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Abstract 

We present a sign@cant improvement on linear space de- 
terministic sorting and searching. On a unit-cost RAM with 
word size w, an ordered set of n w-bit keys (viewed as bi- 
nary strings or integers) can be maintained in 

time per operation, including insert, delete, member search, 
and neighbour search. The cost for searching is worst-case 
while the cost for updates is amortized. As an application, 
n keys can be sorted in linear at 0 ( n e )  worst-case 
cost. 

The best previous method for  deterministic sorting and 
searching in linear space has been the fusion trees which 
supports updates and queries in O(1og n/ log log n) amor- 
tized time and sorting in O(n  log n/ log log n) worst-case 
time. 

We also make two minor observations on adapting our 
data structure to the input distribution and on the complex- 
ity of peqect hashing. 

1 Introduction 

Recently, a number of new findings on sorting and search- 
ing, including priority queues, have been presented [ 1, 2, 
6, 111. Most of them use superlinear space or random- 
ization; the best deterministic method using linear space 
has been the fusion tree which supports dictionary opera- 
tions in O(logn/ loglogn) amortized time [6] .  Here, we 
present a significant improvement, showing that searches 
and updates can be performed in 0 (m) amortized 
time per operation and in linear space. This result also 
implies an improved worst-case bound on sorting in linear 
space, from O(n  log n/ log log n) to O ( n m ) .  (Very 

recently Raman [lo] has developed a new priority queue 
with which it is possible to sort in deterministic linear space 
in O(nd1og n log log n) time. This complexity is slightly 
worse than the one presented here. On the other hand, it 
uses only ACO instructions.) 

The complexity of our algorithm is dependent on the re- 
lation between n, the number of keys, and w ,  the word size. 
The upper bound of O ( m )  is independent of w ;  when 
taking both n and w into account the cost is o ( m )  in 
many cases. As an important example we achieve a cost of 
O(log w loglogn);  this shows that the complexity of van 
Emde Boas trees [12, 131 can almost be matched in deter- 
ministic linear space. (Previously, the only matching deter- 
ministic data structure was static [14].) 

We also make two minor observations on the complexity 
of perfect hashing and on adapting our data structure to the 
input distribution. 

2 Summary of new results 

2.1 Main result 

Theorem 1 On a unit-cost RAM with word size w, an or- 
dered set of n w-bit keys (viewed as binary strings or inte- 
gers) can be maintained in 

time per operation, including insert, delete, member search, 
and neighbour search. The cost for searching is worst-case 
while the cost for updates is amortized. For range queries, 
there is an additional cost of reporting the found keys. The 
data structure uses linear space. 
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The instruction repertoire is the same as for fusion trees, 
i.e. it includes double-precision multiplication but not divi- 
sion. 

In the following, we will not discuss the instruction set in 
detail. In one case we will show how to avoid the use of di- 
vision. Since we borrow some techniques from fusion trees, 
we need double-precision multiplication. Apart from tradi- 
tional arithmetic and bitwise boolean operations, we use the 
shift operation, which is not explicitly used in fusion trees. 
Shifting is a simple operation, it can also be simulated with 
double-precision multiplication (as done in fusion trees). 

We note that there is no real need for a double-precision 
multiplication; we can simulate that operation with a num- 
ber of single-precision multiplications. (Another possibil- 
ity is to split each w-bit key into two w/2-bit kcys and 
to store them in a trie of height 2 such that each node in 
the trie is implemented as in Theorem 1. Then, a "double- 
precision" multiplication would be performed by a single- 
precision multiplication.) 

2.2 Related observations 

In Section 4 we also discuss some related results, stated be- 
low. 

We give the first deterministic polynomial-time (in n)  al- 
gorithm for constructing a linear space static dictionary with 
0(1) worst-case access cost (cf. perfect hashing). 

Observation 1 A linear space static data structure sup- 
porting member queries at a worst case cost of 0(1) can be 
constructed in 0 (n2+') worst-case time. Both construc- 
tion and searching can be done without division. 

We also observe how to adapt our data structure to a 
favourable input distribution. For a more detailed discus- 
sion of the interpretation of the observation below, we refer 
to Section 4.2. 

Observation 2 There exist a linear-space data structure 
for  which the worst-case cost of a search and the amortized 
cost of an update is O(log bloglogn) where b 5 w is the 
length of the query key's distinguishingprejix, i.e. the num- 
ber of bits that need to be inspected in order to distinguish 
it from each of the other stored keys. 

Finally we show that Theorem 1 can be generalized to the 
case when the keys are longer than one word each. 

Theorem2 Suppose each key occupies L words. Then, 
there exists a data structure occupying O(Ln) space fo r  
which the worst-case cost of a search and the amortized cost 
of an update is the same as in Theorem I plus an additional 
cost of O ( L  log log n) per operation. 

3 Proof of Theorem 1 

3.1 Exponential search trees 

Our basic data structure is a multiway tree where the de- 
grees of the nodes decrease exponentially down the tree. 
For related techniques, see the references [3,6, 8,9]. 

Lemma 1 Suppose a static data structure containing d keys 
can be constructed in 0 (d4 )  time and space, such that 
it supports neighbour queries in O ( S ( d ) )  worst-case time. 
Then, there exists a dynamic data structure storing n keys 
with the following costs: 

it uses O(n) space; 
it can be constructed from a sorted list in 

the worst-case cost of searching (including 
O(n )  worst-case time and space; 

neighbour search) satisfies 

T ( n )  = 0 ( S  (TI ' / ' ) )  + T (n415) ; 

the amortized cost of restructuring during up- 
dates (i.e. the amortized update cost when 
the cost of locating the update position is not 
counted) is O(1og log n). 

Proof: We use an exponential search tree. It has the fol- 
lowing properties: 

Its root has degree O(n1I5). 
The keys of the root are stored in a local (static) 
data structure, with the properties stated above. 
During a search, the local data structure is used 
to determine in which subtree the search is to 
be continued. 
The subtrees are exponential search trees of 
size @(n4I5). 

First, we show that, given n sorted keys, an exponential 
search tree can be constructed in linear time and space. 
Since the cost of constructing a node of degree d is 0 (d4) ,  
the total construction cost C(n) is given by 

=+ C(n)  = O(n). 

Furthermore, with a similar equation, the space required 
by the data structure can be shown to be O(n). 

Next, we derive the search cost, T(n) .  It follows im- 
mediately from the description of exponential search trees 
that 

T(n)  = 0 ( S  (n' / ' ))  + T (n4/') . 
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Finally, we analyze the cost of updates. We only consider 
the cost of restructuring and ignore the cost of finding the 
update position; the latter cost equals the cost of searching. 

Balance is maintained in a standard fashion by global 
and partial rebuilding. Let no denote the number of present 
elements at the last global rebuilding. The next global re- 
building will occur when In - no1 > no/2. Hence, the 
linear cost of a global rebuilding is amortized over a linear 
number of updates and the amortized cost is O( 1). 

At a global rebuilding, we set no = n and the degree 
of the root is chosen as n1l5 , while the size of each sub- 
tree is & f 1. Between global rebuildings, we ensure 

that the subtrees have size at least f 1 and at most 

,n4,'5, f 1. When an update causes a subtree to violate this 

condition, we examine the sum of the sizes of that subtree 
and one of its immediate neighbours. This sum is between 

f 1 and + 1. By reconstructing these two 

subtrees into one, two, three, or four new subtrees we can 
ensure that the sizes of the new trees will be far from the 
limits. In this way, we guarantee that a linear-in the size 
of the subtree-number of updates is needed before a sub- 
tree is reconstructed. Since the cost of constructing a sub- 
tree is linear in the size of the subtree, the amortized cost of 
reconstructing subtrees is O( 1). 

Each time some subtrees are reconstructed, the degree 
of the root will change and the root must be reconstructed. 
The cost of this reconstruction is O((n1/5)4). Again, this is 
linear in the size of a subtree; hence, the amortized cost of 
reconstructing the root is O(1). This gives us the following 
equation for the amortized restructuring cost R(n) : 

1 0  1 
14,5 2 n  i"r 

R(n) = O(1) + R (n4/') + R(n) = O(log1ogn) 

U 

3.2 An improvement of fusion trees 

Using our terminology, the central part of the fusion tree is 
a static data structure with the following properties: 

Lemma2 (Fredman and Willard) For any d, d = 
0 ( w ~ / ~ ) ,  A static data structure containing d keys can be 
constructed in 0 (d4) time and space, such that it supports 
neighbour queries in O( 1) worst-case time. 

Fredman and Willard used this static data structure to 
implement a B-tree where only the upper levels in the tree 
contain B-tree nodes, all having the same degree (within 
a constant factor). At the lower levels, traditional (i.e. 
comparison-based) weight-balanced trees were used. The 

amortized cost of searches and updates is O(log n/ log d + 
logd) for any d = 0 ( ~ ' 1 ~ ) .  The first term corresponds 
to the number of B-tree levels and the second term corre- 
sponds to the height of the weight-balanced trees. 

Using an exponential search tree instead of the Fred- 
manWillard structure, we avoid the need for weight- 
balanced trees at the bottom at the same time as we improve 
the complexity for large word sizes. 

Lemma 3 A static data structure containing d keys can be 
constructed in 0 ( d4)  time and space, such that it supports 
neighbour queries in 0 ( ;:g + 1 ) worst-case time. 

Proof: We just construct a static B-tree where each node 
has the largest possible degree according to Lemma 2. That 
is, it has a degree of min (d, w 1 I 6 ) ,  This tree satisfies the 
conditions of the lemma. 0 

Corollary 1 There is a data structure occupying linear 
space for  which the worst-case cost of a search and the 
amortized cost of an update is 0 (E + log log n)  

Proof: Let T(n)  be the worst-case search cost. Combining 
Lemmas 1 and 3 gives that 

T(n)  = o  ( - logn + 1 + T ( d 5 ) )  
log w 

3.3 Tries and perfect hashing 

In a binary trie, a node at depth i corresponds to an i-bit 
prefix of one (or more) of the keys stored in the trie. Sup- 
pose we could access a node by its prefix in constant time 
by means of a hash table, i.e. without traversing the path 
down to the node. Then, we could find a key x, or x's near- 
est neighbour, in O(1og w )  time by a binary search for the 
node corresponding to x's longest matching prefix. At each 
step of the binary search, we look in the hash table for the 
node corresponding to a prefix of x; if the node is there we 
try with a longer prefix, otherwise we try with a shorter one. 

The idea of a binary search for a matching prefix is the 
basic principle of the van Emde Boas tree [12, 13, 141. 
However, a van Emde Boas tree is not just a plain binary 
trie represented as above. One problem is the space re- 
quirements; a plain binary trie storing d keys may contain as 
much as O(dw) nodes. In a van Emde Boas tree, the num- 
ber of nodes is decreased to O(d)  by careful optimization. 

In our application O(dw) nodes can be allowed. There- 
fore, to keep things simple, we use a plain binary trie. 
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Lemma4 A static data structure containing d keys and 
supporting neighbour queries in O(1og w) worst-case time 
can be constructed in 0 (d4)  time and space. 

Proof: We study two cases. 
Case 1: w > d1/3.  Lemma 3 gives constant query cost. 
Case 2: w 5 d1/3. In O(dw) = o(d2)  time and space 

we construct a binary trie of height w containing all d keys. 
Each key is stored at the bottom of a path of length w and 
the keys are linked together. In order to support neighbour 
queries, each unary node contains a neighbour pointer to the 
next (or previous) leaf according to the inorder traversal. 

To allow fast access to an arbitrary node, we store all 
nodes in a perfect hash table such that each node of depth 
i is represented by the i bits on the path down to the node. 
Since the paths are of different length, we use w hash ta- 
bles, one for each path length. Each hash table contains 
at most d nodes. The algorithm by Fredman, Komlos, and 
Szemeredi [5] constructs a hash table of d keys in O(d3w) 
time. The algorithm uses division, this can be avoided by 
simulating each division in O(w) time. With this extra cost, 
and since we use w tables, the total construction time is 
0 (d3w3) = O(d4) while the space is O(dw) = o(d2) .  

With this data structure, we can search for a key 11: in 
O(log w) time by a binary search for the node correspond- 
ing to z's longest matching prefix. This search either ends 
at the bottom of the trie or at a unary node, from which we 
find the closest neighbouring leaf by following the node's 
neighbour pointer. 

During a search, evaluation of the hash function requires 
integer division. However, as pointed out by Knuth [7], di- 
vision with some precomputed constant p may essentially 
be replaced by multiplication with l/p. Having computed 
T = Law/pJ once in O(w) time, we can compute z DIV p 
as L z ~ / 2 ~ ]  where the last division is just a right shift w 
positions. Since Lz/p] - 1 < [ z ~ / 2 ~ J  5 Lz/pJ we can 
compute the correct value of z DIV p by an additional test. 
Once we can compute DIV, we can also compute MOD. 0 

An alternative method for perfect hashing without divi- 
sion is the one recently developed by Raman [ 101. Not only 
does this algorithm avoid division, it is also asymptotically 
faster, O ( d2 w) . 

Corollary2 There is a data structure occupying linear 
space for which the worst-case cost of a search and the 
amortized cost of an update is 0 (log w log log n) . 

Proof Let T ( n )  be the worst-case search cost. Combining 
Lemmas 1 and 4 gives T(n)  = 0 (log w) + T (n4/5) . 0 

3.4 Finishing the proof 

If we combine Lemmas 1, 3, and 4, we obtain the follow- 
ing equation for the cost T(n)  of a search or update in an 
exponential search tree. 

Ignoring the right part of the min expression gives Corollary 
1 and ignoring the left part gives Corollary 2. Balancing the 
two parts of the min-expression gives 

T ( n )  = 0 (6) + T (72"') 

and hence 
T ( n )  = 0 (6). 

Combining these three complexities yields 

This expression is not tight for all possible combinations 
of n and w. To provide a tight asymptotic expression for 
the solution to Equation 1, we note that the parameter n 
will decrease as the recursion progresses (i.e. the size of 
subtrees decrease as we progress down the tree) while the 
word size w remains the same. Hence, the right part of our 
min expression will be used at some (maybe none) of the 
upper levels; at the lower levels the left part will be applied. 
Therefore, we distinguish two cases: 

Case 1 : log n 5 2 log2 w. The left part will apply on all 
levels, giving a total cost of o (E + log log n)  . 

Case 2: logn > 2 log2 W. The right part will 
apply o (log [*I) times, resulting in a cost of 

0 (log logw) . Then, the left part will give a cost 
of 0 (e + loglogn) .  In this case, the total cost will 
be (note that log n > 2 log2 w) 

1 0 ( log ~ logw + J logw+loglogn 

= 0 (log 1% + 11 logw) 

Combining the two cases gives the following complexity: 

0 e f l o g l o g n  , log 72 5 2 log2 w 
T(n4 ={  0 log I* + 1 1 logw) , l o g n  > 2log2w 
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The two expressions meet when log n = 0 (log2 w )  . Thus, 
we can combine them as 

The proof of Theorem 1 is now complete. 

4 Some related observations 

We discuss the additional results stated in Section 2.2. 

4.1 Observation 1: On perfect hashing 

As mentioned earlier, a perfect hash table that supports 
member queries (neighbour queries are not supported) in 
constant time can be constructed at a worst-case cost 
0 (n’w) without division [lo]. We show that the depen- 
dency of word size can be removed. The resulting data 
structure is not a pure “hash table”. 

We start by taking a closer look at the fusion tree. Ac- 
cording to Fredman and Willard, a fusion tree node of de- 
gree d requires 0 ( d 2 )  space. This space is occupied by a 
lookup table where each entry contains a rank between 0 
and d. A space of 0 (d2)  is enough for the original fusion 
tree as well as for our exponential search tree. However, for 
the purpose of perfect hashing, we need to reduce the space. 
Fortunately, this reduction is straightforward. We note that 
a number between 0 and d can be stored in log d bits. Thus, 
since d < w1I6, the total number of bits occupied by the 
lookup table is 0 ( d 2  log d) = O(w). We conclude that in- 
stead of 0 ( d 2 ) ,  the space taken by the table is 0(1) (O(d) 
would have been good enough). Therefore, the space occu- 
pied by a fusion tree node can be made linear in its degree. 

We are now ready to prove Observation 1, stated in Sec- 
tion 2.2. 

Proof of Observation 1: W.1.o.g we assume that E < 1/6. 
Since Raman has shown that a perfect hash function can 

be constructed in 0 (n’w) time without division) [lo], we 
are done for n 2 ~ ‘ 1 ‘ .  

If, on the other hand, n < wl/‘, we construct a static 
fusion tree with degree n1I3. This degree is possible since 
E < 1/6. The height of this tree is O(l) ,  the cost of con- 
structing a node is 0 (n4I3) and the total number of nodes 
is 0 (n2I3) .  Thus, the total construction cost for the tree is 
O (n2).  0 

4.2 Observation 2: An adaptive data 
structure 

In some applications, we may assume that the input distri- 
bution is favourable. These kind of assumptions may lead to 
a number of heuristic algorithms and data structures whose 
analysis are based on probabilistic methods. Typically, the 
input keys may be assumed to be generated as independent 
stochastic variables from some (known or unknown) distri- 
bution; the goal is to find an algorithm with a good expected 
behaviour. For these purposes, a deterministic algorithm is 
not needed. 

However, instead of modeling input as the result of a 
stochastic process, we may characterize its properties in 
terms of a measure. Attention is then moved from the pro- 
cess of generating data to the properties of the data itself. 
In this context, it makes sense to use a deterministic algo- 
rithm; given the value of a certain measure the algorithm 
has a guaranteed cost. 

We give one example of how to adapt our data struc- 
ture according to a natural measure. An indication of how 
“hard” it is to search for a key is how large part of it must be 
read in order to distinguish it from the other keys. We say 
that this part is the key’s distinguishing prefix. (In Section 
3.3 we used the term longest matching prefix for essentially 
the same entity.) For w-bit keys, the longest possible dis- 
tinguishing prefix is of length w. Typically, if the input is 
nicely distributed, the average length of the distinguishing 
prefixes is O(1ogn). 

As stated in Observation 2, we can search faster when a 
key has a short distinguishing prefix. 

Proof of Observation 2: We use exactly the same data 
structure as in Corollary 2, with the same restructuring cost 
of O(log log n) per update. The only difference is that we 
change the search algorithm from the proof of Lemma 4. 
Applying an idea of Chen and Reif [4], we replace the bi- 
nary search for the longest matching (distinguishing) prefix 
by an exponential-and-binary search. Then, at each node 
in the exponential search tree, the search cost will decrease 
from O(1og w) to O(1og b) for a key with a distinguishing 
prefix of length b. 0 

4.3 Theorem 2: Sorting and searching 
long keys 

So far, we have discussed how to treat w-bit keys on a w-bit 
RAM. However, in some application the input may consist 
of multi-word keys. As a further application of the exponen- 
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tial search tree, we study the case when each key occupies 
L words. 

Lemma 5 Suppose each key occupies L words. Further- 
more, suppose a static data structure containing d keys can 
be constructed in 0 (dL + d4)  time and space such that it 
supports neighbour queries in O(L+S(d)) worst-case time. 
Then, there exists a dynamic data structure storing n keys 
with the following costs: 

it uses O(nL)  space; 
it can be constructed from a sorted list in 

the worst-case cost of searching for  a key (in- 
O(nL)  worst-case time and space; 

cluding neighbour search) satisfies 

T (n )  = 0 ( L  + S (n’l’)) + T (n4/’) ; 

the amortized cost of restructuring during up- 
dates (i.e. the amortized update cost when 
the cost of locating the update position is not 
counted) is 0 ( L  + log log n). 

Proof: (sketch) We alter the proof of Lemma 5 slightly. 0 

Lemma6 Suppose each key occupies L words. Then, 
a static data structure containing d keys and support- 
ing neighbour queries in 0 L + min 1 + %, log w) ) 
can be constructed in O(dL + d 4 )  time and space. 

Proof: We store the d keys in a trie of height L. In the 
trie, each unary node is stored in 0(1) space in the obvi- 
ous way. For each non-unary node, we represent the set of 
outgoing edges in two ways. First, they are stored with con- 
stant lookup time according to Observation 1. Second, they 
are stored in a data structure supporting neighbour search 
according to Lemma 3 or Lemma 4. The sum of the de- 
grees of the nun-unary nodes is at most 2d - l and the 
number of unary nodes is less than dL. Hence, it follows 
from Lemmas 3 and 4 and Observation 1 that the trie can be 
constructed in O(dL + d4)  time and space. 

When searching for a key we traverse the trie; at each 
node we find the proper outgoing edge in constant time. The 
traversal either ends successfully at the bottom of the trie or 
at a missing edge. If the missing edge is at a unary node, 
we can determine the nearest neighbour immediately, other- 
wise we find the neighbour by making a local search among 
the outgoing edges of the last found node. 

The cost of traversing the trie is O ( L )  and the cost of 

Lemmas 3 and 4. 0 

( (  

1 + e, log w) ) according to 

Proof of Theorem 2: (cf. Section 2.2) Combine Lemmas 5 
0 and 6 and proceed as in the proof of Theorem 1 .  

Corollary 3 n multi-precision integers, each of Length L 
words, can be sorted in O(n& + Ln  log log n) time. 

When using a comparison-based sorting algorithm, each 
comparison would take O ( L )  time and the cost of sort- 
ing would be O(Ln1ogn). Hence, for multi-word keys 
the asymptotic improvement over comparison-based algo- 
rithms is even larger than for single-word keys. 

5 Comments 

Sorting and searching in deterministic linear space is cer- 
tainly a fundamental topic and we believe that many re- 
searchers have tried to find new improved bounds since the 
fusion trees were first presented. 

For small (realistic) word sizes the bound 
of O(1og w log log n) is appealing; this shows that the com- 
plexity of van Emde Boas trees can almost be matched in 
deterministic linear space. 

It is interesting to note that our main result relies on “old” 
techniques, such as fusion trees, tries, and perfect hashing. 
None of the new techniques developed recently [1, 2, 111 
are used. 
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