Shortest Path Algorithms
 Luis Goddyn, Math 408

Given an edge weighted graph $(G, d), d: E(G) \rightarrow \mathrm{Q}$ and two vertices $s, t \in V(G)$, the Shortest Path Problem is to find an s, t-path P whose total weight is as small as possible. Here, G may be either directed or undirected. A path in a graph is a sequence $v_{0} e_{1}, v_{1}, \ldots, v_{k}$ of vertices and edges such that no vertex or edge appears twice, and e_{i} joins v_{i-1} to v_{i}. If G is directed, then e_{i} should be oriented from v_{i-1} to v_{i}.

1 Dijkstra's Algorithm

0. Input points (G, d, s). Label all vertices with $\ell(v)=\infty$, and set tree $T=\{s\}$. Set $\ell(s)=0$. The current vertex is $v=s$.
1. For every arc $v w$ where $w \notin T$, if $\ell(v)+d(v w)<\ell(w)$, then relabel w via $\ell(w)=\ell(v)+d(v w)$, and set a pointer $p(w)=v$.
2. Find a vertex $x \in V(G)-V(T)$ having the smallest ℓ-label. If there is no such vertex, or if $\ell(x)=\infty$, then output T, ℓ and STOP, as no other vertices are reachable from s.
3. Add the vertex x and the $\operatorname{arc} p(x) x$ tree T. Go to step 1 .

If d is a conservative weighting, that is, if G has no negative weight directed circuits (circuits C whose total weight $d(C)$ is negative), then Dijkstra's algorithm stops with a shortest path tree T rooted at s. Every vertex which is reachable from s is in T and for every $w \in V(T)$, the unique $s w$-path in T is a shortest $s w$-path in (G, d). We omit the proof that this algorithm works correctly and stops in polynomial time.

2 Conservative Weightings - An Algorithm

If G has negative weight circuits, then there is no known algorithm which finds a shortest s, t-path in (G, d), since we could solve any Hamilton Path problem by setting $d(e)=-1$ for every arc e, and the Hamilton Path Problem is known to be "NP-Hard".

What if G is undirected? One method here is to replace each edge $u v$ in G by two oppositelydirected arcs $u v$ and $v u$, and then run Dijkstra's algorithm on the resulting directed graph. This works well provided that (G, d) has no negative weight edges. Any negative-weight edge would convert into a digon (a directed circuit of length two) having negative weight, and so Dijkstra's algorithm no longer works. Other shortest-path algorithms, such as the Floydd-Warshall algorithm for undirected graphs has the same draw-back, failing to work correctly if even one edge has negative weight.

However, there is a way to solve shortest path problems for undirected graph with negative-weight edges, provided that (G, d) is conservatively weighted. Here is the method.

1. Input points (G, d, s, t). Replace every vertex $v \in V(G)-\{s, t\}$ with two new vertices $v^{\prime}, v^{\prime \prime}$ joined by a new edge of weight zero. Replace s and t with new vertices s^{\prime} and t^{\prime}.
2. For every edge $u v$ where $u, v \neq s, t$ we replace $u v$ with the following gadget, weighted as indicated below. Note that three of the five edges of the gadget get weight zero and the other two get weight $d(u v)$.

Replace any edge su with the following gadget, and similarly for any edge $u t$. (We leave it to the reader to decide what to do if there is an edge from s to t !)

3. Run Edmonds' Minimum Weight Perfect Matching Algorithm on the resulting weighted graph $\left(G^{\prime}, d^{\prime}\right)$, obtaining the matching M.
4. Interpret M as an st-path in G as follows. Let $g(u v)$ be the 5 -edge gadget in G^{\prime} corresponding to edge $u v \in E(G)$. Either one or two edges of each gadget belongs to M. Let S the set of edges $u v$ in G such that two edges of $g(u v)$ belong to M. It is easy to check that each vertex in $V(G)-\{s, t\}$ is incident with exactly zero or one edges in S, whereas s and t are each incident with exactly one edge in S. Thus S consists of an st-path P and possibly some circuits. Each circuit in S must have total weight zero (Why? This will be a homework question). It it follows that $d^{\prime}(M)=d(S)=d(P)$. Since M is a minimum weight perfect matching, P must be a minimum weight st-path.

Here is an example of this process.

Unmarked edges have weight zero

3 Shortest Odd Path

Given an edge weighted undirected graph $(G, d), d: E(G) \rightarrow \mathrm{Q}$ and two vertices $s, t \in V(G)$, the Shortest Odd Path Problem is to find an s, t-path P having an odd number of edges whose total weight is as small as possible.

If (G, d) is conservative, then this problem can be reduced to a minimum weight perfect matching problem as follows.

1. Let G_{1}, G_{2} be disjoint copies of G, and label with v_{i} the vertex in G_{i} corresponding to $v \in V(G)$, $i=1,2$. Each edge in $G_{1} \cup G_{2}$ gets the weight of the corresponding edge in G. We form a new weighted graph $\left(G^{\prime}, d^{\prime}\right)$ from $G_{1} \cup\left(G_{2}-\left\{s_{2}, t_{2}\right\}\right)$ by adding edges of weight zero $E^{\prime}=\left\{v_{1} v_{2}\right.$: $v \in V(G)-\{s, t\}$. Thus $d^{\prime}\left(u_{1} v_{1}\right)=d^{\prime}\left(u_{2} v_{2}\right)=d(u v)$ for $u v \in E(G)$, and $d^{\prime}\left(u_{1} u_{2}\right)=0$ for $u \in V(G)-\{s, t\}$.
2. Find a minimum weight perfect matching M in (G^{\prime}, d^{\prime}) using Edmonds' algorithm. If no such matching exists, then there is no s, t-path in G having an odd number of edges.
3. Let S be the set of edges $u v \in E(G)$ such that either $u_{1} v_{1}$ or $u_{2} v_{2}$ is in M. It is easy to see that S induces an s, t-path P together with some disjoint circuits. Here P has an odd number of edges (why?), and one can show that each of the circuits has weight zero. So $d(P)=d(S)=d^{\prime}(M)$. Since this process is "reversible", and M is a minimum weight perfect matching, P is a minimum weight s, t-path having an even number of edges.

Here is an example of this process.

$\left(G^{\prime}, d^{\prime}\right)$ and a minimum weight perfect matching M
(Dashed edges (E') have weight zero)

