
An O{VTVT· IE I) Algorithm. for Finding lIaDmum
Matching in General Graphs

Silvio Micali· and Vijay ~ Vazirani··

University of California - Berkeley

ABSTRACT

In this paper we present..an O(JiVi.IEI) algo­
rithm for finding a maximum matching in general
graphs. This algorithm works in 'phases'. In
each phase a maximal set of disjoint minimum len­
gth augmenting paths is found, and the existing
matching is increased along these paths.

Our contribution consists in deVising a spe­
cial way of handling blossoms, which enables an

O(lEI) implementation of a phase. In each phase,
the algorithm grows Breadth First Search trees at
all unmatched vertices. When it detects the pres­
ence of a blossom, it does not 'shrink' the blossom
immediately. Instead, it delays the shrinking in
such a way that the first augmenting path found is
of minimum length. Furthermore, it achieves the
effect of shrinking a blossom by a special labeling
procedure which enables it to fin~ an augmenting
path through a blossom quickly.

PROBLEM STATEMENT
AND PRELIMINARY DEFINITIONS

In this paper we present an efficient algo­
rithm for finding a maximum matching in a general
graph. The precise satement of the problem is
as follows:

Let G=(V,E) be a finite, undirected, connec­
ted graph (without loops or multiple edges)
whose set of vertices is V and set of edges
is E. A matching M is a subset of E such
that no two edges of M are incident at a com­
mon vertex. A maximum matching is a matching
whose cardinality is maximum.

l;Je give the follol,'ling basic defini tions relative
to a matching M:

If an edge is contained in M, then it is said
to be 'matched', else it is said to be 'unmalched'.

In this paper, matched edges will be drawn wiggly
and unmatched edges will be drawn straight.

A vertex is 'free' if all edges incident at
it are unmatohed.

An 'alternating path' is a simple path whose
edges are alternately in 1-7 and not in M.

An 'augmenting path' is an alte~at~g path
between two free vertices.

A HISTORICAL NOTE

The history of the maximum matching problem
began in 1957 when Berge proved that a matching is
maximum if and only if t~e graph has no augmenting
paths. In 1965, Edmonds used this result to give

an o(IVI 4) algorithm for this problem. Sinoe then
many combinatorists have solved this problem with

2
better running time. Among them are Gabow , Kameda

and Munro3 , and Lawler4• The best previous running

times were due to Hopcroft and Karp5 for bipartite
. 6

graphs (O(v'iVi.IEI)), and to Even and Kariv for

general graphs (O(IVI
2

•5). Our algorithm, close
in spirit to that of Even and Kariv's, has a runnin€
time of Q(JiVi·IE\).

SALIENT FEATURES OF
THE ALaORITHl~

The algorithm presented in this paper finds
sets of aU~jenting paths in'phases'. Given a
matching M, a •phase , may be defined as the prooe­
ss of finding a maximal set of disjoint minimum
length augmenting paths (min aug paths) in the
graph, and augmenting the matohing algng these
paths • As shown by Hoporoft and Karp , only
o(v1VT) suoh phases are needed for finding a max­
imum matching.

This research was supported by NSF Grant MCS-7~n~76-S7and
• fellowship from Consiglio Nazionale della Ricerche .. Italy. and
•• Earle C. Anthony shollirship and" Eugene C. Gee and Mona Fay Scholarship.

17
CH1498-5/80/0000-0017$OO.75 © 1980 IEEE

In order to desoribe the algorithm we first
give the following definitions:

evenlevel: The evenlevel of a ver~exv is the
length of the minimum even length alternating
path from v to a free vertex, if any, infin­
ite otherwise.

oddlevel: The oddlevel of a vertex v is the len­
gth of the minimum odd length alternating
path from v to a free vertex, if any, infin­
itE' otherwise.

level: The level of a vertex v is the minimwn
between evenlevel(v) and oddlevel(v), i.e.
it is the length of the minimum alternating
path from v to a free vertex.

outer: A vertex is outer iff level(v) is even.

inner: A vertex is inner iff level(v) is odd.

other level: If v is outer (inner) then its
oddlevel (evenlevel) will be refered to as
the other level of v.

bridge: An edge (u, v) is a bridge if
either both evenlevel(u) and evenlevel(v)
are finite,
or both oddlevel(u) and oddlevel(v) are fin~_

i tee

Note that since an augmenting path P has an

odd length, every edge in P is a bridge. Note
also that if there is a bridge (u, v), then some
vertices (at least u and v) have both the evenlev-

el and the oddlevel finite.

~le now explain the concept 'tenacity of a
bridge' :

tenacity: u, v), te~ty «u,v))
~ =.. (even ev u) + ~ enley.ei(v),

/ odd1 el(u) + ~6d.dl~v~·l(v») + 1.

(

I SO, the tenacity of a br~;epresents the mini­
mum length of a not necessari13- simple alternating
path from a free vertex to a free vertex contain-
ing the bridge. If such a path is simple, then it
is an augmenting path. It can be proved that any
min aug path P contains a bridge whose tenacity
equals the length of P.

The algorithm consists of a main routine,
SEARCH, and three subroutines: BLOSS-AUG (which is
called wi th two vertices a~ pal'ameters), FINDPATH
and TOPOLOGICAL ERASE.

In each phase, SEARCH grows treadth First
Search (BFS) trees rooted at the free vertices of
G in order to find the level of each vertex in G
i.e. to find the evenlevel of outer vertices and
the oddlevel of inner vertices. In order to do so
SEARCH starts with the search level 0 and grows

18

the BFS trees by incrementing the search level by
one each time.

~llien SEARCH detects that a certain edge (u,v/
is a bridge, i t ·~!iI1 oall the subroutine BLOSS-AUG
with the parameters u and v. If there is an aug­
menting path oontaining (u, v), its length is at
least tenacity«u, v». In fact, when BLOSS-AUG
is called with parameters u and v, it looks for an
augmenting path of exaotly this length. So, if
BLOSS-AUG is called at a lower search level for
bridges having a lower tenacity, the first augmen­
ting path found in a phase will have minimum len­
gth. Indeed, SEARCH oalls BLOSS-AUG at search
level i for bridges whose tenacity is 2i+1~ This
is accomplished by putting bridges whose tenacity

is 2i+1 in the set bridges(i). Then, at,the end
of searoh level i, BLOSS-AUG is called for each
edge in bridges(i).

In case there iG no augmenting path of length
tenacity«u,v)) containing the bridge (u, v),
then BLOSS-AUG creates a ne~{'blossom' B (a set of
vertices). Before this call, all vertices in B
had exactly t>ne level (even or odd) set to a fin­
ite value by SEARCH. During the present call,
BLOSS-AUG will set to a finite value the other
level of the vertices in B. In this process, some
edges may be discovered to be bridges. The ten­
acity of these edges is computed, and they are in­
serted in the proper ~et of bridges.

h~en BLOSS-AUG detects the presence of an
augmenting path coniaining (u,v), li'INDPATH
finds one such path, P. The present matching is
increased along P; then TOPOLOGICAL EP~\SE remo­
ves the edges whioh, in the present phase, cannot
be part of a min aug path disjoint from P. In
a phase, if a min aug path is found at search le­
vel m, then a maximal set of disjoint 2m+1 long
augmenting paths is found at the same search le­
vel and the phase ends. TOPOLOGICAL ERASE en­
sures that these paths are indeed disjoint. The
fact that the phase ends when there are no more
bridges having tenacity 2m+1 ensures that the set
of min aug paths found is indeed maximal, since,
as said, each min aug path P contains a bridge
whose tenacity equals the length of P.

Since the algorithm executes a phase in
O(J~ steps, it finds a maximum matching in
O('J IVI.1E1) steps.

DESCRIPTION OF SEARCH

During the execution of a phase, SEARCH
grows Breadth First Search trees rooted at the
free vertioes of G in order to find the level of
each vertex.

SEARCH scans an edge at most once (in one of
the tl,iO directions). A searched edge may be 'scanned
in the opposite direction, by BLOSS-AUG. When this
happens BLOSS-AUG marks the edge "used" to prohibit
SEARCH from scanning it again.

At the start of a phase) the evenlevel and
oddlevel of each vertex of G are set to infinity,
to signify that no alternating path of any length
has been found yet. Then, the evenlevel of each
free vertex is reset to zero.

:ihen the search level, i, is even, search is
conducted from each vertex, v, with evenlevel(v)=i
to find vertices u such that the edge (v, u) is
"unused" and unmatched. If the oddlevel of u is
infinity, then it is reset to i+1.

Hhen i is odd, the search is conducted from
each vertex, v, with oddlevel(v)=i, to find the
unique matched neighbour, u, of v. Furthermore,
the evenlevel of u is reset to i+1.

vlliile growing the BFS trees, SEARCH constructs:
for each searched vertex u, the set of its
'predecessors':

predecessors: Let u be a vertex of G which is not
free. If u is inner and oddlevel(u)=2i+1
then v is a predecessor of u iff
evenlevel(v)=2i and (u,v) is a member of E.
If u is outer then v is a predecessor of u
iff (u,v) is a matched edge.

The set of predecessors of each vertex u will be
denoted by 'predecessors(u)'.

ancestor: Is the transitive (but non-reflexive)
closure of the relation predeoessor.

In addition, SEARCH construots, for each inner

vertex u, the set of its 'anomalies':

anomaly: Let u be an inner vertex and oddlevel(u)
be 2i+1. Then v is an anomaly' of u iff
evenlevel(v) >2i+1 and Cu, v) is a member of
(E - M).

The set of anomalies of u will be denoted by
'anomalies(u)'.

EXAMPLE 1:

In figure 1, s and t are the predecessors of
u, u is the predeoessor of w, and v is an anomaly
of u.

19

\ihile soanning an edge, SEARCH checks to see
if it is a bridge. rllien SEARCH disoovers that an
edge (u, v) is a bridge, it computes the tenacity
of the edge, say 2i+1, and inserts (u, v) in
bridges(i). At the end of search level i, SEARCH
oalls BLOSS-AUG, with parameters u and v, for each
bridge in bridges(i). If during these calls, an
augmenting path is found (more preoisely, a maximal
set of minimum length disjoint augmenting paths
would be found), then the present matching will be
increased and the phase will end. If instead, at
the start of the present phase, the matching is
already maximum, no augmenting paths can be found,
but SEARCH will reach a search level i suoh that
no vertices will have level i, and the algorithm
1'lill halt.

DESCRIPTION OF BLOSS-AUG

The subroutine BLOSS-AUG is oalled with ver­
tices u and v such that the edge (u,v) is a bridge.
This oall will result either in the formation of
a new blossom, or in the disoovery of an augmenting
path. A new blossom is formed if and only if the
follOWing oondition holds:

BLOSSOMING CONDITION: there exist vertioes, z,
suoh that
1. z is an ancestor of both u and v.
2. u and v do not have any ancestors, other than

z, whose level is equal to level(z).

If the. blossoming oondition does not hold,
G min aug path is discovered.

•
(" J IG

4-

f ",
3

2-

1

~1lWJ; 0

ft,.ure J.

1. If a vertex v belongs to a bloss'om B and i t
is contained in a min aug path P, then P
also contains base(B).

EJWtPLE 3
At search level 4, if the bridge (i, j) is

processed before (j, k), then the blossoms formed
are:

3. The base, b, of a blossom B is always an out­
er vertex.

4. b does not belong to B because when D is be­
ing formed, there is no odd length alternating
path from b to a free vertex.

5. As a consequence of fact 2, a peak of a bloss­
om B does not necessarily belong to D.

6. Since at each search leveli, SEARCH scans the
edges in an a.rbitrary order, the set
bridges(i) is formed in an arbitrary order.
Consequently, our blossoms are not algorithm­
independen~ structures. This point is illus­
trated in the next example.

B
1
= {i,j,f,g)

The base of B
1

is d and its peaks are i and j.

B = {k,h,d,e,b,cl
2 .

The base of B
2

is a and its peaks are j and k.

However, if (j, k) is processed before (i, j)
then the blossoms tormed are:

B
1
={j,k,g,h,d,e,b,c}

The base of B
1

is a and its peaks are j and k.

B
2
= {i,f]

The base of B
2

is a and its peaks are i and j.

hW 6

" 5

S "" I,.

ct I 3
2

Among the z's of the blossoming condition
which do not belong to any blossom, let b be the
vertex whose level is maximum. Then the new blos­
som B is the set of vertices, w, such that
1. w does not belong to any other blossom when

B is formed.
2. either w=u or w=v or w is an ancestor ofuor

w is an ancestor of v.
3. b is an ancestor of w.

Furthermore, b is designated to be the 'base' of B
and u and v the 'peaks' of B.

EXAMPLE 2
Figure 2 shows the formation of a blossom. At

search level 6, SEARCH detects the bridge (1, m),
and calls BLOSS-AUG. During this call, blossom B
is formed. .

B= fl,m,j,k,g,h,i,d,e,fJ •
The base of B is c and its peaks are land m.

CONSTRUCTION OF A NEvI BLOSSOM. Assume that the
blossoming condition holds for the bridge (u,v).
Then BLOSS-AUG will construct a new blossom B.

-B will consist of all vertices w whose other level
is still infinity, but can be set to a finite value
due to the bridge (u,v), i.e. if w is inner (ou­
ter) there is a min even (odd) length alternating
path, con~ining (u,v), from w to a free vertex.
\ie give also an algori thIn-oriented definition· of
B:

The· ''following faots shou1cttbe pointed. out
about blollsOIDS:

1. At any ·s'tage in the algorithm, a vertex has
both levels (even and odd) finite if and only
if it belongs to a blossom at that stage.

2. A vertex can belong to at most one blossom.

20

In order to accomplish the tasks of construct~

ing blossoms and deteoting the presenoe of augment~

ing paths within the running time ofO(IEI) per
phase, BLOSS-AUG performs a 'Double Depth First
Search' (DDFS). The DDFS consists of growing two
Depth First Search trees T

l
and T

r
contemporarily,

i.e. if at a certain stage, the centers of activit­
ies of TI and T

r
are at vI and v

r
respectively~

then the DDFS growsT
l

if level(vl»)}olevel(v
r

),

and it grows T otherwise. T
l

and T are rooted
r r

at u and v respectively. This ,PDFS has the follow­
ing special feature: when the search is conducted
from a vertex w, which is the center of activity of
one of the trees, say T

l
, then the DDFS seeks only

the vertices of predecessors(w) for growing T
I

•

~fuile scanning an edge (w, p), where p is a member
of predecessors(w), DDFS marks i't "used" so tha.t
SEARCH may not scan (w, p) when it reaches w.

The vertices of T
l

are marked "left" and those

of T are marked "right" so that, in case an aug-
r

menting path contains these vertices, the function
FINDPATH can find it.

During the DDFS, the two trees may find two
different free vertices. In this case, an augmen­
tation is possible. However, the search ~ not
be so simple, for the two trees may meet at a ver­
tex w. Then, clearly, only one of the trees can
claim w and the free vertex reachable from it. So,
first T is allowed to claim w (w.is marked "left")
Further~ore, T backs up and tries to find a verte~
as deep as w, r thus enabling the DDFS to proceed.
However, if T fails, then T must claim w (the

1- r I

DDFS changes the mark on w to "right"). Now, Tl
backs up and tries to find a vertex as deep as w.
If T is also unsuccessful then an augmentation
involving the edge (u, v) is not possible at this
stage. This is so because there cannot· be two dis­
joint alternating paths starting at u and v and
reaching the same level as w. Now, a new blossom
is created. The base of this blossom is w, its
PeakL (left peak) is u, and its PealeR (right peak)
is v. The blossom contains all of the vertices of
T and T other than w, and the "right" mark on w

1 r
is removed. At this point the other level of the
vertices s in B is computed by the formula:

tenacity«(u, v)) - level(s).

Once B is formed and the other level of its
vertices is computed, some edges may be discovered
to be bridges. Suoh newly discovered bridges are
of two types: bridges having both endpoints in B,
and bridges having only one endpoint in B.

21

For bridges (s, t) such that both sandt be­
long to B, the blossoming oondition clearly holds.
So, no augmenting path would be discovered if
BLOSS-AUG is oalled with parameters s and t. Fur­
thermore, the blossom BI that BLOSS-AUG would cre-.
ate will be empt1' because the other level of no
new vertices can be set to a finite value due to
(s, t). Therefore, such bridges are ignored.

For bridges (s, t) such that only one vertex,
say s, belongs to B, it can be shown. that s is an
inner vertex and t is an anomaly of s. Converse­
ly each anomaly of eaoh inner vertex of B is
a newly. discovered bridge. So, BLOSS-AUG computes
the tenaci ty,sa:y 2j+1, of each such bridge and
inserts it in bridges(j). Also, it marks the brid­
ge"usedtt

• Note that if i is the present search .
level, then j> i •.

Another special feature of the DDFS is that
while the search is conducted from a vertex w to
scan an edge (w, p), if p belongs to a blossom B

1
then it shifts the center of activity to base*(B1~w

In order to define the funotion base*(.), we
introduce the partial order I~' on the bases of
blossoms:

If B
1

and B
2

are blossoms, then,

base(B
1
) <base(B

2
) iff

base(B
1

) belongs to :8
2

•

Furthermore the reflexive and transitive closure
of will be denoted by IE: '. Then,

base*(B1) d~f base(B) iff base(B1)~ base(B)

and there is no B' such that
base(B)< base(B').

This feature of the DDFS has the same effect as
that of'shrinking' each blossom into a macronode
located at its base*.

Clearly, the function base*(.) could be imple­
mented by a Union Find. However, because of the
special structure of blossoms, a path compression
is sufficient to bound by O(\EI) the work done
due to base* in a phase. Base* is implemented by
a path compression as follows:

1. base*(B) = base(B) when B is formed, and

2. if just before a new computation of base*(B),
base*(B)=base(B

1
), base*(B

1
)=base(B

2
), •••

base*(B)~base(B'), and base*(B')=base(B'),
k

then, the new computation of base*(B) leaves
upon termination
base*(B)=base*(B

1
)= ••• =base*(Bk)=base(B').

EXMiPLE 4

In this portion of graph there are two blos­
soms, B and B. B .={k,l,h,il and base(B1)=f;

121
B

2
={n,0,m,j,f t g,d,e} and base(B2)=o.

The path x
1

••• xm is oa1led a 'generalized

path because it may not be a legal alternating path
from high to low. This will be the case if x.

J
does not belong to B, for some j=1 ••• m-1.

.
J

,IIAlfUVI/V,rlNl 0

r

So for all such x., i:r
any, OPEN is invoked. Its function is to Jopen
properly the blossom, say B', to which x. belongs

J
by finding an alternating path from x. to
bas.e(B')=x J

j+1·
If xj is outer then O~l calls FINDPATH with

parameters x., x. ,B' •
J J+1

If x. is inner, then OPEN makes two calls to
J

FINDPATH. Let us assume, w.l.o.g., that x. is
J

marked "left" (mark received at the time of the
formation of B'). Then the first call finds a
path, P

1
, from PeakL(B') to x. and the second a

path, P
2

, from PeakR(Bt) to Jbase(B')=x. •
J+1

It should be noticed that P1 and P2 are disjoint.

Let p~ denote the reverse of P and "0" the con­
catenation operator. Then the alternating path
from x. to x. 1 is given by p-1 0 P •J J+ . 1 2

3. The center of activity is never transferred to
a vertex v'B such that its "left"/"right"
mark is different from that of high, or to a
vertex v whose level is less than~hat of low.

When the search succeeds in finding low (i.e.
the center of activity is at low), FINDPATH cons­
truots the 'generalized path' high=X

1
••• Xm=10w

by reversing x •••x : the father cha1n from low
m 1

to high.

lilien BLOSS-AUG detects the presence of a
min aug path, i tmakes use of FINDPATH to find
one such path, P.

FlmDPATH is passed two vertices, "high" and
"low" and a blossom B as parameters. High and low
are such that level(high)~level(low)and they
both belong to a common min aug path. FINDPATH
returns the portion between high and low of one
suoh path.

FINDPATH performs a Deapth First Search star­
ting at high to find low. This Deapth First Search
has some special features:

1. When the center of activity is at a vertex v
belonging to B, the blossom passed as a para­
meter, only the predecessors of v are conside­
red to continue the searoh. If the oenter of
activity is transferred to one suchpredeces­
sor, u, v is made the father of u.

2. It considers shrunk all blossoms other than B:
assume that the center of activity is at a
vert~x v not belongin.g to Bi :A 'b8J1 'be shown
.that~v belongs ~~g~ other blossom B', then
only base(B')=b ~ considered to continue the
search. If the oenter of activity is tran­
sfered to base(B')=b then v is made the father
of b.

DESCRIPTION OF FINDPATH

The subroutine uses two variables, DeV and
barrier, whose function needs an explaination. At
any stage, DeV (Deepest Common Vertex) points to
the deepest vertex which has been discovered by
both T

l
and T. Before the first time that such

a vertex is drscover~d, DCV is undefined. Barrier
acoomplishes the following task: suppose T

l
and T

r
meet at a vertex w. Furthermore, suppose that T

r
baoks up all the way and fails to find another
vertex as deep as w; however, T

l
is able to acoom~

plish this task. Subsequently, T
l

and T
r

meet

again. This time, T should not baok up above w.
r

This task of limiting T 's backing up is aocompl­
ished by barrier. Barrier is initialized to v,
and each time T fails during backtraoking,
barrier is shif~ed to the current DCV.

22

FINDPATH is called lvi th parameters high=p,
low=a and B='undefined' (i.e. all blossom must be
considered shrunk). The generalized path returned
will be phfcba. Since hEB

1
and fEB2 , OPEN will

be called twice. The first call will construct
the path hklif (containing the bridge (k,l) sin­
ce h is inner). The second call will construct the
path fdc. The p-a path will then be

phklifdcba'.

DESCRIPTION OF
TOPOLOGICAL ERASE

After FINDPATH has found a min aug path P
and the matching has been increased along P,
TOPOLOGICAL ERASE is called. This subroutine, era­
ses from the graph the path P and all those edges
which cannot be part of a min aug path disjoint
from P.

TOPOLOGICAL ERASE is very close in spirit to
the well known topological sort. Each vertex has
a counter which at any stage indicates the number
of its unerased.predecessor edges. A vertex is
erased,along with all edges (predecessors or not)
incident at i~ either when its counter is decreas~

ed to zero or when it enters a min aug path detec­
ted by FINDPATH. Since the free vertices do not
have any predecessor edges, their oounter is set
to one at the start of a phase, so it will remain
one throughout the phase. It is not difficult to
see that the total complexity of this routine is
O(JE\) per phase.

Note that if a blossom B is erased then all
vertices in B are erased. Moreover, sinoe FIND­
PATH puts in the augmenting path P the base of a
blossom B whenever it puts in P a vertex belonging
to B, we can also s~ that whenever a vertex of
B is erased, all vertices in B are erased.

23

ACKNOWLEDGEMENTS

This work is affectionately dedicated to
David Lichtenstein who gave us all the help a se­
nior fellow student can give and much much more,
and to Manuel Blum who supported our research in
all possible ways and in some more ways possible
only for him.

We are also very grateful to Giorgio Ausiello,
Ravi Karman, Richard Karp, Eugene Lawler and Robert
Tarjan for their great patience in bearing with us
through the first version of the algorithm and for
their insightful criticism when we became clearer.

The avenue for approaching clarity was provi­
ded by Cheryl Khademan who gave us, as a present,
a very pretty typed version of the routines.

In addition I, Silvio Mioali, would like to
express my deepest gratitude to Shimon Even for
having introduced me to Graph Theory in the most
stimulating way.

Routine SEARCH

(0) (initialization) For each vertex v, evenlevel(v):=inftnite.
oddlevel(v):=inftnite. bl0880m(v):=undefined, predecessors(v):= _ ,
anomalies(v):= "'and v is marked "unvisited".
All edges are marked "unused" and "unvisited".
For i:=l to IVl: bridges(i):="'.
i:=-l.

(1) For each free vertex v, evenlevel(v):=O.

(2) i:=i+l.
If no more vertices have level i then HALT.

(3) If i is even then
for each v with evenlevel(v)=i find its unmatched, "unused" neighbors,

for each such neighbor u:
If evenlevel(u) isftnite

then temp:= (evenlevel{u) + evenlevel(v»/2.
bridges(temp):=bridges(temp) U feu. v)l·

else
(a) (handle oddlevel) If oddlevel(u)=inflnity then

oddlevel(u): =i+ 1.
(b) (handle predecessors) If oddlevel(u)=i+l then

predecessors(u):=predecessors(u) U fvl·
(c) (handle anomalies) If oddlevel(u) < i then

anomalies(u):=anomalies(u) U fvJ.

(4) If i is odd then
for each v with (oddlevel(v)=i and v~ B) take its matched neighbor u.

(a) (handle bridges) If oddlevel(u)=i t~en
temp:=(oddlevel(u) + oddlevel(v»/2.
bridges«temp):=bridges(temp) U feu. v)J

(b) (handle predecessors) If oddlevel(u)=inftnity then
evenlevel(u):=i+1, .
predecessors(u):= .Ivl.

(5) For each edge (u. v) in bridges(i): call'BLOSS-AUG(u, v).
If an augmentation occurred

then go to step (0) (end of a phase)
else go to step (2).

Note:
(1) flU ~ BU stands for. "vertex u does not belong to any blossom," i.e.•

blossom(u) = undefined.
flU E: BU stands for "vertex u belongs to a blossom. This blossom was named
Bf'. i.e., blossom(u) = B.

(2) The function base -(.) is defined in the descriptbn.

(3) The string operations;-1" (inverse) and -. -(concatena­
tion) are explained in the description.

24

Subroutine BLOSS-AUG (WI. WI : vertices).

/ (0) (initialization) If WI and wI belong to the same blossom then go to step (5).
V (neither is an augmentation possible. nor can a new blossom be created).

Otherwise. if WI € B then 111 :=base * {Bl
else 111 := Wt •

If We € B then v,.:=base * (B)
else v,. := 102.

Mark VI "leftll and 11,. "right".
f('VI } is und·efined. DCV is undefined. and barrier:= V,..

(1.1) If VI and 11,. are free vertices then
V P:=(FlNDPATH('Wt. VI • undefined}) -to FINDPATH (we, v,. ,undefined).

Augment the matching alongP, do a TOPOLOGICAL ERASE~ and go to step (5).

{1.2} {VI and v,. are not both free vertices}
v/ If level{ VI) ~ leve1{ 11,.)

then go to step (2.1)
else go to step {3.I}.

(2.1) If VI has no more "unused" ancestor edges then
if f(VI) is undefined

then go to step (4) (create a new blossom)
else VI :=f{ VI) and go to step {1.1}.

(2.2) (VI has "unused"ancestor edges). Choose an "unused" ancestor edge
VI..!..U. Mark e "used".

If u € B then u:=base * (B).

(a) If u is unmarke~
then mark u "left", f(u):= VI. VI :=u. and

gO,to step (1.1).

(b) Otherwise (u is marked)
if u=barrier or u ~'V,.

then go to step {1.1}.
else mark u "left". v,. :=f{ v,.), VI :=u,

DCV:=u. and go to step {I. 1).

(3.1) If V,. has no more "unused" ancestor edges then
if V,. =barrier
then v,. :=DCV, barrier:=DCV, mark 11,. "right".

VI : =f(VI}' and go to step (1.1),
else v,. :=f{ v,.) 'and go to step {I.!}.

(3.2) { V,. has "unused" ancestor edges}. Choose an "unused" ancestor edge
l1,.....t.U. Mark e used.
If u E B then u:=base * (B).

(a) If u is unmarked then mark it "right". f(u}:= v,., 11,. ~=u. and
go to step (1.1).

(b) Otherwise (u is marked)
if u= 111 then DCV:=u.
Go to step (1.1).

25

(4) (Creation of a new blossom)
Remove the "right" mark from DCV.
Create a new blossom (a set) B. Let B consist of all vertices that were
marked "left" or "right" during the present call.
peakL{B):= Wt, peakR{B)~=wa,· base (B):=DCV.

For each u in B :
blossom{u):=B.

(a) if u is outer then
oddlevel{u):= 2i + 1 - evenlevel{u)

(b) if u is inner then
evenlevel{u}:= 2i + 1 - oddlevel{u),
for each v in anomalies(u) :

temp:= (evenlevel(u) + evenlevel{v»/2
bridges{temp):='bridges{temp) U feu. v)J.
Mark (u, v) "used".

(5) Return to SEARCH.

Function FINDPATH (high, loW': vertices.
B : blossom)

0.0 (boundary condition) If high=low then Path:=high and go to step(~

0.1 (initialization) v: =high.

1. If v has no more "unvisited" predecessor edges
then v:=f{v) and go to step (l).

2. If blossom(v) = B then

else

choose an "unvisited" predecessor
edge v':-u. Mark e uvisi ted". D0 ~.~ . '-~_ '. ottv\JJY "U'lt1/\ B
u:=base(blossom(v)). ~ ,tr €:~ ~.)(WT'V

3. If u=low then go to step (6) (the path has been found).

4. If (u is "visited") or (level(u),:Elevel(low)) or
(blossom(u)=B and u does not have the same
"left"/"right" mark as high)

then go to step(1~

5. Mark u "visited lf
•

f(u):=v. v:=u and go to step (1).

6. (u=low) Path:=low.
Until v=high do: Path:= v Path and v:=f(v).

7. (Path=xl · .. xm ' where Xl =high and X m =low) For j=l to m-l do:
If blossom(x.)~B then replace x. and x. with

J J J+1
OPEN(x., x. 1) in Path.

J J+

B. Return Path.

26

Function OPEN (entrance. base: vertices)

o. B: =blossom(entrance).

1. If entrance is outer
then Path:=FINDPATH(entrance. base. B)

and go to step (3).

2. (entrance is inner) Let Pe akL and PeakR be the peak vertices of B.
If entrance is marked "left"

then Path := (FINDPATH(PeakL, entrance, B» -1 FINDPATH(PeakR, base, B)
else Path := (FINDPATH(PeakR, entrance, B» -1 FINDPATH{PeakL. base. B)

3. Return Path.

References
[1] Edmonds, J., "Paths, Trees apd Flowers"; Canadian J. 1965, Vol 17, pp. 449­

467. "Maximum Matching and Polyhedron with 0,1 Vertices"; Journal of
Research of the National Bureau of Standards, Jan.-June 1965, Vol. 69B,- pp.
125-130.

[2] Gabow. H.. "An Efficient Implementation of Edmonds' Maximum Matching
Algorithm"; June 1972, Technical Report No. 31. Stan-CSt 72-328. to be pub­
lished JACM. "Implementation of Algorithms for Maximum Matching on
Non-Bipartite Graphs"; Ph.D. dissertation. Stanford University. 1973.

[3] Kameda, T. and Munro. 1.. itA o(IV I· IE I) Algorithm for Maximum Matching
of Graphs"; Computing 1974. Vol. 12, pp. 91-98.

[4] Lawler, E.G., "Combinatorial Optimization Theory"; Holt, Rinehart and ·Wins­
ton, 1976, Chapter 6, pp.. 217-239.

[5] Hopcrott. J.E. and Karp, R.M., "An n 2.5 Algorithm for Maximum Matching in
Bipartite Graphs"; SIAM J. on Compo 2, December 1973, pp. 225-231.

[a] Even. S. and Kariv, 0., "An O(n2.5) Algorithm for Maximum Matching in Gen­
eral Graphs" I Proceedings of the 16th Annual Symp. on Foundations of Com­
puter Science (FOeS). Berkeley, 1975, pp. 100-112.

