
E L S E V I E R European Journal of Operational Research 83 (1995) 394-410

EUROPEAN
JOURNAL

OF OPERATIONAL
RESEARCH

A minimal algorithm for the Multiple-Choice Knapsack Problem

David Pisinger
Department of Computer Science, University of Copenhagen, Universitetsparken 1, DK-2100 Copenhagen, Denmark

Abstract

The Multiple-Choice Knapsack Problem is defined as a 0-1 Knapsack Problem with the addition of disjoined
multiple-choice constraints. As for other knapsack problems most of the computational effort in the solution of these
problems is used for sorting and reduction. But although O(n) algorithms which solve the linear Multiple-Choice
Knapsack Problem without sorting have been known for more than a decade, such techniques have not been used in
enumerative algorithms. In this paper we present a simple O(n) partitioning algorithm for deriving the optimal
linear solution, and show how it may be incorporated in a dynamic programming algorithm such that a minimal
number of classes are enumerated, sorted and reduced. Computational experiments indicate that this approach leads
to a very efficient algorithm which outperforms any known algorithm for the problem.

Keywords: Knapsack problem; Dynamic programming; Reduction

1. Introduction

Given k classes N1, . . . , N k of items to pack in some knapsack of capacity c. Each item j ~ N/ has a
profi tpq and a weight wq, and the problem is to choose one item from each class such that the profit sum
is maximized without having the weight sum to exceed c. The Multiple-Choice Knapsack Problem
(MCKP) may thus be formulated as:

k
maximize z = E E pijxij (1)

i=1 j~N/

k
subject to ~ ~ wijxi/ <_ c,

i=1 jeN~

X i j = l , i = l k,
jeN,.

Xij~{O,l}, i = l k, j ~ N / .

All coefficients pq, wi7, and c are positive integers, and the classes N 1 N k are mutually disjoint, class
N i having size n i. The total number of items is n = Y~ki=ln i.

0377o2217/95/$09.50 © 1995 Elsevier Science B.V. All rights reserved
SSDI 0377-2217(95)00015-1

D. Pisinger / European Journal of Operational Research 83 (1995) 394-410 395

Negative coefficients Pij, wij in (1) may be handled by adding a sufficiently large constant to all items
in the corresponding class as well as to c. To avoid unsolvable or trivial situations we assume that

k k

~_, m inwi j < c < Y'~ maxw. . (2)
j~Ni jENi tJ"

i = 1 i = l

If we relax the integrality constraint xq ~ {0, 1} in (1) to 0 ~_~Xij _~ 1 we obtain the Linear Multiple-Choice
Knapsack Problem (LMCKP). If each class has two items, where (Pil, Wil)~-(0, 0), i = 1 k , the
problem (1) corresponds to the 0-1 Knapsack Problem (KP). The linear version of KP will be denoted by
LKP.

MCKP is NP-hard as it contains KP as a special case, but it can be solved in pseudo-polynomial time
through dynamic programming (Dudzinski and Walukiewicz, 1987). The problem has a large range of
applications: Capital Budgeting (Nauss, 1978), Menu Planning (Sinha and Zoltners, 1979), transforming
nonlinear KP to MCKP (Nauss, 1978), determining which components should be linked in series in order
to maximize fault tolerance (Sinha and Zoltners, 1979), and to accelerate ordinary L P / G U B problems by
the dual simplex algorithm (Witzgal, 1977). Moreover MCKP appear by Lagrange relaxation of several
integer programming problems (Fisher, 1981).

Several algorithms for MCKP have been presented during the last two decades: e.g. Nauss (1978),
Sinha and Zoltners (1979), and Dyer, Kayal and Walker (1984). Most of these algorithms start by solving
LMCKP in order to obtain an upper bound for the problem. LMCKP is solved in two steps: 1) The
LP-dominated items are reduced by sorting the items in each class according to nondecreasing weights,
and then applying some dominance criteria to delete unpromising states; 2) the reduced LMCKP is
solved by a greedy algorithm. After these two initial steps, upper bound tests may be used to fix several
variables in each class to their optimal value. The reduced MCKP problem is then solved to optimality
through enumeration (Dudzinski and Walukiewicz, 1987).

Essential results in the field of KP however indicates that MCKP may be solved easier: Balas and
Zemel (1980) independently with Fayard and Plateau (1977) proposed to consider only a small subset of
the items - the so-called core - in order to solve KP. A core can be found in O(n) time through a
partitioning algorithm, and since the restricted KP defined on the core items is easy to solve for several
classes of data instances, it means that many instances may be solved in linear time (Martello and Toth,
1988; Pisinger, 1995a). However if optimality of the core solution cannot be proved, a complete
enumeration including the variables outside the core has to be performed.

Although O(n) algorithms for LMCKP have been known for a decade (Zemel, 1984; Dyer, 1984),
making it possible to derive a 'core' reasonably easy, a similar technique has not been used for MCKP.
According to Martello and Toth (1990) this may be caused by the fact that reduction of LP-dominated
items is necessary in order to derive upper bounds in a branch-and-bound algorithm. The current paper
however demonstrates that a core algorithm for MCKP is possible, although several questions had to be
answered: Which items or classes should be included in the core? How should we derive upper bounds in
a branch-and-bound algorithm when LP-dominated items have not been deleted? How should a core be
derived? How should a primal algorithm for LMCKP be developed?

The present paper is a counterpart to a minimal algorithm for KP by Pisinger (1995c): A simple
algorithm is used for solving LMCKP, and for deriving an initial feasible solution to MCKP. Starting
from this initial solution we use dynamic programming to solve MCKP, adding new classes to the core by
need. By this technique we are able to show that a minimal number of classes are considered in order to
solve MCKP to optimality.

The paper is organized in the following way: First, Section 2 brings some basic definitions, and shows
fundamental properties of MCKP, while Section 3 presents a simple partitioning algorithm for the
solution of LMCKP. Next, Section 4 shows how gradients may be used in an expanding-core, as well as

396 D. Pisinger ~European Journal of Operational Research 83 (1995) 394-410

presenting some logical tests which may be used to fix variables at their optimal value, before a class is
added to the core. Section 5 gives a description of the dynamic programming algorithm, and Section 6
shows how we keep track on the solution vector in dynamic programming. Finally Section 7 gives the
main algorithm and proves minimality, while Section 8 brings computational experiments.

2. Fundamental properties

Definition 1. If two items r and s in the same class N~ satisfy that

wit <_ wi~ and Pir >-Pi~, (3)

then we say that item r dominates item s. Similarly if some items r, s, t ~ N/ with Wir <_ Wi~ <_ Wit and
Pir ~-~ Pis ~-~ Pit satisfy

det(w~ - wir, p~s - P i t , wit - wir, Pit --Pir) < O, (4)

then we say that item s is LP-dominated by items r and t.

Proposition 1 (Sinha and Zoltners, 1979). Given two items r, s ~ N i. I f item r dominates item s then an

optimal solution to MCKP with xis = 0 exists. I f two items r, t ~ N i LP-dominate an item s ~ N i then an

optimal solution to LMCKP with xis = 0 exists.

As a consequence, we only have to consider LP-undominated items R i in the solution of LMCKP.
Note that these items form the upper convex boundary of the set N i, as illustrated in Fig. 1. The set of
LP-undominated items may be found by ordering the items in each class N~ according to increasing
weights, and successively test the items according to criteria (3) and (4). If two items have the same
weight and profit, choose an arbitrary of them. Now LMCKP may be solved by using the greedy

algorithm:

Algorithm 1. Greedy.

Step 1. Find the LP-undominated classes R i (ordered by increasing weights) for all classes N~, i = 1 k.
Choose the lightest item from each class (i.e. set Xil = 1, xi~ = 0 for j = 2 , I Ril , i = 1 , . . . , k)

P

~-W

Fig. 1. LP-undominated items R i (black) form the upper convex boundary of N i.

D. Pisinger / European Journal o f Operational Research 83 (1995) 394-410 397

and define the chosen weight and profit sum as W = •/k=lWil , resp. P = Y'.k=lPil. For all items
j 4:1 define the slope Air as

Ai r Pij- -Pi , j - I , i = l , . . . , k , j = 2 , . . . , IRi l . (5)
wi j -- w i , j - 1

This slope is a measure of the profit-to-weight ratio obtained by choosing item j instead of item
j - 1 in class R i (Zemel, 1980). Using the greedy principle, order the slopes {Air} in nondecreas-
ing order.

Step 2. Let i, j be the indices corresponding to the next slope Air in {,~u}. If W + Wir > c, goto Step 3.
Otherwise set xir = 1, Xi , j_ 1 = 0 and update the sums W = W + w i t - wi.r_~, P = P + P i t - P i , r - v
Repeat Step 2.

Step 3. If W = c we have an integer solution and the optimal objective value to LMCKP (and MCKP) is
z * = P . Otherwise let Air be the next slope in the list. We have two fractional variables
X i j ~ - (C - W) / / (w i j - w i , j _ l) respectively Xi , j_ 1 = 1--Xij , which both belong to the same class.
The optimal objective value is

z* = P + (c - W)hir . (6)

Although several orderings of {Au} exist in Step 1 when more items have the same slope, we will assume
that one specific ordering has been chosen.

The LP-optimal choices b i obtained by Algorithm 1 are those variables, where Xib ' = 1. The class
containing two fractional variables in Step 3 will be denoted the fractional class Na, and the fractional
variables are Xabo, X~b, possibly with X,b ~ = 0. An initial feasible solution to MCKP may be constructed
by choosing the LP-optimal variables, i.e. setting Xib + = 1 for i = 1 , . . . , k and xir = 0 for i = 1 k, j -~ b r
The solution will be denoted the break solution and the corresponding weight and profit sum is W resp.
P.

Proposition 2. As a consequence o f Algorithm 1 an optimal solution x * to LMCKP satisfies the following:
1) x * has at most two fractional variables Xab" and Xab;; 2) I f x * has two fractional variables they must be
adjacent variables within the same class Na; 3) I f x * has no fractional variables then the break solution is an
optimal solution to MCKP.

The presented greedy algorithm has time complexity O(n log n) due to the ordering of slopes. It
should be mentioned, that when the classes form a KP, Algorithm 1 is exactly the greedy algorithm for
LKP, and the objective value (6) corresponds to the Dantzig upper bound for KP (Dantzig, 1957).

An optimal solution to MCKP generally corresponds to the break solution, except for some few
classes where other items than the LP-optimal choices have been chosen. This property may be
illustrated the following way: Define the positive and negative gradient A/+ and A 7 for each class N i,
i 4: a as (see Fig. 2)

A += m a x (P i j - - P i b i) / (W i j - - W i b l) , i = l , . . . , k , i ~ a , (7)
j ~ N, ,Wij ~> Wib i

,L-= rain (P ib , - -P i j) / (Wib , - -w i j) , i = 1 , . . . , k , i ~ a , (8)
j E N i ,wij <~ Wib i

and we set A/+ = 0 (resp. A/-= oo) if the set we are maximizing (resp. minimizing) over is empty. Note that
the above definitions do not demand any preprocessing of the items. The gradients are a measure of the
expected gain (resp. loss) per weight unit by choosing a heavier (resp. lighter) item from N i instead of the
LP-optimal choice b i. The gradient of the fractional class N a is defined as

A = (Pab:, - -Pab .) / / (Wab '~ -- Waba)" (9)

398 D. Pisinger / European Journal of Operational Research 83 (1995) 394-410

~0¢ • • w

, W

Fig. 2. Gradients A f , A,- in class N/.

In Fig. 3 we have ordered the classes according to decreasing A/+ and show how often the IP-optimal
solution to MCKP differs from the LP-optimal choice in each class N~. The figure is a result of 5000
randomly generated data instances (k = 100, n i --- 10), where we have measured how often the IP-optimal
choice j (satisfying wii > Wib i since we are considering forward gradients) differs from the LP-optimal
choice b i in each class N,.. It is seen, that when Z~ + is decreasing, so is the probability that b i is not the
IP-optimal choice. Similarly in Fig. 4 we have ordered the classes according to increasing Z 7 to show
how the probability for changes decreases with increased h 7.

This observation motivates considering only a small number of the classes N~, namely those classes
where A~ + or h 7 are sufficiently close to Z. Thus at any stage the core is simply a set of classes
{Nrl Nrm} where r 1 rm ~ {1, . . . , k}. Initially the core consists of the break set N a and we expand
the core by need; alternately including the next unused class N i which has largest hi + or smallest Z 7.

Since a complete enumeration of the core demands considering up to n ~ . n ~ : n,m states, care
should be taken before including a new class to the core. We use an upper bound test to fix as many
variables at their optimal value as possible in the class before it is included in the core. If only one item
remains, the class may be fathomed. Otherwise we order the remaining variables by nondecreasing
weight and use test (3) to delete dominated items. The remaining class is added to the core and the new
choices are enumerated through dynamic programming.

V

1 . 0

% differences

25
:

' " ' Z

-%
"°.°

0.2 5"... f r equency ""

,'""'"~"".-r,',..-: : : : ?~'""!-IO0 class N~
10

Fig. 3. Frequency of classes iV/where IP-optimal choice differs from LP-optimal choice, compared to gradient A +.

D. Pisinger / European Journal of Operational Research 83 (1995) 394-410

1.0

0.2

% differences

...."

£.... ~ e q u e n c y
: ! ~- ' :- : --: : : : :: class Ni

10 100

399

Fig. 4. Frequency of classes N/where IP-optimal choice differs from LP-optimal choice, compared to gradient A~.

3. A partitioning algorithm for the LMCKP

Dyer (1984) and Zemel (1984) independently of each other developed O(n) algorithms for LMCKP.
Both algorithms are based on the convexity of the LP-dual problem to (1), which makes it possible to
pair the dual line segments, so that at each iteration at least 1 / 6 of the line segments are deleted. When
the classes form a KP the algorithms reduce to that of Balas and Zemel (1980) for LKP. As Martello and
Toth (1988) modified the Balas and Zemel algorithm for LKP to a primal approach which is easier to
implement, we will now modify the Dyer and Zemel algorithm for LMCKP in a similar way.

Assume that N a is the fractional class and that items b, and b" are the fractional variables in N a, such
that X,b ° "[-Xab,a = 1, possibly with Xab. = 0. Moreover let b i be the LP-optimal choice in class N/,
i = 1 k, i #: a. Due to the propert ies of LMCKP given in Proposition 2, LMCKP may be reformulated
as finding the slope

--- (~P/ /~w) = (Pab'a --Paba)//(Wab'a- Waba)' (10)

such that the weight sum of the LP-optimal choices satisfy

Y'. Wib ~ + W~b" < C < ~ Wib ' + W~b, ., (11)
i ~ a i#:a

det(wij , Pii, ~w, ~P) <det(wib , , Pib,, ~W, ~P) , i = 1 k , j = 1 n i. (12)

Here (11) ensures that N~ is the fractional class, and (12) ensures that each item b i ~ Ni is at the upper
convex boundary of the set.

The formulation (10)-(12) allows us to use a partitioning algorithm for finding the optimal slope A. In
the following algorithm we assume that the classes of items N,. are represented as a list [N , , . . . , N k] and
items in each class are also represented as a list [j~ j,~]. Elements may be deleted from a list by
swapping the deleted element to the end of the list, and subsequently decreasing the list's length. Thus at
any step, k and n~ refer to the current number of elements in the list. The partitioning algorithm looks
like this:

Algorithm 2. Partition.
Step O. Preprocess. For all classes i = 1 , k let %. and ~i be indices to the items having minimal weight

(resp. maximal profit) in N / (s ee Fig. 5). In case of several items satisfying the criterion, choose
the item having largest profit for a i and smallest weight for/3 i. Set W = P = 0, and remove those
items j -~ fli which have wij >_ wi,, and p~j <-Pill, since these are dominated by i tem /3,.. I f the

400 D. Pisinger ~European Journal of Operational Research 83 (1995) 394-410

P

O

O

Fig. 5. Preprocessing of N/. White nodes are dominated by/3 i.

class N/ has only one item left, save the LP-optimal choice b i -~ f l i and set W = W + Wibi,

P = P +Pib~, then delete class N/.
Step 1. Choose median. For M randomly chosen classes N/ define the corresponding slope A,. =

(~Pi/Swi) = (Pit~i -Pi~,) /(witJ~- wi~,)" Let A = (~ / ~) be the median of these M slopes.
Step 2. Find the conclusion. For each class N~ find the items which maximize the projection on the

normal to (~ , ~/5), i.e. which maximize the determinant

det(wij, Ply, gw, gP) = wij~P -Piy ~ . (13)

Step 3.

Step 4.

See Fig. 6. We swap these items to the beginning of the list such that they have indices {1,. . . , ~¢i}
in class N,.
Determine weight sum of conclusion. Let gi, hi be the lightest (resp. heaviest) item among
{1 , t~i} in class N/, and let W' and W" be the corresponding weight sums. Thus W' = W +
Eki= lWigl and W" = W + E/k= lWihi.
Check for optimal partitioning. If W' <_ c < W" the partitioning at (~ , ~/~) is optimal. First,
choose the lightest items from each class by setting b i =gi, W = W ÷ Wibi, P = P ÷ P i b i " Then
while W - wig i + Wih ~ <_ c run through the classes where t~ #: 1 and choose the heaviest item by
s e t t i ng b i = hi, W = W - Wig i ÷ Wibi, P = P --Pig i ÷ Pibl. The first class where W - Wig i ÷ Wih i ~ C is
the fractional class N a and an optimal objective value to LMCKP is ZLMCK P = P + (c - W)A. If
no fractional class is defined, the LP-solution is also the optimal IP-solution. Stop.

P

A

\

/

Fig. 6. Conclusion of N/.

D. Pisinger / European Journal of Operational Research 83 (1995) 394-410

P

i \ \
Fig. 7. Partition set N/.

t-'tO

401

Step 5. Partition. We have one of the following two cases: 1) If W' > c then the slope h was too small
(see Fig. 7). For each class N/choose/3~ as the lightest item in {1 tel } and delete items j ~/3i
with wij > witJ,; 2) If W " < c then the slope h = (~ / 5 / ~) was too large. For each class N~ choose
o~ i as the heaviest item in {1 t' 1} and delete items j 4: a~ with pgy <P~,,i (items j with w~j < wi~,
are too light, and items with w~j > wi~,, p~j < p ~ , are dominated). If the class N~ has only one item
left, save the LP-optimal choice b i = [3 i and set W = W + W/b z, P = P +P~oi, then delete class N/.
Goto Step 1.

Depending on the choice of M in Step 1, we obtain different behavior of the algorithm. The best
performance is obtained by choosing h as the median of all slopes A~, i = 1 k (i.e. choose M = k) but
for practical purpose M < 15 works well. Note that in the KP case, Algorithm 2 becomes the partitioning
algorithm of Balas and Zemel (1980).

Proposition 3. I f we choose h = (8 ~ / 8 ~) as the exact median o f M different slopes h i = (Spi/ /Swi) in Step 1
o f Algorithm 2, at least [M/21 items are deleted at each iteration.

Proof. Since A is the median of the M classes, we have h i < h for [M/2] classes, so for these classes at
least one item j 4: a i exists which maximizes (13). Similarly we have /~i ~ /~ for [M/21 classes, so for these
classes at least one item j 4:/3 i exists which maximizes (13). If W' > c in Step 5, at least [M/2] items {/3i}
will be deleted. Otherwise if W" < c, at least [M/21 items {ag} will be deleted. []

Corollary 1. I f M = 1, at least one item is deleted at each iteration o f Algorithm 2, yielding a complexity o f
O(n2) .

Corollary 2. I f M = k and the size o f each class n i is bounded by a constant K, Algorithm 2 runs in O(n).

Proof. Due to Proposition 3 at least [k /2] items are deleted at each iteration. Since n i is bounded by K
it means that at least [n / (2 K)] items are deleted at each iteration, yielding the complexity. []

4. Expanding core

Considering the KP, Balas and Zemel (1980) proposed to enumerate only a small amount of the items
- the so-called core - where there was a large probability for finding an optimal solution. However the

402 D. Pisinger / European Journal of Operational Research 83 (1995) 394-410

core cannot be identified a priori, implying that in some cases optimality of the core solution cannot be
proved, and thus a complete enumeration has to be performed.

Plateau and Elkihel (1985) noted, that even though the core cannot be identified before KP is solved,
it can be identified while the problem is solved by using an expanding core. This result was improved by
Pisinger (1995c) who showed that a minimal core may be obtained by using dynamic programming, as the
breadth-first search implies that all variations of the solution vector have been tested before a new
variable is added to the core.

We will use the same concept for MCKP, but now the core consists of the smallest possible number of
classes N~, such that an optimal solution may be determined and proved. Where the core for KP naturally
consists of items having profit-to-weight ratio close to that of the break item, there is no natural way of
ordering the classes in MCKP. Instead we use the gradients to identify a core: Define the positive and
negative gradient A/+ and h/- for each class N,., i ~ a, by (7) and (8). Due to (12) we have that

h/+_< (B f f / ~) _< A~-. (14)

Order the sets L += {A~ + } according to nonincreasing values, and L - = {a 7 } according to nondecreasing
values. Initially the core C only consists of the fractional class Na, and then we repeatedly add classes N~
corresponding to the next gradient from the ordered sets L ÷ and L - . Since each class occur twice (once
in each set L ÷ and L -) , we pass over a class if it already has been considered.

4.1. Class reduction

Before adding a class N~ to the core C it is appropriate to fathom unpromising items from the class.
We check whether each item j ~ N/ has an upper bound larger than the currently best solution z. For
this purpose we use an upper bound obtained by relaxing the constraint on the fractional variables
ba, b' a ~ N a from Xba, X b, ~ {0, 1} to Xba, Xb, ~ ~ • in (1). The upper bound on item j ~ N i is then

Uij = e --Pibi dr-pi j -[- 1~(C -- W[- Wib i -- Wij), (15)

and if u;j < z + 1 we may fix xij to 0. Since the bound (15) is evaluated in constant time, the complexity
of reducing class N,. is O(ni) .

If the reduced set N{ has only one item left, we fathom the class, since no choices have to be done.
Otherwise we order the items in N[according to nondecreasing weights and delete dominated items by
applying (3). The computational effort is concentrated on the sorting, yielding a complexity of O(n' i log n' i)
where n" is the size of N[. In Section 8 it will be demonstrated that a large majority of the items may be
fixed at their optimal value by the reduction (15), thus significantly decreasing the number of items which
need to be sorted.

5. A dynamic programming algorithm

The core is a set of currently enumerated classes C = {Nrl Nr,) . We will use dynamic program-
ming for this enumeration, thus let fc (6) , 6 = 0 , . . . , 2c, be an optimal solution to the following core
problem, where variables in classes outside the core are fixed at their LP-optimal values:

I E E PijXij + E Pibi: I Ni~C j~N i Ni~C

f c (6) = max ~-" ~-" WijXij q- E Wibi ~-- C,
Ni~Cj~N i Ni~C "

Xiy = 1 for N i ~ C, xij ~ {0, 1}
j~N,

(16)

D. Pisinger ~European Journal of Operational Research 83 (1995) 394-410 403

For an empty core C = ~ we set f ¢ (¢) = E~=lPib, for all ? > Y'.~=tWib,, and f ~ (?) = -o0 for all smaller
values of ~. Each time the core is extended with a new class N~, then fc÷lv~(c) can be found by the
recursion

f f c (C- -Wi l "l-Wibi)"~lgil--Pibi

fC+N,(e) = m a x l f c (e -- wi2 + Wib,). +Piz --Pia,

I
~fc(C--I'lYiniq-Wibi)~-l)ini--Pibi

if 0 __< ~ -- Wil Jr- Wib i ~_~ 2C,

if 0 < 8 -- Wi2 d- Wib i ~ 2C,

if 0 _< 8 - win ̀ + Wib i <__ 2C.

(17)

An optimal solution to MCKP is found as z =fc(C) for a complete core C = { N 1 Nk} , and we obtain
z = -¢¢ if assumption (2) is violated. Since the variables not in the core are fixed at their LP-optimal
values, we must accept capacities 8 > c in a transition stage, as these states may become feasible at a
later stage. However let

(18)

be the largest weight sum that can be released in classes outside the core. Thus only states with
< c + V < 2c need to be considered in the recursion.
The recursion (17) demands O(n i) operations for each class in the core and for each capacity ~,

yielding the complexity o(Ek=t2cni)= O(nc) for a complete enumeration. However if optimality of a
state can be proved, we may terminate the enumerat ion instantly. In this case the computational effort is
O(c~.,ui~cni), which is very efficient for small core sizes. The ordering of the classes according to
gradients ensures that generally only a few dozen of classes need to be enumerated even for very large
instances.

The traditional recursion for MCKP as presented in Martello and Toth (1990) reaches an optimal
solution by only considering feasible capacities ~ < c as the classes are enumerated. This approach has
the drawback that a solution is not reached before all classes have been enumerated, meaning that we
have to pass through all O(nc) steps.

The space complexity of recursion (17) is O(kc), as for each class we only need to save the index of the
chosen item. Thus for a given core C let the set of partial vectors be given by

Y c = { (y l y m) ' Y i E (1 n J , i = l m), (19)

where each variable Yi determines that variable xiv ' = 1 while the remaining binary variables in N~ are
set to zero. The weight and profit sum of a vector Yi = (Yl Ym) ~ ¥c corresponds to the weight and
profit sum of the chosen variables Yri when Nr, ~ C, and to the LP-optimal choices b i when N,~ ~t C.
Thus

I'£i = E WiYi"~- E Wib,, (20)
N~C N~¢C

7ri= ~-, Piv~ + E Pib," (21)
Ni~C Ni~C

It is convenient to represent each vector Yi ~ Yc by a state (t&i, T/'i, vi) , where iz i, T/" i are given above, and
v i is a (not necessarily complete) representat ion of Yi. As only undominated states are considered we
have fc(~Zi) = rr i. An iterative version of recursion (17) is presented in Pisinger (1994).

404 D. Pisinger / European Journal of Operational Research 83 (1995) 394-410

5.1. Reduction of states

Although the number of states in Yc at any time is bounded by 2c, the enumeration may be
considerably improved by applying some upper bound tests in order to delete unpromising states.

Assume that the core C is obtained by adding classes corresponding to the first m gradients from L -
and L ÷ and that N s and Art are the next classes to be added from each set. Thus the gradients satisfy

max A/-< aj-, (22)
N~C

min a/+>_ a +. (23)

By this assumption we get the following upper bound on a state i given by (/~i, ~ri, vi):

u(i) = { q'i'i'~-(c-~i)t~t+ if lxi<C' (24)
I

r t i + (c - t z i) a 7 i f / , / > c.

For conveniency we set At + = 0 if the set L ÷ is empty, and a j = oo if L - is empty, ensuring that states
which cannot be improved further are fathomed. Note that this bound is derived in constant time, where
the linear upper bound presented by Zemel (1980) demands O(n) time, improved to O(k log2(n/k)) by
Dudzinski and Walukiewicz (1984).

The bound (24) may also be used for deriving a global upper bound on MCKP. Since any optimal
solution must follow a branch in Yo the global upper bound corresponds to the upper bound of the most
promising branch in Yc. Therefore a global upper bound on MCKP is given by

UMcra, = max u(i) . (25)
YI~ Yc

Since the gradient A + will be decreasing during the solution process, and the gradient Aj will be
increasing, UMc ~ will become more and more tight as the core is expanded. For a complete core
C = {Nx N k} we get UMcra, = z for the optimal solution z. This observation may be used for deriving
an approximate algorithm for MCKP, as the enumeration simply is halted when the current lower bound
is sufficiently close to U Mcv.p.

6. Finding the solution vector

According to the principles of dynamic programming, the optimal solution vector x * should be found
by backtracking through the sets of states, implying that all sets of states should be saved during the
solution process. In the computational experiments it is demonstrated that the number of states may be
half a million in each iteration and since the number of classes may be large (k = 10 000) we would need
to store billions of states. Pisinger (1995c) proposed to save only the last A changes in the solution vector
in each state (~, rr, v). If this information is not sufficient for reconstructing the solution vector, we
simply solve a new MCKP problem with a reduced number of variables. This is repeated till the solution
vector is completely defined. More precisely we do the following:

Assume that v consists of A pairs (i, j), indicating that the variable xij was chosen in class N v
Whenever an improved solution is found during the enumeration of Yc, we save the corresponding state
(/z, 7r, v). When the algorithm terminates, all variables are set to the break solution Xib ' = 1 for
i = 1 , . . . ,k and xi; = 0 for i = 1 k, j =/= b i. Then we make the changes registered in v:

xij = 1, X i b i "~" 0 for (i , j) ~ v,

]~'=]~q- E (Wibi--Wij), 71"~''l'i'q- E (Pibi--Pij)" (26)
(i,j)~v (i,j)Ev

D. Pisinger / European Journal of Operational Research 83 (1995) 394-410 405

If the backtracked weight and profit sums/z' , rr' correspond to the weight and profit sums W, P of the
break solution, we know that the obtained vector is correct. Otherwise we solve a new MCKP, this time
with capacity c =/~', lower bound z = ~-' - 1, and global upper bound u = ~". The process is repeated
until the solution vector x is completely defined. The technique has proved very efficient, since generally
only a few iterations are needed. With A = 10, a maximum of 4 iterations has been observed for large
data instances, but usually the optimal solution vector is found after the first iteration.

7. Main algorithm

The previous sections may be summed up to the following main algorithm:

Algorithm 3
procedure mcknap;
Solve LMCKP through a partitioning algorithm.
Determine gradients L += {A/+ } and L - = {A 7 } f o r i = 1 , k , i ~ a.
Partially sort L + in decreasing order and L - in increasing order.
z := 0; s := 1; t := 1; C := {N,}; Yc := reduceclass(Na);
repeat

reduceset(Yc); if (Yc = fJ) then break; fi;
N/:= Ls ; s := s + 1; {Choose next class f rom L - }
if (N/ is not used) then

R i := reduceclass(N,.);
if (I Ri l > 1) then add(Y o Ri);

fi;
reduceset(Yc); if (Yc = ¢) then break; fi;
N/:= Lt +; t := t + 1; {Choose next class f rom L ÷ }
if (N/ is not used) then

R i := reduceclass(N,.);
if (I Ril > 1) then add(Y o Ri);

fi;
forever;
Find the solution vector.

The first step of the algorithm is to solve the LMCKP as sketched in Section 3. Hereby we obtain the
fractional class N a, the break solution {b i} as well as the corresponding weight and profit sum W and P.

The gradients A/+ and A 7 are determined and the sets L ÷ and L - are ordered. Since we initially do
not need a complete ordering, we use a partial ordering as presented in Pisinger (1995a): Using the
quicksort algorithm for sorting (Hoare, 1962), we always choose the interval containing largest values
(resp. smallest for L -) for further partitioning, while the other interval is pushed onto a stack. In this
way we continue until the largest (resp. smallest) values have been determined. Later in Algorithm 3, if
more values are needed, we simply pop the next interval from the stack by need and partition it further.
Thus for small core sizes we use linear time for this ordering.

Our initial core is the fractional class N a, which is reduced by procedure 'reduceclass'. Here we apply
criterion (15) to fix as many variables as possible at their optimal value. If the reduced class has more
than one item left, we sort the items according to increasing weight, and then apply criterion (3) to
remove dominated items. Hereby we obtain the reduced class R , which is the current set of states Yc.

406 D. Pisinger / European Journal of Operational Research 83 (1995) 394-410

The set of states Yc is reduced by procedure ' reduceset ' which apply criterion (24) to fathom
unpromising states. Moreover the procedure checks whether any feasible state (/z < c) has improved the
lower bound z, and updates the current best solution in that case.

Now we alternately include classes from L + and L - , each time reducing the class to see if it must be
added to the core. The reduced class R i is added to the set of states Yc by using recursion (17),
indicated by procedure ' add ' above.

The iteration stops when no more states are feasible, meaning that no improvements can occur. Note
that we set At + = 0 when L + is empty, and A 7 = oo when L - is empty, meaning that the iteration in any
case will stop when all classes have been considered.

7.1. Minimality

We will show that Algorithm 3 solves MCKP to proven optimality with a minimal core and with
minimal effort for sorting and reduction. More precisely we have:

Definition 2. Given a core C and the corresponding set of states Yc. We say that the core problem has
been solved to proven optimality if one (or both) of the following cases occur: 1) z = UMCKP where z is
the best feasible solution in Yc; 2) All classes N~ ~ C could be reduced to contain only the LP-optimal
choice b,..

Note that if z = UMCKP then all states in Yc will be fa thomed by (24), implying that Yc = ~. Thus the
definition states, that we cannot prove optimality before the enumerat ion terminates or all variables
outside the core can be fixed at their LP-optimal values.

Since MCKP is NP-hard we may assume that the enumerat ion cannot be guided by other principles
than greed. Thus if a problem can be solved to optimality with final gradients A 7 and At + then we may
assume that all classes with smaller A/- and larger A/+ also have been considered, as they have a smaller
loss per weight unit when making changes from the LP-optimal value. This leads to the following

Definition 3. MCKP has been solved with a minimal core if the following invariant holds: A class N s
(resp. N t) is only added to the core C if the corresponding core problem could not be solved to proven
optimality, and the set N s (resp. N t) has the smallest gradient A j- (resp. largest gradient At+).

The definition ensures that if MCKP has been solved to optimality with a minimal core C, no subset core
C ' c C exists, such that a fixed-core algorithm can solve the problem to optimality. Anyway a smaller
sized core C' may exist if C ¢~ C' and C ' ~ C, but according to our definition such cores are not
comparable.

Definition 4. The sorting effort has been minimal if 1) A class N i is sorted only when the current core C
could not be solved to optimality; 2) AT/ is the next class to be included according to Definition 3; and 3)
only items which have passed the reduction criterion (24) are sorted.

Definition 5. The effort used for reduction has been minimal if a class N/ is reduced only when the core
C could not be solved to optimality, and N/ is the next class to be included according to the rule in
Definition 3.

Proposition 4. The presented algorithm solves MCKP with a minimal core, using minimal sorting and
reduction effort (with the mentioned order of priority).

D. Pisinger / European Journal of Operational Research 83 (1995) 394-410 407

Proof. In each iteration of Algorithm 3 we test whether the current core problem has been solved to
proven optimality: The breadth-first search ensures that all variations of Yc have been tested, and thus z
is the best feasible solution in C. If ¥c = I~ we terminate the algorithm, while a new class is only added to
the core if some variables could not be fixed at their LP-optimal values. Thus at any step, no subset core
exists such that the problem can be solved to proven optimality. As we follow the greedy principle for
adding classes to the core, this proves the minimality of the core.

The sorting and reduction is done by need in Algorithm 3, exactly as described in Definitions 4 and 5.
[]

For a more general discussion of minimal knapsack algorithms, see Pisinger (1995b).

8. Computational experiments

The presented algorithm has been implemented in C, and a complete listing is available from the
author on request. The following results have been achieved on a HP9000/730 computer.

We will consider how the algorithm behaves for different problem sizes, test instances, and data-ranges.
Five types of randomly generated data instances are considered, each instance tested with data-range
R~ = 1000 or R 2 = 10000 for different number of classes k and sizes ni:

• Uncorrelated data instances (UC): In each class we generate n i items by choosing w~/ and Pij
randomly in [1, R].

• Weakly correlated data instances (WC): In each class, wi/is randomly distributed in [1, R] and pii is
randomly distributed in [wi~ - 10, w//+ 10], such that pij > 1.

• Strongly correlated data instances (SC): For KP these instances are generated as wj randomly
distributed in [1, R] and pj = wj + 10, which are very hard indeed. Such instances are trivial for
MCKP, since they degenerate to subset-sum data instances, but hard instances for MCKP may be
constructed by cumulating strongly correlated KP-instances: For each class generate n~ items
(w}, p~)as for KP, and order these by increasing weight. The data instance for MCKP is then

J ! = V Wij Y"h=lWh, Pij Y"J=lPh, J = 1 n~. Such instances have no dominated items, and form an
upper convex set.

• Subset-sum data instances (SS): w/j randomly distributed in [1, R] and Pij = Wit" Such instances are
hard since any upper bound will yield uij = c.

• Sinha and Zoltners (SZ): Sinha and Zoltners (1979) constructed their instances in a special way. For
each class construct n i items as (w}, p~) randomly distributed in [1, R]. Order the profits and
weights in increasing order, and set wi/= wj, Pij = Pj, J = 1 , . . . , n i. Note that such data instances
have no dominated items.

The constant M in Algorithm 2 is chosen as M = 15 and for each data instance the capacity c is

k
c = ½ E "{ min wi: Jr- max wij t . (27)

i=1 j~N, "1 j ~ N i /

We construct and solve 100 different data instances for each problem type, size and range. The
presented results are average values or extreme values.

First Table 1 shows the average core size (measured in classes) for solving MCKP to optimality. For
most instances only a few classes need to be considered in the dynamic programming. The strongly
correlated data instances however demand that almost all classes are considered. Table 2 shows how
many classes have been tested by criterion (15). It is seen, that when many classes are present, only a few
percent of the classes are reduced, meaning that we may solve the problem to optimality without even

408 D. Pisinger ~European Journal of Operational Research 83 (1995) 394-410

Table 1
Final core-size. Average of 100 instances

k n i UC WC SC SS SZ

Ri R 2 R1 R2 R1 R 2 Rl R 2 R 1 R 2

10 10 2 2 8 8 8 9 2 4 6 5
100 10 8 9 11 16 85 84 2 4 17 17

1000 10 15 20 7 12 791 775 0 2 18 33
10000 10 10 28 1 10 7563 7800 0 0 11 33

10 100 2 3 4 5 8 8 1 2 7 8
I00 100 7 10 3 6 84 95 0 1 15 34

1000 100 6 17 1 4 839 915 0 0 11 41

10 1000 1 2 2 2 4 8 0 1 6 9
100 1000 1 6 0 2 25 82 0 0 9 30

Table 2
Percentage of all classes which have been tested by weak upper bound. Average of 100 instances

k n i UC WC SC SS SZ

R1 R2 RI R2 R1 R2 Rt R2 R1 R2

10 10 52 55 87 88 85 88 23 37 83 82
100 10 46 63 14 19 87 86 2 4 68 80

1000 10 20 52 1 1 82 82 0 0 18 70
10000 10 0 26 0 0 78 80 0 0 0 19

10 100 42 60 43 55 81 81 10 19 80 90
100 100 23 56 3 6 84 95 0 1 23 82

1000 100 1 29 0 0 84 92 0 0 2 21

10 1000 10 48 16 20 45 79 0 11 66 97
100 1000 1 20 0 2 25 82 0 0 1l 39

c o n s i d e r i n g a l a rge m a j o r i t y o f t h e c lasses . T h e s t r o n g l y c o r r e l a t e d d a t a i n s t a n c e s a g a i n d e m o n s t r a t e t h a t

a l m o s t all c l a s se s m u s t b e c o n s i d e r e d .

T h e e f f i c i e n c y o f t h e w e a k u p p e r b o u n d (15) is g iven in T a b l e 3. T h e e n t r i e s s h o w h o w m a n y p e r c e n t

o f t h e t e s t e d i t e m s w h i c h a re r e d u c e d . G e n e r a l l y a l a rge ma j o r i t y o f t h e v a r i a b l e s a r e f ixed to t h e i r

Table 3
Percentage of tested items which are reduced. Average of 100 instances

k n i UC WC SC SS SZ

Rl R 2 RI Rz Rl R2 Rt R 2 R1 Re

10 10 83 84 48 27 45 34 0 0 70 73
100 10 88 88 62 56 51 51 0 0 86 86

1000 10 89 90 68 49 53 54 0 0 88 89
10000 10 86 90 80 68 50 52 0 0 72 90

10 100 98 98 75 61 84 79 0 0 86 85
100 100 99 99 87 68 85 85 0 0 93 97

1000 100 98 99 94 86 84 85 0 0 94 98

10 1000 100 100 87 58 50 94 0 0 89 90
100 1000 100 100 94 85 50 94 0 0 93 96

D. Pisinger / European Journal of Operational Research 83 (1995) 394-410

Table 4
Largest set of states Yc in dynamic programming, measured in thousands. Maximum of 100 instances

409

k n i UC WC SC SS SZ

Rl R2 Rt R2 R1 R2 R1 R2 R1 R2

10 10 0 0 1 10 3 24 4 47 0 0
100 l0 0 0 4 52 7 68 4 38 0 0

1000 10 1 0 4 39 20 194 0 28 2 3
10000 10 1 4 5 46 84 572 0 0 4 12

10 100 0 0 4 40 1 10 3 28 1 1
100 100 0 0 4 40 4 26 3 28 3 3

1000 100 0 1 3 43 10 106 0 0 4 8

10 1000 0 0 3 35 3 4 0 30 3 10
100 1000 0 0 3 36 25 9 0 20 4 31

Table 5
Total computing time in seconds. Average of 100 instances

k n i UC WC SC SS SZ

R1 R 2 g 1 R2 R1 R2 R 1 R2 Rl R2

10 10 0.00 0.00 0.01 0.05 0.01 0.09 0.01 0.17 0.00 0.00
100 10 0.00 0.00 0.02 0.28 0.37 5.16 0.01 0.11 0.01 0.01

1000 10 0.03 0.03 0.03 0.23 7.30 92.46 0.01 0.09 0.04 0.05
10000 10 0.25 0.31 0.24 0.42 169.94 1628.57 0.17 0.17 0.33 0.41

10 100 0.00 0.00 0.03 0.58 0.02 0.19 0.06 1.05 0.01 0.02
100 100 0.02 0.02 0.03 0.55 0.33 6.93 0.01 0.68 0.05 0.07

1000 100 0.14 0.17 0.16 0.43 9.57 195.75 0.13 0.13 0.24 0.32

10 1000 0.02 0.03 0.12 2.75 1.64 0.14 0.02 12.55 0.19 0.74
100 1000 0.12 0.15 0.18 1.11 173.69 2.97 0.13 0.15 0.41 2.66

opt imal value this way. To i l lustrate the hardness of the dynamic programming, we measure the largest
size of Yc for each data ins tance in Table 4. It is seen that strongly correla ted data instances may result
in more than half a mil l ion states. Still this is far less than the space b o u n d O(2c).

Final ly Table 5 gives the average computa t iona l times. Easy data instances are solved in a fract ion of a

second. Only the strongly correla ted ins tances d e m a n d more computa t iona l effort, bu t are still solved
within 30 minutes . For compar i son it should be m e n t i o n e d that Sinha and Zol tne rs (1979) solve SZ type
problems of size k = 50, r/i = 10 in 0.12 seconds, while Arms t rong et. al. (1983) solve the same problems
of size k = 400, n i = 100 in 2.71 seconds. Both references genera te the weights in a small range R < 100
m e a n i n g that very little e n u m e r a t i o n is necessary to ob ta in an opt imal solution.

The above results indicate that the p resen ted algori thm outper forms any algori thm for MCKP,
implying that the stated min imal proper t ies actually cause drastical reduct ions in the computa t iona l
times. More computa t iona l exper iments with the p resen ted algori thm can be found in Pisinger (1994).

9. C o n c l u s i o n s

We have p resen ted a complete a lgor i thm for the exact solut ion of the Mul t ip le-Choice Knapsack
Problem. To our knowledge, it is the first enumera t ive algori thm which makes use of the par t i t ioning
algori thms by Dyer (1984) and Zemel (1984). In order to do this, it has been necessary to derive new

410 D. Pisinger ~European Journal of Operational Research 83 (1995) 394-410

upper bounds based on the positive and negative gradients, as well as choosing a strategy for which
classes should be added to the core.

The algorithm satisfies some minimality constraints as defined in Section 7.1: It solves MCKP with a
minimal core, since variables only are added to the core if the current core could not be solved to
optimality, and the effort used for sorting and reduction is also minimal according to the stated
definitions.

The computational complexity is O(n + CENi~cni) for a minimal core C, thus we have a linear
solution time for small cores, and pseudopolynomial solution time for large cores. Computational
experiments document that the presented algorithm is indeed very efficient. Even very large data
instances are solved in a fraction of a second; only strongly correlated data instances demand more
computational effort.

References

Armstrong, R.D., Kung, D.S., Sinha, P., and Zoltners, A.A. (1983), "A computational study of a multiple-choice knapsack
algorithm", ACM Transactions on Mathematical Software 9, 184-198.

Balas, E., and Zemel, E. (1980), "An algorithm for large zero-one Knapsack Problems", Operations Research 28, 1130-1154.
Dantzig, G.B. (1957), "Discrete variable extremum problems", Operations Research 5, 266-277.
Dudzinski, K., and Walukiewicz, S. (1984), "A fast algorithm for the linear multiple-choice knapsack problem", Operations

Research Letters 3, 205-209.
Dudzinski, K., and Walukiewicz, S. (1987), "Exact methods for the knapsack problem and its generalizations", European Journal of

Operational Research 28, 3-21.
Dyer, M.E. (1984), "An O(n) algorithm for the multiple-choice knapsack linear program", Mathematical Programming 29, 57-63.
Dyer, M.E., Kayal, N., and Walker, J. (1984), "A branch and bound algorithm for solving the multiple choice knapsack problem",

Journal of Computational and Applied Mathematics 11, 231-249.
Fayard, D., and Plateau, G. (1977), "Reduction algorithm for single and multiple constraints 0-1 linear programming problems",

Conference on Methods of Mathematical Programming, Zakopane, Poland.
Fisher, M.L. (1981), "The Lagrangian relaxation method for solving integer programming problems", Management Science 27,

1-18.
Hoare, C.A.R. (1962), "Quicksort", Computer Journal 5, 1, 10-15.
Martello, S., and Toth, P. (1988), "A new algorithm for the 0-1 Knapsack Problem", Management Science 34, 633-644.
Martello, S., and Toth, P. (1990), Knapsack Problems: Algorithms and Computer Implementations, Wiley, Chichester, UK.
Nauss, R.M. (1978), "The 0-1 knapsack problem with multiple choice constraint", European Journal of Operational Research 2,

125-131.
Pisinger, D. (1994), "A minimal algorithm for the multiple-choice knapsack problem", Report 94/25 DIKU, University of

Copenhagen, Denmark.
Pisinger, D. (1995a), "An expanding-core algorithm for the exact 0-1 knapsack problem", to appear in European Journal of

Operational Research.
Pisinger, D. (1995b), "A minimal algorithm for the bounded knapsack problem", in: E. Balas and J. Clausen (eds.), Proceedings

IPCO IV, Lecture Notes in Computer Science, Springer, Berlin.
Pisinger, D. (1995c), "A minimal algorithm for the 0-1 knapsack problem", submitted to Operations Research, under revision.
Plateau, G., and Elkihel, M. (1985), "A hybrid method for the 0-1 knapsack problem", Methods of Operations Research 49,

277-293.
Sinha, A., and Zoltners, A.A. (1979), "The multiple-choice knapsack problem", Operations Research 27, 503-515.
Witzgal, C. (1977), "On one-row linear programs", Applied Mathematics Division, National Bureau of Standards.
Zemel, E. (1980), "The linear multiple choice knapsack problem", Operations Research 28, 1412-1423.
Zemel, E. (1984), "An O(n) algorithm for the linear multiple choice knapsack problem and related problems", Information

Processing Letters 18, 123-128.

