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A b s t r a c t  

This paper describes a new approach for solving a large subproblem of the 
subset-sum problem. It is useful for solving other NP-hard integer programming 
problems. The limits and potential of this approach axe investigated. 

The approach yields an algorithm for solving the dense version of the subset- 
sum problem. It  runs in time O(£log£), where l is the bound on the size of the 
elements. But for dense enough inputs and target numbers near the middle sum it 
runs in time O(m), where m is the number of elements. Consequently, it improves 
the previously best algorithms by at least one order of magnitude and sometimes 
by two. 

The algorithm yields a characterization of the set of subset sums as a collection of 
arithmetic progressions with the same difference. This characterization is derived by 
elementary number theoretic and algorithmic techniques. Such a characterization 
was first obtained by using analytic number theory and yielded inferior algorithms. 

1 I n t r o d u c t i o n  

There  are several ways to cope with the NP-hardness of optimization problems. One is 
to look for an approximate  solution rather  than the opt imum. There is a vast l i terature 
about  approximation algorithn~s and approximation schemes. For some problems there 
are very good approximation algorithms, for others, the problem is still NP-hea'd even 
ff we settle for an approximate  solution. Another way to cope with complexity is to 
settle for the average case or to allow probabilistic algorithms. There  are cases where 
this approach has paid off and faster algorithms have been discovered. But  this has not 
been the case with NP-hard optimization problems. 

A third approach of coping with NP-hardness is to try to restrict the problem and 
design a polynomial-t ime algorithm, tIere too, there have been mixed results. Some 
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problems remain NP-hard even when restricted quite severely, others become feasible. 
In this paper we follow and extend the third approach. A restriction of the problem that 
allows a polynomial-time algorithm is known. However, the resulting algorithm has cubic 
time bound. We impose an additional restriction that allows much better algorithms and 
consequently much larger instances can be solved by these algorithms. 

A novelty of our algorithm is the use of elementary number theory to design algorithms 
for solving an integer programming problem. It might be expected that this would be 
the natural tool for solving such problems. But we do not know of other such examples. 

We use the following notation given a set D of integers: SD = ~-,aeD a is the sum 
of the elements of D and D* = {S~ [ E C D} is the set of subset sums of D. The 
subset -sum problem is: Given a set A of m distinct integers in the interval [1,/~] and 
an integer N, find a subset B C_ A such that SB < N and there is no C C A such that 
SB < Sc _< N.  We assume without loss of generality that N _< 7SA.1 

This problem is known to be NP-hard [12] but not in the strong sense: there is a 
pseudo polynomial-time algorithm for solving it [6]. A simple m stage dynamic program 
solves the problem. The i-th stage finds all subset sums of the i-th prefix of A which 
are not larger than N. The time is O(N) per stage, for a total time of O(mN).  The 
worst case is when N is f2(~m); in this case the time is O(m2t~). The space needed by 
this algorithm can be as large as O(tm) just to find SB and O(m2t) for finding B itself. 

We derive an algorithm that is two orders of magnitude better than the dynamic 
programming approach, but works in a slightly more restricted domain. We impose 
two restrictions: we consider only dense instances, mad we consider only an interval of 
target numbers around SA/2. Note that the target numbers near the middle sum are the 
hardest cases for the dynamic programming algorithm. In our case m 2 > ct log2l and 
L < N < SA - L where L = cSAe/m ~ = o(SA). Our algorithm runs in time O(elog£), 
but for dense enough instances and target numbers near the middle sum its time bound 
is linear (O(m)). 

The algorithm consLsts of a preprocessing stage which is followed by a stage that 
depends on N and can be repeated for different target numbers. The preprocessing stage 
takes between O(m) mad O(£1oge) time. The second stage (for a given N) takes only 
constant time to find SB and O(log ~ m) time to obtain a characterization of B (only 
log m for dense enough inputs). Of course, we may need @(m) time to list the elements 
of B. 

Our paper essentially concludes an interplay between analytic number theory and 
algorithm design. In the Appendix we sketch this history of "back and forth" between 
analytic number theoretical methods and elementary ones. Freiman [8], using meth- 
ods from analytical number theory, analyzed the structure of A* for dense subset-sum 
problems. More recently, the structure was used to derive algorithms which improved 
the dynmnic programming approach. The final algorithm derived using analytic number 
theory [5] requires O(£ ~ log t?) time. This bound is the same as for dynamic programming 
for the lowest density and as the density increases its improvement increases. Our new 
algorithm is faster by at least one, sometimes two, orders of magnitude. Moreover, our 
algorithm yields an elementary proof of the characterization of A* by constructing the 
sets whose sums are the corresponding elements of A*. 

In Section 2 we give a sketch of our algorithm. In Sections 3 and 4 we sketch the two 
major steps of the algorithm. Our sketch is qualitative and leaves many of the parameters 
undefined. In Section 3 we describe an efficient algorithm that constructs a set A 1 with 


