
Integer Sorting in O(n
p

log log n) Expected Time and Linear Space

Yijie Han�

School of Interdisciplinary Computing and Engineering
University of Missouri at Kansas City

5100 Rockhill Road
Kansas City, MO 64110
hanyij@umkc.edu

http://welcome.to/yijiehan

Mikkel Thorup

AT&T Labs— Research
Shannon Laboratory

180 Park Avenue
Florham Park, NJ 07932

mthorup@research.att.com

Abstract

We present a randomized algorithm sorting n integers
in O(n

p
log logn) expected time and linear space. This

improves the previous O(n log logn) bound by Anderson et
al. from STOC’95.

As an immediate consequence, if the integers are
bounded by U , we can sort them in O(n

p
log logU)

expected time. This is the first improvement over the
O(n log logU) bound obtained with van Emde Boas’ data
structure from FOCS’75.

At the heart of our construction, is a technical determin-
istic lemma of independent interest; namely, that we split n
integers into subsets of size at most

p
n in linear time and

space. This also implies improved bounds for deterministic
string sorting and integer sorting without multiplication.

1 Introduction

Integer sorting has always been an important task in con-
nection with the digital computer. A classic example is
the folklore algorithm radix sort, which according to Knuth
[28] is referenced as far back as in 1929 by Comrie in a
document describing punched-card equipment [14].

Whereas radix sort works in linear time for O(log n)-bit
integers, it was not until 1990 that Fredman and Willard [17]
beat the
(n logn) comparison-based sorting lower-bound
for the case of arbitrary single word integers. The word-size
W is determined by the processor. We assume W � logn
so that we can address the different integers, but in princi-
ple, W can be arbitrarily large compared with n. An equiv-
alent formulation of our assumptions is that we only assume
constant time operations on integers polynomial in the sum

�Supported in part by University of Missouri Faculty Research Grant
K211942

of the input integers. The assumption that each integer fits
in a machine word implies that integers can be operated on
with single instructions. A similar assumption is made for
comparison based sorting in that an O(n logn) time bound
requires constant time comparisons. However, for integer
sorting, besides comparisons, we can use all the other in-
structions available on integers in standard imperative pro-
gramming languages such as C [26]. It is important that the
word-size W is finite, for otherwise, we can sort in linear
time by a clever coding of a huge vector-processor dealing
with n input integers at the time [30, 27].

Concretely, Fredman and Willard [17] showed that we
can sort deterministically in O(n logn= log logn) time and
linear space and randomized in O(n

p
logn) expected time

and linear space. The randomized bound can also be
achieved deterministically using space unbounded in terms
of n (of the form 2"W for constant " > 0), but here we focus
on bounds with space bounded in terms of n.

In 1995, Andersson et al. [5] improved Fredman and
Willard’s O(n

p
logn) expected time for integer sorting to

O(n log logn) expected time. Both of these bounds use lin-
ear space. A similar result was found independently by Han
and Shen [23].

The above mentioned bounds are the best unrestricted
bounds in the sense that no better bounds are known even if
besides the randomization, we have unlimited space and are
free to define our own operations on words.

The above results have provided great inspiration for
many researchers, trying to improve them in various ways.
For example, there has been work on avoiding randomiza-
tion [4, 21, 22, 31, 33] and there has been work on avoiding
multiplication [3, 6, 36]. Also there has been lots of work
on more dynamic versions of the problem such as priority
queues [13, 18, 31, 33, 34] and searching [3, 4, 8, 9].

The O(n log logn) algorithm of Andersson et al. from
1995 [5] is very simple, and the fact that it has sustained so

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

much interest has lead many researchers to think that this
could be the complexity for integer sorting, like O(n logn)
is the complexity of comparison based sorting.

However, in this paper, we improve the O(n log logn)
expected time to O(n

p
log logn) expected time:

Theorem 1 There is a randomized algorithm sorting n in-
tegers, each stored in one word, in O(n

p
log logn) ex-

pected time and linear space.

We leave open the problems of getting a corresponding de-
terministic algorithm and avoid the use of multiplication.
We note that the dynamic aspects are already pretty settled,
for the complexity of dynamic searching is known to be
�(
p
logn= log logn) [8, 9], and priority queues have once

and for all been reduced to sorting [35].
Since integers of O(log n) bits can be sorted in linear

time using radix sort, we get the following immediate con-
sequence of Theorem 1:

Corollary 2 We can sort n integers of size at most U in
O(n

p
log logU) expected time.

This is the first improvement over the O(n log logU) bound
obtained with van Emde Boas’ data structure from 1975
[37]. Indeed, the O(n log logn) sorting algorithm of An-
dersson et al. [5] combines van Emde Boas’ data structure
with the packed merging of Albers and Hagerup [2] so as to
match the O(n log logU) bound for large values of U .

We note here that the general O(log logU) bound of
van Emde Boas [37] has been improved in the context
of static search structures. More precisely, Beame and
Fich [9] have shown that one can preprocess a set of
n integers in polynomial time and space so that given
any x, one can search the largest stored integer below
x in O(log logU= log log logU) time. However, due to
the polynomial construction time, this improvement does
not help with sorting. Beame and Fich [9] combine
their result with Andersson’s exponential search trees from
[4], giving a dynamic search structure with an amor-
tized update time of O(log logU log logn= log log logU).
This dynamic search structure could be used for sort-
ing in O(n log logU log logn= log log logU) time, but this
is never better than the best of O(n log n) time and
O(n log logU) time. Thus, from the perspective of sorting,
our O(n

p
log logU) bound constitutes the first improve-

ment over theO(n log logU) bound derived from van Emde
Boas’ data structure from 1975 [37].

We will, in fact, prove the following refinement of Corol-
lary 2:

Theorem 3 There is a randomized algorithm sorting n
word integers, each of size at most U < 2W in

O(n
q
log logU

log n) expected time and linear space.

Theorem 3 improves a corresponding refinement of Kirk-
patrick and Reich [27] of van Emde Boas’ bound of
O(n log logU

log n) expected time.
The following simple lemma states that it suffices for us

to prove Theorem 3:

Lemma 4 Theorem 3 implies Theorem 1 and Corollary 2.

Proof: Trivially Theorem 3 implies the weaker Corol-
lary 2. However, Andersson et al. [5] have shown that we
can sort in linear expected time if W � (logn)3, and other-
wise, log logU � logW � 3 log logn.

1.1 Other domains

In this paper, we generally assume that our integers to be
sorted each fit in one word, where a word is the maximal
unit that we can operate on with a single instruction. In this
subsection, we briefly discuss implications of this case to
many other domains.

First, consider the case of lexicographically ordered
strings of words. Andersson and Nilsson [7] have presented
an optimal randomized reduction from this case to that of
integers fitting in single words. Applying their reduction to
Theorem 1, we get

Corollary 5 We can sort n variable-length strings dis-
tributed over N words in O(n

p
log logn + N) expected

time. In fact, we can get down to O(n
p
log logn + L) ex-

pected time where L =
P

i `i and `i is the length of the
distinguishing prefix of string i, that is, the smallest prefix
of string i distinguishing it from all the other strings, or the
length of string i if it is a duplicate.

We note here that any algorithm sorting the strings will have
to read the distinguishing prefixes, and since it takes an in-
struction to read each word, it follows that an additiveO(L)
is necessary.

One may instead be interested in variable length
multiple-word integers where integers with more words are
considered bigger. However, by prefixing each integer with
its length, we reduce this case to lexicographic string sort-
ing.

In our presentation, we think of all our integers as un-
signed non-negative integers. However, the standard repre-
sentation of signed integers is such that if we flip the sign-
bit, we can sort them as unsigned integers, and then flip
the sign-bit back again. Floating points numbers are even
easier, for the IEEE 754 floating-point standard [25] is de-
signed so that the ordering of floating point numbers can
be deduced by perceiving their representations as multiple
word integers. Also, if we are working with fractions where
both enumerator and denominator are single word integers,

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

we get the right ordering if for each fraction, we make the
division in floating point numbers with double precision.
Now we get the correct ordering of the original integer frac-
tions by perceiving the corresponding floating point num-
bers as integers.

1.2 Machine model

Recall that our machine model is a normal computer with
an instruction set corresponding to what we program in a
standard programming language such as C [26] or C++ [32].
We have a processor determined word-sizeW , limiting how
big integers we can operate on in constant time. We assume
that each input integer fits in a single word. We note that
for generic code, the type of a full word integer, e.g. long
long int, should be a macro parameter in C or template
parameter in C++. We adopt the unit-cost time measure
where each operation takes constant time.

Interestingly, the traditional theoretical RAM model of
Cook and Reckhow [15] allows infinite words. A disturb-
ing consequence of infinite words is that with normal op-
erations such as shifts or multiplication, we can simulate
an exponentially big parallel processor solving all problems
in NP in polynomial time. Hence such operations have to
be banned from the above unit-cost theory RAM, making it
even more contrived from a practical view-point.

However, by adopting the real-world limitation of a lim-
ited word-size, we both resolve the above theoretical issue,
and we get algorithms that can be implemented in the real
world. Hagerup [19] has named this model the word RAM.
The word RAM has a fairly long tradition within integer
sorting, being advocated and used in the 1984 paper [27] by
Kirkpatrick and Reisch, and in the seminal 1993 paper of
Fredman and Willard [17].

We note that our unit-cost multiplication may be con-
sidered somewhat questionable in that multiplication is not
in AC0 [10], that is, there is no multiplication circuit of
constant-depth and of size polynomial in W . We leave
it as an open problem to improve Thorup’s randomized
O(n log logn) expected time and linear space sorting with-
out multiplication [36].

We will now discuss some of the (delightfully) dirty
tricks that we can use on the word RAM, and which are
not allowed in the comparison based model or on a pointer
machine.

A first nice feature of the word RAM over the compar-
ison based model is that we can add and subtract integers.
For example, we can use this to code multiple comparisons
of short integers packed in single words. The idea of mul-
tiple comparisons was first introduced by Paul and Simon
[30] in 1980. It should be noted that this use of uniproces-
sors as vector processors is a standard trick in practice, not
in connection with sorting, but in connection with graphics,

where a single word operation is used to manipulate the in-
formation on several pixels, each represented by one byte
of the word.

The word RAM model distinguishes itself both from the
comparison based model and from the pointer machine in
that we can use integers, and segments of integers, as ad-
dresses. This trick goes back to radix sort where an integer
is viewed as a vector of characters, and these characters are
used as addresses. Another word RAM trick in this direc-
tion is that we can hash integers into smaller ranges. Here
radix sort goes back at least to 1929 [14] and hashing goes
back at least to 1956 [16], both being developed for efficient
problem solving in the real world.

Fredman and Willard [17] further use the RAM for ad-
vanced tabulation of complicated functions over small do-
mains. Their tabulation is too complicated to be of practical
relevance, but tabulation of functions is in itself commonly
used to tune code. As a simple example, Bentley [11, pp.
83–84] suggests that an efficient method for computing the
number of set bits in 32-bit integers is to have a preprocess-
ing where we first tabulate the number of set bits in all the
256 different 8-bit integers. Now, given a 32-bit integer x,
we view it as the concatenation of four 8-bit integers, and
for each of these, we look up the number of set bits in our
table. Finally we just add up these four numbers to get the
number of set bits in x.

Summing up, we have argued that the “dirty tricks” facil-
itated by the word RAM are well established in the practice
of writing fast code. Hence, if we disallow these tricks, we
are not discussing the time complexity of running impera-
tive programs on real world computers. At the same note,
it should be admitted that this is a theory paper. The al-
gorithms presented are too complicated and have too large
constants hidden in the O-notation to be of any immediate
practical use. This does not preclude that some of the ideas
may find use in practice. For example, Nilsson [29] has
demonstrated that the O(n log logn) algorithm of Anders-
son et al. [5] can be implemented so as to be competitive
with the best practical sorting algorithms.

1.3 Deterministic splitting and sorting

The heart of our construction is a deterministic splitting
results of independent interest.

Definition 6 A splitting of an ordered set X is a partition-
ing into sets X0 < X1 < � � � < Xk. Here, A < B denotes
that a < b for all (a; b) 2 A�B.

We are generally thinking of sets as multisets. If all ele-
ments of a set are identical, we call it a duplicate set; other-
wise, we call it a diverse set.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Theorem 7 We can split a set of n word integers in linear
time and space so that each diverse subset has at most

p
n

integers.

Applying Theorem 7 recursively, we immediately get that
we can sort deterministically in O(n log logn) time and lin-
ear space, but this has already been proved by Han in [22].
However, for deterministic string sorting, we get the follow-
ing new result which does not follow from [22] (the general
reduction of Andersson and Nilsson [7] from word sorting
to string sorting is randomized):

Corollary 8 We can sort n variable-length strings dis-
tributed over N words in O(n log logn+N) time and lin-
ear space. In fact, we can get down to O(n log logn + L)
time where L is the sum of the lengths of the distinguishing
prefixes.

Proof: To get the corollary, we simply apply Theorem
7 recursively but only to the first unmatched word of each
string. That is, our recursive input is a subset of the integers
with some common matched prefix. In the root call, the sub-
set is the complete set with nothing matched so far. Integers
ending up in a duplicate set match in one more word, and
the other integers end up in sets of size reduced to the square
root. Since the splitting takes constant time per integer, we
pay constant time per word matched and O(log logn) time
for reductions into smaller sets.

We also present variants of the splitting using only stan-
dard AC0 operations, that is, AC0 operations available via a
standard programming language such as C or C++.

Theorem 9 For any positive ", using standard AC0 oper-
ations only, we can split a set of n (W=(log logn)1+")-bit
integers in linear time so that diverse subsets have size at
most

p
n.

Corollary 10 For any positive ", using standard AC0 op-
erations only, we can sort n words in O(n(log logn)1+")
time and linear space.

Proof: We use the same proof as for Corollary 8, but
viewing each word as a string of (W=(log logn)1+")-bit
characters, to which we can apply Theorem 9.

Corollary 10 improves the previous
O(n(log logn)2=(log log logn)) bound of Han from
[20], and it gets very close to the best multiplication based
deterministic bound of O(n log logn) [22].

1.4 Contents

The rest of the paper is divided into two sections. Section
2 presents our randomized sorting assuming deterministic
splitting, and Section 3 presents our deterministic splitting.

2 Fast randomized sorting

For our fast randomized sorting, we need a slight variant
of the signature sorting of Andersson et al. [5] (cf. Appendix
A.1):

Lemma 11 With an expected linear-time additive over-
head, signature sorting with parameter r reduces the prob-
lem of sorting n integers of ` bits to

(i) the problem of sorting n reduced integers of 4r logn
bits each and

(ii) the problem of sorting n integer fields of `=r bits each.

Here (i) has to be solved before (ii).

We are now going to present our randomized algorithm for
sorting n word integers in linear space and O(n

p
log p) ex-

pected time where p = logU= logn.

Repeated splitting First we apply our splitting from The-
orem 7 to recursively split the diverse set of integers
dplog pe times, thus getting a splitting with diverse subsets

of size at most n0 = n1=2
p

log p

. Each integer is involved in
at most dplog pe linear time splittings, so the total time is
O(n

p
log p)).

Repeated signature sort To each of the diverse sets Si of
size at most n0, we apply the signature sort from Lemma 11

with r = 2
p

log p. Then the reduced integers from (i) have
4r logn0 = O(logn) bits.

We are going to sort these reduced integers from all the
subsets Si together, but prefixing reduced integers from Si
with i. The prefixed reduced integers still have O(logn)
bits, so we can radix sort them in linear time. From the
resulting sorted list we can trivially extract the sorted sub-
list of reduced integers for each Si, thus completing task (i)
from Lemma 11.

We have now spent linear expected time on reducing
the problem to dealing with the fields from Lemma 11 (ii)

and the field length is only a fraction 1=2
p

log p of original
length.

We repeat this signature sorting dplog pe times, at a total
expected cost of O(n

p
log p). We started with integers of

length logU , and each round reduces the integer length by a

factor 2
p

log p, so we end up with integers of length at most

logU=(2
p

log p)
p

log p � logU=2log p = logn

Since the lengths are now at most logn, we can trivially
finish with a linear time bucket sort.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Summing up The total expected time spent in the above
algorithm is O(n

p
log p), and we have only used linear

space, as desired.
Thus, our only remaining task is to provide the splitting

from Theorem 7, that is,

Lemma 12 Theorem 7 implies Theorem 3.

3 Deterministic splitting

To prove Theorem 7, first in Section 3.1, we reformulate
it in terms of splitting over a given set of splitters.

3.1 Splitting over splitters

We will actually prove our splitting result in terms of
an equivalent formulation. A splitting of a set X into sets
X0 < X1 < � � � < Xk is a splitting over k splitters y1 <
y2 < � � � < yk if X0 < fy1g � X1 < fy2g � X3 � � � <
fykg � Xk.

Lemma 13 The following statements are equivalent:

(a) We can split a set of n integers so that diverse subsets
are of size at most n1�"a in linear time and space for
some positive constant "a.

(b) We can split a set of n integers so that diverse sets are
of size at most n1�"b in linear time and space for any
positive constant "b.

(c) We can split a set of nwords over n"c splitters in linear
time and space for any positive constant "c.

(d) We can split a set of nwords over n"d splitters in linear
time and space for some positive constant "d.

Proof: (a))(b) To get diverse subsets of size n1�"b we
apply (a) recursively on diverse sets. If (a) is applied i times
to subsets containing x, the set containing x ends up non-
diverse, or of size at most n(1�"a)

i

. Thus x gets involved at
most log1�"a(1� "b) = O(1) times.

(b))(c) To prove (c) with any given value of "c, we apply
(b) with "b = 2"c. Now, the diverse subsets have at most
n1�2"c integers. Out of these subsets, at most n"c contain a
splitter. We split each subset with splitters using traditional
comparison based sorting. The total number of integers in-
volved in this is at most n1�2"cn"c = n1�"c , so the total
time for sorting is O(n1�"c logn) = O(n). Having sorted
all diverse subsets with splitters over these splitters, we im-
mediately derive the desired splitting of the original set.

(c))(d) is trivial.

(d))(a) If n = O(1), (a) is trivial, so assume n = !(1).
We divide our input integers into batches of size a

p
n. Us-

ing (d), we can split such a batch over n"d=2 splitters in
linear time.

We will develop the an appropriate set Y of splitters as
we go along, starting with Y = ;. Each time we come with
a batch of integers, we split them according to the current
splitters y1 < y1 < � � � < yk�1, adding them to the splitting
X0 < fy1g � X1 < fy2g � � � < fykg � Xk done so
far. If one of the diverse subsets Xi gets 4n1�"d=2 or more
elements, we split it according to its median z, and make z
and z+1 two new splitters. Obviously, we end with at most
4n1�"d=4 splitters in each diverse set, and since n = !(1),
4n1�"d=4 � n1�"a for some positive constant "a.

We will charge each splitting over a median to 2n1�"d=2

elements. This implies that the median finding and sub-
sequent splitting is done in linear time, and that the total
number of splitters is at most 2n=(2n1�"d=2) = n"d=2, as
needed for applying (d) with a batch of

p
n integers.

The charging is simple: every time a diverse subset is
started, it has at most 2n1�"d=2 charged elements. We only
split the set if it gets more than 4n1�"d=2 elements, which
means that we have at 2n1�"d=2 non-charged elements that
we can charge, and we can easily distribute the charging so
that each of the resulting divers sets get at most Moreover,
any diverse subset starts with at most 2n1�"d=2 charged el-
ements.

The rest of this paper is devoted to prove Lemma 13 (d)
with "d = 3

p
n, which by Lemma 13 (b) implies Theorem

7. That is, our remaining task is to split n integers over 3
p
n

splitters in linear time and space.

3.2 Deterministic signature sorting

We shall use a deterministic version of signature sort,
essentially done by Han [21] (cf. Appendix A.2).

Lemma 14 With anO(n+ `
rs

2) time additive overhead, de-
terministic signature sorting with parameter r reduces the
problem of splitting n `-bit integers over s splitters to

(i) the problem of splitting n reduced integers of 4r logn
bits over s reduced splitters, and

(ii) the problem of splitting n fields of `=r bits over s field
splitters.

Here (i) has to be solved before (ii).

Han [21] actually paid an additive O(`s2). The fact that we
only pay O(`r s

2) is useful if ` is arbitrarily large compared
with n as in Lemma 15 below.

Lemma 15 If W = (logn)c, c � 5, we can split n word
integers over at most 3

p
n splitters in linear time.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Proof: We apply the signature sorting of Lemma 14 with
r = (logn)c�3. Then the additive overhead is

O

�
n+

(logn)c

(logn)c�3
3
p
n2
�
= O(n):

Now, the reduced integers from (i) have length

4r(log n) = 4(logn)c�2 = O(W=(log n)2)

and that implies that we can sort and hence split them
in linear time using the packed sorting of Albers and
Hagerup [2]. Similarly, the fields have length (log n)2 =
O(W=(log n)3), so they can also be sorted in linear time.

Above, we could let c go down from 5 to 3 if, instead of
using the packed sorting of Albers and Hagerup, we used
the one by Han and Shen [24] which takes linear time for
O(W= logn)-bit integers. However, Han and Shen’s result
employs the sorting network of Ajtai et al. [1], and the im-
provement does not affect the overall results of this paper.

Lemma 16 If W � (logn)5, with a linear time additive
overhead, we can reduce the problem of splitting n word
integers over s � 3

p
n splitters into at most four problems

of splitting q(logn)-bit integers over s splitters where q =
O(logn) and W =
(q4(logn)).

Proof: Let p = W= logn � (logn)4. First we apply
the deterministic signature sort of Lemma 14 with r =

p
p.

Now both subproblems have integer length
p
p(logn). We

then apply Lemma 14 with r = 4
p
p to each subprob-

lem, getting four subproblems, each with integer length
O(4
p
p(logn)).

By the two preceeding lemmas, we can assume that the
integers are of length q(logn) where q = O(logn), W =

(q4(logn)), and W � (logn)5.

3.3 String sorting

We are going to show:

Lemma 17 Consider n �W 6 integers packed with at most
k(log k) integers in each word. We can sort the integers ac-
cording to the value of a given segment of at most (logn)=2
consecutive bits so that the time spent on an integer with
segment value c is

O

�
1 + logn� lognc

logn
+ 1=k

�

where nc is the number of integers with segment value c.

The above lemma may look somewhat strange, but as
demonstrated below, it actually implies our main result.

Lemma 18 Lemma 17 implies Lemma 13 (d) with "d =
3
p
n.

Proof: We need to split n integers over 3
p
n splitters.

From Lemmas 15 and 16, we know that it suffices to con-
sider q(logn)-bit integers where q = O(log n), W =

(q4(log n)), and W � (logn)5. For n = !(1), the latter
implies W 6 � n, as required for Lemma 17.

We view each integer as consisting of 4q characters, each
of (logn)=4 bits. Also, we have plenty of room to pack
q(log q) integers in each word.

The algorithm works recursively, taking a subset of n0 �p
n integers, all with a common prefix of length i. We then

use Lemma 17 with k = q to sort the integers according to
character i+1. We note that this character has (logn)=4 �
(logn0)=2 bits, as required of the segment in Lemma 17.
Also, we note that this is, in fact, a splitting since all the
integers agree on the preceding characters. Starting with all
n integers, we recurse on diverse subsets until they all have
size at most

p
n.

To see that this implies a linear time splitting, let
n0; n1; :::; nt be the sizes of the sets that a given integer
x is involved in as. That is, we start with n0 = n. For
round i, we have ni�1 � p

n integers, and we match
(logn)=4 � (logni�1)=2 bits of x, finding agreement with
ni other integers. Hence, the cost for x is

O

�
1 + logni�1 � logni

log
p
n

+ 1=q

�

Summing this for i = 1; :::; t, we get a total cost for x of

O

�
logn0 � lognt

log
p
n

+ t= log
p
n+ t=q

�
:

Here n0 = n so the first term is constant. Moreover, by
definition, there are 4q = O(logn) characters, and using
this upper-bound on t, we see that the last two terms are
constant.

3.4 Sorting over a segment

The goal of this section is to prove Lemma 17. We
will use the lemma below on packed bucketing, essentially
proved by Han in [21] (cf. Appendix A.3).

Lemma 19 Consider n integers packed with k(log k) inte-
gers in each word, and that an `-bit label for each integer
is packed in a parallel set of words. We can then sort the
integers according to their labels in O(`= logn+1=k) time
per integer.

Lemma 20 Consider n �W 6 integers packed with at least
k(log k) integers in each word. We can group all integers
with respect to matches with t � 3

p
n target integers within

a given segment in

O (log(t+ 1)= logn+ 1=k)

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

time per integer. Integers not matching any target integer
end in one group.

Proof: Our goal is to construct a parallel set of labels so
that we can apply Lemma 19. First we assume that t � 2.

In O(t2W) time, we construct a perfect hash function
from the segments of the targets into d2 log te bits. Since
k = O(W), the time spent is O(n=k).

To apply the hash function to all our integers, we first
make copies of the words containing them into a parallel
set of words, then we mask out the segments, shifting them
to the least significant part of each integer. Finally, we ap-
ply the hash function so that we now have a parallel set of
d2 log te bit labels, each aligned with the least significant
part of its original integer. We generally refer the reader to
[5, pp. 77–79] for details on making such word operations
on multiple integers in a word, including the hashing. We
only spend constant time per word, hence O(1=(k log k))
time per integer.

We now apply Lemma 19, getting the integers sorted ac-
cording to their labels in O(log t= logn+1=k) time per in-
teger. We have �(t2) labels, and exactly one label for each
target. Fix a0 to be a label which is not a label of a target.
For each target y, we pack k(log k) copies of y in a word
y�. This takes O(tk(log k)) = O(n=k) total time.

The integers in the words are sorted according to their la-
bels, and comparing this with the sorted list of target labels,
we can easily identify words of integers where all or some
of the parallel labels match some target label.

For each word all of whose labels match the label of a tar-
get y, we compare the parallel word of integers with y�. For
each non-match, the corresponding label is replaced with
a0. All this takes constant time per word. For words having
no target labels, all labels are replaced by a0. There can be
at most 2t words with only some labels being target labels.
These have at most 2tk log k = O(n=k) parallel integers,
and for each such integer, we can trivially, in constant time,
replace its label with a0 if it doesn’t match a target.

We now re-apply Lemma 19, getting the integers sorted
according to their revised labels. However, this time the
sorting gives the desired grouping. The segment of integers
with label a0 are exactly those that do not match any target.

Finally, we have two special cases of t = 0; 1. The
case t = 0 is trivial in that all integers belong in the non-
matching group, and hence nothing has to be done, agree-
ing with log(t + 1) = 0 in the time bound. For t = 1, we
copy the unique target so that all integers in a word can be
matched in constant time. We use a 1-bit label with 1 for
match and 0 for non-match, and finally apply Lemma 19.
Since log(t + 1) = 1, this again gives us the desired time
bound.

The lemma below essentially shows that if we had guessed
the frequencies, we would be done.

Lemma 21 Consider n � W 6 integers packed with
k(log k) integers in each word. We are focusing on a spe-
cific segment of the integers. Suppose that for different pos-
sible segment values c, we are given a suggested frequency
fc � 1= 3

p
n for integers with that segment value. We further

require
P

fc
� 1. We can then group the integers spending

O ((1� log fc)= logn+ 1=k)

time per integer with segment value c.

Proof: The result is achieved by a simple iterative al-
gorithm. First we sort the frequencies in descending order.
We start with t = dn1=ke � 2 and repeat squaring t until it
reaches or passes n1=3. For a given value of t, we take the
t remaining segment values of highest frequency, and apply
Lemma 20 to the remaining integers. This groups the inte-
gers matching the t segment values, leaving the remaining
integers for the remaining rounds.

The time spent per integer in a round is O(log(t +
1)= logn+1=k) = O(log t= logn). Since log t= logn dou-
bles in each round, it is the last round that an integer x par-
ticipates in that dominates the time spent on that x. How-
ever, if the integer has segment value c with frequency fc,
there can be no more than 1=fc earlier frequencies, so the
value of t when x is picked is at most 1=f2c , or dn1=ke if
1=fc � n1=k. Consequently, the total time spent on x is

O(logmaxf1=f2c ; dn1=keg= logn+ 1=k)

= O((1� log fc)= logn+ 1=k):

Finally, we have

Proof of Lemma 17 We want to prove

Consider n � W 6 integers packed with at most
k(log k) integers in each word. We can sort the
integers according to the value of a given segment
of at most (logn)=2 consecutive bits so that the
time spent on an integer with segment value c is

O

�
1 + logn� lognc

logn
+ 1=k

�
(1)

where nc is the number of integers with segment
value c.

Since there are only n1=2 = O(n= logn) possible segment
values, we can initiate arrays using these values as entries.
Thus, with each possible segment value c, we can store a
counter n̂c for the number of integers found with configura-
tion c. Initially n̂c = 0. We also have a list of frequencies
f̂c = n̂c=n for segment values c that are common in the

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

sense that n̂c � n3=4, hence with f̂c � 1=n1=4. Initially,
this list is empty.

We divide the integers into batches of n3=4 integers.
First we group the integers in the batch with respect to the
common segment values using their current frequencies in
Lemma 21. We note here that f̂c = n̂c=n � 1=n1=4 =

1=
3
p
n3=4, so the conditions of Lemma 21 are satisfied. The

cost for an integer with a common segment value c is

O((1� log fc)= log(n
3=4) + 1=k)

= O((1 + log(n=n̂c))= logn+ 1=k) (2)

All remaining integers in the batch are bucketed using stan-
dard bucketing in constant time per integer.

We will now argue that the time spent on inserting the
ith integer in one of our buckets is

O

�
1 + logn� log i

logn
+ 1=k

�
: (3)

If i � 2n3=4, (3) is a constant, covering the cost of standard
bucketing. Otherwise, since each batch adds at most n3=4

integers, the batch was bucketed with n̂c � i�n3=4 � i=2.
By (2), the cost is as in (3) but with i=2 instead of i, but this
does not affect the asymptotic value. Thus, the cost of the
ith integer is always bounded by (3).

Now, the cost of adding all nc integers to the bucket for
segment value c is

ncX
i=1

�
1 + logn� log i

logn
+ 1=k

�

= O

�
nc(1 + logn)� (nc lognc � nc(log e))

logn

+nc=k
�

= O

�
nc

1 + logn� lognc
logn

+ nc=k

�
;

which divided by nc gives the desired time per integer from
(1).

4 Summing up

Proof of Theorem 1, Corollary 2, and Theorem 3 The
results follow directly from the statements of Lemma 4, 12,
13, 17, and 18.

Proof Sketch for Theorem 9 and Corollary 10 We want
to show

For any positive ", using standard AC0 operations
only, we can split a set of n (W=(log logn)1+")-
bit integers in linear time so that diverse subsets
have size at most

p
n.

We are can essentially reuse the splitting algorithm for The-
orem 7. The only non-AC0 operation used is multiplica-
tion, used for hashing. Brodnik et al. in [12] have shown
(see their remark on BlockMult above Theorem 13) that if
words are packed with ` bit integers, we can multiply them
coordinatewise in O((log `)1+") time using only standard
AC0 operations. We do such packed multiplication on fields
when we use signature sort in Lemma 15 and in Lemma 16,
with field lengths of at most (logn)2 and (logn)3, respec-
tively. Also, the rest of the algorithm only considers inte-
gers of size O((log n)2). Thus the packed simulated multi-
plication takes O((log logn)1+") time. However, since our
input integers are of length (W=(log logn)1+"), the packed
multiplications will only be over that many bits. Hence we
can pack
((log logn)1+") original packed multiplications,
thus performing
((log logn)1+") original packed multi-
plications at the time, in O(1) time per original packed mul-
tiplications.

References

[1] M. Ajtai, J. Komlós, and E. Szemerédi. Sorting in c log n
parallel steps. Combinatorica, 3(1):1–19, 1983.

[2] S. Albers and T. Hagerup. Improved parallel integer sorting
without concurrent writing. Inf. Comput., 136:25–51, 1997.

[3] A. Andersson. Sublogarithmic searching without multipli-
cations. In Proc. 36th FOCS, pages 655–663, 1995.

[4] A. Andersson. Faster deterministic sorting and searching in
linear space. In Proc. 37th FOCS, pages 135–141, 1996.

[5] A. Andersson, T. Hagerup, S. Nilsson, and R. Raman. Sort-
ing in linear time? J. Comp. Syst. Sc., 57:74–93, 1998. An-
nounced at STOC’95.

[6] A. Andersson, P. Miltersen, and M. Thorup. Fusion trees can
be implemented with AC0 instructions only. Theor. Comput.
Sc., 215(1-2):337–344, 1999.

[7] A. Andersson and S. Nilsson. A new efficient radix sort. In
Proc. 35th FOCS, pages 714–721, 1994.

[8] A. Andersson and M. Thorup. Tight(er) worst-case bounds
on dynamic searching and priority queues. In Proc. 32nd
STOC, pages 335–342, 2000.

[9] P. Beame and F. Fich. Optimal bounds for the predecessor
problem. In Proc. 31st STOC, pages 295–304, 1999.

[10] P. Beame and J. Håstad. Optimal bounds for decision prob-
lems on the CRCW PRAM. J. ACM, 36(3):643–670, 1989.

[11] J. Bentley. Programming Pearls. Addison-Wesley, Reading,
Massachusetts, 1986.

[12] A. Brodnik, P. B. Miltersen, and I. Munro. Trans-
dichotomous algorithms without multiplication - some up-
per and lower bounds. In Proc. 5th WADS, LNCS 1272,
pages 426–439, 1997.

[13] B. Cherkassky, A. Goldberg, and C. Silverstein. Buckets,
heaps, lists, and monotone priority queues. SIAM J. Comp.,
28(4):1326–1346, 1999.

[14] L. J. Comrie. The hollerith and powers tabulating machines.
Trans. Office Machinary Users’ Assoc., Ltd, pages 25–37,
1929-30.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

[15] S. Cook and R. Reckhow. Time-bounded random access
machines. J. Comp. Syst. Sc., 10(2):217–255, 1973.

[16] A. I. Dumey. Indexing for rapid random access memory
systems. Computers and Automation, 5(12):6–9, 1956.

[17] M. L. Fredman and D. E. Willard. Surpassing the informa-
tion theoretic bound with fusion trees. J. Comput. Syst. Sci.,
47:424–436, 1993. Announced at STOC’90.

[18] M. L. Fredman and D. E. Willard. Trans-dichotomous al-
gorithms for minimum spanning trees and shortest paths. J.
Comput. Syst. Sci., 48:533–551, 1994.

[19] T. Hagerup. Sorting and searching on the word RAM. In
Proc. 15th STACS, LNCS 1373, pages 366–398, 1998.

[20] Y. Han. Fast integer sorting in linear space. In Proc.
STACS’00, LNCS 1170, pages 242–253, 2000.

[21] Y. Han. Improved fast integer sorting in linear space. Inf.
Comput., 170(8):81–94, 2001. Announced at STACS’00 and
SODA’01.

[22] Y. Han. Deterministic sorting in O(n log log n) time and
linear space. In Proc. 34th STOC, 2002.

[23] Y. Han and X. Shen. Conservative algorithms for parallel
and sequential integer sorting. In Proc. 1st COCOON, LNCS
959, pages 324–333, 1995.

[24] Y. Han and X. Shen. Parallel integer sorting is more effi-
cient than parallel comparison sorting onm exclusive write
PRAMs. In Proc. 10th SODA, pages 419–428, 1999.

[25] IEEE. Standard for binary floating-point arithmetic. ACM
Sigplan Notices, 22:9–25, 1985.

[26] B. Kernighan and D. Ritchie. The C Programming Lan-
guage. Prentice Hall, second edition, 1988.

[27] D. Kirkpatrick and S. Reisch. Upper bounds for sorting inte-
gers on random access machines. Theor. Comp. Sc., 28:263–
276, 1984.

[28] D. E. Knuth. The Art of Computer Programming, Volume
3: Sorting and Searching. Addison-Wesley, Reading, Mas-
sachusetts, second edition, 1998.

[29] S. Nilsson. Radix Sorting & Searching. Ph.D. Thesis, Lund
University, Sweden, 1996.

[30] W. Paul and J. Simon. Decision trees and random access
machines. In Proc. Symp. über Logik and Algoritmik, pages
331–340, 1980.

[31] R. Raman. Priority queues: small, monotone and trans-
dichotomous. In Proc. 4th ESA, LNCS 1136, pages 121–
137, 1996.

[32] B. Stroustrup. The C++ Programming Language, Special
Edition. Addison-Wesley, Reading, MA, 2000.

[33] M. Thorup. Faster deterministic sorting and priority queues
in linear space. In Proc. 9th SODA, pages 550–555, 1998.

[34] M. Thorup. On RAM priority queues. SIAM J. Comp.,
30(1):86–109, 2000.

[35] M. Thorup. Equivalence between priority queues and sort-
ing, 2002. Also submitted to FOCS’02.

[36] M. Thorup. Randomized sorting in O(n log log n) time and
linear space using addition, shift, and bit-wise boolean op-
erations. J. Algor., 42(2):205–230, 2002. Announced at
SODA’97.

[37] P. van Emde Boas. Preserving order in a forest in less than
logarithmic time. In Proc. 16th FOCS, pages 75–84, 1975.

A Variants of results from other papers

In this appendix we justify some simple variants of re-
sults stemming from other papers.

A.1 Signature sorting

To describe our slight variant of signature sorting for
Lemma 11, we first review the original signature sorting of
Andersson et al. [5] is a set S of n integers of length `. Sig-
nature sorting reduces the problem of sorting S to that of
two sorting problems, each with n integers, but with shorter
integers. In the reduction, for some parameter r, we inter-
pret the integers in S as vectors of r equal sized fields. The
reduction goes in several steps:

1. For each integer, each field is hashed into 4 logn bits.
The hashed fields of an integer are packed together giv-
ing us a reduced integer of length 4r logn bits. All the
reduced integers are produced in linear total time.

2. The reduced integers are now sorted (our first new sort-
ing problem).

3. In linear time, we identify n fields from the integers in
S.

4. The n fields of `=r bits are now sorted (our second new
sorting problem).

5. Based on the sorting done above, we sort S in linear
time.

The above high level reduction is carefully implemented in
[5], to which the reader is referred for details. There is a
probability of at most 1=n2 that something goes wrong in
the hashing. In [5] they just check the final sorting in the
end. However, here we will apply signature sorting to many
small subproblems, a small fraction of which are likely to
fail. Instead of aiming at no errors at all, we introduce the
following convenient step between step 2 and step 3.

2 1
2 . In expected linear time, redo and resort the reduced

integers if they are not OK.

To implement step 2 1
2 , we need to check that the reduced

integers are OK. Referring the reader to [5] for details, this
is easily done in connection of their linear time construc-
tion of a certain compressed unordered trie TD, needed for
steps 3-4. If there is a failure, we return to step 1. However,
when we iterate, we can just use bubble-sort to sort the re-
duced integers in O(n2). The point is that the probability
of iterating is 1=n2, so the expected cost of all the iterations
is bounded by O(n2)

P1
i=1 n

�2i = O(1). The most ex-
pensive part of step 2 1

2 is therefore the first check which is
always executed in linear time.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

Summing up, with an expected linear-time additive over-
head, signature sorting with parameter r reduces the prob-
lem of sorting n integers of ` bits to

(i) the problem in step 2 of sorting n reduced integers of
4r logn bits and

(ii) the problem in step 4 of sorting n fields of `=r bits.

Here (i) has to be solved before (ii). This establishes our
variant of signature sorting from Lemma 11.

A.2 Deterministic signature sorting

We want to show the statement of Lemma 14:

With an O(n + `
r s

2) time additive overhead, de-
terministic signature sorting with parameter r re-
duces the problem of splitting n `-bit integers over
s splitters to

(i) the problem of splitting n reduced integers
of 4r logn bits over s reduced splitters, and

(ii) the problem of splitting n fields of `=r bits
over s field splitters.

Here (i) has to be solved before (ii).

Lemma 14 is essentially shown by Han in the beginning
of Section 8 in [20]. A small difference is in the additive
O(`r s

2) term, where Han has O(`s2). This term is the time
it takes to compute a perfect hash function. We just realize
that all we need is a hash function on fields such that for
any pair of splitters, the hash function should give different
values on their first distinguishing field. Since fields have
length `=r, the hash function is computed in O(`r s

2) time
using simple derandomization as described by Raman [31].
Moreover, Han’s version could lead to much more than s
splitters in (ii). We need an analog of a simple trick from the
original signature sort [5, p. 79]; namely, at each branching
point in the trie TD, to isolate integer fields smaller than
the smallest splitter field in linear time. This completes the
proof of Lemma 14.

A.3 Packed bucketing

We want to show the statement of Lemma 19:

Consider n integers packed with k(log k) integers
in each word, and that an `-bit label for each in-
teger is packed in a parallel set of words. We can
then sort the integers according to their labels in
O(`= logn+ 1=k) time per integer.

The lemma is essentially just a reformulation of Han’s
Lemma 5 in [21], and is proved using the same proof. The
O(`= logn) term is the inherent cost of packed bucketing
using that the labels are small. The O(1=k) term is cost
of a matrix transposition of Thorup [36, Lemma 9] with
k log k integers in each word. Also, Han has replaced log k
by log logn using k = O(logn). However, this change is
not necessary for his proof. Thus Lemma 19 follows.

Proceedings of the 43 rd Annual IEEE Symposium on Foundations of Computer Science (FOCS’02)
0272-5428/02 $17.00 © 2002 IEEE

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

