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Description 
bttroductian. A maximal complete subgraph (clique) is a 

complete subgraph that is not contained in any other complete 
subgraph. 

A recent paper [1] describes a number of techniques to find 
maximal complete subgraphs of a given undirected graph. In this 
paper, we present two backtracking algorithms, using a branch- 
and-bound technique [4] to cut off branches that cannot lead to a 
clique. 

The first version is a straightforward implementation of the 
basic algorithm. It is mainly presented to illustrate the method used. 
This version generates cliques in alphabetic (lexicographic) order. 

The second version is derived from the first and generates 
cliques in a rather unpredictable order in an attempt to minimize 
the number of branches to be traversed. This version tends to pro- 
duce the larger cliques first and to generate sequentially cliques 
having a large common intersection. The detailed algorithm for 
version 2 is presented here. 

Description o f  the algorithm--Version 1. Three sets play an 
important role in the algorithm. (1) The set compsub is the set 
to be extended by a new point or shrunk by one point on traveling 
along a branch of the backtracking tree. The points that are eligible 
to extend compsub, i.e. that are connected to all points in compsub, 
are collected recursively in the remaining two sets. (2) The set 
candidates is the set of all points that will in due time serve as an 
extension to the present configuration of compsub. (3) The set 
not is the set of all points that have at an earlier stage already 
served as an extension of the present configuration of compsub and 
are now explicitly excluded. The reason for maintaining this set 
trot will soon be made clear. 

The core of the algorithm consists of a recursively defined 
extension operator that will be applied to the three sets Just de- 
scribed. It has the duty to generate all extensions of the given 
configuration of compsub that it can make with the given set of 
candidates and that do not contain any of the points in not. To 
put it differently: all extensions of compsub containing any point 
in not have already been generated. The basic mechanism now 
consists of the following five steps: 

Step 1. Selection of a candidate. 
Step 2. Adding the selected candidate to compsub. 
Step 3. Creating new sets candidates and not from the old sets by 

removing all points not connected to the selected candidate 
(to remain consistent with the definition), keeping the old sets 
in tact. 

Step 4. Calling the extension operator to operate on the sets just 
formed. 

Step 5. Upon return, removal of the selected candidate from 
compsub and its addition to the old set not. 

We will now motivate the extra labor involved in maintaining 
the sets not. A necessary condition for having created a clique is 
that the set candidates be empty; otherwise compsub could still be 
extended. This condition, however, is not sufficient, because if 
now not is nonempty, we know from the definition of not that the 
present configuration of compsub has already been contained in 
another configuration and is therefore not maximal. We may now 
state that compsub is a clique as soon as both not and candidates are 
empty. 

If at some stage trot contains a point connected to all points in 
candidates, we can predict that further extensions (further selec- 
tion of candidates) will never lead to the removal (in Step 3) of that 
particular point from subsequent configurations of not and, there- 
fore, not to a clique. This is the branch and bound method which 
enables us to detect in an early stage branches of the backtracking 
tree that do not lead to successful endpoints. 

A few more remarks about the implementation of the algo- 
rithm seem in place. The set compsub behaves like a stack and can 
be maintained and updated in the form of a global array. The sets 
candidates and not are handed to the extensions operator as a 
parameter. The operator then declares a local array, in which the 
new sets are built up, that will be handed to the inner call. Both 
sets are stored in a single one-dimensional array with the following 
layout: 

]not [ candidates 

index values: l ..... ne ............... ce .... 

The following properties obviously hold: 

1. ne < ce 
2. ne = ce:empty (candidates) 
3. ne = 0 :empty (trot) 
4. ce = 0 :empty (not) and empty (candidates) 

= clique found 

If the selected candidate is in array position ne q- 1, then the second 
part of Step 5 is implemented as ne : = ne + 1. 

In version 1 we use element ne + 1 as selected candidate. This 
strategy never gives rise to internal shuffling, and thus all cliques 
are generated in a lexicographic ordering according to the initial 
ordering of the candidates (all points) in the outer call. 

For an implementation of version 1 we refer to [3]. 
Description o f  the algori thm--Version 2. This version does not 

select the candidate in position ne + 1, but a well-chosen candidate 
from position, say s. In order to be able to complete Step 5 as 
simply as described above, elements s and ne + 1 will be inter- 
changed as soon as selection has taken place. This interchange 
does not affect the set candidates since there is not implicit ordering. 
The selection does affect, however, the order in which the cliques 
are eventually generated. 

Now what do we mean by "well chosen"? The object we have 
in mind is to minimize the number of repetitions of Steps 1-5 in- 
side the extension operator. The repetitions terminate as soon as 
the bound condition is reached. We recall that this condition is 
formulated as: there exists a point in not connected to all points in 
candidates. We would like the existence of such a point to come 
about at the earliest possible stage. 

Let us assume that with every point in not is associated a 
counter, counting the number of candidates that this point is not 
connected to (number of disconnections). Moving a selected 
candidate into not (this occurs after extension) decreases by one 
all counters of the points in not to which it is disconnected and 
introduces a new counter of its own. Note that no counter is ever 
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Fig. l. Random graphs show the computing time per clique (in 
ms) versus dimension of the graph (in brackets: total number of 
elk aes in the test sample). 

16( no da ta  
av " lab ia  

14f 

no data  
ava i l ab l e  

12G 

I 0 0  o = B i a r s t o n e  

• = Version 1 

8 0  + = r s '  n 2 

60 

40 

2O 

50) (127) (330) (579) (2163) (3784) (8816) (43223) (12856) 

0 0 115 20 

Fig. 2. Moon-Moser graphs show the computing time (in ms) ver- 
sus k. Dimension of the graph = 3k. Plotted on logarithmic scale. 

10 5 

t04 

103 

102 

o 

o 

decreased by more than one at any one instant. Whenever a counter 
goes to zero the bound condition has been reached. 

Now let us fix one particular point in not. If we keep selecting 
candidates disconnected to this fixed point, the counter of the 
fixed point will be decreased by one at every repetition. No other 
counter can go down more rapidly. If, to begin with, the fixed point 
has the lowest counter, no other counter can reach zero sooner, 
as long as the counters for points newly added to not cannot be 
smaller. We see to this requirement upon entry into the extension 
operator, where the fixed point is taken either from not or from 
the original candidates, whichever point yields the lowest counter 
value after the first addition to not. From that moment on we only 
keep track of this one counter, decreasing it for every next selec- 
tion, since we will only select disconnected points. 

The Algol 60 implementation of this version is given below. 
Discussion of  comparative tests. Augustson and Minker [1] 

have evaluated a number of clique finding techniques and report 
an algorithm by Bierstone [2] as being the most efficient one. 

In order to evaluate the performance of the new algorithms, 
we implemented the Bierstone algorithm x and ran the three algo- 
rithms on two rather different testcases under the Algol system 
for the EL-X8. 

For our first testcase we considered random graphs ranging 
in dimension from 10 to 50 nodes. For each dimension we gen- 
erated a collection of graphs where the percentage of edges took 
on the following values: 10, 30, 50, 70, 90, 95. The cpu time per 
clique for each dimension was averaged over such a collection. The 
results are graphically represented in Figure 1. 

The detailed figures [3] showed the Bierstone algorithm to be 
of slight advantage in the case of small graphs containing a small 
number of relatively large cliques. The most striking feature, how- 
ever, appears to be that the time/clique for version 2 is hardly 
dependent on the size of the graph. 

Bierstone's algorithm as reported in [1] contained an error. 
In our implementation the error was corrected. The error was 
independently found by Mulligan and Corneil at the University 
of Toronto, and reported in [6]. 
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The difference between version 1 and "Bierstone" is not so 
striking and may be due to the particular Algol implementation. 
It should be borne in mind that the sets of nodes as they appear in 
the Bierstone algorithm were coded as one-word binary vectors, 
and that a sudden increase in processing time will take place when 
the input graph is too large for "one-word representation" of its 
subgraphs. 

The second testcase was suggested by the referee and consisted of 
regular graphs of dimensions 3 X k. These graphs are constructed 
as the complement of k disjoint 3-cliques. Such graphs contain 
3 k cliques and are proved by Moon and Moser [5] to contain the 
largest number of cliques per node. 

In Figure 2 a logarithmic plot of computing time versus k is 
presented. We see that both version 1 and version 2 perform sig- 
nificantly better than Bierstone's algorithm. The processing time 
for version 1 is proportional to 4 ~, and for version 2 it is propor- 
tional to (3.14)~ where 3 k is the theoretical limit. 

Another aspect to be taken into account when comparing 
algorithms is their storage requirements. The new algorithms 
presented in this paper will need at most ½M(M+3)  storage loca- 
tions to contain arrays of (small) integers where M is the size of 
largest connected component in the input graph. In practice this 
limit will only be approached if the input graph is an almost com- 
plete graph. The Bierstone algorithm requires a rather unpredict- 
able amount  of store, dependent on the number  of cliques that 
will be generated. This number  may be quite large, even for mod- 
erate dimensions, as the Moon-Moser graphs show. 

Finally it should be pointed out that Bierstone's algorithm 
does not report isolated points as cliques, whereas the new al- 
gorithm does. Either algorithm can, however, be modified to pro- 
duce results equivalent to the other. Suppression of l-cliques in 
the new algorithm is the simplest adaption. 

Acknowledgments. The authors are indebted to H.J. Schell 
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Algorithm 
procedure output maximal complete subgraphs 2(connected, N); 

value N; integer N; 
Boolean array connected; 

comment The input graph is expected in the form of a symmetrical 
Boolean matrix connected. N is the number of nodes in the 
graph. The values of the diagonal elements should be true; 

begin 
integer array ALL,  compsub[l : N]; 
integer c; 
procedure extend version 2(old, ne, ce) ; 

value he, ce; integer r/e, ce; 
integer array old; 

begin 
integer array new]l : ce]; 
integer nod, fixp; 
integer newne, newce, i, j ,  count, pos, p, s, sel, minnod; 
comment The latter set of integers is local in scope but need 

not be declared recursively; 
minnod := ce; i := n o d : =  0; 

D E T E R M I N E  E A C H  COUNTER V A L U E  A N D  L O O K  FOR 
M I N I M U M :  

f o r i : =  i +  1 whilei <_ c e / ~ m i n n o d ~  Odo 
begin 

p := old]i]; cowtt := 0; j := he; 
C O U N T  D I S C O N N E C T I O N S :  

f o r j  := j + 1 whilej  < ce /~ count < minnod do 
if 7 connected[p, old[j]] then 
begin 

count :=  count + 1; 
SA  VE P O S I T I O N  OF P O T E N T I A L  C A N D I D A T E :  

pos :=  j 
end; 

T E S T  N E W  M I N I M U M :  
if count < minnod then 
begin 

f ixp  := p; minnod := count; 
if i <  r/e then s := pos 
else 
begin s :=  i; PREINCR:  nod :=  l end 

end N E W  M I N I M U M ;  
end i; 
comment If fixed point initially chosen from candidates then 

number of disconnections will be preincreased by one; 
B A C K T R A  CKC Y C L E  : 

for n o d  : = minr/od + nod step -- 1 until 1 do 
begin 

I N T E R C H A N G E :  
p :=  old]s]; old[sJ :=  old[ne + lJ; 
sel := old[he + 1] :=  p; 

FILL N E W  S E T  not: 
r / e w r / e  : =  i : =  0 ;  

for i :=  i + 1 while i <_ r/e do 
if eonnected[sel, old[i]] then 

begin newne :=  newne + 1; new[newne] :=  old[il end; 
FILL N E W  S E T  cand: 

r/ewee :=  newne; i :=  ne + 1; 
f o r i : =  i +  l w h i l e i < _  cedo  

if connected[sel, old[ill then 
begin newce :=  newce 'k 1; r/ew[newce] :=  old[i] end; 

A D D  TO compsub: 
c :=  c --]- 1; compsub[c] :=  sel; 
if  r/ewce = 0 then 
begin 

integer loc;  
outstrir/g(1, ' clique = ') ; 
for loc :=  1 step 1 until c do 

outinteger(1, compsub[loc]) 
end output o f  clique 
else 
if newne < newce then extend version 2(r/ew, newne, newee) ; 

R E M O V E  F R O M  compsub: 
c := e - -  l; 

A D D  TO not: 
r/e :=  ne + 1; 
if nod > 1 then 
begin 

S E L E C T  A C A N D I D A T E  D I S C O N N E C T E D  TO T H E  FIXED 
POINT:  

S : =  r/e; 

LOOK: FOR C A N D I D A T E :  
s : = s + l ;  
if conneeted[fixp, old[s]] then go to L O O K  

end selection 
end B A C K T R A C K C Y C L E  

end extend version 2; 
for c :=  1 step 1 until N do ALL[c] := e; 
c :=  0; extend version 2(ALL,  O, N) 

end output maximal complete subgraphs 2; 

R e m a r k  on A l g o r i t h m  3 2 3  [G6]  
G e n e r a t i o n  o f  P e r m u t a t i o n s  in  L e x i c o g r a p h i c  O r d e r  

[R.J .  O r d - S m i t h ,  C o m m .  A C M  11 ( F e b .  1968),  117] 

M o h i t  K u m a r  R o y  [Recd .  15 M a y  1972] 

C o m p u t e r  C e n t r e ,  J a d a v p u r  U n i v e r s i t y ,  

I n d i a  

C a l c u t t a  32, 

In presenting Algorithm 323, BESTLEX,  for generating per- 
mutations in lexicographic order, the author has mentioned the 
number of transpositions. It may be remarked here that equal 
numbers of transpositions are required by both B E S T L E X  and 
the previously fastest algorithm, Algorithm 202 [1]. The exact 
number of transpositions (T,) necessary to generate the complete 
set of n I permutations is given by 

Tn = nI ( ~ 1 )  -- ( n + l ) / 2 ,  i f n  is odd, and 
7", = r/! (~-2) - r//2, if r/is even, 

1 1 1 
where ~2~ = 1 + ~-! + ~.. + . . .  + ~ --  1.543 for n >_ 3. 

The above expressions do not include the few extra transpositions 
(equal to the integral part of n/2) required by B E S T L E X  to gener- 
ate the initial arrangement from the final one, as this portion has 
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not been included in Algorithm 202. Therefore, the number of 
transpositions has no importance in the context of the claim that 
BESTLEX is more than twice as fast as Algorithm 202. 

The main factor contributing to the speed of BESTLEX is 
the substantial reduction in the number of comparisons required, 
by the introduction of the own integer array q. Taking into account 
only those comparisons which involve array elements, the number 
of comparisons (C,) required to generate all the n! permutations 
can be shown to be equal to 

n[ 
C,  (Algorithm 202) = ~- [1 + 3,~,_~] + n, 

C,, (BESTLEX) = n! [½q-~,,-l], 

1 1 1 
where ~,, = 1 + ~ q -~- -k  " "  -k~. -- 1.718 forn > 6. 

This shows that the number of comparisons required by BESTLEX 
is lower by .859(n!) (approximately) in the case of the generation 
of all the n ! arrangements. 

Finally, a modification of the BESTLEX algorithm is sug- 
gested which will reduce the number of comparisons again by 
(n!)/2. The modification involves replacement of lines 2-14 of 
Algorithm 323 by the following. 

begin own integer array q[3:n]; integer k, m; 
real t; own Boolean flag; 

comment Own dynamic arrays are not often implemented. The 
upper bound will have to be given explicitly; 

if first then 
begin first := false; flag := true 
for m : =  3 step 1 until n do q[m] := 1 
end of initialization process; 
if flag then 
beginflag :=  false; 

t :=  x[l]; x[1] :=  xt2h x121 := t; 
go to finish 

end; 
flag :=  true; 
for k :=  3 step 1 until n do 

The following deficiencies in the algorithm were noted 
1. The dimensional parameters of ACSPMX, ADSPMX, and 
MUSPMX are incomplete. As an illustration of this consider the 
two matrices [100 
A =  2 0 L00, 

0 0 

[000 
B =  0 3 L0 0 

0 0 

Ool oj 
oq o] 

each of which has four nonzero elements. 
Then the sum matrix has eight such elements, and in general, 

for two matrices with n~ and n2 nonzero elements, the number of 
nonzero elements, n3, in the sum matrix is in the range 0 < n3 < 
n l  -~  n2 • 

However in .4DSPMX the condition used is i11 = n~ = n3. 
Similar arguments apply t o / ICSPMX and MUSPMX. 
To correct this requires extensions to the parameter lists and 

dimension statements, and also it changes the conditional state- 
ments within the subroutines concerned. 

This shows up with the CALL/360-0S system since the com- 
piler performs subscript checking. It would not be evident on most 
compilers including the IBM Fortran IV G compiler. It is, how- 
ever, bad practice to rely on default effects of compilers. 
2. There are three, probably copying, errors in MUSPMX (page 
270). 

(i) Line 33 should be: 
IF(NCA.EQ.NCB) GO TO 3 

(ii) Line 55 should be: 
DO 14J = 1, NRB 

(iii) Line I02 should be: 
CALL IPK(NRB,MC,2,NM) 

References 
1. Shen, Mok-Kong. Algorithm 202, generation of permuta- 
tions in lexicographical order. Comm. ACM 6 (Sept. 1963), 517. 

Added in proof: An improved version of BESTLEX, viz. Al- 
gorithm 323A, Generation of Permutation Sequences: Part 2, by 
R.J. Ord-Smith [Comp. J. 14, 2 (May 1971), 136-139], which also 
incorporates the modification suggested here, has come to the au- 
thor's attention. 

R e m a r k  on A l g o r i t h m  408 [F4] 

A Sparse  M a t r i x  P a c k a g e  (Par t  I) 

[ John M i c h a e l  M c N a m e e ,  Comm.  A C M  14 (Apr .  1971), 

265-273]  

E .E .  L a w r e n c e  [Recd .  1 F e b r u a r y  1972, 12 M a r c h  1973] 

C e n t r a l  A p p l i c a t i o n  L a b o r a t o r y ,  M u l l a r d  L i m i t e d ,  

N e w  R o a d ,  M i t c h a m ,  Su r r ey  C R 4  4 X Y ,  E n g l a n d  

The subroutines constituting Algorithm 408 were, with the 
exception of MFSPMX and WRSPMX, tested on an IBM 360/65 
using CALL/360-0S. The author's alteration (iii) was introduced, 
i.e. declaration of the M-array to be half length. Other changes 
were introduced in order: (a) to make the algorithm more con- 
versational in a time shared environment; and (b) to improve the 
speed of the sorting procedure in PERCOL. 

R e m a r k  on A l g o r i t h m  4 2 0  [J6]  

H i d d e n - L i n e  P l o t t i n g  P r o g r a m  

[ H u g h  W i l l i a m s o n ,  Comm.  A C M  

100-103] 
15 (Feb .  1972), 

H u g h  W i l l i a m s o n  [Recd .  9 Oct .  1972] 

N a t i o n a l  C o n - S e r v ,  I n c o r p o r a t e d ,  A u s t i n ,  T e x a s  

The input quantities to subroutine HIDE referred to in the 
following paragraphs (e.g. N1, NFNS, "input curve to be plotted") 
are described in the block of comment statements at the beginning 
of HIDE as originally published. 

If N1 < 0, DO loop 71 is not executed properly, since the 
upper limit, N1, is less than the lower limit, 2. This affects only 
checking for monotonicity in the input abscissa array; otherwise, 
if the inputs are correct, the performance of the program is not 
affected. 

The error is corrected if the first 11 executable statements are 
replaced by the following (the first executable statement of the 
original program, which is not changed, is listed for clarity): 

IF(MAXDIM.LE.0) R E T U R N  
IFPLOT = I 
IF(N1.GT.0) GO TO 76 
N1 = --N1 
IFPLOT = 0 
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Fig. 1. Wi thout  verticals. 

8 

" > 

Fig. 2. With verticals to aid visualization. 
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R 

76 DO 71 l = 2,NI 
IF(X(I - -1 ) .LT.X(I ) )  GO TO 71 
M A X D I M  = 0 
G O  TO 75 

7l C O N T I N U E  
IF(NG.GT.0)  GO T O 5000 

On computers  in which all variables are not  automatical ly  
set to zero before execution, F N S M I  is not  properly initialized 
if N F N S  <_ O. To correct this, s imply insert the s ta tement  

FNSM1 = 0. 

before the s ta tement  

IF(NFNS.LE.0)  G O  T O 46 

The latter is the sixth s ta tement  after For t ran  s ta tement  n u m -  
ber 74. 

F N S M 1  will still be improper ly  defined if N F N S  = 1. If 
only one curve is to be plotted, however, t ranslat ing to s imulate  
stepping in the depth d imens ion  will no t  be done, so set N F N S  = 
-- 1 for only one curve to be plotted. 

In some  cases, the three-dimensional  surface is easier to visual- 
ize if (nearly) vertical lines are drawn at  the left edge of  each curve; 
this effect is illustrated by Figures l and  2. The  verticals are 
added by inserting ( X M I N %  Y M I N )  as the first point  in each 
input  curve to be plotted, where ~ is a small  positive n u m b e r  
( IO- -4 )<DELTAX would be appropriate) .  

The  au thor  appreciates very much  the c o m m e n t s  received 
form readers o f  Communica t ions  regarding implementa t ion  of  
H I D E  on different computers .  

Remark on Algorithm 429 [C2] 

Localization of the Roots of a Polynomial [C2] 
[W. Squire, Comm. A C M  15 (Aug. 1972), 776-777] 

H.B. Driessen and E.W. LeM. Hunt [Recd. 13 Oct. 
1972, 29 Jan. 1973] 

Supreme Headquarters Allied Powers of Europe, 
Technical Center, P.O. Box 174, The Hague, The 
Netherlands 

There seems to be an  error in this a lgori thm. If we take the 
polynomial :  

z 4 -}- ao.z 2 d- a3z 3 q- a,z .q- a~ = O, 

then after the second pass through the K-loop of  the logical func- 
tion H R W T Z R ( C ,  N ) ,  the te rm (aza3--a4)a4 --  asa2 is tested for a 
minus  sign. However,  the te rm which should be tested according 
to the Rou th -Hurwi t z  criterion is (a2a3--a,)a4 --  asa2 ~. If  this 
term is negative then there are no  roots with positive real parts.  

As  an  example,  if the polynomial  

z 4 q- 5.6562 z 3 + 5.8854z 2 d- 7.3646 z + 6.1354 = 0 

is s tudied with the help of Algor i thm 429 one will find as output :  

Roots  are in an  annu lus  o f  inner  radius .454 E -k- 00 and  
outer  radius .836 E q- 01; 

There  are no real positive roots;  
The  negative roots  (if any) are between -- .454 E q- 00 an d  

-- .836 E + 01; 
There  are no roots  with positive real parts. 

However,  if one calculates the roots of  this equation,  one will 
find approximately:  

zl = --1.0001 
z~ = --4.7741 
z3.~ = +0 .0089  -I- 1.1457 i 

S ta tement  20 + 1 in the logical funct ion H R W T Z R ( C , N ) ,  
which was originally "C1 = C(1)",  should be amen d ed  to read 
"C1 = C ( 1 ) / C 1 " .  

As a by-product  of  our  investigation, it turns  out  that  the  
structure of  the logical funct ion H R  W T Z R  can  be simplified by 
abandon ing  the logically redundant  steps C ( K ) =  C ( K + I ) .  

The  following listing incorporates both the correction and  
the simplifications. The  funct ion has  been parameter  tested on a 
CDC-6400.  

L O G I C A L  F U N C T I O N  H R W T Z R  (C,N) 
D I M E N S I O N  C(N)  
H R W T Z R  = .FALSE.  
IF (C(1) .LE.0. .OR.C(N).LE.0. )  R E T U R N  
C1 = C(1) 
M = N - - 1  
D O  30 I = 2,M 
DO 20 K = I ,M,2 

20 C(K)  = C(K)  -- C ( K + I ) / C I  
ct  = c(t)/c1 
IF  (C1.LE.0.) R E T U R N  

30 C O N T I N U E  
H R W T Z R  = .TRUE.  
R E T U R N  
E N D  
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