not worse than 𝑛𝑚.

3. Ahuja-Orlin’s algorithm based on ideas of "preflow" and "scaling of excess".
It works in 𝒪(𝑛𝑚+ 𝑛2 log𝑈) time.
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2. Mincost Flows

2.1. Definitions

You are given weighted oriented graph. 𝑤𝑒 – weight of edge 𝑒. Each edge 𝑒 has backward pair 𝑒′.
We already now, 𝑓𝑒 = −𝑓𝑒′ . Let define weight of backward edge equal to −𝑤𝑒. Let define weight of
flow 𝑓 equal to 𝑊 (𝑓) = 1

2

∑︀
𝑒 𝑓𝑒𝑤𝑒. Note, 𝑊 (𝑓) =

∑︀
𝑒∈𝐸 𝑓𝑒𝑤𝑒, where 𝐸 – set of forward edges.

Notation 𝑊 (𝑥) we also will use for path 𝑝 (𝑊 (𝑝) – weight of the path), circulation 𝑧 (𝑊 (𝑧) – weight
of the circulation). Let define common problems:

∙ Min cost flow: to find flow 𝑓 : 𝑊 (𝑓) = min

∙ Min cost max flow: to find flow 𝑓 : |𝑓 | = max,𝑊 (𝑓) = min

∙ Min cost k-flow: to find flow 𝑓 : |𝑓 | = 𝑘,𝑊 (𝑓) = min

2.2. Algorithm for "min cost k-flow" problem

Lm 2.2.1. If there is negative cycle in residual network then flow is not mincost.

Proof. Let 𝐶 – negative cycle in 𝐺𝑓 , consider flow 𝑓 + 𝐶 (increase flow along the cycle).
Value was not changed. Weight was decreased. �

Lm 2.2.2. If there are no negative cycles in residual network then flow is mincost.

Proof. Let there is flow 𝑓1 and flow 𝑓2 : |𝑓1| = |𝑓2|,𝑊 (𝑓1) > 𝑊 (𝑓2), Consider flow ℎ = 𝑓2 − 𝑓1 in
network 𝐺𝑓1 . It’s correct flow because of (𝑓2− 𝑓1)𝑒 ≤ (𝑐− 𝑓1)𝑒. Note |ℎ| = 0, 𝑊 (ℎ) < 0, it’s negative
circulation. Circulation can be decomposed into cycles. One of these cycles has negative weight. �

Lm 2.2.3. Denote mincost k-flow as 𝑓𝑘. Then 𝑓𝑘+1 = 𝑓𝑘 + shortestPath+ zeroCirculation.

Proof. Consider flow ℎ = 𝑓𝑘+1 − 𝑓𝑘 in 𝐺𝑓𝑘 . |ℎ| = 1, decomposition of ℎ is path 𝑝 and circulation 𝑧.
𝑓𝑘+1 is mincost, so 𝑊 (𝑧) ≤ 0 and 𝑊 (𝑝) = 𝑊 (shortestPath).
Using lemma 2.2.1 we have 𝑊 (𝑧) ≥ 0⇒ 𝑊 (𝑧) = 0. �

Algorithm for "mincost k-flow" problem (works only for graphs without negative cycles).

𝑓 ← 0 (there are no negative cycles)

for i=1..k:

find shortest path using Bellman-Ford algorithm

increase flow along the path by 1
return 𝑓

Algorithm works in 𝒪(𝑘𝑛𝑚) time.

Denote 𝑑𝑘 = 𝑊 (𝑓𝑘+1)−𝑊 (𝑓𝑘) (weight of 𝑘-th augumenting path). From proof of Edmonds-Karp
algorithm [2] we have 𝑑𝑘+1 ≥ 𝑑𝑘. So we may optimize the algorithm described above, let push not
one unit of flow, but min𝑒∈𝑝𝑎𝑡ℎ(𝑐𝑒 − 𝑓𝑒) units.
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2.3. Algorithm for "min cost flow" problem

We already know 𝑑𝑘+1 ≥ 𝑑𝑘. Weight of the flow decreases while 𝑑𝑘 < 0.
Algorithm: let start with 𝑓0 and while 𝑑𝑘 < 0 add the path to the flow.
Working time is 𝒪(𝑛𝑚|𝑓 |), where |𝑓 | – value of the seeking flow.

2.4. Implementation of mincost flow algorithm

Let modificate the code [1], we’ll get:

1 void add_edge( int a, int b, int capacity , int weight ) {

2 edges.push_back(Edge {a, b, head[0], 0, capacity , weight });

3 head[a] = edges.size() - 1;

4 }

5

6 queue <int > q;

7 void relax( int v, int d ) {

8 if (dist[v] > d)

9 return;

10 dist[v] = d;

11 if (! in_queue[v])

12 q.push(v), in_queue[v] = 1;

13 }

14 bool ford_bellman () {

15 const int infty = 1e9;

16 for (int i = 0; i < n; i++)

17 dist[i] = infty , in_queue[i] = 0;

18 relax(s, 0);

19 while (q.size()) {

20 int v = q.front(); q.pop();

21 in_queue[v] = 0;

22 for (int i = head[v]; i != -1; i = edges[e].next) {

23 Edge &e = edges[i];

24 if (e.f < e.c)

25 relax(e.to, d[v] + e.weight);

26 }

27 }

28 return dist[t] < infty;

29 }

30 ...

31 add_edge(a, b, c, w); // forward edge

32 add_edge(a, b, 0, -w); // backward edge

This implementation of Bellman-Ford algorithm uses 𝒪(𝑛) of memory and 𝒪(𝑛𝑚) of time in the
worst case. In average case it works in 𝒪(𝑚). This implementation is known as "Shortest Path
Faster Algorithm" (SPFA). Please, do not confuse this implementation with "Levit’s algorithm".
Levit pushes some vertices to front of queue.
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2.5. Negative cycles

If there are negative cycles in the graph then 𝑓0 ̸= 0. To find 𝑓0, let use lemmas 2.2.1 and 2.2.2.
Start with empty flow. Then while there is negative cycle in residual network, let increase the flow
along the cycle. We can use Bellman-Ford algorithm to find negative cycle in 𝒪(𝑛𝑚) time.

This approach gives us another algorithm to find 𝑓𝑘.

Algorithm for "mincost k-flow" problem

a) Find any flow of value 𝑘.
b) While there is negative cycle in residual network, let increase the flow along the cycle.
c) If there are no negative cycles the flow is mincost 2.2.2.

This algorithm works especially good, if we look for "cycle of minimal mean weight”

2.6. Advertisement

Idea of Johnson’s potentials allows us to use Dijkstra instead of Bellman-Frd. Now that algorithm
for mincost k-flow problem works in 𝒪(𝑘𝑚 log 𝑛) time and even in 𝒪(𝑘(𝑚+ 𝑛 log 𝑛)) time.

Note, we do not know yet how to find mincode in polynomial of 𝑛, 𝑚 and log𝑈 time. Such
algorithms exist. The most simple is based on idea of "capacity scaling" and works in time
𝒪(Dijkstra 𝑚 log𝑈) (𝑚 log𝑈 times launches Dijkstra’s algorithm).
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