Chapter 25
Scaling Algorithms for the Shortest Paths Problem

Andrew V. Goldberg*

Abstract

We describe a new method for designing scaling algorithms for the single-source shortest paths
problem, and use this method to obtain an O(4/nmlog N) algorithm for the problem. (Here n and
m is the number of nodes and arcs in the input network and N is essentially the absolute value of
the most negative arc length, and arcs lengths are assumed to be integrat.) This improves previous
bounds for the problem. The method extends to related problems.

1 Introduction

In this paper we study the shortest paths problem where
arc lengths can be both positive and negative. This is
a fundamental combinatorial optimization problem that
often comes up in applications and as a subproblem in
algorithms for many network problems. We assume that
the length function is integral, as is the case in most
applications.

We describe a framework for designing scaling algo-
rithms for the shortest paths problem and derive several
algorithms within this framework. Our fastest algorithm
runs in O(y/nmlog N) time, where n and m are the num-
ber of nodes and arcs of the input network, respectively,
and the arc costs are at least —N.! Our approach is re-
lated to the cost-scaling approach to the minimum-cost
flow problem [2, 17] and its generalization [12, 15].

Previously known algorithms for the problem are as
follows. The classical Bellman-Ford algorithm [1, 7]
runs in O(nm) time. Our bound is better than this
bound for N = 0(2‘/’_‘). Scaling algorithms of Gabow
[10} and of Gabow and Tarjan [11] are dominated by
an assignment subroutine. The former algorithm runs
in O(n3%/*mlog C) time; the latter algorithm runs in

*Computer Science Department, Stanford University, Stanford,

CA 94305. Supported in part by ONR Young Investigator Award
N00014-91-J-1855, NSF Presidential Young Investigator Grant
CCR-8858097 with matching funds from AT&T, DEC, and 3M,
a grant from Powell Foundation, and by a grant from Mitsubishi
Electric Laboratories.
Part of this work was done while the author was visiting IBM Al-
maden Research Center and supported by ONR Contract N00014-
91-C-0026.

! We assume that N > 2 so that log N > 0.

222

Here C is the maximum ab-
Our bound dominates these

O(v/nmlog(nC)) time.
solute value of arc costs.
bound (note that N < C).

Our bound is competitive even with bounds for
special-purpose algorithms on planar graphs. The fastest
shortest paths algorithm currently known for planar
graphs [8] runs in O(n%log n) time. Our algorithm runs
in O(n!-%log N) time on planar graphs, which is better
for N = o(n).

The previous best time bounds for scaling algorithms
for the shortest paths problem match those for the as-
signment problem. Our improved bound for the former
problem implies that either this problem is computation-
ally simpler or the bound for the latter problem can be
improved.

Our framework is very flexible. In Sections 8 and 9 we
describe two variations of the O(y/nmlog N) algorithm.
The first variation may be more practical, and the second
variation shows the relationship between our method and
Dijkstra’s shortest path algorithm [5]. In Section 10, we
use the framework to design yet another algorithm for
the problem that runs in O(y/nmlog(nN)) time. The
flexibility of our method may lead to better running time
bounds.

The techniques introduced in this paper have signif-
icant practical impact. These techniques proved to be
crucial in our implementation of price update computa-
tion in a minimum-cost flow algorithm [13], which re-
sulted in a significant improvement in the running time.

The shortest paths problem is closely related to
other problems, such as the minimum-cost flow, as-
signment, and minimum-mean length cycle problems.

SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM 223

Our method for the shortest paths problem extends to
these problems. In Section 11 we sketch extensions to
the minimum-cost flow and assignment problems. Mc-
Cormick [16] shows an extension to the minimum-mean
cycle problem. The resulting algorithms achieve bounds
that are competitive with those of the fastest known al-
gorithms, but are somewhat simpler.

2 Preliminaries

The input to the single-source shortest paths problem
is (G,s,l), where G = (V,E) is a directed graph, ! :
E — R is a length function, and s € V is the source
node. (Seec e.g. [3, 19].) The goal is to find shortest
paths distances from s to all other nodes of G or to find
a negative length cycle in G. If G has a negative length
cycle, we say that the problem is infeasible. We assume
that the length function is integral. We also assume,
without loss of generality, that all nodes are reachable
from s in G and that G has no multiple arcs. The latter
assumption allows us to refer to an arc by its endpoints
without ambiguity.

We denote |V| by n and |E| by m. Let M be the
smallest arc length. Define N = —M if M < —1 and
N = 2 otherwise. Note that N > 2 and I(e¢) > —N for
alle € E.

A price function is a real-valued function on nodes.
Given a price function p, we define a reduced cost func-
tionl, : E —» R by

bp(v,w) = I(v,w) + p(v) - p(w).

We say that a price function p is feasible if

(@) >0 Va€kE. (1)
For an € > 0, we say that a price function is ¢-feasible if
I(a) > - Va€E. (2)

We call an arc (v, w) improvable if I, (v, w) < —¢, and
we call a node w mprovable if there is an improvable arc
entering w.

Given a price function p, we say that an arc a is edmis-
sible if l,(a) < 0, and denote the set of admissible arcs
by E,. The admissible graph is defined by Gp = (V, E,).

If the length function is nonnegative, the shortest
paths problem can be solved in O(m + nlogn) time [9].
We call such a problem Dijkstra’s shortest paths problem
[5]. Given a feasible price function p, the shortest paths
problem can be solved as follows. Let d be a solution to
the Dijkstra’s shortest paths problem (G, s, ;). Then the
distance function d’ defined by d'(v) = d(v) +p(v) ~ p(s)
is the solution to the input problem.

We restrict our attention to the problem of computing
a feasible price function or finding a negative length cycle
in G.

procedure COMPUTE-PRICES(G, a,1);
[initialization]
€ — 21+ liogy NJ .
Vv € E, p(v) + 0;
[loop]
while € > 1 do
€+—¢€f2;
p + REFINE(e,p);
end;
return(p);
end.

Figure 1:
method.

High-level description of the shortest paths

3 Successive Approximation
Framework and Bit Scaling

Our method computes a sequence of e-feasible price func-
tions with ¢ decreasing by a factor of two at each itera-
tion. Initially, all the prices are zero and ¢ is the small-
est power of two that is greater than N. The method
maintains integral prices. At each iteration, the method
halves € and applies the REFINE subroutine, which takes
as input a (2¢)-feasible price function and returns an
e-feasible price function or discovers a negative length
cycle. In the latter case, the computation halts. The
high-level description of the method is given in Figure 1.

Lemma 3.1 Suppose a price function p is integral and 1-
feasible. Then for every a € E, lp(a) > 0.

Proof. The lemma follows from the fact that l;(a) is
integral and I,(a) > —-1. W

Corollary 3.2 The method terminates in O(log N) itera-
tions.

Bit scaling can be used instead of successive approxi-
mation in all algorithms described in this paper except
for the algorithm of Section 10. Bit scaling is more nat-
ural to use in some contexts and may simplify algorithm
description.

The bit scaling version of our method rounds lengths
up to a certain precision, initially the smallest power of
two that is greater than N. The lengths and prices are
expressed in the units determined by the precision. Note
that since the lengths are rounded up, a negative cycle
with respect to rounded lengths is also negative with
respect to the input lengths.

Each iteration of the algorithm starts with a price
function that is feasible with respect to the current
(rounded) lengths. Note that this is true initially be-
cause of the choice of the initial unit. At the beginning
of an iteration, the lengths and prices are multiplied by

224

two, and one is subtracted from the arc lengths as ap-
propriate to obtain the higher precision the lengths. The
resulting price function is 1-feasible with respect to the
current length function; the feasibility is restored using
REFINE. The method terminates when the precision unit
becomes 1, which happens in O(log N) iterations.

4 Dealing with Admissible
Cycles

Suppose that G has a cycle I'. Since the reduced cost
of a cycle is equal to the length of the cycle, I(T') < 0.

I {(T) < 0, or I(T) = 0 and there is an arc (v, w) such
that I,(v,w) < 0 and both v and w are on T', then the
input problem is infeasible and the method terminates.
Otherwise, we contract I' and remove self-loops adjacent
to the contracted node. A feasible price function on the
contracted graph extends to a feasible price function on
the original graph in a straight-forward way.

Our algorithm wuses an O(m)-time subroutine
DECYCLE(G,) that works as follows. Find strongly con-
nected components of G, [18); if a component contains a
negative reduced cost arc, G has a negative length cycle;
otherwise, contract each component.

Suppose Gy is acyclic. Then G defines a partial oz-
der on V and on the subset of improvable nodes. This
motivates the following definitions. A set of nodes S is
closed if every node reachable in G, from a node in S
belongs to S. A set of nodes (arcs) S is a chain if there
is a path in G, containing every element of S.

5 Cut-Relabel Operation

In this section we study the CUT-RELABEL operation
which is used by our method to transform a (2¢)-feasible
price function into an e-feasible one. The CUT-RELABEL
operation takes a closed set S and decreases prices of all
nodes in S by .2

Lemma 5.1 The cCUT-RELABEL operation does not create
any improvable arcs.

Proof. The only arcs whose reduced cost is decreased
by CUT-RELABEL are the arcs leaving S. Let a be such
an arc. The relabeling decreases I {a) by €. Before the
relabeling, S is closed and therefore I,(a) > 0. After the
relabeling, I(a) > —. W

The above lemma implies that CUT-RELABEL does not
create improvable nodes. The next lemma shows how to

3 Alternatively, the operation can decrease prices of all nodes of
S by the maximum amount €’ such that Lemma 5.1 holds.

(GGOLDBERG

use this operation to reduce the number of improvable
nodes.

Lemma 5.2 Let p be a (2¢)-feasible price function. Let
S be a closed set of nodes, and let X C S be a set of
improvable nodes such that every improvable arc entering
X crosses the cut defined by S. After the set S is relabeled,
nodes in X are no longer improvable.

Proof. Let p' be the price function after the relabeling.
Let w € X and let (v, w) be an improvable arc with re-
spect to p. By the statement of the lemma, v ¢ S. Thus
the relabeling increases I, by ¢, and, by (2¢)-feasibility
of p, lpr(v,2) > —€. W

A simple algorithm based on CUT-RELABEL applies the
following procedure to every improvable node v.

1. DECYCLE(Gp).
2. S + set of nodes reachable from {v} in G,.
3. CUT-RELABEL(S).

It is easy to see that given a (2¢)-feasible price function,
this algorithm computes an e-feasible one in O(nm) time.

As we shall see, it is possible to find either a set
X, such that relabeling X eliminates many improvable
nodes, or a chain containing many improvable arcs. In
the next section we describe a technique that can be
applied to a chain of improvable arcs.

6 Eliminate-Chain Subroutine

Suppose that G, is acyclic and let I" be a path in G,. Let
(vi,w1), ..., (ve, we) be the collection of all improvable
arcs on I' such that for 1 < 7 < j < t, the path visits
v;j before v; (i.e., vy is visited last). By definition, nodes
wy,...,w; are improvable. In this section we describe a
subroutine ELIMINATE-CHAIN that modifies p so that the
nodes wy,...,w; are no longer improvable and no new
improvable nodes are created, or finds a negative length
cycle in G. The subroutine runs in O(m) time.

At iteration i, ELIMINATE-CHAIN finds the set S; of
all nodes reachable from w; in the admissible graph and
relabels S;. If w; is improvable after the relabeling, the
algorithm concludes that the problem is infeasible.

Lemma 6.1 The path I' is always admissible. if w; is im-
provable after iteration i, then the problem is infeasible.

Proof. The price function is modified only by cuTt-
RELABEL. At iteration i, S; contains wy, all its succes-
sors on I', and no other nodes of T’ (by induction on).
Therefore I, (v, w;) changes exactly once during iteration
i, when it increases by €. The arc (v;,w;) is improvable

SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM 225

before the change, and admissible after the change. Re-
duced costs of other arcs on I" do not change during the
execution of ELIMINATE-CHAIN.

Suppose w; is improvable immediately after iteration
i. Then there must be a node v such that (v,w;) is
improvable and v € S;. By construction of S;, there must
be an admissible path from w; to v. This path together
with the arc (v, w;) forms a negative length cycle. ®

Lemmas 5.1 and 6.1 imply that the implementation of
ELIMINATE-CHAIN is correct. Next we show how to refine
this implementation to achieve O(m) running time. The
key fact that allows such an implementation is that the
sets S; are nested.

First, we contract the set of nodes S; at every itera-
tion. The reason for contracting is to allow us to change
the prices of nodes in S; efficiently (these prices change
by the same amount). The CONTRACT(S;) operation col-
lapses all nodes of S; into one node s; and assigns the
price of the new node to be zero. (The price of s; is
actually an increment to the prices of the nodes in S;.)
Reduced costs of the arcs adjacent to the new node re-
main the same as immediately before CONTRACT. Note
that we have at most one contracted node at any point
during ELIMINATE-CHAIN, but contracted nodes can be
nested.

The UNCONTRACT(s;) operation, applied to a con-
tracted node s;, restores the graph as it was just before
the corresponding CONTRACT operation and adds p(v) to
prices of all nodes in S;. At the end of the chain elimi-
nation process, we apply UNCONTRAGT until the original
graph is restored.

Contraction is used for efficiency only and does not
change the price function computed by ELIMINATE-
CHAIN, because by Lemma 6.1 S; C S;for1<i< j<t.

Second, we implement the search for the nodes reach-
able from w;’s in the admissible graph in a way similar to
Dial’s implementation [4] of Dijkstra’s algorithm.® Our
implementation uses a priority queue that holds items
with integer key values in the range [0,. .., 2n]; the amor-
tized cost of the priority queue operations is constant.
We assume the following queue operations.

o enquere(v,Q): add a node v to a priority queue Q.

o min(Q): return the minimum key value of elements

on Q.

e eztract-min(Q): remove a node with the minimum
key value from Q.

o decrease-key(v,z): decrease the value of key(v) to
z.

3In Section 9 we show that Dail's implementation can be used
directly. The implementation described in this section, however,
gives a better insight into the method.

procedure scaN(v);
for all (v,w) do
if key(w) = oo then
mark w as labeled;
key(w) «— lp(v,w);
inserf{w, Q);
else if w is labeled and key(w) < h(l;(v,w)) then
decrease-key(w, lp(v, w));
mark v as scanned;
end.

Figure 2: The scan operation.

o shifi(@Q,6): add § to the key values of all elements
of Q.

All of these operations except shift are standard; a con-
stant time implementation of shift is trivial.

Note that if p is (2¢)-feasible and I,(a) > 2ne, then
a can be deleted from the graph. We assume that such
arcs are deleted as soon as their reduced costs become
large enough.

We define the key assignment function k that maps
reduced costs into integers as follows.

0 fz<0
h(z) —{ [2] otherwise.

During the chain elimination computation, each node
is unlabeled, labeled, or scanned. Unlabeled nodes have
infinite keys; other nodes have finite keys. The priority
queue @ contains labeled nodes. Initially all nodes are
unlabeled. At the beginning of iteration i, key(w;) is set
to zero and w; is added to Q. While Q is not empty
and the minimum key value of the queue nodes is zero, a
node with the minimum key value is extracted from the
queue and scanned as in Dijkstra’s algorithm except that
h(l;(a)) is used instead of I (a) (see Figure 2). When this
process stops, the scanned nodes are contracted, the new
node is marked as scanned, and its key is set to zero.
Then the price of the new node is decreased by e and
shift(Q, —e) is executed. This concludes iteration i.

Next we prove correctness of the implementation.

Lemma 6.2 The sets S; are computed correctly for every
i=1,...,t

Proof. For convenience we define Sy =— . Consider an
iteration 4. It is enough to show that S; is correct if
1<i1<tand §;_; is correct.

Let v be a node on Q with the zero key value. We claim
that v is reachable from w; in the current admissible
graph. To see this, consider two cases. If v was a node on
Q@ with zero key value at the beginning of the iteration,
then v is reachable from w; by Lemma 6.1. Otherwise,

226

key of v became zero when an arc (u, v) was scanned. We
can make an inductive assumption that u is reachable
from w;. By definition of h, h(u,v) = 0 implies that
Ip(2,v) < 0, and therefore v is reachable from w;.

Let T be an admissible path originating at w;. It is
easy to see by induction on the number of arcs on I' that
all nodes on I' are scanned and added to S;.

It follows that at the end of iteration ¢, S; contains all
nodes reachable from w; in the admissible graph. ®

Lemma 6.3 ELIMINATE-CHAIN runs in O(m) time.

Proof. Each node is scanned at most once because a
scanned node is marked as such and never added to Q.
A contracted node is never scanned. The time to scan
a (noncontracted) node is proportional to degree of the
node, so the total scan time is O(m).

The time of a CONTRACT operation is O(1+n'), where
n' is the number of nodes being contracted. The number
of CONTRACT operations is at most n and the sum of n'
values over all CONTRACT operations is at most 2n. Thus
the total cost of contract operations is O(n).

The cost of an UNCONTRACT operations is O(1 + n'),
where n’ is the same as in the corresponding CONTRACT
operation. Thus the total time for these operations is
O(2n). m

7 Faster Algorithm

In this section we introduce an O(y/nmlog N) algorithm
for finding a feasible price function. Let k denote the
number of improvable nodes. The algorithm reduces k
by at least vk at each iteration. An iteration takes lin-
ear time and is based on the results of sections 5 and 6
and the following lemma, which is related to Dilworth’s
Theorem (see e.g. [6]).

Lemma 7.1 Suppose G is acyclic. Then there exists a
chain S C E such that S contains at least vk improv-
able arcs or a closed set S C V such that relabeling S
reduces the number of improvable nodes by at least v/k.
Furthermore, such an S can be found in O(m) time.

Proof. Define a length function !’ on E, by

v, v _ J —1 if ais improvable
¥(a) = { 0 otherwise.

The absolute value of the path length with respect to '
is equal to the number of improvable arcs on the path.
Add a source node r to G, and arcs of zero length
from r to all nodes in V. Call the resulting graph G’;
note that G’ is acyclic. Let d’ : V — R give the shortest
paths distances from r with respect to I’ in G’. Since

GOLDBERG

procedure REFINE(e, p);
k + the number of improvable nodes;
repeat
DECYCLE(Gp);
S « a chain or a set as in Lemma 7.1;
if S is a chain then
ELIMINATE-CHAIN(S);
else
CUT-RELABEL(S);
k + the number of improvable nodes;
until k = 0;
return(p);
end.

Figure 3: An efficient implementation of REFINE.

G’ is acyclic, d' can be computed in linear time. Define
D = maxy |d'|.

If D > vk, then a shortest path from r to a node
v with d'(v) = —D contains a chain with at least vk
improvable arcs.

If D < vk, then the partitioning of the set of im-
provable nodes according to the value of d' on these
nodes contains at most vk nonempty subsets. Let X
be a subset containing the maximum number of improv-
able nodes and let i be the value of d' on X. Observe
that X contains at least vk improvable nodes. Define
S ={ve V) <i}

Clearly X C S. Also, S is closed. This is because if
v € S and there is a path from v to w in G, then the
length of this path with respect to I’ is nonpositive, so
d'(w) < d'(v) < i and therefore w € S.

We show that after CUT-RELABEL is applied to S,
nodes in X are no longer improvable. Let z € X and
let (v,z) be an improvable arc. Then /(v,z) = —1 and
therefore d'(v) > d’(z) = 7. Thus v ¢ S and (v, w) is not
improvable after relabeling of S. =

The O(4/nm) implementation of REFINE is described
in Figure 3. The implementation reduces the number
of improvable nodes k by at least vk at each iteration
by eliminating cycles in G,, finding S as in Lemma 7.1,
and eliminating at least vk improvable nodes in S using
techniques of sections 4, 5, and 6.

Lemma 7.2 The implementation of REFINE described in
this section runs in O(y/nm) time.

Proof. Each iteration of REFINE take O(m) time by the
results of the previous sections. Each iteration reduces

k by at least v, and O(v/k) iterations reduce k by at
least a factor of two. The total number of iterations is

bounded by
[+ <]
n
> Vg = O(v/n).
“:0

SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM 227

Corollary 3.2 and Lemma 7.2 imply the following re-
sult.

Theorem 7.3 The shortest paths algorithm with RE-

FINE implemented as described in this section runs in
O(y/nmlog N) time.

8 Alternative Chain Elimination

In this section we describe an algorithm based on
an alternative implementation of REFINE. We call
this implementation REFINE-P. The algorithm runs in
O(y/nmlog N) time.

REFINE-P works in iterations, which we call passes.
At the beginning of every pass we check for negative
cycles and eliminate zero length admissible cycles using
DECYCLE. Then we compute distances d' defined in the
proof of Lemma 7.1. Given a nonnegative integer M, we
define the key function

6(v) = min(—d'(v), M) Yve V.

(We discuss the choice of initial value of M later.) Some-
times we refer to §(v) as the key of v. Let V)y denote
the set of nodes with key value M. At each iteration
of a pass, CUT-RELABEL is applied to Vps. Then keys
of nodes in Vs and all nodes reachable from Vs in the
admissible graph are changed to M — 1, and M is de-
creased by one. This process is repeated until M reaches
zero; at this point the pass terminates. A pass can be
implemented to run in linear time; the implementation
is similar to that of ELIMINATE-CHAIN. We leave the
details to the reader.

The next lemma implies that CUT-RELABEL in used
correctly in a pass.

Lemma 8.1 Immediately before a cUT-RELABEL dpera—
tion is applied by a pass, Vi is closed with respect to the
current admissible graph.

Proof. Before the first CUT-RELABEL operation, Vjr is
closed by of the definition of §. The admissible graph
is changed only by the CUT-RELABEL operations, and
after every such operation a search is done to enforce
the closeness of Vjy. W

Note that the function d’ is well-defined if the admis-
sible graph does not have negative cycles.

Lemma 8.2 If at the beginning of an iteration of a pass
the admissible graph is acyclic, then

6(v) = min(—d'(v), M) YveV.

Proof. The proof is by induction on the number of
iterations. Keys are initialized so that the statement of
the lemma holds before the first iteration. Suppose that
the statement is true immediately before iteration %, and
show that it holds immediately after the iteration.

The d' value of nodes in Vs increases by one, and
the keys of these nodes are decreased by oneg at the end
of the iteration. The d’' values of a node outside Vjyy
changes only if this node becomes reachable from Vys in
the admissible graph, in which case the new d' value of
this node is —(M — 1) or less. The keys of the nodes that
become reachable are correctly set to M — 1. B

Recall that D = maxy |d'|.

Lemma 8.3 Suppose that the value of M at the beginning
of a pass is equal to t such that 0 < ¢ < D, and the admis-
sible graph does not contain negative cycles throughout the
pass. Then the pass decreases the number of improvable
nodes by at least £.

Proof. Given v,w € V, we say that v = w if there is a
negative reduced cost path from v to w in the admissible
graph. If the admissible graph does not contain negative
cycles, then “>-” defines a partial order on V.

Consider the beginning of an iteration of a pass, Let v
be a maximum element (with respect to “>”) of the set
of nodes with key value M. By the previous lemma, v
is an improvable node. By the choice of v, if (u,v) is an
improvable arc then u ¢ Vyr. Therefore v is no longer
improvable at the end of the iteration.

Each iteration of the pass reduces the number of im-
provable nodes, and the number of iterationsis¢t. W

Next we discuss the choice of initial value of M. Define
d; to be the number of improvable nodes with d’ value
of —i (in the beginning of a pass). If the initial value
of M is i, 0 < i < D, and there are no negative cycle,
the number of improvable nodes is reduced by at least
d; by the first application of cUT-RELABEL. Combin-
ing this observation with the above lemma, we conclude
that the pass reduces the number of improvable nodes
by max(i,d;). A more careful analysis shows that the
improvement is at least 1 + d; — 1, since all improvable
nodes with an initial d' value of i and at least one im-
provable node for each value of j, 0 < j < %, are no
longer improvable after a pass. Define k; = i + d; — 1,
and set M to the index that maximizes k;. By an ar-
gument of Lemma 7.1, kps = (y/n). This implies the
following theorem.

Theorem 8.4 With the above choice of the initial value
of M, the alternative implementation of REFINE runs in
O(y/nm) time.

We would like to note that in practice, a pass is likely
to reduce the number of improvable nodes by more then

228

ki, and it may be more advantages to chose higer initial
values for M. The algorithm performance is likely to be
better then the above worst-case bound suggests.

9 Chain Elimination Using
Dijkstra’s Algorithm

In this section we show yet another implementation of
ELIMINATE-CHAIN. This implementation uses Dail’s im-
plementation of Dijkstra’s algorithm [4], and does not
use CUT-RELABEL operation explicitly. The implemen-
tation we describe is for the bit scaling version of the
algorithm.

Let T' be a path in Gp. An auxiliary network A is
defined as follows.

o Let d’ be the distance function on T' with respect to
I, from the beginning of I' to all nodes on T.

o Define I'(a) = max(0, [;(a)).
o Define d'(v) = 0 for v not on T

¢ Add a source node ¢, connect t to all v € V and
define U'(t,v) = n + d'(v).

ELIMINATE-CHAIN works as follows.
1. Construct the auxiliary network A.

2. Compute shortest paths distances d in A with re-
spect to I'.

3. Vo eV, p'(v) — p(v) +d(v) — n.
4. Replace p by p'.

Lemma 9.1 The above version of ELIMINATE-CHAIN can
be implemented to run in linear time.

Proof. The fact that all steps of ELIMINATE-CHAIN ex-
cept for the shortest paths computation take linear time
is obvious. The shortest paths computation takes linear
time if Dial’s implementation [4] of Dijkstra’s algorithm
is used. This is because !’ is nonnegative and the source
is connected to the other nodes by arcs of length at most

n. N
Lemma 9.2
1. P’ is integral.

2. Va€E, lpl > 1.

3. ELIMINATE-CHAIN does not create improvable arcs.

(GOLDBERG

Proof. The first claim follows from the fact that { is
integral. The last two claims follow from the observation
that [} is nonnegative and, for a € E, l(a) - ly(a) = 1
if a is improvable and 0 otherwise. W

Lemma 9.3 if the problem is feasible, then Yv on T
P'(v) = p(v) + d'(v).

Proof. Clearly p'(v) < p(v) +d'(v). Assume for contra-
diction that for some node v on T, p'(v) < p(v) + d'(v).
For the shortest path P in A from ¢ to v, we have
I'(P) < n+d'(v) and therefore 4,(P) < n + d’(v). Let
(t,w) be the first arc of P, and let Q be P with (¢, w)
deleted. We have

5(Q) = 5(P) — n — d'(w) < d'(v) - d'(w).

Note that since I’ is nonnegative, w must be a succes-
sor of v on I'. Let R be the part of I" between v and w.
By the definition of d’,

Ip(R) = d'(w) - d'(v).

Thus 1,(Q) + lp(R) < 0. This is a contradiction because
the paths @ and R form a cycle. ®

Lemma 9.4 If the problem is feasible and v is an improv-
able node on I' with respect to p, then v is not improvable
with respect to p'.

Proof. Assume for contradiction 3(u,v) € E :
Ip:(u,v) < 0. Let P be the shortest path in A from ¢
to u, let (¢, w) be the first arc on P, and let Q be P with
(t,w) deleted. Note that d(u) < d(v), because otherwise
lpt(u, v) cannot be negative. Therefore w must be a suc-
cessor of v on I'. Let R be the portion of I between v
and w.

Since @ is a shortest path, we have I3(Q) = 0. This
implies [,(Q) < 0. By the previous lemma I/(R) =
0. Therefore the cycle formed by R, @, and (u,v) has
a negative reduced cost with respect to p’. This is a
contradiction. W

Remark: Implications of Lemma 9.4 are stronger than
those of Lemma 6.1: if the problem is feasible, the former
lemma guarantees that all improvable nodes on I' are
“fixed”, and the latter guarantees only that the nodes
that are heads of the improvable arcs on I' are “fixed”.

10 Tighten Operation

In this section we describe an alternative to the cur-
RELABEL operation, which we call TIGETEN. This op-
eration is motivated by the operation described in [14]

SCALING ALGORITHMS FOR THE SHORTEST PaTHS PROBLEM 229

in the context of minimum cost flows. Let p be a (2¢)-
feasible price function. Assume that we eliminated cycles
in Gp, and let I, d’, and D be as in the proof of Lemma
7.1. Define a new price function p’ by

P (v) = p(v) +¢ ﬂg}l

TIGHTEN computes d’' and replaces p by p'. This takes
O(m) time.

For any v, 0 < p(v) — p'(v) < e. Thus if [, (v, w) > 0
then Ly (v, w) > —e. If —e < (v, w) <0, then I'(v,w) =
0 and thus d'(w) < d'(v); therefore Ly (v, w) > lp(v,w) >
—e. Finally if I, (v, w) < —¢, then I'(v,w) = —1 and thus
d'(w) < d'(v) — 1; therefore I (v, w) > (v, w) + ¢/D.

This implies that TIGHTEN creates no improvable arcs.
Since D < n — 1, the reduced cost of every existing im-
provable arc increases by at least ;%-. Therefore the im-
plementation of REFINE based on TIGHTEN takes O(nm)
time.

Note that TIGETEN does not maintain integrality of p,
so the method cannot terminate when ¢ reaches 1. How-
ever, if ¢ = O(1/n) and [is integral, an e-feasible price
function can be converted into a feasible price function
using rounding and a Dijkstra’s shortest paths computa-
tion. Therefore the overall running time of the algorithm
is O(nmlog(nN)).

This bound can be improved by using TIGHTEN in
combination with ELIMINATE-CHAIN. Implemented this
way, REFINE works as follows. It starts by removing cy-
cles from G, and computing d', D, and k. If D > vk,
then ELIMINATE-CHAIN is applied to the appropriate
chain, eliminating at least +/k improvable nodes. If
D < vk, then TIGHTEN is applied, increasing the re-

duced cost of every improvable arc by at least ﬁ

The first case cannot occur more than O(4/n) times
since all improvable nodes will be eliminated. The sec-
ond case cannot occur more than O(4/n) times since re-
duced cost of every improvable arc will increase by at
least ¢ and these arcs will no longer be improvable. The
resulting algorithm runs in O(y/nmlog(nN)) time.

11 Extensions to the Minimum-
Cost Circulation and Assign-
ment Problems

Our shortest path method extends to the minimum-
cost circulation problem. The intuitive difference is that
when a shortest path algorithm finds a negative cycle, it
terminates; when the corresponding minimum-cost cir-
culation algorithm finds a negative cycle, it increases the
flow around the cycle so that an arc on the cycle becomes

saturated, and continues. In our discussion below, we as-
sume that the reader is familiar with [14, 15]. We denote
the reduced costs by c; and the residual graph by Gj;.

We define admissible arcs to be residual arcs with
negative reduced costs, as in [14, 15]. Without loss
of generality, we assume that a feasible initial circu-
lation is available. A simple algorithm based on the
CUT-RELABEL operation does the following at each it-
eration. First, it canceles admissible cycles; this can be
done in O(mlogn) time (see e.g. [14]). Next, the al-
gorithm picks an improvable node v, finds the set S of
nodes reachable from v in the admissible graph, and exe-
cutes CUT-RELABEL(S). The resulting algorithm runs in
O(nmlognlog(nC)) time (note that the initial flow may
have residual arcs with reduced cost of —C with respect
to the zero price function). We can also use the TIGHTEN
operation to obtain a minimum-cost flow algorithm with
the same running time. These algorithms are variations
of the tighten-and-cancel algorithms of [14].

In the above minimum-cost flow algorithms, the ad-
missible graph changes due to flow augmentations in ad-
dition to price changes. Because of this fact, our analysis
of the improved algorithms for the shortest paths prob-
lem does not seem to extend to the minimum-cost flow
problem. In the special case of the assignment problem,
the analysis of the improved shortest path algorithm can
be extended to obtain an O(y/nmlog(nC)) time algo-
rithm. This bounds match the fastest known scaling
bound [11}], but the algorithm is different. The idea is to
define the admissible graph and improvable arcs so that
an improvable node has exactly one improvable arc going
mnto it and the residual capacity of this arc is one. This
is possible because of the special structure of the assign-
ment problem. When an admissible cycle is canceled, all
improvable arcs on this cycle are saturated and there are
no improvable nodes on the cycle after the cancellation.

12 Concluding Remarks

We described a framework for designing scaling algo-
rithms and two operations, CUT-RELABEL and TIGHTEN,
that can be used to design algorithms within this frame-
work. The framework is very flexible and can be used
to design numerous algorithms for the problem. Using
these results, we improved the time bound for the prob-
lem. We believe that further investigation of this frame-
work is a promising research direction. Qur algorithms
are easy to implement and may have practical implica-
tions; this work was in fact motivated by an experimental
study of minimum-cost flow algorithms [13].

The algorithms we discussed scale € by a factor of two.
Any factor greater then one can be used instead without
affecting the asymptotic time bounds.

230

One can apply the version of ELIMINATE-CHAIN de-
scribed in Section 9 without using scaling. It can be
shown that in this case if the problem is feasible, all neg-
ative reduced costs of arcs on I' are changed to nonnega-
tive ones, and reduced costs of other arcs do not become
more negative. This suggests a possibility of solving the
general shortest paths problem in O(y/m) Dijkstra short-
est paths computations. The problem, however, is that
our way of dealing with the first case of Lemma 7.1 does
not work without scaling,.

Our definition of e-feasibility corresponds to that of -
optimality for minimum cost flows [12, 15]. If one follows
(12, 15] faithfully, however, one would define e-feasibility
using I,(a) > —einstead of (2) and not consider arcs with
zero reduced costs admissible. Under these definitions,
the admissible graph cannot have zero length cycles, so
there is no need for DECYCLE. However, these definitions
seem to lead to an O(log(nN)) bound on the number of
iterations of the outer loop of the method.

The method can be modified to maintain a tentative
shortest path tree. When the algorithm terminates, this
tree is the shortest path tree. This eliminates the need
for the Dijkstra computation at the end of the algorithm.

In conclusion we would like to mention a natural vari-
ation of the TIGHTEN operation related to continuous
optimization techniques. Suppose we use I, instead of I
and redefine p’ by

P'(v) = p+6d'(v).

We can interpret d’ as the direction we want to move
in, and § as a parameter that determines the step size.
Then we can define a penalty function & whose value is
determined by the reduced costs, and pick § to achieve a
large decrease in ®. For example, we can define @ to be
absolute value of the most negative reduced cost and set
=1+ ji—;l;. Then an application of TIGHTEN reduces

® to at most
n

D+¢% n+l
(The last inequality follows from the fact that D < n®.)
The resulting algorithm runs in O(nmlog(nN)) time. It
would be interesting to study different penalty functions,
for example nonnegative functions in conjunction with
Dijkstra’s shortest paths computaiion.

L4 <®

Acknowledgments

I am grateful to Tomasz Radszik for suggesting an impor-
tant idea for the proof of Lemma 7.2 and the stronger
statement of Lemma 9.4, and to Bob Tarjan for suggest-
ing a clean implementation of DECYCLE. I would also like
to thank Serge Plotkin, Eva Tardos, and David Shmoys
for useful discussions and comments on a draft ot this

paper.

(GGOLDBERG

References

[1] R.E. Bellman. On a Routing Problem. Quart. Appl.
Math., 16:87-90, 1958.

(2] R. G. Bland and D. L. Jensen. On the Computa-
tional Behavior of a Polynomial-Time Network Flow
Algorithm. Math. Prog., 54:1-41, 1992.

[3] T. H. Cormen, C. E. Leiserson, and R. L. Rivest.
Introduction to Algorithms. MIT Press, Cambridge,
MA, 1990.

{4] R. B. Dial. Algorithm 360: Shortest Path Forest
with Topological Ordering. Comm. ACM, 12:632-
633, 1969.

[5] E. W. Dijkstra. A Note on Two Problems in Con-
nection with Graphs. Numer. Math., 1:269-271,
1959.

[6] R. P. Dilworth. A Decomposition Theorem for Par-
tially Ordered Sets. Annals for Math., 51:161-166,
1950.

[7] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Net-
works. Princeton Univ. Press, Princeton, NJ, 1962.

[8] G. Frederickson. Fast Algorithms for Shortest Paths
in Planar Graphs, with Applications. SIAM J.
Comput., 16:1004--1022, 1987.

{9] M. L. Fredman and R. E. Tarjan. Fibonacci Heaps
and Their Uses in Improved Network Optimization
Algorithms. J. Assoc. Comput. Mach., 34:596-615,
1987.

[10] H. N. Gabow. Scaling Algorithms for Network Prob-
lems. J. of Comp. and Sys. Sci., 31:148-168, 1985.

[11] H. N. Gabow and R. E. Tarjan. Faster Scaling Al-
gorithms for Network Problems. SIAM J. Comput.,
pages 1013-1036, 1989.

[12] A. V. Goldberg. Efficient Graph Algorithms for
Sequential and Parallel Computers. PhD thesis,
M.LT., January 1987. (Also available as Technical
Report TR-374, Lab. for Computer Science, M.L.T.,
1987).

[13] A. V. Goldberg. An Efficient Implementation of
a Scaling Minimum-Cost Flow Algorithm. Techni-
cal Report STAN-CS-92-1439, Department of Com-
puter Science, Stanford University, 1992.

[14] A. V. Goldberg and R. E. Tarjan. Finding
Minimum-Cost Circulations by Canceling Negative
Cycles. J. Assoc. Comput. Mach., 36, 1989. A pre-
liminary version appeared in Proc. 20th ACM Symp.
on Theory of Comp., 388-397, 1988,

SCALING ALGORITHMS FOR THE SHORTEST PATHS PROBLEM

[15] A. V. Goldberg and R. E. Tarjan. Finding
Minimum-Cost Circulations by Successive Approx-
imation. Math. of Oper. Res., 15:430-466, 1990. A
preliminary version appeared in Proc. 19th ACM
Symp. on Theory of Comp., 7T-18, 1987.

[16] S. T. McCormick. A Note on Approximate Binary
Search Algorithms for Mean Cuts and Cycles. UBC
Faculty of Commerce and Buisiness Administration,
unpublishd manuscript, 1992.

[17] H. Rock. Scaling Techniques for Minimal Cost Net-
work Flows. In U. Pape, editor, Discrete Struc-
tures and Algorithms, pages 181-191. Carl Hansen,
Miinich, 1980.

[18] R. E. Tarjan. Depth-First Search and Linear Graph
Algorithms. SIAM J. Comput., 1:146-160, 1972.

[19] R. E. Tarjan. Datia Structures and Network Algo-
rithms. Society for Industrial and Applied Mathe-
matics, Philadelphia, PA, 1983.

231

