
Ž .Journal of Algorithms 33, 1]14 1999
Article ID jagm.1999.1034, available online at http:rrwww.idealibrary.com on

Linear Time Algorithms for Knapsack Problems with
Bounded Weights

David PisingerU

Department of Computer Science, Unï ersity of Copenhagen, Unï ersitetsparken 1,
DK-2100 Copenhagen, Denmark

Received August 21, 1996; revised October 8, 1998

A new technique called balancing is presented for the solution of Knapsack
Problems. It is proved that an optimal solution to the Knapsack Problem is
balanced, and thus only balanced feasible solutions need to be enumerated in
order to solve the problem to optimality. Restricting a dynamic programming
algorithm to only consider balanced states implies that the Subset-sum Problem,
0]1 Knapsack Problem, Multiple-choice Subset-sum Problem, and Bounded Knap-
sack Problem all are solvable in linear time, provided that the weights and profits
are bounded by a constant. Extensive computational experiments are presented to
document that the derived algorithm for the Subset-sum Problem is able to solve
several problems from the literature which could not be solved previously. Q 1999

Academic Press

Key Words: Knapsack Problem; dynamic programming; memorizing.

1. INTRODUCTION

Ž .We will consider different variants of the 0]1 Knapsack Problem KP
given by

n

maximize z s p xÝ j j
js1

n

subject to w x F C ,Ý j j
js1

1Ž .

� 4x g 0, 1 ; j s 1, . . . , n ,j

* E-mail: pisinger@diku.dk

1

0196-6774r99 $30.00
Copyright Q 1999 by Academic Press

All rights of reproduction in any form reserved.

DAVID PISINGER2

where p and w are positive integers representing the profits and weightsj j
of some items, while C is the capacity of the knapsack. To avoid trivial
cases we assume Ýn w) C and w F C for j s 1, . . . , n.js1 j j

Branch-and-bound algorithms for Knapsack Problems have attained
much interest during the last two decades due to their ability to solve
several practically occurring problems. It is, however, not possible to give
reasonable time bounds for these algorithms, as instances may be con-
structed which demand complete enumeration. If better time bounds are
demanded, two techniques appear in the literature: Dynamic programming
Ž w x.Bellman 2 makes it possible to solve a KP in pseudo polynomial time
Ž . w xO nC , which is attractive for moderate capacities. Horowicz and Sahni 8

introduced the partitioning technique, which is useful if the capacity is very
large. The items are partitioned into two sets, each of which is enumerated
completely, and then the obtained states are paired in linear time, leading

Ž n r2 .to a complexity of O 2 .
In this paper we present a third technique balancing which implies that

the enumeration may be restricted to those feasible solutions where the
corresponding weight sum in some respect is sufficiently close to the
capacity of the knapsack. When a dynamic programming algorithm only
needs to consider balanced solutions, tighter time bounds than previously
may be derived. Among the main results should be emphasized that}pro-
vided all profits and weights are bounded by a constant}the Subset-sum
Problem, 0]1 Knapsack Problem, Multiple-choice Subset-sum Problem,
and Bounded Knapsack Problem can all be solved in linear time. The
assumption of bounded coefficients is realistic for many instances, as e.g.,
most computational experiments in the literature consider such problems.

In Section 2 we prove that an optimal solution to KP is a balanced
filling, and thus, any enumerative algorithm may be restricted to consider
balanced solutions. In the following three sections we present balanced
algorithms for the Subset-sum Problem, 0]1 Knapsack Problem, and other
variants of the problem, discussing further applications at the end of
Section 5. Finally Section 6 experimentally compares different algorithms
for solving the Subset-sum Problem, showing that the presented technique
makes it possible to solve several problems that could not be handled
previously.

2. BALANCED OPERATIONS

In the following definitions we do not assume any particular ordering of
the items. Let the break item b be the first item which does not fit into the

� jknapsack when including the items successively, thus b s min j : Ý w)is1 i

LINEAR TIME KNAPSACK ALGORITHMS 3

4 XC . The break solution x is the feasible solution obtained by including
items up to b in the knapsack; thus, xX s 1, j s 1, . . . , b y 1, and xX s 0,j j
j s b, . . . , n. The weight sum corresponding to the break solution is w s
Ýby1 w .js1 j

DEFINITION 1. A balanced filling is a solution x obtained from the
break solution through balanced operations as

v
XThe break solution x is a balanced filling.

v
nBalanced insert. If we have a balanced filling x with Ý w x F Cjs1 j j

Ž .and change a variable x t G b from x s 0 to x s 1 then the new fillingt t t
is also balanced.

v
nBalanced remo¨e. If we have a balanced filling x with Ý w x) Cjs1 j j

Ž .and change a variable x s - b from x s 1 to x s 0 then the news s s
filling is balanced.

PROPOSITION 1. An optimal solution to KP is a balanced filling; i.e., it
may be obtained through balanced operations.

Proof. Assume that the optimal solution is given by xU. Let s , . . . , s1 a

be the indices s - b, where xU s 0, and t , . . . , t be the indices t G b,i s 1 b ii

where xU s 1. Order the indices such that s - ??? - s - b F t - ???t a 1 1i

- t .b

Starting from the break solution x s xX we perform balanced operations
in order to reach xU. As the break solution satisfies that Ýn w x F C wejs1 j j
must insert item t , thus set x s 1. If the hereby obtained weight sum1 t1

Ýn w x is greater than C we remove item s by setting x s 0, other-js1 j j 1 s1

wise we insert the next item t . Continue this way till one of the following2
three situations occur:
Ž . � 4 � 41 All the changes corresponding to s , . . . , s and t , . . . , t were1 a 1 b

done, meaning that we reached the optimal solution xU through balanced
operations.
Ž . n � 42 We reach a situation where Ý w x) C and all indices s havejs1 j j i

� 4 Ubeen used but some t have not been used. This implies that x is not ai
feasible solution since the current solution is infeasible and we still need to
insert some items to obtain xU.
Ž . n3 A similar situation where Ý w x F C is reached and all indicesjs1 j j

� 4 � 4 Ut have been used, but some s are missing. This implies that x cannoti i
be an optimal solution, since the current solution x is feasible and has a
better profit sum.

COROLLARY 1. An optimal solution may be obtained through balanced
� 4operations by considering the indices t in increasing order, and the indicesi

� 4s in decreasing order.i

DAVID PISINGER4

COROLLARY 2. Any balanced filling x satisfies the following bound on the
corresponding weight sum: C y W - Ýn w x F C q W, where W sjs1 j j
max w .js1, . . . , n j

3. A BALANCED ALGORITHM FOR THE
SUBSET-SUM PROBLEM

Ž .The Subset-sum Problem SSP is an ordinary KP, where the profits and
w xweights satisfy that p s w , j s 1, . . . , n. Bellman 2 presented a dynamicj j

Ž .programming algorithm for SSP which runs in O nC . If all weights w arej

Ž 2 .bounded by a fixed constant W, this complexity may be written O n W ,
i.e. quadratic time for constant W. We will present an algorithm running in
Ž .O nW based on balancing. Due to the weight constraint in Corollary 2 let
Ž . Ž .f c s F b, t G b y 1, c y W - c F c q W be an optimal solution to˜ ˜s, t

the subproblem of SSP, which is defined on the variables i s s, . . . , t of the
problem:

sy1 t¡ ¦
w q w x :Ý Ýj j j

js1 jss

sy1 t~ ¥f c s max , 2w q w x F c,Ž . Ž .˜ ˜Ý Ýs , t j j j
js1 jss

� 4x g 0, 1 for j s s, . . . , t ,j¢ §x is a balanced filling

where we define Ýt w s 0 if s) t. We will only consider those statesjss j
Ž . Ž .s, t, m , where m s f m , i.e., those weight sums m which can bes, t
obtained by balanced operations on x , . . . , x , applying the followings t
Ž .unusual dominance relation:

Ž . Ž X X X. X XDEFINITION 2. Given two states s, t, m and s , t , m . If m s m , s F s
X Ž . Ž X X X.and t F t , then state s, t, m dominates state s , t , m .

Ž . Ž X X X.If a state s, t, m dominates another state s , t , m then we may dis-
card the latter. Using the dominance rule, we will enumerate the states
for t running from b y 1 to n. Thus, at each stage t and for each value
of m we will have only one index s, which actually is the largest s,
such that a balanced filling with weight sum m can be obtained at

Ž .the variables x , . . . , x . Therefore, let s m for t s b y 1, . . . , n ands t t

LINEAR TIME KNAPSACK ALGORITHMS 5

C y W - m F C q W be defined as

there exists a balanced filling x which satisfies¡
sy1 t~s m s max s 3Ž . Ž .t � 4w q w x s m ; x g 0, 1 , j s s, . . . , t ,Ý Ýj j j j¢
js1 jss

Ž .where we set s m s 0 if no balanced filling exists. At the initial stage,t
Ž . Ž .where t s b y 1, only one value of s m is positive, namely s w s b, ast t

only the break solution is a balanced filling. An optimal solution to SSP is
� Ž . 4found at the last stage as z s max m F C : s m) 0 .n

After each iteration of t we will ensure that all states are feasible by
Ž .removing sufficiently many items j - s m from those solutions, wheret

Ž .m) C. Thus, only states s m with m F C need to be saved.t
w xTo improve efficiency, we will use memorization 5 in connection with

the straightforward dynamic programming. Thus, for a given state with
Ž . Ž .m) C the table s m indicates that the removal of items j - s mt t

already has been performed such that repeated removals can be avoided.
This leads to the following algorithm.

1. ALGORITHM balsub.
Ž .2. for m ¤ C y W q 1 to C do s m ¤ 0;by1
Ž .3. for m ¤ C q 1 to C q W do s m ¤ 1;by1

Ž .4. s w ¤ b;by1
5. for t ¤ b to n do

Ž . Ž .6. for m ¤ C y W q 1 to C q W do s m ¤ s m ;t ty1
X Ž X. � Ž X.7. for m ¤ C y W q 1 to C do m ¤ m q w ; s m ¤ max s m ,t t t

Ž .4s m ;ty1
8. for m ¤ C q w downto C q 1 dot

Ž . Ž . X Ž X.9. for j ¤ s m y 1 downto s m do m ¤ m y w ; s m ¤t ty1 j t
� Ž X. 4max s m , j ;t

Ž .Algorithm balsub does the following see Fig. 1 for an example : For
t s b y 1 we only have one balanced solution, the break solution; thus
Ž . Ž .s m is initialized according to this in lines 2]4. Since s m for m) C ist t

Ž .used for memorizing, states with m) C are set to s m s 1 as no itemst
have been removed yet.

Now we consider the items t s b, . . . , n in lines 5]9. In each iteration
item t may be added to the knapsack or omitted. Line 6 corresponds to the

Ž . Ž .latter case, thus the states s m are copied to s m without changes.ty1 t
Line 7 adds item t to each feasible state, obtaining the weight mX.

Ž . Ž X.According to 3 , s m is the maximum of the previous value and thet
current balanced solution.

DAVID PISINGER6

Ž .FIG. 1. A given instance and the corresponding table s m .t

In lines 8]9 we complete the balanced operations by removing items
Ž .j - s m from states with m) C. As it may be necessary to removet

several items in order to maintain feasibility of the solution, we consider
the states for decreasing m, thus allowing for several removals.

PROPOSITION 2. Algorithm balsub finds the optimal solution xU.

Proof. We just need to show that the algorithm performs unrestricted
Ž . X Ž .balanced operations: 1 It starts from the break solution x . 2 For each

state with m F c we perform a balanced insert, as each item t may be
Ž .added or omitted. 3 For each state with m) C we perform a balanced

Ž . Xremove by removing an item j - s m . As the hereby obtained weight mt
satisfies that mX - m and the weights m are considered in decreasing order
in line 8, we are able to perform multiple removals for each insertion.

Ž .After each iteration all states are again feasible i.e., m F C , meaning that
a new insertion can be considered.

The only restriction in balanced operations is line 9, where we pass by
Ž .items j - s m when items are removed. But due to the memorizing wety1

Ž .know that items j - s m have been removed once before, meaningty1
Ž . Ž .that s m y w G j for j s 1, . . . , s m . Thus repeating the same opera-t j ty1

Ž .tions will not contribute to an increase in s m y w .t j

Ž .PROPOSITION 3. The complexity of Algorithm balsub is O nW in time
and space.

LINEAR TIME KNAPSACK ALGORITHMS 7

Ž . Ž .Ž . Ž .Proof. Space: The array s m has size n y b q 1 2W , thus O nW .t
Ž .Time: Lines 2]3 demand 2W operations. Line 6 is executed 2W n y b q 1

Ž .times. Line 7 is executed W n y b q 1 times. Finally, for each m) C,
Ž .line 9 is executed totally s m F b times. Thus, during the whole process,n

Ž .line 9 is executed at most Wb times. In total, one gets O nW .

The disadvantage to balsub is that we use dynamic programming by
pulling, meaning that all 2W states are considered at each iteration. An

Ž w xalgorithm based on dynamic programming by reaching see Ibaraki 9 for
.definitions may be obtained by only considering those states where

Ž . Ž .s m / 0 for m F C and s m / 1 for m) C. The states are stored in at t
w xdata structure 1, 12 , supporting the basic operations search, insert,

and predecessor. Notice that predecessor actually is necessary, as
the states with m) c have to be considered in decreasing order in line 8.

It is possible to modify the balsub algorithm such that only the basic
operations search and insert are necessary. First, assume that the
items are ordered such that w G w for j s 1, . . . , b y 1, and w F w forj b j b

Ž .j s b q 1, . . . , n, which is obtainable in time O n by using a partitioning
technique. The ordering means that each time we add an item t G b to a
feasible solution, at most one item s - b needs to be removed in order to
maintain feasibility, meaning that the values m in lines 6]8 may be
considered in an arbitrary order within each line. We only need to
distinguish between states with m F C and m) C, by keeping them in two
separate sets.

4. 0]1 KNAPSACK PROBLEM

Assume that the items are ordered according to nonincreasing profit-
� jto-weight ratios p rw , and define the break item by b s min j : Ý w)j j is1 i

X4C . The profit and weight sum of the break solution x is p and w.
Ž .Invariant 3 now becomes

there exists a balanced filling x which satisfies¡
sy1 t

p q p x s pÝ Ýj j j
js1 jss~s m , p s max s 4Ž . Ž .t sy1 t

w q w x s mÝ Ýj j j
js1 jss¢ � 4x g 0, 1 , j s s, . . . , t ,j

DAVID PISINGER8

Ž .where we set s m, p s 0 if no balanced solution exists. For t s b y 1t
Ž . Ž .only one value of s m, p is positive, namely s w, p s b, as only thet t

break solution is balanced initially.
ŽThe magnitude of the coefficients is W s max w resp. P sjs1, . . . , n j

.max p . As a consequence of the balanced operations we havejs1, . . . , n j

c y W - m F c q W, and to derive a similar constraint on p we apply
Ž .some bounding rules. The Dantzig upper bound on 1 , which appears by

? Ž . @continuous relaxation, is given by u s p q C y w p rw . An upperb b
Ž .bound on a state m, p may be derived by using the Dembo and Hammer

w x Ž . ?Ž . @6 upper bound u m, p s p q C y m p rw . Obviously, an upper˜ b b
Ž .bound on a state cannot be better than the upper bound on 1 since we
Ž .have fixed some decision variables in the state, thus we have u m, p F u,˜

i.e.,

p F b u s u y C y m p rw . 5Ž . Ž . Ž .b b

Ž .In addition, any state m, p can be discarded if its upper bound is worse
than a given incumbent solution value z. Thus, any live state must satisfy
Ž . ?Ž . @u m, p s p q C y m p rw G z q 1, implying˜ b b

p G a m s z q 1 y C y m p rw . 6Ž . Ž . Ž .b b

Ž . Ž .At any stage we have a m F p F b m , so the number of profit sums p
Ž . Ž .corresponding to a weight sum m can at most be b m y a m q 1 s u

y z s g, where g F P as we may use z s p as incumbent solution, and
obviously u - p q p . This leads to the generalized algorithm:b

1. ALGORITHM balknap.
2. for m ¤ C y W q 1 to C do

Ž . Ž . Ž .3. for p ¤ a m to b m do s m, p ¤ 0;by1
4. for m ¤ C q 1 to C q W do

Ž . Ž . Ž .5. for p ¤ a m to b m do s m, p ¤ 1;by1
Ž .6. s w, p ¤ b;by1

7. for t ¤ b to n do
8. for m ¤ C y W q 1 to C q W do

Ž . Ž . Ž . Ž .9. for p ¤ a m to b m do s m, p ¤ s m, p ;t ty1
10. for m ¤ C y W q 1 to C do

Ž . Ž .11. for p ¤ a m to b m do
12. mX ¤ m q w ; p X ¤ p q p ;t t

Ž X X. � Ž X X. Ž .4s m , p ¤ max s m , p , s m, p ;t t ty1
13. for m ¤ C q w downto C q 1 dot

Ž . Ž .14. for p ¤ a m to b m do
Ž . Ž .15. for j ¤ s m, p to s m, p y 1 doty1 t

16. mX ¤ m y w ; p X ¤ p y p ;j j

Ž X X. � Ž X X . 4s m , p ¤ max s m , p , jt t

LINEAR TIME KNAPSACK ALGORITHMS 9

Ž .The time and space complexity is O nWg which easily may be verified
Ž .as in Proposition 3. Since g F P the complexity may be written O nWP .

Furthermore, the tighter incumbent solution z we provide, the faster
w xsolution times we get. In Pisinger 13 p. 86 it is shown that the gap

g s u y z typically is of magnitude 0]10 for large-sized instances from the
literature.

Note that a complete ordering of the items according to nonincreasing
profit-to-weight ratios is not necessary, as we only need the break item b
for deriving upper and lower bounds. The break item may be found in

w xlinear time through partitioning 3 .

5. OTHER GENERALIZATIONS

Ž .In the Multiple-choice Subset-sum Problem MCSSP we have k classes;
each class N contains weights w , . . . , w . The problem is to select onei 1 i ni
weight from each class such that the total weight sum is maximized without
exceeding the capacity C. Thus, we have

k

maximize z s w xÝ Ý i j i j
is1 jgNi

k

subject to w x F C ,Ý Ý i j i j
is1 jgNi

7Ž .

x s 1, i s 1, . . . , k ,Ý i j
jgNi

� 4x g 0, 1 , i s 1, . . . , k , j g Ni j i

� 4where x s 1 if weight j was chosen in class N . Let a s arg min wi j i i jg N i ji

� 4and b s arg max w for i s 1, . . . , k be the indices of the smallesti jg N i ji

and largest weights in each class i. The break class b is defined by
� j k 4b s min j : Ý w) C y Ý w . With these definitions, the bal-is1 ib isjq1 iai i

sub algorithm may be generalized to

1. ALGORITHM balmcsub.
Ž .2. for m ¤ C y W q 1 to C do s m ¤ 0;by1
Ž .3. for m ¤ C q 1 to C q W do s m ¤ 1;by1

Ž .4. s w ¤ b;by1
5. for t ¤ b to k do

Ž . Ž .6. for m ¤ C y W q 1 to C q W do s m ¤ s m ;t ty1

DAVID PISINGER10

7. for m ¤ C y W q 1 to C do
8. for i g N do mX ¤ m q w y w ;t t i ta t

Ž X. � Ž X. Ž .4s m ¤ max s m , s m ;t t ty1
9. for m ¤ C q w downto C q 1 dot

Ž . Ž .10. for j ¤ s m to s m y 1 doty1 t
X Ž X. � Ž X. 411. for i g N do m ¤ m q w y w ; s m ¤ max s m , j ;j ji j b t tj

Ž k . Ž .The algorithm runs in O W Ý n s O nW ; thus, we have the sameis1 i
low complexity as for SSP.

The MCSSP problem may be used for tightening constraints in several
IP applications which have a multiple-choice constraint. For a concrete

w xapplication of constraint tightening see Pisinger 16 . MCSSP may also
Ž .partially be used for solving the Multiple-choice Knapsack Problem:

w xUsing the principle of Balas and Zemel 3 , a core is selected containing
items from each class with appropriate profit-to-weight ratios. Then the
core problem is solved as a MCSSP, yielding a lower bound. In a similar

w xway as in 3 it may be proved that this lower bound corresponds to the
optimal solution with a very high probability.

Ž .The Bounded Knapsack Problem BKP is a generalization of KP, where
Ž .m items of each item type j are available; thus the last constraint in 1j

� 4should be replaced by x g 0, 1, . . . , m , j s 1, . . . , n.j j

w xMartello and Toth 11 present different techniques for transforming
BKP to an ordinary KP. As our main goal is to keep the coefficient sizes as
small as possible, the best transformation is to handle all m items of eachj

type as individual items. The obtained KP with Ýn m variables is solvedjs1 j
Ž n . Ž .using the balknap algorithm in time O WPÝ m F O nWPM , whenjs1 j

w F W, p F P and m F M, which is linear provided the coefficients arej j j

bounded by constants. This should be compared to a basic recursion as
w x Ž n . Ž 2 .presented in 11 , which has solution times of O CÝ m F O n WM .js1 j

For Unbounded Knapsack Problems balancing is less attractive. Gilmore
w x Ž .and Gomory 7 gave a recursion running in time O nC corresponding to

Ž 2 .O n W . If we use balancing, we may transform the problem to a Bounded
Knapsack Problem by introducing the bounds m s crw F nW on eachj j

Ž 2 .type. Thus, the complexity becomes O n WP .
It is obvious that balancing may be applied to other problems from the

knapsack family, leading to new pseudo polynomial time bounds. Balanc-
ing has been applied for solving KP through branch-and-bound by Pisinger
w x15 , leading to reasonable solution times for several of the considered
problems. The worst-case solution time is, however, not improved by this
technique. A dynamic programming algorithm based on similar principles
as balancing has recently been used to solve Strongly Correlated Knapsack

w xProblem orders of magnitude faster than previous approaches 17 .

LINEAR TIME KNAPSACK ALGORITHMS 11

Several fully polynomial approximation schemes for knapsack-like prob-
lems are based on state-space relaxation of a dynamic programming
algorithm. The presented balanced algorithms may lead to new approxima-
tion algorithms.

There is no obvious way how balancing can be applied in connection
with the partitioning technique, as when an optimal solution is partitioned
the two parts need not be balanced at all. However, it is possible to obtain
better time bounds by combining the two approaches, such that partition-
ing is applied for the large weighted items and balanced dynamic program-
ming is used for the small weighted items. For the SSP assume that
the weights are ordered according to nonincreasing weights and let d

� n r2Ž . jr2q1Žbe defined by d s min j : 2 n y j w - 2 n y j yjs0, 2, . . . , n jq1

. 42 w . Now use partitioning to enumerate items j s 1, . . . , d, and forjq3

each state obtained by merging the two sets, apply balsub to enumerate
items j s d q 1, . . . , n. The time bound of this approach becomes
Ž d r2Ž . . Ž � n r2 4.O 2 n y d w F O min 2 , nW .dq1

6. COMPUTATIONAL EXPERIMENTS

We have restricted the computational experiments to the SSP, as the
time bound of balsub is the most attractive, compared to previous
techniques. Five types of data instances presented in Martello and Toth
w x11 are considered:

w 3 x ? 3 @P(3): w randomly distributed in 1, 10 , and C s n10 r4 .j
w 6 x ? 6 @P(6): w randomly distributed in 1, 10 , and C s n10 r4 .j

w 3 xevenrodd: w even, randomly distributed in 1, 10 , and C sj

? 3 @ Ž .2 n10 r 8 q 1 odd .
Ž . Ž .?Ž . @ Žavis: w s n n q 1 q j, and C s n n q 1 n y 1 r2 q n nj

.y 1 r2.
? @ kqnq1 kqjtodd: set k s log n , then w s 2 q 2 q 1, and C s2 j

1 n? @Ý w .js1 j2

w xJereslow 10 showed that every branch-and-bound algorithm enumer-
ates an exponentially growing number of nodes when solving evenrodd

w xproblems. Avis 4 showed that any recursive algorithm which does not use
w xdominance will perform poorly for the avis problems. Finally, Todd 4

constructed the todd problems such that any algorithm which uses upper
bounding tests, dominance relations, and rudimentary divisibility argu-
ments will have to enumerate an exponential number of states. The
running times of three different approaches are compared in Table 1: The

w xbellman recursion 2 , the balsub algorithm, and finally, the mtsl

DAVID PISINGER12

TABLE 1

Algorithm n P(3) P(6) evenrodd avis todd

10 0.00 0.00 0.00 0.00 0.00
30 0.02 } 0.01 0.01 }

U100 0.33 } 0.21 1.57 }
U300 4.11 } 4.84 } }
Ubellman 1000 52.86 } 69.34 } }

U U3000 505.38 } 723.25 } }
U U U10000 } } } } }
U U U30000 } } } } }
U U U100000 } } } } }

10 0.00 0.00 0.00 0.00 0.00
30 0.00 0.01 3.84 12.39 0.00

U100 0.00 0.00 } } }
U300 0.00 0.00 } } }
Umtsl 1000 0.00 0.00 } } }

U U3000 0.00 0.01 } } }
U U U10000 0.00 } } } }
U U U30000 0.00 } } } }
U U U100000 0.02 } } } }

10 0.00 5.37 0.00 0.00 0.12
30 0.00 8.68 0.01 0.01 }

U100 0.00 4.21 0.02 0.26 }
U300 0.00 2.62 0.07 15.21 }

balsub 1000 0.00 2.12 0.22 562.38 }U

U U3000 0.00 2.11 0.66 } }
U U U10000 0.00 } 2.22 } }
U U U30000 0.00 } 6.66 } }
U U U100000 0.02 } 23.76 } }

Ž .Note. Solution times in seconds, as average of 100 instances HP9000r730 .
Entries marked with an asterik could not be generated at the present computer
due to limits on the size of integers. The time limit was set to 20 h for each
series of instances and a ‘‘}’’ indicates that the instances could not be solved
within this limit.

w xalgorithm by Martello and Toth 11 which is a branch-and-bound algo-
rithms using partial dynamic programming enumeration. The mtsl algo-

w xrithm was obtained from 11 , while the balsub algorithm is available
from http:// www.diku.dkr;pisingerrcodes.html.

For the randomly distributed problems P(3) and P(6) we have W
Ž . Ž 2 .bounded by a large constant. Thus the bellman recursion runs in O n

time, while balsub has linear solution time. The problems P(3) and
P(6) have the property that several solutions to Ýn w x s C do existjs1 j j

LINEAR TIME KNAPSACK ALGORITHMS 13

when n is large; thus generally, balsub may terminate before a complete
enumeration. The bellman recursion has to enumerate all states up to at
least t s b before it can terminate. The mtsl algorithm is the fastest for
these problems, since the branch-and-bound technique quickly finds a
solution satisfying Ýn w x s C.js1 j j

For the evenrodd problems no solution satisfying Ýn w x s C exists,js1 j j
meaning that we reach the worst-case solution times the number of

Ž .algorithms. Here balsub runs in O nW and, thus, linear time. The
Ž 2 .bellman recursion has complexity O n W , and thus, cannot solve prob-

lems larger than n s 3000. Finally mtsl is not able to solve problems
larger than n s 30.

Ž 2 .The avis problems have weights of magnitude O n while the capacity
Ž 3. Ž 4.is of magnitude O n , so the bellman recursion demands O n time,

Ž 3.while balsub solves the problem in O n . Algorithm mtsl, again, cannot
solve problems larger than n s 30.

Finally, the todd problems are considered. As expected, none of the
algorithms are able to solve more than tiny instances due to the exponen-
tially growing weights.

7. CONCLUSION

We have presented a new technique for deriving tight pseudo polyno-
mial time bounds for Knapsack Problems. Concrete algorithms have been
presented for the SSP, KP, BKP and MCSSP, where the solution times are
Ž . Ž . Ž . Ž .O nW , O nWP , O nWPM , and O nW , respectively. When all coeffi-

cients are bounded by a constant, these solution times are linear. Due to
the larger constants for KP and BKP, the approach is less attractive for
these problems than for the two variants of SSP, but still the algorithms
presented may be applicable for very large-sized problems having moder-
ate coefficient sizes. Smaller sized problems may also be solved efficiently
by balknap in those cases where a good lower bound is easy to derive but
optimality is difficult to prove.

The time bounds fully describe the nature of Knapsack Problems, as it
clearly states that all the complexity is hidden in the magnitude of the

w xcoefficients. This conforms with the observation by Chvatal 4 who had´
to use exponentially growing weights in order to construct hard instances
of KP.

The computational experiments with SSP algorithms have demonstrated
that even very hard instances of large size may be solved in reasonable
time by using balsub; thus, the results presented are also important from
a practical point of view.

DAVID PISINGER14

REFERENCES

1. A. Andersson, Faster deterministic sorting and searching in linear space, in ‘‘Proceedings
Ž .of the 37th Symposium on foundations of computer science FOCS’96 ,’’ pp. 135]141.

2. R. E. Bellman, ‘‘Dynamic Programming,’’ Princeton Univ. Press, Princeton, NJ, 1957.
3. E. Balas and E. Zemel, An algorithm for large zero]one knapsack problems, Oper. Res.

Ž .28 1980 , 1130]1154.
Ž .4. V. Chvatal, Hard knapsack problems, Oper. Res. 28 1980 , 1402]1411.´

5. T. H. Cormen, C. E. Rivest, and R. L. Rivest, ‘‘Introduction to Algorithms,’’ MIT Press,
Cambridge, MA, 1989.

6. R. S. Dembo and P. L. Hammer, A Reduction algorithm for knapsack problems, Methods
Ž .Oper. Res. 36 1980 , 49]60.

7. P. C. Gilmore and R. E. Gomory, Multi-stage cutting stock problems of two and more
Ž .dimensions, Oper. Res. 13 1965 , 94]120.

8. E. Horowitz and S. Sahni, Computing partitions with applications to the knapsack
Ž .problem, J. Assoc. Comput. Mach. 21 1974 , 277]292.

9. T. Ibaraki, Enumerative approaches to combinatorial optimization}Part 2, Ann. Oper.
Ž .Res. 11 1987 , 376]388.

10. R. G. Jeroslow, Trivial integer programs unsolvable by branch-and-bound, Math Program-
Ž .ming 6 1974 , 105]109.

11. S. Martello and P. Toth, ‘‘Knapsack Problems: Algorithms and Computer Implementa-
tions,’’ Wiley, Chichester, England, 1990.

Ž . Ž .12. K. Mehlhorn and S. Naher, Bounded ordered dictionaries in O log log n time and O n¨
Ž .space, Inform. Process. Lett. 35 1990 , 183]189.

13. D. Pisinger, Algorithms for knapsack problems, Ph.D. thesis, DIKU, University of
w xCopenhagen, 1995. Report 95r1. Available from http:rrwww.diku.dk

14. D. Pisinger, A minimal algorithm for the multiple-choice knapsack problem, Europ. J.
Ž .Oper. Res. 83 1995 , 394]410.

15. D. Pisinger, An expanding-core algorithm for the exact 0]1 knapsack problem, Europ. J.
Ž .Oper. Res. 87 1995 , 175]187.

16. D. Pisinger, An exact algorithm for large multiple knapsack problems, Europ. J. Oper.
Ž .Res. 114 1999 , 528]541.

17. D. Pisinger, A fast algorithm for strongly correlated knapsack problems, Discrete Appl.
Ž .Math. 89 1998 , 197]212.

	1. INTRODUCTION
	2. BALANCED OPERATIONS
	3. A BALANCED ALGORITHM FOR THE SUBSET-SUM PROBLEM
	FIG. 1.

	4. 0]1 KNAPSACK PROBLEM
	5. OTHER GENERALIZATIONS
	6. COMPUTATIONAL EXPERIMENTS
	TABLE 1

	7. CONCLUSION
	REFERENCES

