
An Almost Linear-Time Algorithm for the
Subset-Sum Problem

Zvi Galil *
Department of Computer Science,

Tet-Aviv University and Columbia University.

0ded Margalit
Department of Computer Science,

Tel-Aviv University

Dense

A b s t r a c t

This paper describes a new approach for solving a large subproblem of the
subset-sum problem. It is useful for solving other NP-hard integer programming
problems. The limits and potential of this approach axe investigated.

The approach yields an algorithm for solving the dense version of the subset-
sum problem. It runs in time O(£log£), where l is the bound on the size of the
elements. But for dense enough inputs and target numbers near the middle sum it
runs in time O(m), where m is the number of elements. Consequently, it improves
the previously best algorithms by at least one order of magnitude and sometimes
by two.

The algorithm yields a characterization of the set of subset sums as a collection of
arithmetic progressions with the same difference. This characterization is derived by
elementary number theoretic and algorithmic techniques. Such a characterization
was first obtained by using analytic number theory and yielded inferior algorithms.

1 I n t r o d u c t i o n

There are several ways to cope with the NP-hardness of optimization problems. One is
to look for an approximate solution rather than the opt imum. There is a vast l i terature
about approximation algorithn~s and approximation schemes. For some problems there
are very good approximation algorithms, for others, the problem is still NP-hea'd even
ff we settle for an approximate solution. Another way to cope with complexity is to
settle for the average case or to allow probabilistic algorithms. There are cases where
this approach has paid off and faster algorithms have been discovered. But this has not
been the case with NP-hard optimization problems.

A third approach of coping with NP-hardness is to try to restrict the problem and
design a polynomial-t ime algorithm, tIere too, there have been mixed results. Some

*Work partially supported by NSF Grants CCR-8814977 and CCR-9014605.

720

problems remain NP-hard even when restricted quite severely, others become feasible.
In this paper we follow and extend the third approach. A restriction of the problem that
allows a polynomial-time algorithm is known. However, the resulting algorithm has cubic
time bound. We impose an additional restriction that allows much better algorithms and
consequently much larger instances can be solved by these algorithms.

A novelty of our algorithm is the use of elementary number theory to design algorithms
for solving an integer programming problem. It might be expected that this would be
the natural tool for solving such problems. But we do not know of other such examples.

We use the following notation given a set D of integers: SD = ~-,aeD a is the sum
of the elements of D and D* = {S~ [E C D} is the set of subset sums of D. The
subset -sum problem is: Given a set A of m distinct integers in the interval [1,/~] and
an integer N, find a subset B C_ A such that SB < N and there is no C C A such that
SB < Sc _< N. We assume without loss of generality that N _< 7SA.1

This problem is known to be NP-hard [12] but not in the strong sense: there is a
pseudo polynomial-time algorithm for solving it [6]. A simple m stage dynamic program
solves the problem. The i-th stage finds all subset sums of the i-th prefix of A which
are not larger than N. The time is O(N) per stage, for a total time of O(mN). The
worst case is when N is f2(~m); in this case the time is O(m2t~). The space needed by
this algorithm can be as large as O(tm) just to find SB and O(m2t) for finding B itself.

We derive an algorithm that is two orders of magnitude better than the dynamic
programming approach, but works in a slightly more restricted domain. We impose
two restrictions: we consider only dense instances, mad we consider only an interval of
target numbers around SA/2. Note that the target numbers near the middle sum are the
hardest cases for the dynamic programming algorithm. In our case m 2 > ct log2l and
L < N < SA - L where L = cSAe/m ~ = o(SA). Our algorithm runs in time O(elog£),
but for dense enough instances and target numbers near the middle sum its time bound
is linear (O(m)).

The algorithm consLsts of a preprocessing stage which is followed by a stage that
depends on N and can be repeated for different target numbers. The preprocessing stage
takes between O(m) mad O(£1oge) time. The second stage (for a given N) takes only
constant time to find SB and O(log ~ m) time to obtain a characterization of B (only
log m for dense enough inputs). Of course, we may need @(m) time to list the elements
of B.

Our paper essentially concludes an interplay between analytic number theory and
algorithm design. In the Appendix we sketch this history of "back and forth" between
analytic number theoretical methods and elementary ones. Freiman [8], using meth-
ods from analytical number theory, analyzed the structure of A* for dense subset-sum
problems. More recently, the structure was used to derive algorithms which improved
the dynmnic programming approach. The final algorithm derived using analytic number
theory [5] requires O(£ ~ log t?) time. This bound is the same as for dynamic programming
for the lowest density and as the density increases its improvement increases. Our new
algorithm is faster by at least one, sometimes two, orders of magnitude. Moreover, our
algorithm yields an elementary proof of the characterization of A* by constructing the
sets whose sums are the corresponding elements of A*.

In Section 2 we give a sketch of our algorithm. In Sections 3 and 4 we sketch the two
major steps of the algorithm. Our sketch is qualitative and leaves many of the parameters
undefined. In Section 3 we describe an efficient algorithm that constructs a set A 1 with

