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Abstract

A graph is planar if it can be drawn on the plane with
no crossing edges. There are several linear time planar
embedding algorithms but all are considered by many to
be quite complicated. This paper presents a new method for
performing linear time planar graph embedding which avoids
some of the complexities of previous approaches (including
the need to first st-number the vertices). Our new algorithm
easily permits the extraction of a planar obstruction (a
subgraph homeomorphic to K33 or K5) in O(n) time if the
graph is not planar. :

Our algorithm is similar to the algorithm of Booth and
Lueker which uses a data structure called a PQ-tree. The P-
nodes in a PQ-tree represent parts of the partially embedded
graph that can be permuted, and the Q-nodes represent
parts that can be flipped. We avoid the use of P-nodes by not
connecting pieces together until they become biconnected.
We avoid Q nodes by using a data structure which allows
biconnected components to be flipped in O(1) time.

1 Introduction

An undirected graph G contains a set V of vertices
and a set E of edges each which corresponds to an
unordered pair of vertices from V. Throughout this
paper, n is used to denote the number of vertices of a
graph. Because loops (edges of the form (u,u)), and
parallel edges (multiple edges with the same endpoints)
provide no extra challenge, we assume that the graphs
considered do not have loops or parallel edges (they are
simple graphs).

A graph is often drawn using points for the vertices
and lines (possibly curved) for the edges. A geometric
planar embedding of a graph is a drawing of the graph
on a plane such that the vertices are placed in distinct
positions and no two edges intersect except at comimon
endpoints. Given a graph G, a planarity test algorithm
determines if G has a planar embedding. A planar
embedding algorithm also indicates the clockwise order
of the neighbors of each vertex in such an embedding.
To then generate a geometric planar embedding, one
must choose vertex positions and edge shapes. This
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is viewed as a separate problem, in part because it is
application dependent. For example, our notion of what
constitutes a suitable rendering of a graph may differ
substantially if the graph represents an electronic circuit
versus a hypertext book.

A path of length k in a simple graph G from vg
to v is described by a sequence of vertices vg, vy,
v2, ... vx such that (v;,v;q1) is an edge of G for i
from 0 to k — 1. A graph is connected if every pair
of vertices is connected by some path and disconnected
otherwise. Vertex v is a cut vertex of graph G if the
removal of v and its incident edges leaves the resulting
graph disconnected. A graph with no cut vertices is
biconnected. A subgraph of a graph G = (V,E) is
a graph H = (V' E’) where V' C V and E' C E.
A biconnected component of a graph, or bicomp, is a
maximal biconnected subgraph. Because the bicomps
of a planar graph can be isolated in O(n) time [16],
and it is easy to obtain the embedding of a graph
from embeddings of its bicomps, most planarity testing
and embedding algorithms are designed specifically for
biconnected graphs. Our algorithm as presented is for
biconnected graphs. However, only small modifications
are required to make 1t work on graphs that are not
biconnected eliminating the need to first extract the
bicomps.

In 1974, Hopcroft and Tarjan [9] formulated the
first linear time planarity tester based in part on earlier
works by Auslander and Parter [1] and Goldstein [8].
Williamson presents an exposition of the important
concepts related to the Hopcroft and Tarjan algorithm
with some new applications [17]. Another planarity
test algorithm based on work of Lempel, Even, and
Cederbaum [12] was optimized to run in linear time
by using Even and Tarjan’s s,t-numbering scheme [6]
together with the PQ-tree data structure of Booth and
Lueker{2]. Chiba, Nishizeki, Abe and Ozawa [3] use
this approach to create a linear time planar embedding
algorithm. The 1985 algorithm of de Fraysseix and
Rosentiehi [4] should also be noted in regards to this



Figure 1: The planar obstructions Ky and Kj33
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research because their approach is also based on the
consideration of the back edges of a DFS tree.

The complexities of the linear time planarity al-
gorithms are so great that some textbooks (for exam-
ple, [7]) reduce the theoretical rigor by discussing only
simpler O(n?) algorithms, while others cover the lin-
ear time algorithms, but only in enough detail for the
reader to achieve an O(n?) implementation (for exam-
ple, [3]). Readers are typically referred to the journal
articles for more details, yet they also do not contain
enough information. To wit, the conclusion in Hopcroft
and Tarjan [9, p. 365] states that their planarity test
collects enough information to make the construction
of a planar representation easy and then proceeds to
briefly sketch a method for doing so. Over a decade
later, Chiba, Nishizeki, Abe, and Ozawa [3, p. 55] state
that modifying the Hopcroft and Tarjan algorithm to
vield a planar representation “looks to be fairly com-
plicated; in particular, it is quite difficult to implement
a part of the algorithm for embedding an intractable
path”. Booth and Lueker do not include the complete
set of templates required to update the PQ-tree fast
enough to ensure that the algorithm can run in O(n)
time [2, p. 362] but leave them for the reader to derive.

Our new algorithm is the result of an effort to re-
duce the theoretical complexity of solving graph pla-
narity problems. This also has the pedagogic benefit of
making a linear time planarity algorithm more accessi-
ble as well as the practical benefit of reducing imple-
‘mentation time from several months to a few weeks.

Kuratowski [11] proved that any graph which is not
planar contains a subgraph homeomorphic to either Kj
or K33 (subgraphs which look like K5 (Figure 1(a)), or
K3 3 (Figure 1(b)) except that the edges can be replaced
by paths). The indication of such a subgraph provides
a simple certificate of non-planarity.

The isolation of a Kuratowsk: subgraph (a subgraph
homoeomorphic to Ky or Ks3) is a first step in some
algorithms for more complex embedding problems (for
example, the torus [10], the projective plane [14] and
oriented surfaces of fixed genus [15]). Detection of a
Kuratowki subgraph also plays a role in algorithms that

Figure 2:
clockwise.
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help to resolve edge crossings for a non-planar graph by
adding new vertices and edges for applications such as
the embedding of non-planar electronic circuits [13].

Williamson [18] presented the first linear time Ku-
ratowski subgraph isolator based on Hopcroft and Tar-
Jan’s planarity algorithm [9]. Our new algorithm offers a
linear time method for isolating a Kuratowski subgraph
in a non-planar graph.

Section 2 describes a standard strategy whose use
permits bicomps to be flipped in O(1) time. Then
in Section 3, we provide a general overview of the
algorithm. A closer look at the data structure used
to represent the embedding is provided in Section 4.
Various components of the algorithm are described in
more detail in Sections 5, 6, and 7. Section 8 concludes
the paper with some ideas for future research.

2 Flipping in constant time

Consider a data structure which contains several cells
doubly linked in a cycle. Each cell has two links.
Typically, one is considered to be a forward or clockwise
arc and the other is a backward or counterclockwise arc.
Changing our sense of clockwise can be implemented by
swapping the two pointers of each node. But this takes
time O(k) where k is the number of nodes in the cycle.

Suppose instead that a node just has two pointers
and neither is assigned to be the forward or clockwise
arc. Such a list is pictured in Figure 2. 1t is still possible
to walk around such a cycle: at each step you try both
pointers and select the one that does not take you back
to the node you just visited. This only adds a constant
amount of overhead to a walk. A sense of clockwise
comes from assigning one arc to be clockwise. Changing
the orientation of the cycle can be accomplished by
assigning the reverse arc to be clockwise. Because the
links do not need to be changed, this takes only O(1)
time.

3 An overview of the new algorithm

The algorithm begins with a few preprocessing steps,
most of which are common to all linear time planarity




algorithms. The first of these steps is to create a depth
first search tree (DFS tree) in the graph. A description
of DFS can be found in most standard graph algorithms
texts including [7]. This assigns a depth first index
(DFT) to each vertex, and it divides the edges into two
groups, DFS tree edges and back edges. The vertices are
sorted into ascending DFT order (in linear time).

The algorithm adds edges one at a time to the
embedding. We maintain planar embeddings of the
bicomps induced by the edges which have been added so
far. These are stored using the data structure described
in Section 4. Since a vertex can belong to more than
one bicomp, there can be multiple records for a vertex
in the data structure.

To start, each DFS tree edge is embedded as a
singleton bicomp. The unique bicomp containing both
the vertex v and its DFS parent is v's parent bicomp.
The root of the DFS tree does not have a DFS parent
but for consistency, we initialize a bicomp containing
only the root vertex, and define this to be its parent
bicomp. A pointer for each vertex v to its record in its
parent bicomp is stored as this record must be located
as part of the process of adding edges. The vertex in
each bicomp with the smallest DFT is called the root
of the bicomp. Obviously, the DFS parent of a vertex r
cannot be in a bicomp with root » because it has smaller
DFI. A bicomp with root node r is a child bicomp of the
parent bicomp for r.

The algorithm then processes the vertices in reverse
DF1 order. Processing a verter w involves the addition
of the back edges (u,w) where u is a DFS descendant
of w. The edges (w,v) which connect w to a DFS
anscestor v are not added until v is processed. The order
in which to add these edges is chosen carefully using a
walk-up followed by a walk-down as described in Section
6. The bicomps are merged as necessary to ensure that
the partial embedding always reflects embeddings of the
bicomps induced by the edges added so far. An example
of such a merge 1s provided in Section 4.

The algorithm maintains the property that any un-
embedded edges can always be placed in the external
face of the partial embedding (assuming the graph is
planar). The order selected for processing the vertices
makes this possible. When the graph starts out con-
nected, the path in the DFS tree from an unprocessed
vertex u to the root uses only unprocessed vertices. As
a consequence, all of the unprocessed vertices must be
embeddable in the same face as the root of the DFS tree
if the graph is planar. We state this as an assertion be-
cause we refer to it several times later in order to argue
correctness:

ASSERTION 3.1. At any stage of our embedding process
for a planar graph, there s a planar embedding of

the whole graph which is consistent with the partial
embedding and which has the remaining edges placed in
the external face regions of the embedded bicomps.

During the processing of vertex w, the node for ver-
tex v occurring in bicomp B is defined to be externally
active if there is a path from v to a vertex u with DFI
less than that of w whose internal vertices (in the case
that the path is not a single edge) are DFS descendants
of v which are not in B. Bicomps might have to be
flipped when they are merged in order to ensure that
all externally active vertices stay on the external face as
edges are added. This is required to maintain Assertion
3.1.

When an edge moves into the interior region of
an embedded bicomp, it plays no further role. An
argument that our new algorithm runs in linear time
can be obtained by demonstrating that the work done
when adding an edge is proportional to the portion of
the graph which moves to the interior. The algorithm
accomplishes the job in this time bound by carefully
selecting the order in which to add the back edges and
also by avoiding redundant work (described in more
detail in Section 6).

4 Data structures

Conceptually, the information maintained at each stage
of the algorithm consists of embeddings of the bicomps.
Figure 3 shows the embeddings of two bicomps By and
B;. The grey vertices are assumed to be externally
active. When edge (5,0} is added, these two bicomps
are merged together. To maintain the property that
all further edges can embed into the external face, it is
necessary to flip Bs.

This information is stored in a data structure that
has one record for each vertex in each bicomp and two
records for each edge. The vertex and edge records
contain similar information, so in a language like C, it
is possible to use the same type of record for each.

For a bicomp, the records for the edges incident to
a vertex v (given names of the form (v, u)) are linked
in a cyclic list with the record for v inserted between
the two edges that either fall on the external face or
which fell on the external face just before the vertex
was moved to the interior. We call these links neighbor
links. They provide the cyclic order of the neighbors of
v in the embedded bicomp. As described in Section 2,
there is no sense of clockwise.

The records contain one additional pointer called a
twin link. For each edge (u,v), it is set to point to the
record (v, u). For a vertex v, the twin link is directed
to the record for v which is in its parent bicomp.

Figure 4 shows our data structure for the bicomps
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Figure 4: Data structure befare the merge.
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B, and Bj pictured in Figure 3. Edges indicate the
bidirectional links. To distinguish between the twin
links and the neighbor links, the twin links are given in
bold. For each vertex which is not a root of a bicomp,
the twin links are self loops, and these self loops have
not been drawn.

Figure 5 indicates the change to the data structure
after the merge of the bicomps as pictured in Figure 3.
Note that only a constant number of links are altered.
The record for (0, 5) is inserted between 0 and (0, 2) and
the one for (5, 0) is inserted between 5 and (5, 3) because
the edges (0,2) and (5,3) belong in the interior after
the merge. The bicomp rooted at vertex 2 is “fipped”
the correct way by inserting the record for vertex 2
between the edge records (2,1), and (2,6) which fall
on the external face after the merge and then linking
together (2,3) and (2, 0).

Given this data structure, it is always possible to
walk around the external face of the embedded bicomp
starting at any vertex. Such a walk starts at the record
for a vertex. Then we follow a neighbor link to get
to an incident edge on the external face. Next, we
traverse its twin link. From this edge record, choose
the neighbor link which goes to a record for a vertex
and continue like this. If we obtain the external face
as represented by the data structure in Figure 5 it is
exactly as pictured in Figure 3. Starting at the record
for vertex zero and proceeding towards vertex one gives
the following traversal of the external face: 0, (0,1),
(1,0), 1, (1,2), (2,1), 2, (2,6), (6,2), 6, (6,3), (5,6), 5,
(5,0), (0,5), 0.

5 Detecting external activity

To maintain Assertion 3.1, it is critical to be able to
determine if a vertex is externally active. This section
explains how to do this.

Recall that the preprocessing stage creates a DFS
tree and that vertices are renumbered according to their
DFI. We also need to compute the lowpoint L(v) for
each vertex (see for example [5, p. 59]). The value of
L(v) 1s defined to be the minimum value u such that v or
some DFS descendant of v has a back edge to the vertex
with DFT u. It is well known that these values can be
computed in O(n) time using a postorder traversal of
the DFS tree.

Next we sort the vertices according to their lowpoint
values in linear time. Then we step through the vertices
as sorted by the lowpoint values adding a record for each
which also contains its lowpoint value to the end of a
doubly linked adjacency list for its DFS parent. This
creates In linear time an adjacency list representation
for the DFS tree where DFS children adjacent to each
verfex are sorted by the lowpoint values. We call this

the DFS adjacency list.

At the same time, we record a pointer to the record
for vertex v in the DFS adjacency list for its parent p
with the record for root node p of the singleton bicomp
containing tree edge (v,p). The purpose is to allow
constant time deletion of the record for v in the DFS
adjacency list of p when the bicomp containing tree edge
(v,p) is merged into the parent bicomp for p. During
the processing of w, vertex p is externally active if and
only if either L(p) is less than the DFT of w or the first
element on p’s DFS adjacency list has L value less than
the DFT of w.

6 Walking up and walking down

The purpose of the walk-up procedure is to ensure that
the back edges which go to the vertex being processed
from a descendant are added in an order that preserves
Assertion 3.1. Further, the information gathered allows
us to restrict attention to just the part of the graph
involved in the processing of the new vertex. Or more
precisely, it guarantees that the work completed in
processing the vertex is proportional to the portion of
the graph which moves to the interior. This is critical to
ensuring that the algorithm runs in linear time overall.

For each back edge (v, w) being added where w is
the vertex being processed, the walk-up starts at the
record for » in its parent bicomp and searches for a
path across the external face of the partially embedded
graph which goes to the record for vertex w in w's
parent bicomp. The paths used in going up correspond
to the portion of the graph that moves to the interior
as the back edges are added. Hence to ensure Assertion
3.1, these paths should avoid non-root externally active
vertices entirely. Further, if a root r is externally active
because of an edge from r to an ancestor of w or because
some other child bicomp of vertex r is externally active,
care should be taken to traverse upwards coming from
at most one of s two children sitting on the external
face of the child bicomp. Also, paths coming up from
different externally active child bicomps or from two
sides of a bicomp which is externally active cannot
traverse the same segment of an external face (one must
go around the external face in one direction, and the
other must go the other way).

The twin link in the root vertex of a bicomp is used
to jump up to the parent bicomp. Each time we make
such a jump, data is stored to indicate that the walk-
down needs to go back down to the child bicomp. We
say that the child bicomp is a pertinent bicomp for the
node reached by following the twin link.

To avoid excess work, nodes selected to be on a
path in the walk-up process are marked as visited. A
walk-up for a vertex can stop when reaching a visited



node as the path from there up to the root has already
been computed and recorded as necessary for the walk-
down. Also, the process of searching along the external
face of a bicomp for a good path to the root is done
in both directions “in parallel”. This ensures that the
work done is proportional to the number of edges on the
portion of the external face moving to the interior.

The walk-down phase involves a depth first search
of the graph induced by the paths discovered during
the walk-up process. To ensure Assertion 3.1, it is
important when traversing this tree structure to first
add the back edge incident to the visited node if
there is one, then visit pertinent bicomps rooted at
the node which have no externally active nodes, then
visit pertinent bicomps rooted at the node which have
externally active vertices (there can be at most two
of these if the graph is planar), and then continue if
necessary along the external face of its bicomp.

The walk-up uses three lists at each vertex record
to compile this information for the walk-down, one for
pertinent bicomps that have no externally active nodes,
one for pertinent bicomps with externally active nodes,
and one for neighbors along the external face which need
to be visited still. If the variables used are reinitialized
during the walk-down process, we can avoid doing linear
time initialization work at each phase.

Figure 6 indicates the configurations which cause
the walk-up process to fail. The hexagon represents
the vertex w which is currently being processed. The
square vertices are externally active. The vertex d
represents all the ancestors of the externally active
vertices contracted together into a single vertex along
their DFS tree path. Vertex r is the root of a bicomp.
Edge (u,w) is being added to the graph and a path
(possibly with only one vertex) connecting u to v has
been contracted into v. Some of the edges shown may
actually be paths. Note that the configuration in Figure
6(c) actually has a K33 homeomorph instead of a Kj
homeomorph if r, v, and z do not all have the same
DFS ancestor d.

As each of the configurations in Figure 6 contains a -

subgraph homeomorphic to either K3 3 or K3, the walk-
up process succeeds for all planar graphs. Extracting
the Kuratowski subgraph encountered is an easy task
(details are omitted but can be derived from our previ-
ous discussion).

7 Choosing a sense of clockwise

One way to ensure the final data structure can be used
to assign a clockwise sense to the embedding in linear
time is to “short circuit” a vertex when it is no longer
externally active. This transition to being inactive can
only occur during a merge of bicomps where the vertex is

a root, or when an edge is added incident to the vertex.
At this point, we short circuit the vertex by adding an
edge that interconnects its two neighbors on the external
face.

At the end, a clockwise sense is first assigned to
the vertices and edges on the external face. The other
vertices and their incident edges can then be assigned
a compatible clockwise sense in O(1) time each if the
vertices are processed in an order which is the reverse
of when they moved to the interior because it suffices to
examine the orientation of the “short circuit” edge to
orient the vertex.

8 Conclusions and future research

In this paper, we have explained all the tricks required
to get our new planar embedding algorithm to run in
linear time. We have a version implemented which runs
in linear time but which is not exactly as described in
this paper. We found it much easier to program than
any of the linear time alternatives.

Our other major contribution is the data structure
used for the graph (described in Section 4). The links
have a very natural correspondence to how the graph
is actually laid out in the plane. This representation
may prove more useful to some applications than the
standard adjacency list scheme where the neighbors are
listed according to their clockwise ordering about the
vertex.

Further, our tactic of not insisting on a clockwise
sense for our doubly linked circular lists (described in
Section 4) permits a bicomp flip in constant time. This
may prove helpful in obtaining faster algorithms for
other applications.
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