
Faster deterministic sorting and searching in linear space

Arne Anderson
Department of Computer Science, Lund University

Box 118, S-22100 Lund, Sweden
arne@dna.lth.se

Abstract

We present a sign@cant improvement on linear space de-
terministic sorting and searching. On a unit-cost RAM with
word size w, an ordered set of n w-bit keys (viewed as bi-
nary strings or integers) can be maintained in

time per operation, including insert, delete, member search,
and neighbour search. The cost for searching is worst-case
while the cost for updates is amortized. As an application,
n keys can be sorted in linear at 0 (n e) worst-case
cost.

The best previous method for deterministic sorting and
searching in linear space has been the fusion trees which
supports updates and queries in O(1og n/ log log n) amor-
tized time and sorting in O(n log n/ log log n) worst-case
time.

We also make two minor observations on adapting our
data structure to the input distribution and on the complex-
ity of peqect hashing.

1 Introduction

Recently, a number of new findings on sorting and search-
ing, including priority queues, have been presented [1, 2,
6, 111. Most of them use superlinear space or random-
ization; the best deterministic method using linear space
has been the fusion tree which supports dictionary opera-
tions in O(logn/ loglogn) amortized time [6] . Here, we
present a significant improvement, showing that searches
and updates can be performed in 0 (m) amortized
time per operation and in linear space. This result also
implies an improved worst-case bound on sorting in linear
space, from O(n log n/ log log n) to O (n m) . (Very

recently Raman [lo] has developed a new priority queue
with which it is possible to sort in deterministic linear space
in O(nd1og n log log n) time. This complexity is slightly
worse than the one presented here. On the other hand, it
uses only ACO instructions.)

The complexity of our algorithm is dependent on the re-
lation between n, the number of keys, and w , the word size.
The upper bound of O (m) is independent of w ; when
taking both n and w into account the cost is o (m) in
many cases. As an important example we achieve a cost of
O(log w loglogn); this shows that the complexity of van
Emde Boas trees [12, 131 can almost be matched in deter-
ministic linear space. (Previously, the only matching deter-
ministic data structure was static [14].)

We also make two minor observations on the complexity
of perfect hashing and on adapting our data structure to the
input distribution.

2 Summary of new results

2.1 Main result

Theorem 1 On a unit-cost RAM with word size w, an or-
dered set of n w-bit keys (viewed as binary strings or inte-
gers) can be maintained in

time per operation, including insert, delete, member search,
and neighbour search. The cost for searching is worst-case
while the cost for updates is amortized. For range queries,
there is an additional cost of reporting the found keys. The
data structure uses linear space.

135
0272-5428/96 $05.00 0 1996 IEEE

The instruction repertoire is the same as for fusion trees,
i.e. it includes double-precision multiplication but not divi-
sion.

In the following, we will not discuss the instruction set in
detail. In one case we will show how to avoid the use of di-
vision. Since we borrow some techniques from fusion trees,
we need double-precision multiplication. Apart from tradi-
tional arithmetic and bitwise boolean operations, we use the
shift operation, which is not explicitly used in fusion trees.
Shifting is a simple operation, it can also be simulated with
double-precision multiplication (as done in fusion trees).

We note that there is no real need for a double-precision
multiplication; we can simulate that operation with a num-
ber of single-precision multiplications. (Another possibil-
ity is to split each w-bit key into two w/2-bit kcys and
to store them in a trie of height 2 such that each node in
the trie is implemented as in Theorem 1. Then, a "double-
precision" multiplication would be performed by a single-
precision multiplication.)

2.2 Related observations

In Section 4 we also discuss some related results, stated be-
low.

We give the first deterministic polynomial-time (in n) al-
gorithm for constructing a linear space static dictionary with
0(1) worst-case access cost (cf. perfect hashing).

Observation 1 A linear space static data structure sup-
porting member queries at a worst case cost of 0(1) can be
constructed in 0 (n2+') worst-case time. Both construc-
tion and searching can be done without division.

We also observe how to adapt our data structure to a
favourable input distribution. For a more detailed discus-
sion of the interpretation of the observation below, we refer
to Section 4.2.

Observation 2 There exist a linear-space data structure
for which the worst-case cost of a search and the amortized
cost of an update is O(log bloglogn) where b 5 w is the
length of the query key's distinguishingprejix, i.e. the num-
ber of bits that need to be inspected in order to distinguish
it from each of the other stored keys.

Finally we show that Theorem 1 can be generalized to the
case when the keys are longer than one word each.

Theorem2 Suppose each key occupies L words. Then,
there exists a data structure occupying O(Ln) space fo r
which the worst-case cost of a search and the amortized cost
of an update is the same as in Theorem I plus an additional
cost of O (L log log n) per operation.

3 Proof of Theorem 1

3.1 Exponential search trees

Our basic data structure is a multiway tree where the de-
grees of the nodes decrease exponentially down the tree.
For related techniques, see the references [3,6, 8,9].

Lemma 1 Suppose a static data structure containing d keys
can be constructed in 0 (d4) time and space, such that
it supports neighbour queries in O (S (d)) worst-case time.
Then, there exists a dynamic data structure storing n keys
with the following costs:

it uses O(n) space;
it can be constructed from a sorted list in

the worst-case cost of searching (including
O(n) worst-case time and space;

neighbour search) satisfies

T (n) = 0 (S (TI ' / ')) + T (n415) ;

the amortized cost of restructuring during up-
dates (i.e. the amortized update cost when
the cost of locating the update position is not
counted) is O(1og log n).

Proof: We use an exponential search tree. It has the fol-
lowing properties:

Its root has degree O(n1I5).
The keys of the root are stored in a local (static)
data structure, with the properties stated above.
During a search, the local data structure is used
to determine in which subtree the search is to
be continued.
The subtrees are exponential search trees of
size @(n4I5).

First, we show that, given n sorted keys, an exponential
search tree can be constructed in linear time and space.
Since the cost of constructing a node of degree d is 0 (d4) ,
the total construction cost C(n) is given by

=+ C(n) = O(n).

Furthermore, with a similar equation, the space required
by the data structure can be shown to be O(n).

Next, we derive the search cost, T(n) . It follows im-
mediately from the description of exponential search trees
that

T(n) = 0 (S (n' / ')) + T (n4/') .

136

Finally, we analyze the cost of updates. We only consider
the cost of restructuring and ignore the cost of finding the
update position; the latter cost equals the cost of searching.

Balance is maintained in a standard fashion by global
and partial rebuilding. Let no denote the number of present
elements at the last global rebuilding. The next global re-
building will occur when In - no1 > no/2. Hence, the
linear cost of a global rebuilding is amortized over a linear
number of updates and the amortized cost is O(1).

At a global rebuilding, we set no = n and the degree
of the root is chosen as n1l5 , while the size of each sub-
tree is & f 1. Between global rebuildings, we ensure

that the subtrees have size at least f 1 and at most

,n4,'5, f 1. When an update causes a subtree to violate this

condition, we examine the sum of the sizes of that subtree
and one of its immediate neighbours. This sum is between

f 1 and + 1. By reconstructing these two

subtrees into one, two, three, or four new subtrees we can
ensure that the sizes of the new trees will be far from the
limits. In this way, we guarantee that a linear-in the size
of the subtree-number of updates is needed before a sub-
tree is reconstructed. Since the cost of constructing a sub-
tree is linear in the size of the subtree, the amortized cost of
reconstructing subtrees is O(1).

Each time some subtrees are reconstructed, the degree
of the root will change and the root must be reconstructed.
The cost of this reconstruction is O((n1/5)4). Again, this is
linear in the size of a subtree; hence, the amortized cost of
reconstructing the root is O(1). This gives us the following
equation for the amortized restructuring cost R(n) :

1 0 1
14,5 2 n i"r

R(n) = O(1) + R (n4/') + R(n) = O(log1ogn)

U

3.2 An improvement of fusion trees

Using our terminology, the central part of the fusion tree is
a static data structure with the following properties:

Lemma2 (Fredman and Willard) For any d, d =
0 (w ~ / ~) , A static data structure containing d keys can be
constructed in 0 (d4) time and space, such that it supports
neighbour queries in O(1) worst-case time.

Fredman and Willard used this static data structure to
implement a B-tree where only the upper levels in the tree
contain B-tree nodes, all having the same degree (within
a constant factor). At the lower levels, traditional (i.e.
comparison-based) weight-balanced trees were used. The

amortized cost of searches and updates is O(log n/ log d +
logd) for any d = 0 (~ ' 1 ~) . The first term corresponds
to the number of B-tree levels and the second term corre-
sponds to the height of the weight-balanced trees.

Using an exponential search tree instead of the Fred-
manWillard structure, we avoid the need for weight-
balanced trees at the bottom at the same time as we improve
the complexity for large word sizes.

Lemma 3 A static data structure containing d keys can be
constructed in 0 (d4) time and space, such that it supports
neighbour queries in 0 (;:g + 1) worst-case time.

Proof: We just construct a static B-tree where each node
has the largest possible degree according to Lemma 2. That
is, it has a degree of min (d, w 1 I 6) , This tree satisfies the
conditions of the lemma. 0

Corollary 1 There is a data structure occupying linear
space for which the worst-case cost of a search and the
amortized cost of an update is 0 (E + log log n)

Proof: Let T(n) be the worst-case search cost. Combining
Lemmas 1 and 3 gives that

T(n) = o (- logn + 1 + T (d 5))
log w

3.3 Tries and perfect hashing

In a binary trie, a node at depth i corresponds to an i-bit
prefix of one (or more) of the keys stored in the trie. Sup-
pose we could access a node by its prefix in constant time
by means of a hash table, i.e. without traversing the path
down to the node. Then, we could find a key x, or x's near-
est neighbour, in O(1og w) time by a binary search for the
node corresponding to x's longest matching prefix. At each
step of the binary search, we look in the hash table for the
node corresponding to a prefix of x; if the node is there we
try with a longer prefix, otherwise we try with a shorter one.

The idea of a binary search for a matching prefix is the
basic principle of the van Emde Boas tree [12, 13, 141.
However, a van Emde Boas tree is not just a plain binary
trie represented as above. One problem is the space re-
quirements; a plain binary trie storing d keys may contain as
much as O(dw) nodes. In a van Emde Boas tree, the num-
ber of nodes is decreased to O(d) by careful optimization.

In our application O(dw) nodes can be allowed. There-
fore, to keep things simple, we use a plain binary trie.

137

Lemma4 A static data structure containing d keys and
supporting neighbour queries in O(1og w) worst-case time
can be constructed in 0 (d4) time and space.

Proof: We study two cases.
Case 1: w > d1/3. Lemma 3 gives constant query cost.
Case 2: w 5 d1/3. In O(dw) = o(d2) time and space

we construct a binary trie of height w containing all d keys.
Each key is stored at the bottom of a path of length w and
the keys are linked together. In order to support neighbour
queries, each unary node contains a neighbour pointer to the
next (or previous) leaf according to the inorder traversal.

To allow fast access to an arbitrary node, we store all
nodes in a perfect hash table such that each node of depth
i is represented by the i bits on the path down to the node.
Since the paths are of different length, we use w hash ta-
bles, one for each path length. Each hash table contains
at most d nodes. The algorithm by Fredman, Komlos, and
Szemeredi [5] constructs a hash table of d keys in O(d3w)
time. The algorithm uses division, this can be avoided by
simulating each division in O(w) time. With this extra cost,
and since we use w tables, the total construction time is
0 (d3w3) = O(d4) while the space is O(dw) = o(d2) .

With this data structure, we can search for a key 11: in
O(log w) time by a binary search for the node correspond-
ing to z's longest matching prefix. This search either ends
at the bottom of the trie or at a unary node, from which we
find the closest neighbouring leaf by following the node's
neighbour pointer.

During a search, evaluation of the hash function requires
integer division. However, as pointed out by Knuth [7], di-
vision with some precomputed constant p may essentially
be replaced by multiplication with l/p. Having computed
T = Law/pJ once in O(w) time, we can compute z DIV p
as L z ~ / 2 ~] where the last division is just a right shift w
positions. Since Lz/p] - 1 < [z ~ / 2 ~ J 5 Lz/pJ we can
compute the correct value of z DIV p by an additional test.
Once we can compute DIV, we can also compute MOD. 0

An alternative method for perfect hashing without divi-
sion is the one recently developed by Raman [101. Not only
does this algorithm avoid division, it is also asymptotically
faster, O (d2 w) .

Corollary2 There is a data structure occupying linear
space for which the worst-case cost of a search and the
amortized cost of an update is 0 (log w log log n) .

Proof Let T (n) be the worst-case search cost. Combining
Lemmas 1 and 4 gives T(n) = 0 (log w) + T (n4/5) . 0

3.4 Finishing the proof

If we combine Lemmas 1, 3, and 4, we obtain the follow-
ing equation for the cost T(n) of a search or update in an
exponential search tree.

Ignoring the right part of the min expression gives Corollary
1 and ignoring the left part gives Corollary 2. Balancing the
two parts of the min-expression gives

T (n) = 0 (6) + T (72"')

and hence
T (n) = 0 (6).

Combining these three complexities yields

This expression is not tight for all possible combinations
of n and w. To provide a tight asymptotic expression for
the solution to Equation 1, we note that the parameter n
will decrease as the recursion progresses (i.e. the size of
subtrees decrease as we progress down the tree) while the
word size w remains the same. Hence, the right part of our
min expression will be used at some (maybe none) of the
upper levels; at the lower levels the left part will be applied.
Therefore, we distinguish two cases:

Case 1 : log n 5 2 log2 w. The left part will apply on all
levels, giving a total cost of o (E + log log n) .

Case 2: logn > 2 log2 W. The right part will
apply o (log [*I) times, resulting in a cost of

0 (log logw) . Then, the left part will give a cost
of 0 (e + loglogn) . In this case, the total cost will
be (note that log n > 2 log2 w)

1 0 (log ~ logw + J logw+loglogn

= 0 (log 1% + 11 logw)

Combining the two cases gives the following complexity:

0 e f l o g l o g n , log 72 5 2 log2 w
T(n4 ={ 0 log I* + 1 1 logw) , l o g n > 2log2w

138

The two expressions meet when log n = 0 (log2 w) . Thus,
we can combine them as

The proof of Theorem 1 is now complete.

4 Some related observations

We discuss the additional results stated in Section 2.2.

4.1 Observation 1: On perfect hashing

As mentioned earlier, a perfect hash table that supports
member queries (neighbour queries are not supported) in
constant time can be constructed at a worst-case cost
0 (n’w) without division [lo]. We show that the depen-
dency of word size can be removed. The resulting data
structure is not a pure “hash table”.

We start by taking a closer look at the fusion tree. Ac-
cording to Fredman and Willard, a fusion tree node of de-
gree d requires 0 (d 2) space. This space is occupied by a
lookup table where each entry contains a rank between 0
and d. A space of 0 (d2) is enough for the original fusion
tree as well as for our exponential search tree. However, for
the purpose of perfect hashing, we need to reduce the space.
Fortunately, this reduction is straightforward. We note that
a number between 0 and d can be stored in log d bits. Thus,
since d < w1I6, the total number of bits occupied by the
lookup table is 0 (d 2 log d) = O(w). We conclude that in-
stead of 0 (d 2) , the space taken by the table is 0(1) (O(d)
would have been good enough). Therefore, the space occu-
pied by a fusion tree node can be made linear in its degree.

We are now ready to prove Observation 1, stated in Sec-
tion 2.2.

Proof of Observation 1: W.1.o.g we assume that E < 1/6.
Since Raman has shown that a perfect hash function can

be constructed in 0 (n’w) time without division) [lo], we
are done for n 2 ~ ‘ 1 ‘ .

If, on the other hand, n < wl/‘, we construct a static
fusion tree with degree n1I3. This degree is possible since
E < 1/6. The height of this tree is O(l) , the cost of con-
structing a node is 0 (n4I3) and the total number of nodes
is 0 (n2I3) . Thus, the total construction cost for the tree is
O (n2). 0

4.2 Observation 2: An adaptive data
structure

In some applications, we may assume that the input distri-
bution is favourable. These kind of assumptions may lead to
a number of heuristic algorithms and data structures whose
analysis are based on probabilistic methods. Typically, the
input keys may be assumed to be generated as independent
stochastic variables from some (known or unknown) distri-
bution; the goal is to find an algorithm with a good expected
behaviour. For these purposes, a deterministic algorithm is
not needed.

However, instead of modeling input as the result of a
stochastic process, we may characterize its properties in
terms of a measure. Attention is then moved from the pro-
cess of generating data to the properties of the data itself.
In this context, it makes sense to use a deterministic algo-
rithm; given the value of a certain measure the algorithm
has a guaranteed cost.

We give one example of how to adapt our data struc-
ture according to a natural measure. An indication of how
“hard” it is to search for a key is how large part of it must be
read in order to distinguish it from the other keys. We say
that this part is the key’s distinguishing prefix. (In Section
3.3 we used the term longest matching prefix for essentially
the same entity.) For w-bit keys, the longest possible dis-
tinguishing prefix is of length w. Typically, if the input is
nicely distributed, the average length of the distinguishing
prefixes is O(1ogn).

As stated in Observation 2, we can search faster when a
key has a short distinguishing prefix.

Proof of Observation 2: We use exactly the same data
structure as in Corollary 2, with the same restructuring cost
of O(log log n) per update. The only difference is that we
change the search algorithm from the proof of Lemma 4.
Applying an idea of Chen and Reif [4], we replace the bi-
nary search for the longest matching (distinguishing) prefix
by an exponential-and-binary search. Then, at each node
in the exponential search tree, the search cost will decrease
from O(1og w) to O(1og b) for a key with a distinguishing
prefix of length b. 0

4.3 Theorem 2: Sorting and searching
long keys

So far, we have discussed how to treat w-bit keys on a w-bit
RAM. However, in some application the input may consist
of multi-word keys. As a further application of the exponen-

139

tial search tree, we study the case when each key occupies
L words.

Lemma 5 Suppose each key occupies L words. Further-
more, suppose a static data structure containing d keys can
be constructed in 0 (dL + d4) time and space such that it
supports neighbour queries in O(L+S(d)) worst-case time.
Then, there exists a dynamic data structure storing n keys
with the following costs:

it uses O(nL) space;
it can be constructed from a sorted list in

the worst-case cost of searching for a key (in-
O(nL) worst-case time and space;

cluding neighbour search) satisfies

T (n) = 0 (L + S (n’l’)) + T (n4/’) ;

the amortized cost of restructuring during up-
dates (i.e. the amortized update cost when
the cost of locating the update position is not
counted) is 0 (L + log log n).

Proof: (sketch) We alter the proof of Lemma 5 slightly. 0

Lemma6 Suppose each key occupies L words. Then,
a static data structure containing d keys and support-
ing neighbour queries in 0 L + min 1 + %, log w))
can be constructed in O(dL + d 4) time and space.

Proof: We store the d keys in a trie of height L. In the
trie, each unary node is stored in 0(1) space in the obvi-
ous way. For each non-unary node, we represent the set of
outgoing edges in two ways. First, they are stored with con-
stant lookup time according to Observation 1. Second, they
are stored in a data structure supporting neighbour search
according to Lemma 3 or Lemma 4. The sum of the de-
grees of the nun-unary nodes is at most 2d - l and the
number of unary nodes is less than dL. Hence, it follows
from Lemmas 3 and 4 and Observation 1 that the trie can be
constructed in O(dL + d4) time and space.

When searching for a key we traverse the trie; at each
node we find the proper outgoing edge in constant time. The
traversal either ends successfully at the bottom of the trie or
at a missing edge. If the missing edge is at a unary node,
we can determine the nearest neighbour immediately, other-
wise we find the neighbour by making a local search among
the outgoing edges of the last found node.

The cost of traversing the trie is O (L) and the cost of

Lemmas 3 and 4. 0

((

1 + e, log w)) according to

Proof of Theorem 2: (cf. Section 2.2) Combine Lemmas 5
0 and 6 and proceed as in the proof of Theorem 1 .

Corollary 3 n multi-precision integers, each of Length L
words, can be sorted in O(n& + Ln log log n) time.

When using a comparison-based sorting algorithm, each
comparison would take O (L) time and the cost of sort-
ing would be O(Ln1ogn). Hence, for multi-word keys
the asymptotic improvement over comparison-based algo-
rithms is even larger than for single-word keys.

5 Comments

Sorting and searching in deterministic linear space is cer-
tainly a fundamental topic and we believe that many re-
searchers have tried to find new improved bounds since the
fusion trees were first presented.

For small (realistic) word sizes the bound
of O(1og w log log n) is appealing; this shows that the com-
plexity of van Emde Boas trees can almost be matched in
deterministic linear space.

It is interesting to note that our main result relies on “old”
techniques, such as fusion trees, tries, and perfect hashing.
None of the new techniques developed recently [1, 2, 111
are used.

Acknowledgements

The author would like to t.hank Bengt Nilsson for insightful
comments on the manuscript and Mikkel Thorup and Ra-
jeev Raman for their valuable comments, in particular for
discussions on how to implement perfect hashing without
division.

140

References

[13 A. Anderson. Sublogarithmic searching without multipli-
cations. In Prcc 36th IEEE Symposium on Foundations of
Computer Sciewe, pages 655-663. ACM Press, 1995.

[2] A. Anderson, T. Hagerup, S. Nilsson, and R. Raman. Sort-
ing in linear ti ne? In Proceedings 27th ACM Symposium
on Theory of C~mputing, pages 427-436. ACM Press, 1995.

[3] A. Anderson and C. Mattsson. Dynamic interpolation
search in o(1o:; log n) time. In Proc. 20th International
Colloquium or: Automata. Languages and Programming.
Springer Verlag, 1993.

[4] S. Chen and J H. Reif. Using difficulty of prediction to
decrease compJtation: Fast sort, priority queue and convex
hull on entropy bounded inputs. In Proceedings of the 34th
Annual IEEE Jymposium on Foundations of Computer Sci-
ence, pages 104-112, 1993.

[5] M. L. Fredmaii, J. Komlbs, and E. SzemerCdi. Storing a
sparse table with O(1) worst case access time. Journal of
the ACM, 31(3:1:538-544, 1984.

[6] M. L. Fredman and D. E. Willard. Surpassing the informa-
tion theoretic bound with fusion trees. J. Comput. Syst. Sci.,
47:424-436, 1994.

[7] D. E. Knuth. The Art of Computer Programming, Volume
3: Sorting and Searching. Addison-Wesley, Reading, Mas-
sachusetts, 1973. ISBN 0-201-03803-X.

[8] K. Mehlhorn md A. Tsakalidis. Dynamic interpolation
search. Journai' of the ACM, 49(3):621-634, 1993.

[9] M. H. Overman. The Design of Dynamic Data Structures,
volume 156 of Lecture Notes in Computer Science. Springer
Verlag, 1983. ISBN 3-540-12330-X.

[lo] R. Raman. Piiority queues: small, monotone and trans-
dichotomous. to appear in proc. European Symp. on Al-
gorithms, 1996

[I I] M. Thorup. Or. RAM priority queues. In Proc. 7 t h Annual
ACM-SIAM Symposium on Discrete Algorithms, 1996.

[12] P. van Emde Isoas. Preserving order in a forest in less
than logarithmic time and linear space. In$ Process. Lett.,
6(3):8@-82, 1977.

[13] P. van Emde Boas, R. Kaas, and E. Zijlstra. Design and
implementatior of an efficient priority queue. Math. Syst.
Theory, 10:99-127, 1977.

[141 D. E. Willard. Log-logarithmic worst-case range queries
are possible in space O(n). Information Processing Letters,
17:81-84, 1983.

141

