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Abstract
In the Subset Sum problem we are given a set of n positive integers X and a target t and are asked whether some
subset of X sums to t. Natural parameters for this problem that have been studied in the literature are n and t as
well as the maximum input number mxX and the sum of all input numbers ΣX . In this paper we study the dense
case of Subset Sum, where all these parameters are polynomial in n. In this regime, standard pseudo-polynomial
algorithms solve Subset Sum in polynomial time nO(1).

Our main question is: When can dense Subset Sum be solved in near-linear time Õ(n)? We provide an
essentially complete dichotomy by designing improved algorithms and proving conditional lower bounds, thereby
determining essentially all settings of the parameters n, t,mxX ,ΣX for which dense Subset Sum is in time Õ(n).
For notational convenience we assume without loss of generality that t ≥ mxX (as larger numbers can be ignored)
and t ≤ ΣX/2 (using symmetry). Then our dichotomy reads as follows:

By reviving and improving an additive-combinatorics-based approach by Galil and Margalit [SICOMP’91], we
show that Subset Sum is in near-linear time Õ(n) if t� mxXΣX/n2.
We prove a matching conditional lower bound: If Subset Sum is in near-linear time for any setting with
t� mxXΣX/n2, then the Strong Exponential Time Hypothesis and the Strong k-Sum Hypothesis fail.

We also generalize our algorithm from sets to multi-sets, albeit with non-matching upper and lower bounds.
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1 Introduction

In the Subset Sum problem we are given a (multi-)set X of n positive integers and a target t and want to
decide whether some subset of X sums to t. Subset Sum is the most fundamental NP-hard problem at the
intersection of theoretical computer science, mathematical optimization, and operations research. It draws
much of its motivation from being a hard special case of many other problems, e.g., Knapsack and Integer
Programming. An additional modern motivation is lattice-based crypto, which is partly based upon
average-case hardness of a variant of Subset Sum (specifically the Short Integer Solution problem [3]).

Algorithms for Subset Sum have been studied for many decades (see, e.g., the monograph [29]), and
the literature on this problem is still flourishing (see, e.g., [8, 9, 11, 28, 31]). Maybe the most well-known
algorithm for Subset Sum is Bellman’s pseudopolynomial O(nt)-time algorithm [10]. This was recently
improved to randomized time1 Õ(n+ t) [11]; for further logfactor improvements see [28]. Using the modern
toolset of fine-grained complexity theory, this improved running time was shown to be near-optimal,
specifically any t1−ε2o(n)-time algorithm would violate the Strong Exponential Time Hypothesis [2], and a
similar lower bound holds under the Set Cover Hypothesis [19]. This essentially settles the time complexity
with respect to parameters n, t. Alternative parameters for Subset Sum are the maximum input number,
which we denote by mxX , and the sum of all input numbers, which we denote by ΣX . Studying Subset
Sum with respect to these parameters has been a significant effort in theoretical computer science and
optimization, as illustrated by Table 1. In particular, it is known that Subset Sum can be solved in time
O(n ·mxX) [38] or Õ(ΣX) [31]. The most crucial open problem in this line of research is whether Subset
Sum can be solved in time Õ(n+ mxX), see [8].

This open problem illustrates that we are far from a complete understanding of the complexity of
Subset Sum with respect to the combined parameters n, t,mxX ,ΣX . A line of work from around 1990
[15, 16, 22, 25, 26] suggests that this complexity is fairly complicated, as it lead to the following result.

Theorem 1.1 (Galil and Margalit [26]). Given a set X of n positive integers and a target t ≤ ΣX/2, if2

t� mxXΣX/n2 then Subset Sum can be solved in time Õ(n+ mx2
X/n

2).

For understanding the complexity of Subset Sum with respect to the parameters n, t,mxX ,ΣX , Galil and
Margalit’s algorithm provides a highly non-trivial upper bound in a complicated regime. In their paper
they argue that their approach must fail outside their feasible regime. Nevertheless one can wonder: Is the
optimal time complexity of Subset Sum really so complicated, or is this an artefact of Galil and Margalit’s
approach? In particular, can we show a lower bound that establishes their regime to be natural? Note that
Galil and Margalit discovered a non-trivial regime in which Subset Sum can be solved in near-linear time
Õ(n), namely when ΣX/2 ≥ t� mxXΣX/n2 and mxX = Õ(n3/2). One can wonder: Can this near-linear
time regime be extended? What is the largest possible regime in which Subset Sum is in near-linear time?
In this paper, we provide answers to all of these questions.

First, let us discuss the details of Galil and Margalit’s result. Note that the assumption t ≤ ΣX/2 is
without loss of generality: For t > ΣX the problem is trivial, and for ΣX/2 < t ≤ ΣX any subset Y ⊆ X
sums to t if and only if X \ Y sums to ΣX − t, so the inputs (X, t) and (X,ΣX − t) are equivalent. In
particular, an alternative formulation is that this algorithm solves Subset Sum very efficiently when the
target lies in a feasible interval centered around ΣX/2. Note that the feasible interval is only non-empty if

1 We write Õ(T ) for any function that is bounded by O(T logc T ) for some c > 0.
2 We use the notation “f � g” only in the informal overview of our results. We mostly use it to hide polylogarithmic

factors, sometimes also to hide subpolynomial factors. Formally, for functions f, g and a property P , we write “if
f � g then P” if the following statement is true: For any ε > 0 there exists C > 0 such that f ≥ C · nε · g implies P .
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Reference Running Time Comments

Bellman [10] O(nt)

Pisinger [39] O(nt/w) RAM model with cells of w bits

Pisinger [38] O(nmxX)

Klinz and Woeginger [30] O(Σ3/2
X )

Eppstein [20], Serang [44] Õ(nmxX) data structure

Lokshtanov and Nederlof [36] O(n3t) polynomial space, see also [11]

Koiliaris and Xu [31] Õ(
√
nt+ n)

Koiliaris and Xu [31] Õ(t5/4 + n)

Koiliaris and Xu [31] Õ(ΣX)

Bringmann [11] Õ(t+ n) randomized

Jin and Wu [28] Õ(t+ n) randomized, improved logfactors

Table 1 Short survey of pseudopolynomial-time algorithms for Subset Sum on multi-sets. The input consists of a
multi-set X of positive integers and a target number t. We write n for the size of X, mxX for the maximum number
in X, and ΣX for the sum of all numbers in X. This table does not contain the line of work [15, 16, 22, 25, 26]
leading to Galil and Margalit’s algorithm (Theorem 1.1), because these algorithms only work on sets.

mxX � n2, so this result only applies to the dense setting of Subset Sum, where all parameters t,mxX ,ΣX
are polynomial in n. Moreover, while all previously mentioned algorithms also work when X is a multi-set,
Galil and Margalit’s algorithm really requires X to be a set. Under these strict conditions, their algorithm
gives a highly non-trivial result, that uses structural insights from additive combinatorics about arithmetic
progressions in the set of all subset sums. Since it discovers a regime where Subset Sum can be solved
surprisingly fast, it has for instance recently found use in an approximation algorithm for the Partition
problem [37].

We remark that the conference version of Galil and Margalit’s paper [26] claims the result as stated in
Theorem 1.1, but does not contain all proof details. The journal version of their paper [25] only proves a
weaker result, assuming the stricter condition t � mx1/2

X ΣX/n. Nevertheless, their conference version
was recently cited and used in [37]. It would therefore be desirable to have an accessible full proof of
Theorem 1.1. In any case, we will compare the results of this paper with Theorem 1.1.

1.1 Our Contribution
In this paper, we study Subset Sum in the dense regime, where the parameters t,mxX ,ΣX are all
bounded by a polynomial in n. In this regime, any pseudopolynomial-time algorithm solves Subset Sum
in polynomial time poly(n). Our main result is an essentially complete dichotomy that determines all
settings of the parameters n, t,mxX ,ΣX where Subset Sum can be solved in near-linear time Õ(n).

We start by discussing the case where X is a set (not a multi-set).

Algorithm

Galil and Margalit discovered a non-trivial regime where Subset Sum can be solved in near-linear time Õ(n),
namely when ΣX/2 ≥ t � mxXΣX/n

2 and mxX = Õ(n3/2). We extend the near-linear-time regime,
specifically we remove the restriction mxX = Õ(n3/2) from their regime. We achieve this by following the
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same high-level approach as Galil and Margalit, but exchanging almost all parts of the algorithm in order
to improve the running time. Moreover, we provide a full proof which we think is easily accessible.

Theorem 1.2. Given a set X of n positive integers and a target t ≤ ΣX/2, if t� mxXΣX/n
2 then

Subset Sum can be solved in time Õ(n).

Our �-notation hides the same number of logfactors and comparable constants in Theorems 1.1
and 1.2. We also remark that the recent trend of additive-combinatorics-based algorithm design typically
leads to improved, but nasty running times [17, 13, 37], so our clean running time of Õ(n) is an exception.

Conditional Lower Bound

We prove a lower bound based on the standard Strong Exponential Time Hypothesis [27, 14] from
fine-grained complexity theory. Alternatively, our bound can be based on the (less standard) Strong
k-Sum Hypothesis [6, 1]. For details on these hypotheses, see Section 5.

Theorem 1.3 (Informal). Subset Sum requires time (mxXΣX/(nt))1−o(1), unless the Strong Exponential
Time Hypothesis and the Strong k-Sum Hypothesis both fail. This even holds when X must be a set.

More precisely, we prove this lower bound for any parameter setting of n, t,mxX ,ΣX (similar to [12]).
Specifically, for the parameters t,mxX ,ΣX we fix corresponding exponents τ, ξ, σ ∈ R and focus on
instances with t = Θ(nτ ), mxX = Θ(nξ), and ΣX = Θ(nσ). Some settings of τ, ξ, σ are trivial, in the
sense that they admit no (or only finitely many) instances; we ignore such settings. For each non-trivial
parameter setting, we prove a conditional lower bound of (mxXΣX/(nt))1−o(1). This shows that we did
not miss any setting in which Subset Sum admits algorithms running in time (mxXΣX/(nt))1−Ω(1).

Note that for t� mxXΣX/n2 we obtain a super-linear lower bound. This complements our Theorem 1.2,
which runs in near-linear time Õ(n) if t� mxXΣX/n2. In particular, we obtain an essentially complete
dichotomy of near-linear-time settings, except for leaving open settings with t ≈ mxXΣX/n2. That is, we
determined the largest possible regime in which dense Subset Sum is in near-linear time.

Also note that our lower bound establishes the regime t� mxXΣX/n2 to be natural, and not just an
artefact of the algorithmic approach, so the optimal time complexity of Subset Sum is indeed complicated!

Multi-Sets

Finally, we provide a generalization of our algorithm (and thus also Galil and Margalit’s result) to
multi-sets. For a multi-set X, we denote by µX the largest multiplicity of any number in X.

Theorem 1.4. Given a multi-set X of n positive integers and a target t ≤ ΣX/2, if t� µXmxXΣX/n2

then Subset Sum can be solved in time Õ(n).

For constant multiplicity µX = O(1) this yields the same result as for sets. For larger multiplicities,
we pay a factor µX in the feasibility bound. Since any set is also a multi-set, the lower bound from
Theorem 1.3 also applies here. However, for µX � 1 we no longer obtain matching regimes.

1.2 Organization
After formalizing some notation in Section 2, we give a technical overview of our results in Section 3. We
present our algorithm in Section 4, and our conditional lower bound in Section 5. Finally, we conclude
with open problems in Section 6.
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2 Notation

We write [n ] := {1, . . . , n} and [ ` . . r ] := {`, . . . , r}. Further, for a set A and an integer d, we write
A mod d := {a mod d | a ∈ A}.

Throughout the paper we let X denote a finite non-empty multi-set of positive integers (or multi-set
for short). For an integer x, we write µ(x;X) to denote the multiplicity of x in X. A number that does
not appear in X has multiplicity 0. We use the same notation for multi-sets and sets, e.g., a subset Y ⊆ X
is a multi-set with µ(x;Y ) ≤ µ(x;X) for all x. We write suppX to denote the support of X, that is, the
set of all distinct integers contained in the multi-set X.

We associate the following relevant objects to a multi-set X:
Size |X|: The number of elements of X, counted with multiplicity, that is, |X| :=

∑
x∈N µ(x;X).

Maximum mxX : The maximum element of X, that is, mxX := max{x ∈ N | µ(x;X) > 0}.
Multiplicity µX : The maximum multiplicity of X, that is, µX := max{µ(x;X) | x ∈ N}.
Sum ΣX : The sum of all elements of X, that is, ΣX :=

∑
x∈N x · µ(x;X).

Set of all subset sums SX : The set containing all sums of subsets of X, that is, SX := {ΣY | Y ⊆ X}.
The Subset Sum problem now reads as follows.

Problem 2.1 (Subset Sum). Given a (multi-)set X and an integer t, decide whether t ∈ SX .

For a multi-set X and an integer k ≥ 1 we write kX := {kx | x ∈ X}, that is, every number in X is
multiplied by k. Similarly, if every number in X is divisible by k, then we write X/k := {x/k | x ∈ X}.

3 Technical Overview

3.1 Technical Overview of the Algorithm

We follow the same high-level approach as Galil and Margalit [26]. However, we replace essentially every
part of their algorithm to obtain our improved running time as well as a generalization to multi-sets.

Our goal is to design a near-linear time algorithm for Subset Sum in the regime t� µXmxXΣX/|X|2.
Recall that without loss of generality we can assume t ≤ ΣX/2, by using symmetry. Combining these
inequalities, we will in particular assume |X|2 � µXmxX . We formalize this assumption as follows.

Definition 3.1 (Density). We say that a multi-set X is δ-dense if it satisfies |X|2 ≥ δ · µX ·mxX .

If (almost) all numbers in X are divisible by the same integer d > 1, then it may be that not all
remainders modulo d are attainable by subsets sums. For this reason, we introduce the following notion.

Definition 3.2 (Almost Divisor). We write X(d) := X ∩ dZ to denote the multi-set of all numbers in X
that are divisible by d. Further, we write X(d) := X \X(d) to denote the multi-set of all numbers in X
not divisible by d. We say an integer d > 1 is an α-almost divisor of X if |X(d)| ≤ α · µX · ΣX/|X|2.

Using the above definitions, we can cleanly split our proof into a structural part and an algorithmic
part. We first formulate these two parts and show how they fit together to solve Subset Sum. We then
discuss the proofs of our structural and algorithmic part in Sections 3.1.1 and 3.1.2 below.

In the structural part we establish that dense and almost-divisor-free sets generate all possible subset
sums apart from a short prefix and suffix. Note that any X satisfies SX ⊆ [ 0 . . ΣX ].
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Theorem 3.3 (Structural Part, Informal). If X is Θ̃(1)-dense3 and has no Θ̃(1)-almost divisor, then
there exists λX = Θ̃(µXmxXΣX/|X|2) such that [λX . . ΣX − λX ] ⊆ SX .

Our algorithmic part is a reduction of the general case to the setting of Theorem 3.3. This is achieved
by repeatedly removing almost divisors (i.e., finding an almost divisor d and replacing X by X(d)/d).

Theorem 3.4 (Algorithmic Part, Informal). Given an Θ̃(1)-dense multiset X of size n, in time Õ(n) we
can compute an integer d ≥ 1 such that X ′ := X(d)/d is Θ̃(1)-dense and has no Θ̃(1)-almost divisor.

By combining these two components, we show that in the regime t � µXmxXΣX/|X|2 the Subset
Sum problem is characterized by its behaviour modulo d.

Theorem 3.5 (Combination I, Informal). Let X be an Θ̃(1)-dense multi-set, and let d be as in Theorem 3.4.
Then for any t ≤ ΣX/2 with t� µXmxXΣX/|X|2 we have

t ∈ SX if and only if t mod d ∈ SX mod d.

Proof Sketch. In one direction, if t mod d 6∈ SX mod d, then clearly t is not a subset sum of X. In the
other direction, if t mod d ∈ SX mod d, then there is a subset Y ⊆ X summing to t modulo d. We can
assume that Y ⊆ X(d), since numbers divisible by d do not help for this purpose. The remaining target
t′ = t− ΣY is divisible by d. Since we assume t to be large and by arguing about the size of Y , we can
show that t′/d lies in the feasible interval of Theorem 3.3 applied to X(d)/d. Thus, some subset of X(d)/d
sums to t′/d, meaning some subset of X(d) sums to t′. Together, we have found a subset of X summing
to t. Hence, we can decide whether t is a subset sum of X by deciding the same modulo d.

Using the above structural insight for algorithm design yields the following result.

Theorem 3.6 (Combination II, Informal). We can preprocess a given Θ̃(1)-dense multi-set X of size n
in time Õ(n). Given a query t ≤ ΣX/2 with t� µXmxXΣX/n2 we can then decide t ∈ SX in time O(1).

In particular, given a multi-set X of size n and a target t ≤ ΣX/2 with t� µXmxXΣX/n
2 we can

decide whether t ∈ SX in time Õ(n).

Proof Sketch. The preprocessing has two steps: (1) Computing the number d from Theorem 3.4. This
can be done in time Õ(n) by Theorem 3.4. (2) Solving Subset Sum modulo d, that is, computing the set
SX mod d. Here we use a recent algorithm by Axiotis et al. [8, 7] that runs in time Õ(n+ d), which can
be bounded by Õ(n) in our context using the density assumption.

On query t it suffices to check whether t mod d lies in the precomputed set SX mod d, by Theorem 3.5.
For the second formulation, we argue that the assumptions t ≤ ΣX/2 and t ≥ Θ̃(µXmxXΣX/n

2)
imply that X is Θ̃(1)-dense. Therefore, the first formulation implies the second.

It remains to describe the two main components: the structural part and the algorithmic part.

3 In this technical overview we present informal versions of our intermediate theorems. In particular, we write Θ̃(1) to
hide a sufficiently large polylogarithmic factor C logC(n). These factors are made precise later in the paper.
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3.1.1 Structural Part
Recall that in the structural part we analyze the setting of dense and almost-divisor-free multisets.

Theorem 3.3 (Structural Part, Informal). If X is Θ̃(1)-dense and has no Θ̃(1)-almost divisor, then
there exists λX = Θ̃(µXmxXΣX/|X|2) such that [λX . . ΣX − λX ] ⊆ SX .

Note that the density assumption implies λX = o(ΣX), so the interval [λX . . ΣX − λX ] is non-trivial.
Also note that if all numbers in X were even, then all subset sums would be even, so we cannot have
[λX . . ΣX − λX ] ⊆ SX — therefore it is natural to exclude almost divisors.

Theorem 3.3 is an existential result about an arithmetic progression (of stepsize 1) in the set of all
subset sums, and thus belongs to the realm of additive combinatorics, see [47] for an overview. Arithmetic
progressions in the set of all subsets sums have been studied at least since early work of Alon [4], see also
the literature by Erdős, Freiman, Sárközy, Szemerédi, and others [5, 21, 23, 33, 34, 35, 42, 43, 46]. A
result of this type is also implicit in the algorithm by Galil and Margalit [25], but only applies to sets. The
main novelty of Theorem 3.3 over previous work in additive combinatorics is that we consider multi-sets
with a bound on the multiplicity µX , which has not been explicitly studied before.

Proof Sketch. The proof is an elementary, but involved construction using arguments that are standard
in the additive combinatorics community, but not in theoretical computer science.

The multi-set X is partitioned into three suitable subsets A ∪R ∪G such that:
SA contains a long arithmetic progression of small step size s and small starting value. To construct A,
we adapt the proof of a result by Sárközy [43], to generalize it from sets to multi-sets.
R generates all remainders modulo s, that is, SR mod s = Zs. To construct R, it suffices to pick any s
numbers in X(s). (We discuss later how to avoid that all numbers in X(s) are already picked by A.)
The remaining elements G = X \ (A ∪R) still have a large sum.

Using this partitioning, for any target t ∈ [λX . . ΣX − λX ] we construct a set summing to t as follows.
We first greedily pick elements from G that sum to a number t′ = t − Θ(λX). We then pick elements
from R that sum to t− t′ modulo s. It remains to add the right multiple of s. This number appears as an
element of the arithmetic progression guaranteed by A, so we pick the corresponding subset of A.

Remark 3.7. Our proof of Theorem 3.3 is constructive and yields a polynomial-time algorithm. However,
we currently do not know how to obtain near-linear time preprocessing and solution reconstruction.
Fortunately, for the decision version of Subset Sum an existential result suffices.

3.1.2 Algorithmic Part
Recall that our algorithmic part is a reduction to the almost-divisor-free setting.

Theorem 3.4 (Algorithmic Part, Informal). Given an Θ̃(1)-dense multiset X of size n, in time Õ(n) we
can compute an integer d ≥ 1 such that X ′ := X(d)/d is Θ̃(1)-dense and has no Θ̃(1)-almost divisor.

A similar result is implicit in the algorithm by Galil and Margalit [25]. However, their running time is
Õ(n+ (mxX/n)2), which ranges from Õ(n) to Õ(n2) in our near-linear-time regime. The main difference
is that they compute d using more or less brute force, specifically the bottleneck of their running time is
to test for every integer 1 < d ≤ mxX/n and for each of the O(mxX/n) smallest elements x ∈ X whether
d divides x. In contrast, we read off almost divisors from the prime factorizations of the numbers in X.
Another difference is that they construct d by a direct method, while we iteratively construct d = d1 · · · di.
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Proof Sketch. Consider the following iterative procedure. Initialize X0 := X and i = 1. While Xi−1 has
an almost divisor, we pick any almost divisor di of Xi−1, and we continue with Xi := Xi−1(di)/di. The
final set Xi = X(d1 · · · di)/(d1 · · · di) has no almost divisor, so we return d := d1 · · · di.

We need to show that the resulting set Xi is Θ̃(1)-dense. The key step here is to establish the size
bound |Xi| = Ω(n). This allows us to control all relevant parameters of Xi. We thus obtain existence of a
number d with the claimed properties.

It remains to show that this procedure can be implemented to run in time Õ(n). The number of
iterations is O(logn), since the product d1 · · · di grows exponentially with i. Therefore, the running time
is dominated by the time to find an almost divisor di, if there exists one. We observe that if there exists
an almost divisor, then there exists one that is a prime number. It would thus be helpful to know the
prime factorizations of all numbers in X. Indeed, from these prime factorizations we could read off
all primes that divide sufficiently many elements of X, so we could infer all prime almost divisors. As
it turns out (see Theorem 3.8 below), we can simultaneously factorize all numbers in X in total time
Õ(n+√mxX). This can be bounded by Õ(n) using that X is Θ̃(1)-dense. It follows that our procedure
can be implemented in time Õ(n).

The above algorithm crucially relies on computing the prime factorization of all input numbers.

Theorem 3.8. The prime factorization of n given numbers in [ s ] can be computed in time Õ(n+
√
s).

In the proof of Theorem 3.4, we use this algorithm for s = O(n2), where it runs in time Õ(n). From
the literature (see, e.g., [18]), we know three alternatives to our algorithm, which are all worse for us:

After constructing the Sieve of Eratosthenes on [ s ] in time Õ(s), we can determine all prime factors
of a number in [ s ] in time O(log s). This yields a total running time of Õ(s+ n).
The prime factorization of a number in [ s ] can be computed in expected time so(1) (more precisely,
time 2O((log s)1/2(log log s)1/2) for rigorously analyzed algorithms [32], and time 2O((log s)1/3(log log s)2/3)

for heuristics, see [41]). Running this for each of n input numbers takes expected time n · so(1). For
s = O(n2), we improve upon this running time by a factor so(1), and our algorithm is deterministic.
The fastest known deterministic factorization algorithms are due to Pollard [40] and Strassen [45] and
factorize a number in [ s ] in time Õ(s1/4). Running this for all n input numbers takes time Õ(n · s1/4).
For s ≤ n2, we improve this running time by a factor s1/4.

Proof Sketch. Suppose we want to factorize m1, . . . ,mn ∈ [ s ]. Let p1, . . . , p` denote all primes below
√
s.

Their product P = p1 · · · p` is an Õ(
√
s)-bit number. We compute P in a bottom-up tree-like fashion;

this takes time Õ(
√
s). Similarly, we compute M = m1 · · ·mn in a bottom-up tree-like fashion; this takes

time Õ(n). We can now compute P mod M . Then we iterate over the same tree as for M in a top-down
manner, starting from the value P mod M at the root and computing the values P mod mj at the leaves;
this again can be done in time Õ(n). From these values we compute the greatest common divisor of P and
mj as gcd(P,mj) = gcd(P mod mj ,mj). Observe that mj >

√
s is prime if and only if gcd(P,mj) = 1,

so we can now filter out primes.
For composites, we repeat the above procedure once with the left half of the primes p1, . . . , p`/2 and

once with the right half p`/2+1, . . . , p`. We can infer which composites mj have a prime factor among the
left half, and which have a prime factor among the right half. We then recurse on these halves. In the
base case we find prime factors.

3.2 Technical Overview of the Conditional Lower Bound
Our goal in the lower bound is to show that Subset Sum cannot be solved in near-linear time for
t� mxXΣX/n2, in the case where X is a set. To this end, we present a conditional lower bound in the
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realm of fine-grained complexity theory.
We start by defining parameter settings: For the parameters t,mxX ,ΣX we fix corresponding exponents

τ, ξ, σ ∈ R+ and consider Subset Sum instances (X, t) satisfying t = Θ(nτ ), mxX = Θ(nξ), and ΣX = Θ(nσ).
We call the family of all these instances a parameter setting and denote it by Subset Sum(τ, ξ, σ). Note
that some choices of the exponents τ, ξ, σ are contradictory, leading to trivial parameter settings that
consist of only finitely many instances or that can otherwise be solved trivially. For example, if X is a set
of size n then ΣX ≥

∑n
i=1 i = Θ(n2), so parameter settings with σ < 2 are trivial. Accordingly, we call a

parameter setting (τ, ξ, σ) non-trivial if it satisfies the inequalities σ ≥ 2 as well as 1 ≤ ξ ≤ τ ≤ σ ≤ 1 + ξ;
for a justification of each one of these restrictions see Section 5.2.

For every non-trivial parameter setting Subset Sum(τ, ξ, σ), we prove a conditional lower bound ruling
out running time O((mxXΣX/(nt))1−ε) for any ε > 0 (see Theorem 5.10). In particular, for any non-trivial
parameter setting with t � mxXΣX/n

2 this yields a super-linear lower bound. Note that our use of
parameter settings ensures that we did not miss any setting in which Subset Sum admits a near-linear
time algorithm.

Our lower bound is conditional on assumptions from fine-grained complexity theory. Specifically, it
holds under the Strong Exponential Time Hypothesis [27, 14], which is the most standard assumption from
fine-grained complexity [48] and essentially states that the Satisfiability problem requires time 2n−o(n).
Alternatively, our lower bound also follows from the Strong k-SUM hypothesis; see Section 5.1.2 for a
discussion. To obtain a uniform lower bound under both of these hypotheses, we introduce the following
intermediate hypothesis:

For any α, ε > 0 there exists k ≥ 3 such that given a set Z ⊆ {1, . . . , U} of size |Z| ≤ Uα and given
a target T , no algorithm decides whether any k numbers in Z sum to T in time O(U1−ε).

We first show that this intermediate hypothesis is implied both by the Strong Exponential Time
Hypothesis (via a reduction from [2]) and by the Strong k-SUM hypothesis (which is easy to prove). Then
we show that the intermediate hypothesis implies our desired conditional lower bound for every non-trivial
parameter setting of Subset Sum. For this step, we design a reduction that starts from a k-Sum instance
and constructs an equivalent Subset Sum instance. This is in principle an easy task. However, here we are
in a fine-grained setting, where we cannot afford any polynomial overhead and thus have to be very careful.
Specifically, as we want to prove a conditional lower bound for each non-trivial parameter setting, we need
to design a family of reductions that is parameterized by (τ, ξ, σ). Ensuring the conditions t = Θ(nτ ),
mxX = Θ(nξ), and ΣX = Θ(nσ) in the constructed Subset Sum instance (X, t) requires several ideas on
how to “pack” numbers (in fact, this task is so complicated that for the case of multi-sets we were not
able to prove a tight conditional lower bound).

4 The Algorithm

4.1 Precise Theorem Statements and Combination
Recall that our algorithm has two main components, the algorithmic part and the structural part. We
now present formal statements of these parts.

Theorem 4.1 (Algorithmic Part, Formal Version of Theorem 3.4). Let δ, α be functions of n with δ ≥ 1
and 16α ≤ δ. Given an δ-dense multiset X of size n, in time Õ(n) we can compute an integer d ≥ 1 such
that X ′ := X(d)/d is δ-dense and has no α-almost divisor. Moreover, we have the following additional
properties:
1. d ≤ 4µXΣX/|X|2,
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2. d = O(n),
3. |X ′| ≥ 0.75 |X|,
4. ΣX′ ≥ 0.75 ΣX/d.

Theorem 4.2 (Structural Part, Formal Version of Theorem 3.3). Let X be a multi-set and set

Cδ := 1699200 · log(2n) log2(2µX),
Cα := 42480 · log(2µX),
Cλ := 169920 · log(2µX).

If X is Cδ-dense and has no Cα-almost divisor, then for λX := Cλ · µXmxXΣX/|X|2 we have

[λX . . ΣX − λX ] ⊆ SX .

We next show how to combine these theorems to solve Subset Sum. We use notation as in Theorem 4.2.

Theorem 4.3 (Combination I, Formal Version of Theorem 3.5). Given a Cδ-dense multi-set X, in time
Õ(n) we can compute an integer d ≥ 1 such that for any t ≤ ΣX/2 with t ≥ (4 + 2Cλ)µXmxXΣX/|X|2:

t ∈ SX if and only if t mod d ∈ SX mod d.

Proof. The easy direction does not depend on the choice of d: If t mod d 6∈ SX mod d, then clearly t is
not a subset sum of X.

For the more difficult direction, first apply Theorem 4.1 with δ := Cδ and α := Cα to compute an integer
d ≥ 1 such thatX ′ = X(d)/d has no Cα-almost divisor and is Cδ-dense (note that Theorem 4.1 is applicable
since 16Cα ≤ Cδ). Then Theorem 4.2 is applicable to X ′ and shows that [λX′ . . ΣX′ − λX′ ] ⊆ SX′ .

Note that if t mod d ∈ SX mod d, then there is a subset Y ⊆ X summing to t modulo d. We choose
a minimal such set Y , that is, we pick any Y ⊆ X such that ΣY mod d = t mod d, but for any proper
subset Y ′ ( Y we have ΣY ′ mod d 6= t mod d. We claim that (i) Y ⊆ X(d) and (ii) t′ := (t− ΣY )/d lies
in the feasible interval [λX′ . . ΣX′ − λX′ ]. Assuming these two claims, by Theorem 4.2 there exists a set
Z ′ ⊆ X ′ with ΣZ′ = t′. This corresponds to a set Z ⊆ X(d) with ΣZ = dt′ = t− ΣY . Since Y and Z are
subsets of disjoint parts of X, their union Y ∪ Z is a subset of X summing to t. This proves the desired
statement: if t mod d ∈ SX mod d then t ∈ SX . In the following we prove the two remaining claims.

Claim 4.4. We have (1) Y ⊆ X(d), (2) |Y | ≤ d, and (3) ΣY ≤ 4µXmxXΣX/|X|2.

Proof. (1) If Y 6⊆ X(d), then we can replace Y by Y ∩X(d) without changing the value of ΣY mod d, as
this change only removes numbers divisible by d. Hence, by minimality of Y we have Y ⊆ X(d).

To see (2), write Y = {y1, . . . , y`} and consider the prefix sums (y1 + . . .+ yi) mod d. If ` > d, then
by the pigeonhole principle there exist i < j with the same remainder

y1 + . . .+ yi ≡ y1 + . . .+ yj (mod d).

It follows that yi+1 + . . .+ yj ≡ 0 (mod d), so we can remove {yi+1, . . . , yj} from Y without changing the
value of ΣY mod d. As this violates the minimality of Y , we obtain ` ≤ d.

For (3), using Theorem 4.1.1, the inequality |Y | ≤ d implies ΣY ≤ d ·mxX ≤ 4µXmxXΣX/|X|2.

The remaining target t− ΣY is divisible by d. It remains to prove that t′ := (t− ΣY )/d lies in the
feasible interval of Theorem 4.2 applied to X ′ = X(d)/d:
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Claim 4.5. We have t′ ∈ [λX′ . . ΣX′ − λX′ ].

Proof. Using the inequality |X ′| ≥ 0.75 |X| from Theorem 4.1.3, the bound (1/0.75)2 < 2, and the easy
facts µX′ ≤ µX , mxX′ ≤ mxX/d, and ΣX′ ≤ ΣX/d, we bound

λX′ = CλµX′mxX′ΣX′

|X ′|2
≤ 2CλµXmxXΣX

d|X|2
.

By the assumption t ≥ (4 + 2Cλ)µXmxXΣX/|X|2 and Claim 4.4.(3), it follows that t′ = (t−ΣY )/d ≥ λX′ .
For the other direction, we use that X is Cδ-dense and thus also 8Cλ-dense, which gives µXmxX/|X|2 ≤

1/(8Cλ). Therefore, we can further bound

λX′ ≤ 2CλµXmxXΣX
d|X|2

≤ ΣX
4d .

From Theorem 4.1.4 we have ΣX′ ≥ 0.75 ΣX/d, and thus ΣX′ − λX′ ≥ 0.5 ΣX/d. Finally, we use the
assumption t ≤ ΣX/2 to obtain

t′ = t− ΣY
d

≤ t

d
≤ ΣX

2d ≤ ΣX′ − λX′ .

This finishes the proof of t′ ∈ [λX′ . . ΣX′ − λX′ ].

We thus proved the two remaining claims, finishing the proof.

This leads to the following formal version of our final algorithm. We use notation as in Theorem 4.2.

Theorem 4.6 (Combination II, Formal Version of Theorem 3.6). We can preprocess a given Cδ-dense
multi-set X of size n in time Õ(n). Given a query t ≤ ΣX/2 with t ≥ (4 + 2Cλ)µXmxXΣX/n

2 we can
then decide whether t ∈ SX in time O(1).

In particular, given a multi-set X of size n and a target t ≤ ΣX/2 with4 t ≥ 0.5CδµXmxXΣX/n2, we
can decide whether t ∈ SX in time Õ(n).

Proof. In the preprocessing, we first run the algorithm from Theorem 4.3 to compute the number d.
Then we solve Subset Sum modulo d, that is, we compute the set SX mod d. To this end, we use a recent
algorithm by Axiotis et al. [8, 7] that runs in time Õ(n+ d). By Theorem 4.1.2 we have d = O(n), so the
running time can be bounded by Õ(n).

On query t, we check whether t mod d lies in the precomputed set SX mod d. If so, we return “t ∈ SX”,
if not, we return “t 6∈ SX”. This runs in time O(1).

For the second formulation, note that ΣX/2 ≥ t ≥ 0.5CδµXmxXΣX/n
2 implies n2 ≥ CδµXmxX .

Hence, the multi-set X is Cδ-dense. Since also 0.5Cδ ≥ 4 + 2Cλ, the first formulation applies and we can
decide whether t ∈ SX in Õ(n) preprocessing time plus O(1) query time.

It remains to prove the two main components: the structural part and the algorithmic part. After
some preparations in Section 4.2, we will prove the algorithmic part in Section 4.3 and the structural part
in Section 4.4.

4 Note that by definition of Cδ, the requirement on t is t ≥ 849600 · log(2n) log2(2µX) · µXmxXΣX/n2. We did not
optimize constant factors.
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4.2 Preparations
We start with some observations about our notion of density. Recall the following definition.

Definition 3.1 (Density). We say that a multi-set X is δ-dense if it satisfies |X|2 ≥ δ · µX ·mxX .

Lemma 4.7. For any δ-dense multi-set X of size n, we have µX · ΣX/n2 ≤ n/δ.

Proof. By definition of δ-density, we have n2 ≥ δ · µX ·mxX . Combining this with the trivial inequality
ΣX ≤ mxX · n and rearranging yields the claim.

Next we show that large subsets of dense multi-sets are dense as well.

Lemma 4.8. For any κ ≥ 1 and any δ-dense multi-set X, any subset Y ⊆ X of size |Y | ≥ |X|/κ is
δ/κ2-dense.

Proof. Using the size assumption |Y | ≥ |X|/κ, the definition of δ-density, and the trivial facts µY ≤ µX
and mxY ≤ mxX , we obtain

κ2 · |Y |2 ≥ |X|2 ≥ δ · µX ·mxX ≥ δ · µY ·mxY .

This yields the claimed inequality after rearranging.

Lastly, we show that dividing all numbers in a set increases the density of a set.

Lemma 4.9. Let d ≥ 1 be an integer, and let X be a δ-dense multi-set of positive integers divisible
by d. Then the multi-set X/d is dδ-dense.

Proof. By definition of δ-density, we have

|X/d|2 = |X|2 ≥ δ · µX ·mxX = δ · µX/d · dmxX/d,

where we used the facts that the multi-sets X and X/d have the same number of elements and the same
multiplicity, while mxX = d ·mxX/d. In total, this proves that the multi-set X/d is dδ-dense.

4.3 Algorithmic Part
In this section, we first design an algorithm for prime factorization (proving Theorem 3.8 in Section 4.3.1),
then use this to find almost divisors (Section 4.3.2), and finally present a proof of the algorithmic part
(proving Theorem 4.1 in Section 4.3.3).

4.3.1 Prime Factorization
In this section, we show that n given numbers in [ s ] can be factorized in total time Õ(n+

√
s), proving

Theorem 3.8. We start by describing the following subroutine.

Lemma 4.10 (Decision Subroutine). Given a set of integers M ⊆ [ s ] and a set of prime numbers
P ⊆ [ s ], in time Õ((|M |+ |P |) log s) we can compute all m ∈M that are divisible by some p ∈ P , that
is, we can compute the set M ′ := {m ∈M | ∃p ∈ P : p divides m}.
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Proof. Observe that an integer m is divisible by a prime p if and only if their greatest common
divisor satisfies gcd(m, p) > 1. More generally, m is divisible by some p ∈ P if and only if we have
gcd

(
m,
∏
p∈P p

)
> 1. This is the check that we will use in our algorithm. However, note that

∏
p∈P p is

an Ω(|P |)-bit number, and thus a direct computation of gcd
(
m,
∏
p∈P p

)
requires time Ω̃(|P |). Repeating

this operation for all m ∈M would require time Ω̃(|M | · |P |), which we want to avoid.
In the following we make use of efficient algorithms for multiplication and division with remainder,

that is, we use that the usual arithmetic operations on b-bit numbers take time Õ(b).
For a set S = {s1, . . . , sn}, we denote by TS a balanced binary tree with n leaves corresponding to

the elements s1, . . . , sn. Each node of TS corresponds to a subset I = {si, . . . , sj} ⊆ S. The root of TS
corresponds to the set S. A node corresponding to a set I ⊆ S of size |I| = 1 is a leaf and has no children.
A node corresponding to a set I ⊆ S of size |I| > 1 is an internal node and has two children, corresponding
to the two parts of a balanced partitioning I = I1 ∪ I2. We denote these children by leftchild(I) = I1 and
rightchild(I) = I2. Moreover, we denote the parent relation by parent(I1) = parent(I2) = I. We write
V (TS) for the family of all subsets I forming the nodes of TS .

We construct the trees TM and TP in time Õ(|M |+ |P |).
For each I ∈ V (TM ) we define Π(I) :=

∏
m∈I m. In particular, at any leaf I = {m} we have Π(I) = m,

and at the root we have Π(M) =
∏
m∈M m. We compute the numbers Π(I) by traversing the tree TM

bottom-up, that is, for any internal node I we compute Π(I) := Π(leftchild(I)) ·Π(rightchild(I)).
To analyze the running time to compute all numbers Π(I), note that the total bit length of the numbers

Π(I) on any fixed level of TM is O(|M | log s). Using an efficient multiplication algorithm, we can thus
perform all operations on a fixed level in total time Õ(|M | log s). Over all O(log |M |) levels of TM , the
running time is still bounded by Õ(|M | log s).

In the same way, we compute the numbers Π(J) =
∏
p∈J p for all nodes J ∈ V (TP ). In particular, at

the root of TP we compute Π(P ) =
∏
p∈P p. This takes time Õ(|P | log s).

Now we compute the number Π(P ) mod Π(M). Since the combined bit length of Π(P ) and Π(M) is
O((|M |+ |P |) log s), this takes time Õ((|M |+ |P |) log s).

Next we compute the numbers R(I) := Π(P ) mod Π(I) for all I ∈ V (TM ), by traversing the tree TM
top-down. At the root we use the already computed number Π(P ) mod Π(M). At an internal node I we
compute

R(I) := R(parent(I)) mod Π(I).

Note that both R(parent(I)) and Π(I) are already computed when we evaluate R(I).
To analyze the running time to compute all numbers R(I), we note that R(I) ≤ Π(I), so the total

bit length of the numbers R(I) is bounded by the total bit length of the numbers Π(I). Thus, the same
analysis as before shows that computing the numbers R(I) takes total time Õ(|M | log s).

Note that for the leaves of TM we have now computed the numbers R({m}) = Π(P ) mod m for all
m ∈M . Since m and R({m}) have bit length O(log s), we can compute their greatest common divisor
gcd(m,R({m})) in time Õ(log s). In total, this takes time Õ(|M | log s).

Finally, we use the identity gcd(a, b) = gcd(a, b mod a) to observe that

gcd
(
m,
∏
p∈P

p
)

= gcd
(
m,Π(P )

)
= gcd

(
m,R({m})

)
.

By our initial discussion, a number m ∈M is divisible by some p ∈ P if and only if gcd(m,
∏
p∈P p) > 1.

Hence, we can determine all m ∈M that are divisible by some p ∈ P in total time Õ((|M |+ |P |) log s).

Next we adapt the above decision subroutine to obtain a search subroutine.
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Lemma 4.11 (Search Subroutine). Given a set of integers M ⊆ [ s ] and a set of prime numbers
P ⊆ [ s ], in time Õ((|M |+ |P |) log2 s) we can compute for all numbers m ∈M all prime factors among
the primes P , that is, we can compute the set F := {(m, p) | m ∈M, p ∈ P, p divides m}.

Proof. On instance (M,P ), we first partition in a balanced way P = P1 ∪ P2. Then we call the decision
subroutine from Lemma 4.10 twice, to compute the sets M1 and M2 with

Mi := {m ∈M | ∃p ∈ Pi : p divides m} for i ∈ {1, 2}.

Finally, we recursively solve the instances (M1, P1) and (M2, P2). (We ignore recursive calls with M = ∅.)
In the base case, we have P = {p}. In this case, all m ∈M are divisible by p, so we print the pairs

{(m, p) | m ∈M}.
Correctness of this algorithm is immediate. To analyze its running time, note that the recursion

depth is O(log |P |), since P is split in a balanced way. Further, the total size of P ′ over all recursive
calls (M ′, P ′) on a fixed level of recursion is O(|P |). Moreover, note that a number m ∈ [ s ] has O(log s)
prime factors. Since for each recursive call (M ′, P ′) each number m ∈ M ′ has a prime factor in P ′,
it follows that each number m ∈ M appears in O(log s) recursive calls on a fixed level of recursion.
Thus, the total size of M ′ over all recursive calls (M ′, P ′) on a fixed level of recursion is O(|M | log s).
Plugging these bounds into the running time Õ((|M |+ |P |) log s) of Lemma 4.10 yields a total time of
Õ((|M | log s+ |P |) log s) = Õ((|M |+ |P |) log2 s) per level. The same time bound also holds in total over
all O(log |P |) levels.

Our main prime factorization algorithm now follows easily.

Theorem 3.8. The prime factorization of n given numbers in [ s ] can be computed in time Õ(n+
√
s).

Proof. Let M ⊆ [ s ] be the set of n given numbers. Denote by P the set of all prime numbers less than
or equal to

√
s, and note that P can be computed in time Õ(

√
s), e.g., by using the Sieve of Eratosthenes.

We run Lemma 4.11 on (M,P ) to obtain the set F := {(m, p) | m ∈M, p ∈ P, p divides m}. From this
set, we can compute the prime factorization of each m ∈M efficiently as follows. Fix m ∈M . For any
(m, p) ∈ F , determine the largest exponent e = e(m, p) such that pe divides m. This determines all prime
factors of m that are less than or equal to

√
s. Since m ∈ [ s ], the number m has at most one prime factor

greater than
√
s. We determine this potentially missing prime factor as q := m/

∏
p∈P p

e(m,p). If q > 1,
then q is the single large prime factor of m, and if q = 1, then all prime factors of m are less than or equal
to
√
s. The running time is dominated by the call to Lemma 4.11, which takes time

Õ((|M |+ |P |) log2 s) = Õ((n+
√
s) log2 s) = Õ(n+

√
s).

4.3.2 Finding an Almost Divisor
In this section, we use the prime factorization algorithm from the last section to find almost divisors.

Theorem 4.12 (Finding Almost Divisors). Given α > 0 and a multi-set X of size n, we can decide
whether X has an α-almost divisor, and compute an α-almost divisor if it exists, in time Õ(n+√mxX).

Recall the definition of almost divisors:

Definition 3.2 (Almost Divisor). We write X(d) := X ∩ dZ to denote the multi-set of all numbers in X
that are divisible by d. Further, we write X(d) := X \X(d) to denote the multi-set of all numbers in X
not divisible by d. We say an integer d > 1 is an α-almost divisor of X if |X(d)| ≤ α · µX · ΣX/|X|2.
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Algorithm 1 Reduction to the almost-divisor-free setting, see Theorem 4.1.

1 AlmostDivisorFreeSubset(α, X)
2 X0 ← X; i← 1;
3 while Xi−1 has an α-almost divisor di do
4 Xi ← Xi−1(di)/di;
5 i← i+ 1;
6 d← d1 · · · di;
7 return (d,Xi);

We first observe that any proper divisor d′ of an almost divisor d is also an almost divisor.

Lemma 4.13. If d is an α-almost divisor of a multi-set X, then any divisor d′ > 1 of d is also an
α-almost divisor of X.

Proof. Since any number divisible by d is also divisible by d′, we have |X(d′)| ≥ |X(d)|, or, equivalently,
|X(d′)| ≤ |X(d)|. By definition of α-almost divisor, we obtain

|X(d′)| ≤ |X(d)| ≤ αµXΣX/|X|2,

so also d′ is an α-almost divisor.

The above lemma shows that if X has an α-almost divisor, then it also has a prime α-almost divisor,
that is, it has an α-almost divisor that is a prime number. This suggests the following approach.

Proof of Theorem 4.12. We use Theorem 3.8 to compute the prime factorization of all numbers in X
in total time Õ(n+√mxX). From the prime factorizations we can infer for each prime p (that divides
some x ∈ X) the number of x ∈ X that are divisible by p. In particular, we can determine whether some
prime p divides at least n− αµXΣX/n

2 numbers in X. If such a prime p exists, then p is an α-almost
divisor of X. If no such prime p exists, then the set X has no prime α-almost divisor, so by Lemma 4.13
the set X has no α-almost divisor. This proves Theorem 4.12.

4.3.3 Proof of the Algorithmic Part
We are now ready to prove our algorithmic part.

Theorem 4.1 (Algorithmic Part, Formal Version of Theorem 3.4). Let δ, α be functions of n with δ ≥ 1
and 16α ≤ δ. Given an δ-dense multiset X of size n, in time Õ(n) we can compute an integer d ≥ 1 such
that X ′ := X(d)/d is δ-dense and has no α-almost divisor. Moreover, we have the following additional
properties:
1. d ≤ 4µXΣX/|X|2,
2. d = O(n),
3. |X ′| ≥ 0.75 |X|,
4. ΣX′ ≥ 0.75 ΣX/d.

Consider Algorithm 1, which iterative removes almost divisors. We start with X0 = X. While Xi−1
has an α-almost divisor di, we continue with Xi := Xi−1(di)/di, that is, we remove all numbers not
divisible by di from Xi−1 and divide the remaining numbers by di. The final multi-set Xi has no α-almost
divisor. We return d = d1 · · · di.
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We first analyze the running time of this algorithm. By Theorem 4.12, we can find almost divisors
in time Õ(n + √mxX). This dominates the running time of one iteration of Algorithm 1. Note that
the number of iterations is bounded by O(logmxX), since mxXi = mxX/(d1 · · · di) and d1 · · · di ≥ 2i.
Therefore, the total running time of Algorithm 1 is Õ(n+√mxX). Rearranging the definition of δ-density
yields mxX ≤ n2/(δµX). Since µX ≥ 1 and X is δ-dense for δ ≥ 1, we obtain mxX = O(n2). Hence, the
running time is Õ(n+√mxX) = Õ(n), as claimed in Theorem 4.1.

In the following we analyze correctness of Algorithm 1, that is, we show that it ensures the properties
claimed in Theorem 4.1. We will denote by Xi any intermediate multi-set of Algorithm 1, for i ≥ 0.

Observe that Xi contains all numbers in X that are divisible by d1 · · · di, divided by d1 · · · di. That is,

Xi = X(d1 · · · di)/(d1 · · · di).

In particular, Algorithm 1 returns the multi-set X(d)/d. Since X(d1 · · · di) ⊆ X, we obtain the easy facts

mxXi ≤ mxX/(d1 · · · di),
ΣXi ≤ ΣX/(d1 · · · di), (1)
µXi ≤ µX .

The key property in our analysis is the size |Xi|, and how it compares to n = |X|.

Claim 4.14. For any i ≥ 0, we have

|Xi| ≥ n− 4α · µXΣX
n2 ≥

(
1− 4α

δ

)
n ≥ 3

4n.

Proof. Since di+1 is an α-almost divisor of Xi, at most α · µXiΣXi/|Xi|2 numbers in Xi are not divisible
by di. For Xi+1 = Xi(di+1)/di+1 we can thus bound

|Xi+1| = |Xi(di+1)| ≥ |Xi| −
α · µXiΣXi
|Xi|2

.

Using the easy facts (1), we obtain

|Xi+1| ≥ |Xi| −
α · µXΣX
d1 . . . di|Xi|2

≥ |Xi| −
α · µXΣX

2i|Xi|2
. (2)

We use this inequality to inductively prove that

|Xi| ≥ n−
(

1− 1
2i
)4α · µXΣX

n2 . (3)

Let us first argue that this inequality implies the main claim. Using 1 − 1/2i ≤ 1, we obtain the first
claimed inequality

|Xi| ≥ n−
4α · µXΣX

n2 .

Since X is δ-dense, Observation 4.7 yields µXΣX ≤ n3/δ. Plugging this in, we obtain the second inequality

|Xi| ≥ n ·
(

1− 4α
δ

)
.

The last inequality |Xi| ≥ 3
4n now follows from the assumption 16α ≤ δ of Theorem 4.1.
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It remains to prove inequality (3) by induction. The inductive base is i = 0 with X0 = X and thus
|X0| = n. For the inductive step, assume that the induction hypothesis (3) holds for Xi. As shown above,
the inductive hypothesis for Xi implies |Xi| ≥ 3

4n. Plugging this bound into the recurrence (2) yields

|Xi+1| ≥ |Xi| −
(4/3)2α · µXΣX

2in2 ≥ |Xi| −
4α · µXΣX

2i+1n2 .

Using the induction hypothesis (3) again, we obtain

|Xi+1| ≥ n−
(

1− 1
2i
)4α · µXΣX

n2 − 4α · µXΣX
2i+1n2 = n−

(
1− 1

2i+1

)4α · µXΣX
n2 .

This finishes the inductive step, and thus the proof of the claim.

The claimed properties of the multi-set X ′ := X(d)/d computed by Algorithm 1 now easily follow
from Claim 4.14, as we show in the following.

Claim 4.15. X ′ is δ-dense.

Proof. By Claim 4.14 we have |X(d)| = |X ′| ≥ 3
4 |X|. Since X is δ-dense, Observation 4.8 implies that

X(d) ⊆ X is ( 3
4 )2δ-dense; in particular it is δ/2-dense. Now Observation 4.9 implies that X ′ = X(d)/d is

dδ/2-dense. If d > 1 then dδ/2 ≥ δ, so X ′ is δ-dense. If d = 1, then X ′ = X, which is δ-dense.

This finishes the proof of the main statement of Theorem 4.1. It remains to verify the four additional
properties.

Claim 4.16. We have |X ′| ≥ 0.75n.

Proof. Follows directly from Claim 4.14.

Claim 4.17. We have ΣX′ ≥ 0.75 ΣX/d.

Proof. We can bound the sum of the removed elements by

Σ
X(d) ≤ |X(d)| ·mxX ≤

4α · µXΣX
|X|2

·mxX ,

where we used the first inequality of Claim 4.14. Using that X is δ-dense, we obtain

Σ
X(d) ≤

4α
δ

ΣX .

By the assumption 16α ≤ δ from Theorem 4.1, we obtain Σ
X(d) ≤ ΣX/4. Finally, we note that

ΣX′ = ΣX(d)/d = 1
d

(
ΣX − Σ

X(d)
)
≥ 3ΣX

4d .

Claim 4.18 (Compare [25, Lemma 3.10]). We have d ≤ 4µXΣX/n2.

Proof. Sort the numbers in X(d) = {x1 ≤ · · · ≤ x|X(d)|} and define a function f(z) := xdze. Note that, as
the numbers in X(d) are divisible by d and each number appears at most µX times in X(d), we can lower
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bound the value of the function f at z by f(z) = xdze ≥ ddze/µXe · d ≥ zd/µX . Now, we can write the
sum ΣX(d) as the integral of the function f from 0 to |X(d)|:

ΣX ≥ ΣX(d) =
|X(d)|∫

0

f(z) dz ≥ d

µX
·
|X(d)|∫

0

z dz = d

µX
· |X(d)|2

2 .

Using |X(d)| = |X ′| ≥ 3
4n from Claim 4.14, we obtain

ΣX ≥
d

µX
· n2

(4/3)2 · 2 ≥
dn2

4µX
.

Rearranging now yields the claim.

Claim 4.19. We have d = O(n).

Proof. In the preceeding claim we showed that d ≤ 4µXΣX/n2. Using the trivial inequality ΣX ≤ n ·mxX ,
we obtain d ≤ 4µXmxX/n. Using that X is δ-dense for δ ≥ 1, we now obtain d ≤ 4n/δ = O(n).

The above claims verify all claimed properties and thus finish the proof of Theorem 4.1.

4.4 Structural Part
In this section, we first show how to find a small subset R ⊆ X that generates all remainders modulo all
small numbers d (Section 4.4.1). Then we construct long arithmetic progressions (Section 4.4.2). We use
these tools to obtain a decomposition of X (Section 4.4.3), which then yields the structural part (proving
Theorem 4.2 in Section 4.4.4).

Throughout this section, for multi-sets X,Y we write X + Y to denote their sumset (the sumset is a
set, that is, each distinct sum appears only once in the sumset):

X + Y := {x+ y | x ∈ X, y ∈ Y }.

Further, we write Xh := X + · · ·+X for the iterated sumset containing all sums of h (not necessarily
distinct) elements of X. Similarly, we write X≤h :=

⋃bhc
j=1X

j . Note that the objects X + Y,Xh, and X≤h
are sets, not multi-sets.

4.4.1 Generating All Remainders

Theorem 4.20 (Compare [25, Theorem 3.4]). Let δ, α ≥ 1. Let X be a δ-dense multi-set of size n that
has no α-almost divisor. Then there exists a subset R ⊆ X such that
|R| ≤ |X| · 8α log(2n)/δ,
ΣR ≤ ΣX · 8α log(2n)/δ, and
for any integer 1 < d ≤ α · µXΣX/n2 the multi-set R contains at least d numbers not divisible by d,
that is, |R(d)| ≥ d.

Proof. If 8α log(2n) ≥ δ then we can simply set R = X. The first two claims hold trivially, and the third
claim holds because X has no α-almost divisor, which implies |X(d)| ≥ α · µXΣX/n

2 ≥ d. Therefore,
from now on we can assume 8α log(2n) < δ. In particular, we have

δ > 8α. (4)
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Set τ := dα · µXΣX/n
2e. By α ≥ 1 and the easy fact ΣX ≥

∑n
i=1di/µXe ≥

1
2n

2/µX we have
α · µXΣX/n2 ≥ 1/2 and thus

α · µXΣX/n2 ≤ τ ≤ 2α · µXΣX/n2.

Since X is δ-dense, Observation 4.7 and inequality (4) now imply that

τ ≤ 2α · n/δ < n/2.

We start by picking an arbitrary subset R′ ⊆ X of size 2τ . This is possible because τ < n/2.

Claim 4.21. Let P be the set of primes p with p ≤ τ and |R′(p)| < τ . Then we have |P | ≤ 2 logmxX .

Proof. Consider the prime factorization of the numbers in R′, that is, consider the set

PFR′ = {(r, p) | r ∈ R′, prime p divides r}.

Since any integer m ≥ 1 has at most logm prime factors, we have |PFR′ | ≤ |R′| · logmxX . On the other
hand, for each p ∈ P we have |R′(p)| ≥ τ = |R′|/2, so PFR′ contains at least |R′|/2 pairs of the form (r, p).
Hence, we have

|P | · |R
′|

2 ≤ |PFR′ | ≤ |R′| logmxX ,

which yields the claimed bound |P | ≤ 2 logmxX .

For any p ∈ P , we let Rp ⊆ X(p) be an arbitrary subset of size τ . This exists by the assumption that X
has no α-almost divisor.

Finally, we construct the multi-set R ⊆ X as

R := R′ ∪
⋃
p∈P

Rp.

(To be precise, we set µ(x;R) := max{µ(x;R′),max{µ(x;Rp) | p ∈ P}}, ensuring that R is a subset of X.)

We show that R satisfies the claimed properties. For the third property, consider any integer 1 < d ≤ τ ,
and let p be any prime factor of d. Note that we have |R(d)| ≥ |R(p)|, since any number divisible by d is
also divisible by p. If p ∈ P , then we obtain

|R(p)| ≥ |Rp(p)| = |Rp| = τ ≥ d.

If p 6∈ P , then by construction of P we have

|R(p)| ≥ |R′(p)| ≥ τ ≥ d.

In any case, we have |R(d)| ≥ d, so we proved the third claim.
For the first two claims, note that

|R| ≤ |R′|+
∑
p∈P
|Rp| = 2τ + |P | · τ ≤ 2(1 + logmxX)τ ≤ 4 log(2mxX) · α · µXΣX/n2.

Since X is δ-dense for δ ≥ 1, we have mxX ≤ n2, so we can further bound

|R| ≤ 8 log(2n) · α · µXΣX/n2.
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Moreover, Observation 4.7 now yields

|R| ≤ 8 log(2n) · α · n/δ,

proving the first claim. We similarly bound ΣR by

ΣR ≤ |R| ·mxR ≤ 8 log(2n) · α · µXmxXΣX/n2.

Using that X is δ-dense, we finally obtain the second claim

ΣR ≤
8α log(2n)

δ
ΣX .

Next we show that the set R constructed in the above Lemma 4.20 generates all remainders modulo
any small integer d. More precisely, with notation as in Lemma 4.20, the following theorem implies that
SRmod d = Zd holds for any 1 < d ≤ α · µXΣX/|X|2.

Theorem 4.22 (Compare [25, Lemma 3.3]). Let X be a multi-set and let τ be an integer. Suppose that
for any 1 < d ≤ τ the multi-set X contains d numbers not divisible by d, that is, |X(d)| ≥ d. Then for
any 1 ≤ d ≤ τ the set SX is d-complete, that is, SX mod d = Zd.

Proof. We perform induction on d. For d = 1 the statement is trivial.
So consider a number 1 < d ≤ τ . By assumption we have we have |X(d)| ≥ d. We denote the elements

of the multi-set X(d) by x1, . . . , xr, where r = |X(d)| ≥ d.
Let Ci := S{x1,...,xi}mod d denote the set of remainders that can be obtained from the elements

x1, . . . , xi. In other words, we construct the following sequence of sets:

C0 := {0},
Ci := (Ci−1 + {0, xi}) mod d.

Observe that we have SX mod d = S
X(d) mod d = Cr, since numbers divisible by d do not yield new

remainders modulo d. Furthermore, we have

1 = |C0| ≤ |C1| ≤ . . . ≤ |Cr| ≤ d.

Since r ≥ d, by the pigeonhole principle we have |Ci−1| = |Ci| for some i. For this i, for any number
c ∈ Ci−1 also the number (c+ xi) mod d is contained in the set Ci−1. More generally, for any positive
integer k also the number (c+ kxi) mod d is contained in the set Ci−1. Now we use that the numbers
kxi mod d form the subgroup gZd/g of Zd, where g := gcd(xi, d). It thus follows that for any c ∈ Ci−1
and any integer k also the number (c+ kg) mod d is in Ci−1. We call this property g-symmetry.

Note that we can write

SX mod d = (Ci−1 + S{xi,...,xr}) mod d.

From this, we see that the g-symmetry of Ci−1 extends to SX mod d. More precisely, for any c ∈ SX mod d
and any integer k, also (c+ kg) mod d is in SX mod d.

Moreover, since xi ∈ X(d) is not divisible by d, we have g = gcd(xi, d) < d. Therefore, by induction
hypothesis SX is g-complete.

Combining g-symmetry and g-completeness proves that SX is d-complete. Indeed, for any remainder
z ∈ Zd, since SX is g-complete there is a subset sum y ∈ SX with y ≡ z (mod g). Equivalently, we can
write z − y = kg for some integer k. Since y mod d is in SX mod d, by the g-symmetry property also
(y + kg) mod d = z mod d is in SX mod d. Since z was arbitrary, the set SX is d-complete.
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4.4.2 Long Arithmetic Progressions
In this paper, an arithmetic progression is a set P of the form {a+ s, a+ 2s, . . . , a+ms}. We call m the
length of P and s the step size of P.

Proving existence of a long arithmetic progression in a set SX has a long tradition, e.g., consider the
following result by Sárközy [43] (more precisely, we present a variant with improved constants from [34]).

Theorem 4.23 ([43, 34]). Let X be a set of n positive integers.
For every integer 4mxX ≤ m ≤ n2/(12 log(4mxX/n)) the set SX contains an arithmetic progression P

of length m and step size s ≤ 4mxX/n. Moreover, every element of P can be obtained as the sum of at
most 6m/n distinct elements of X.

Note that this theorem assumes X to be a set. Unfortunately, such a result is not readily available for
multi-sets with prescribed multiplicity µX .

We remark that one could naively use Theorem 4.23 on multi-sets by ignoring the multiplicities
and working on the support suppX . However, this loses a factor of |X|/|suppX | ≤ µX in the size, and
thus changes the density. In particular, this approach would require us to start with an Ω(µX)-dense
multi-set X. We will avoid this additional factor µX , and only pay factors of the form polylog(µX).

The main result of this section is a theorem similar to Theorem 4.23 that works for Ω(log(n) log2(µX))-
dense multi-sets. We prove this result by following and suitably adapting the proof by Sárközy [43].

Theorem 4.24. Let X be a multi-set of size n. For every integer m with

2mxX ≤ m ≤
n2

33984µX log(2n) log2(2µX)
,

the set SX contains an arithmetic progression P of length m and step size s ≤ 4248µXmxX log(2µX)/n.
Moreover, every element of P can be obtained as the sum of at most 4248mµX log(2µX)/n distinct5

elements of X, and we have mxP ≤ 4248mµXmxX log(2µX)/n.

The proof of Theorem 4.24 proceeds similar as in [43]; we present it here for completeness. Similar
to [43], we rely on the following result of [42].

Theorem 4.25 ([42]). Let X ⊆ [m ] be a set of n positive integers and let k be a positive integer with

n >
m

k
+ 1.

Then there is an integer 1 ≤ h < 118k such that the set Xh contains an arithmetic progression P of
length m.

We will need a slight adaptation of the above theorem.

Lemma 4.26 (Variant of Theorem 4.25). Let X ⊆ [m ] be a set of n positive integers. Then the set
X≤354m/n =

⋃b354m/nc
j=1 Xj contains an arithmetic progression P of length m.

5 Here, distinct means that any integer x ∈ X may be chosen up to its multiplicity µ(x;X) times. Thus, the elements
chosen from X are distinct, but the corresponding integers might not.
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Proof. Recall that we assume all our sets to be non-empty. If n = 1 then we can write X = {x}. In this
case, the set X≤m contains the arithmetic progression {x, 2x, . . . ,mx} of length m.

If n ≥ 2, then we set k := bm/(n−1)c+1. Observe that 2 ≤ n ≤ m implies k ≤ m/(n−1)+1 ≤ 3m/n.
Moreover, note that we have k > m/(n− 1) or, equivalently, n > m/k + 1. Therefore, Theorem 4.25 is
applicable for k and shows that the set X≤118k contains an arithmetic progression of length m. Finally,
note that X≤118k ⊆ X≤354m/n since k ≤ 3m/n.

In order to use Theorem 4.26, we need to take care of two things. First, the arithmetic progression
obtained in Theorem 4.26 lies in X≤h, which may use elements from the set X multiple times, and thus
does not correspond to subset sums. Second, Theorem 4.26 assumes X to be a set. (While it may seem
as if both issues dissolve for multi-sets X, this is the case only for multi-sets with a multiplicity of at
least 354m/n for every single element.)

We tackle these two issues separately (and as in [43]): We consider a set of integers where every
element can be obtained as a sum of two elements of X in many different, disjoint ways (see Lemmas 4.33
and 4.34). In order to obtain such a set, we first ensure that in our multi-set every number appears equally
often, that is, our multi-set has a uniform multiplicity (see Lemma 4.28).

Definition 4.27 (Uniformity). We call a multi-set X uniform if every x ∈ X has multiplicity µX in X.

Lemma 4.28. Let X be a δ-dense multi-set of size n. For any integer 0 ≤ r ≤ logµX , we define a
subset Xr ⊆ X by picking 2r copies of every number with multiplicity in [2r, 2r+1), that is, for any x ∈ N
we set

µ(x;Xr) :=
{

2r, if 2r ≤ µ(x;X) < 2r+1,

0, otherwise.

There exists an integer 0 ≤ r ≤ logµX such that the multi-set Xr is δ/(4 log2(2µX))-dense and has size

|Xr| ≥
n

2 log(2µX) .

Proof. The proof is indirect. Assume that each of the sets Xr has size |Xr| < n/(2 log(2µX)). By
construction, at least every second element of X appears in some subset Xr. We thus have

n

2 ≤
blogµXc∑
r=0

|Xr| <
blogµXc∑
r=0

n

2 log(2µX) ≤
n

2 ,

which yields the desired contradiction. Hence, there exists a subset Xr ⊆ X of size |Xr| ≥ n/(2 log(2µX)).
Since X is δ-dense, by Observation 4.8 we obtain that Xr is δ/(4 log2(2µX))-dense.

Using Lemma 4.28, at the cost of some log(µX)-factors, we may assume that the given multi-set X is
uniform in the sense of Definition 4.27.

We next turn to the sumset X +X of a uniform multi-set X.

Definition 4.29 (Number of Representations). For a set S and an integer z, we define fS(z) as the
number of representations of z as the sum of two numbers in S, that is,

fS(z) := |{(x, x′) ∈ S × S | x+ x′ = z}|.

For a uniform multi-set X and an integer z, we extend this notation by defining

fX(z) := µX · fsuppX (z).
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We start by proving basic properties of the function fX .

Lemma 4.30. For any uniform multi-set X of size n, the function fX satisfies all of the following:
1. For any integer z we have fX(z) ≤ n,
2. For any integer z > 2mxX we have fX(z) = 0,
3. The sum of all values of fX is

∑
z fX(z) = n2/µX .

4. Any integer z can be written in at least bfX(z)/2c disjoint ways as the sum of two elements of X, that
is, there exist distinct6 elements x1, x

′
1, . . . , xk, x

′
k ∈ X with xi + x′i = z for all i and k ≥ bfX(z)/2c.

Proof. (1) Let S := suppX . In the definition of fS(z), after choosing x ∈ X we must set x′ = z − x.
Thus, there are only |S| options to choose from, resulting in the inequality fS(z) ≤ |S|. For the uniform
multi-set X, we thus obtain fX(z) = µX · fS(z) ≤ µX · |S| = |X|.

(2) Follows from the fact that the sum of two elements of X is at most 2 mxX .
(3) Let S := suppX . Note that every pair x, x′ ∈ S contributes to exactly one function value of fS ,

namely fS(x+ x′). Hence, we have
∑
z fS(z) = |S|2. Since X is uniform, we have |S| = n/µX . Therefore,∑

z

fX(z) =
∑
z

µXfS(z) = µX |S|2 = n2/µX .

(4) Set S := suppX and let x, x′ ∈ S with x+ x′ = z. First consider the case x 6= x′. In this case, the
pairs (x, x′) and (x′, x) contribute 2 to the value fS(z), so they contribute 2µX to the value fX(z). Note
that we can form µX many disjoint pairs between the µX copies of x in X and the µX copies of x′ in X.
That is, the number of constructed pairs is half of the contribution to fX(z).

Let us turn to the case x = x′, that is, x = z/2. In this case, the pair (x, x′) contributes 1 to the value
fS(z), so it contributes µX to the value fX(z). Note that we can form bµX/2c many disjoint pairs among
the µX copies of x in X. Again this is half of the contribution to fX(z), but now rounded down. In total,
we have constructed bfX(z)/2c disjoint pairs summing to z.

Next we consider buckets of numbers with an almost uniform number of representations. Informally,
bucket Bv,X contains all integers z that can be written in Ω(v) many disjoint ways as the sum of two
elements of X.

Definition 4.31 (Buckets). For any uniform multi-set X and any integer v ≥ 1, we define the bucket

Bv,X := {z ∈ N | fX(z) ≥ v}.

Our goal is to apply Theorem 4.26 to an appropriate bucket Bv,X . We list some simple observations.

Lemma 4.32. Let X be a uniform multi-set and let v ≥ 1 be an integer. Then we have
1. |Bv,X| ≤ 2 mxX .
2. If v > |X| then the set Bv,X is empty.

Proof. Both properties follow immediately from Lemma 4.30. For the first we use that the function fX is
zero on all integers larger than 2 mxX . For the second we use that fX is bounded from above by |X|.

The buckets Bv,X can, in a limited way, remedy the multiple use of the same element in a sum. While
in general for a multi-set X the set Xh may contain numbers that are no subset sums of X, we show that
for sufficiently small h all numbers in Bhv,X also correspond to subset sums of X. In the proof of this
statement, we use the large number of representations guaranteed by the definition of Bv,X to avoid any
multiple use of the same number.

6 Here again distinct means that any x ∈ X may appear up to µ(x;X) times in this sequence.
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Lemma 4.33 (Compare [43, Lemma 2]). Let X be a uniform multi-set. For any integers v ≥ 1 and
1 ≤ h ≤ (v− 1)/4, every number in the set Bhv,X can be represented as a sum of 2h distinct elements of X.

Proof. The proof is by induction on h. We define B0
v,X := {0} to make the base case h = 0 trivial.

For h ≥ 1, consider any w ∈ Bhv,X and write w = z + w′ for some z ∈ Bv,X and w′ ∈ Bh−1
v,X . By the

induction hypothesis, we can represent w′ as a sum x1 + . . .+ x2h−2 of distinct elements of X. By the
definition of Bv,X we have fX(z) ≥ v, so by Lemma 4.30.4 we can find bv/2c ≥ (v − 1)/2 ≥ 2h disjoint
representations of the number z as the sum of two numbers in X. By the pigeonhole principle, at least
one of these 2h many representation of z does not contain any of the 2h− 2 many numbers x1, . . . , x2h−2.
We pick such a representation z = x2h−1 + x2h to obtain a representation of w as a sum x1 + . . .+ x2h of
2h distinct elements of X.

The above lemma shows that plugging the set Bv,X into Theorem 4.26 yields knowledge about the
subset sums of X, despite the formulation of Theorem 4.26 allowing to pick summands multiple times. In
order to use Theorem 4.26 effectively, we need to pick a bucket Bv,X of large size. We next prove existence
of such a bucket.

Lemma 4.34 (Compare [43, Lemma 1]). Let X be a uniform multi-set of size n that is 7-dense. Then
there is an integer 1 < v ≤ n such that the set Bv,X satisfies

|Bv,X | ≥
n

3µX
+ n2

3 v µX log(2n) .

Proof. The proof is indirect. Assume that for every integer 1 < v ≤ n we have

|Bv,X | <
n

3µX
+ n2

3 v µX log(2n) .

From the construction of the buckets Bv,X , we observe the following identity:∑
z

fX(z) =
∑
v≥1

v ·
(
|Bv,X | − |Bv+1,X |

)
.

By telescoping this sum and by using
∑
z fX(z) = n2/µX from Lemma 4.30.3, we arrive at

n2

µX
=
∑
v≥1
|Bv,X |.

We bound the right hand side by using |Bv,X | = 0 for v > n (by Lemma 4.32.2), the assumed upper bound
for 1 < v ≤ n, and |Bv,X | ≤ 2mxX for v = 1 (by Lemma 4.32.1). This yields

n2

µX
≤ 2mxX +

n∑
v=2

(
n

3µX
+ n2

3 v µX log(2n)

)

≤ 2mxX + n2

3µX
+ n2

3µX log(2n) ·
n∑
v=1

1
v
.

We now use the standard fact
∑n
v=1 1/v ≤ 1 + log(n) = log(2n) to obtain

n2

µX
≤ 2mxX + 2n2

3µX
.

Finally, we use that the multi-setX is 7-dense, so that n2 ≥ 7µXmxX , which yields the desired contradiction

n2

µX
≤
(2

7 + 2
3

)
· n

2

µX
.
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Combining Lemmas 4.26, 4.28, 4.33, and 4.34 we now prove the main theorem of this section.

Theorem 4.24. Let X be a multi-set of size n. For every integer m with

2mxX ≤ m ≤
n2

33984µX log(2n) log2(2µX)
,

the set SX contains an arithmetic progression P of length m and step size s ≤ 4248µXmxX log(2µX)/n.
Moreover, every element of P can be obtained as the sum of at most 4248mµX log(2µX)/n distinct7

elements of X, and we have mxP ≤ 4248mµXmxX log(2µX)/n.

Proof. In order for the theorem statement to be non-trivial we must have

2mxX ≤
n2

33984µX log(2n) log2(2µX)
.

Rearranging this shows that X must be δ-dense for

δ := 67968 log(2n) log2(2µX).

We first apply Lemma 4.28 to obtain a subset X ′ := Xr ⊆ X such that X ′ is a uniform multi-set of size n′
that is δ′-dense, where

n ≥ n′ ≥ n

2 log(2µX) , δ′ = δ

4 log2(2µX)
≥ 7.

Next, we apply Lemma 4.34 to obtain an integer 1 < v ≤ n′ such that

|Bv,X′ | ≥ n′

3µX
+ n′2

3 v µX log(2n) .

By Lemma 4.30.2, for any m ≥ 2mxX we have Bv,X′ ⊆ [m ]. Thus, Theorem 4.26 yields that the set
B≤hv,X′ contains an arithmetic progression P of length m, for h := 354m/|Bv,X′ |. Using our bounds on
|Bv,X′ | and n′, we obtain

h = 354m
|Bv,X′ |

≤ 354m · 3 v µX log(2n)
n′2

≤ 354m · 12 v µX log(2n) log2(2µX)
n2 ≤ v

8 ,

where the last step uses the assumption on m. Since v > 1 is an integer, we have v − 1 ≥ v/2, so we can
further bound

h ≤ v − 1
4 .

Therefore, Lemma 4.33 is applicable and implies that the arithmetic progression P also appears as a
subset of SX . Moreover, Lemma 4.33 shows that every element of P can be written as the sum of at most
2h distinct elements of X. We now bound differently from before:

h = 354m
|Bv,X′ |

≤ 354m · 3µX
n′
≤ 354m · 6µX log(2µX)

n
.

7 Here, distinct means that any integer x ∈ X may be chosen up to its multiplicity µ(x;X) times. Thus, the elements
chosen from X are distinct, but the corresponding integers might not.
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This shows that every element of P can be obtained as the sum of at most 2h ≤ 4248mµX log(2µX)/n
distinct elements of X. In particular, we obtain

mxP ≤ 2h ·mxX ≤ 4248mµXmxX log(2µX)/n. (5)

Denote by s the step size of the arithmetic progression P. Then we have m · s ≤ mxP (here we use
that P is of the form {a+ s, a+ 2s, . . . , a+m · s}). Together with inequality (5), this yields

s ≤ 4248µXmxX log(2µX)/n.

4.4.3 Constructing a Decomposition
We use the tools from the last two sections to decompose X as follows.

Theorem 4.35. Let X be a δ-dense multi-set of size n that has no α-almost divisor, where

δ = 1699200 log(2n) log2(2µX),
α = 42480 log(2µX).

There exists a partitioning X = R ∪A ∪G and an integer s ≤ 42480 · µXΣX log(2µX)/n2 such that
the set SR is s-complete, that is, SR mod s = Zs,
the set SA contains an arithmetic progression P of length 2mxX and step size s satisfying mxP ≤
84960µXmxXΣX log(2µX)/n2,
the multi-set G has sum ΣG ≥ ΣX/2.

Proof. Given the multi-set X, we first use Lemma 4.20 to obtain the subset R ⊆ X. From the remaining
elements X \R we pick the smallest bn/4c elements to form the set A. We call the remaining set G :=
(X\R)\A. This yields the partitioningX = R∪A∪G (in the sense of µ(x;X) = µ(x;R)+µ(x;A)+µ(x;G)).

In the following we analyze the properties of this decomposition.

Claim 4.36. The multi-set R satisfies:
|R| ≤ n/4,
ΣR ≤ ΣX/4, and
R is d-complete for any d ≤ α · µXΣX/n2 = 42480 · µXΣX log(2µX)/n2.

Proof. The first two properties follow directly from Lemma 4.20 and the inequality δ ≥ 32α log(2n), which
follows from the definitions of δ and α.

Lemma 4.20 also shows that for any 1 < d ≤ α · µXΣX/n2 we have |R(d)| ≥ d. The third claim now
follows from Lemma 4.22.

Claim 4.37. The multi-set A satisfies:
n/5 ≤ |A| ≤ n/4,
mxA ≤ 2ΣX/n,
SA contains an arithmetic progression P of length 2mxX and step size

s ≤ 42480 · µXΣX
n2 log(2µX).

The arithmetic progression P moreover satisfies

mxP ≤ 84960 · µXmxXΣX
n2 log(2µX).
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Proof. By definition of δ-density we obtain n2 ≥ δ ≥ 225 and thus n ≥ 15. This implies |A| = bn/4c ≥
(n− 3)/4 ≥ n/5, which proves the first claim.

Since R picks at most n/4 elements from X and A picks the bn/4c many smallest remaining elements,
it follows that every elements in A is bounded from above by the median of X. Since X contains at
least n/2 elements that are larger than or equal to the median, the median is bounded from above by
ΣX/(n/2) = 2ΣX/n. Hence, we have mxA ≤ 2ΣX/n.

For the last claim, we apply Theorem 4.24 to the multi-set A and m := 2mxX . Let us check the
preconditions of this theorem. We clearly have m = 2mxX ≥ 2mxA. Moreover, we have

|A|2

33984µA log(2|A|) log2(2µA)
≥ n2

52 · 33984µX log(2n) log2(2µX)
≥ 2mxX = m,

where we used the assumption that X is δ-dense for δ ≥ 1699200 log(2n) log2(2µX). Thus, Theorem 4.24
is applicable to (A,m) and yields an arithmetic progression P in SA of length m and step size

s ≤ 4248 · µAmxA
|A|

log(2µA) ≤ 5 · 2 · 4248 · µXΣX
n2 log(2µX) = 42480 · µXΣX

n2 log(2µX),

where we used the properties |A| ≥ n/5 and mxA ≤ 2ΣX/n. Moreover, from Theorem 4.24 we also obtain

mxP ≤ 4248 ·mµAmxA
|A|

log(2µA) ≤ 5 ·2 ·4248 ·2 · mxXµXΣX
n2 log(2µX) = 84960 · µXmxXΣX

n2 log(2µX).

Claim 4.38. The multi-set G satisfies ΣG ≥ ΣX/2.

Proof. Since A picks the bn/4c smallest elements of X \R, and since |X \R| ≥ 3
4n by Claim 4.36, we have

ΣA ≤
|A|
|X \R|

· ΣX\R ≤
1
3ΣX\R = 1

3(ΣX − ΣR).

Using ΣR ≤ ΣX/4 from Claim 4.36, we obtain

ΣA + ΣR ≤
1
3(ΣX − ΣR) + ΣR = 1

3ΣX + 2
3ΣR ≤

(1
3 + 1

6

)
ΣX = ΣX

2 .

Therefore, ΣG = ΣX − ΣR − ΣA ≥ ΣX/2.

Note that since the multi-set R is d-complete for each small d, in particular R is also s-complete.
Hence, Claims 4.36, 4.37, and 4.38 finish the proof of Theorem 4.35.

4.4.4 Proof of the Structual Part
Finally, we are ready to prove the structural part.

Theorem 4.2 (Structural Part, Formal Version of Theorem 3.3). Let X be a multi-set and set

Cδ := 1699200 · log(2n) log2(2µX),
Cα := 42480 · log(2µX),
Cλ := 169920 · log(2µX).

If X is Cδ-dense and has no Cα-almost divisor, then for λX := Cλ · µXmxXΣX/|X|2 we have

[λX . . ΣX − λX ] ⊆ SX .
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Proof. We want to show that any target number t ∈ [λX . . ΣX − λX ] is also a subset sum of X. By
symmetry, it suffices to prove the claim for t ≤ ΣX/2.

We construct the partitioning X = R∪A∪G from Theorem 4.35. We denote the arithmetic progression
P ⊆ SA by P = {a+ s, a+ 2s, . . . , a+ 2mxXs}.

We construct a subset summing to t as follows. First, we pick a subset G′ ⊆ G by greedily adding
elements until

t− a− s · (mxX + 1)−mxX < ΣG′ ≤ t− a− s · (mxX + 1).

This is possible because this range for ΣG′ has length mxX , and because we have t ≤ ΣX/2 ≤ ΣG and

t ≥ λX ≥ (84960 + 2 · 42480) · µXmxXΣX log(2µX)/n2 ≥ mxP + 2smxX ≥ a+ s · (mxX + 1).

Next we pick a subset R′ ⊆ R that sums to (t − ΣG′ − a) modulo s. This is possible because R
is s-complete. We can assume that R′ has size |R′| ≤ s, since otherwise some subset of R′ sums to 0
modulo s and can be removed (the details of this argument were explained in the proof of Claim 4.4). In
particular, we can assume ΣR′ ≤ s ·mxX .

We thus have t− ΣG′∪R′ ≡ a (mod s) and

t− a− s · (mxX + 1)−mxX < ΣG′∪R′ ≤ t− a− s,

or, equivalently,

a+ s ≤ t− ΣG′∪R′ < a+ s · (mxX + 1) + mxX .

Note that for any positive integers x, y we have (x− 1)(y− 1) ≥ 0. Rearranging this yields x+ y ≤ xy+ 1,
or equivalently x(y + 1) + y ≤ 2xy + 1. Using this, we obtain

a+ s ≤ t− ΣG′∪R′ ≤ a+ 2mxXs.

Note that this is exactly the range of the elements of the arithmetic progression P. Moreover, since the
remaining target t−ΣG′∪R′ is of the form a+ks for some integer k, we can pick a subset A′ ⊆ A that gives
the appropriate element of the arithmetic progression P and thus yields the desired t = ΣG′∪R′∪A′ .

This finishes the proof of the structural part, and thus of the algorithm.

5 Fine-Grained Lower Bound

Before presenting our conditional lower bound, we introduce and discuss our hardness assumptions.

5.1 Hardness Assumptions
5.1.1 Strong Exponential Time Hypothesis
We first consider the classic Satisfiability problem, more precisely the k-SAT problem.

Problem 5.1 (k-SAT). Given a k-CNF formula ϕ on N variables and M clauses, decide whether ϕ is
satisfiable, that is, decide whether there is an assignment of true or false to the variables such that ϕ is
satisfied.

The Strong Exponential Time Hypothesis was introduced by Impagliazzo, Paturi, and Zane and essentially
postulates that there is no exponential improvement over exhaustive search for the k-SAT problem. This
is the most widely used hardness assumption in fine-grained complexity theory [48].

Conjecture 5.2 (Strong Exponential Time Hypothesis (SETH) [27, 14]). For any ε > 0 there is an
integer k ≥ 3 such that k-SAT cannot be solved in time O(2(1−ε)N ).
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5.1.2 Strong k-Sum Hypothesis

Problem 5.3 (k-Sum). Given a set Z ⊆ [U ] of N integers and a target T , decide whether there exist
z1, . . . , zk ∈ Z with z1 + . . .+ zk = T .

The k-Sum problem has classic algorithms running in time O(Ndk/2e) (via meet-in-the-middle) and in
time Õ(U) (via Fast Fourier transform). The (standard) k-Sum Hypothesis postulates that the former
algorithm cannot be improved by polynomial factors, i.e., k-Sum has no O(Ndk/2e−ε)-time algorithm for
any ε > 0 [24]. Note that both algorithmic approaches yield the same running time when U ≈ Ndk/2e. The
Strong k-Sum Hypothesis postulates that even in this special case both algorithms cannot be improved by
poynomial factors.

Conjecture 5.4 (Strong k-Sum Hypothesis [6, 1]). For any k ≥ 3 and ε > 0, the k-Sum problem
restricted to U = Ndk/2e cannot be solved in time O(Ndk/2e−ε).

5.1.3 Intermediate Hypothesis
In this paper, we introduce and make use of the following hypothesis.

Conjecture 5.5 (Intermediate Hypothesis). For any constants α, ε > 0 there exists a constant k ≥ 3
such that k-Sum restricted to N ≤ Uα cannot be solved in time O(U1−ε).

We call this hypothesis “intermediate” because it not as strong as the Strong k-Sum Hypothesis.
Indeed, the latter implies the former.

Lemma 5.6. The Strong k-Sum Hypothesis implies the Intermediate Hypothesis.

Proof. We show that if the Intermediate Hypothesis fails then the Strong k-Sum Hypothesis fails.
If the Intermediate Hypothesis fails, then there exist α, ε > 0 such that for all k ≥ 3 the k-Sum

problem restricted to N ≤ Uα can be solved in time O(U1−ε). In particular, this holds for k := d2/αe.
For this value of k, we have Uα ≥ U2/k ≥ U1/dk/2e. Hence, any k-Sum instance with U = Ndk/2e satisfies
N ≤ Uα. In particular, using the assumed algorithm, k-Sum restricted to U = Ndk/2e can be solved in
time O(U1−ε) = O(Ndk/2e−ε′) for ε′ := ε · dk/2e > 0, so the Strong k-SUM Hypothesis fails.

Moreover, the Intermediate Hypothesis also follows from the Strong Exponential Time Hypothesis.

Lemma 5.7. SETH implies the Intermediate Hypothesis.

This follows from the following theorem by Abboud et al. [2].

Theorem 5.8 ([2]). Assuming SETH, for any ε > 0 there exists δ > 0 such that for any k the k-Sum
problem is not in time O(T 1−εNδk).

Proof of Lemma 5.7. We show that if the Intermediate Hypothesis fails then SETH fails.
If the Intermediate Hypothesis fails, then there exist α, ε > 0 such that for any k ≥ 3 we can solve

k-Sum restricted to N ≤ Uα in time O(U1−ε). We claim that, without any restriction on N , we can then
solve k-Sum in time O(U1−ε +N1/αpolylogN). Indeed, for N ≤ Uα we assumed running time O(U1−ε),
and for N > Uα using the standard algorithm based on Fast Fourier Transform we solve k-Sum in time
Õ(U) = Õ(N1/α). We roughly bound this time by O(U1−ε +N1/αpolylogN) = O(U1−εN2/α).
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Note that for k-Sum we can assume without loss of generality that U ≤ T , since input numbers
larger than T can be ignored. Therefore, we can bound the running time of our k-Sum algorithm by
O(U1−εN2/α) = O(T 1−εN2/α).

Now it is useful to consider the contraposition of Theorem 5.8: If there exists ε > 0 such that for
all δ > 0 there exists k such that k-Sum is in time O(T 1−εNδk), then SETH fails. We note that our
O(T 1−εN2/α)-time algorithm for k-Sum satisfies the precondition of this statement, by picking the same
value for ε and setting k := d2/(αδ)e. Hence, we showed that SETH fails.

By the above two lemmas, if we want to prove a lower bound based on the Strong Exponential Time
Hypothesis and the Strong k-Sum Hypothesis, then it suffices to prove a lower bound based on the
Intermediate Hypothesis.

5.2 A Lower Bound for Subset Sum
We can now present our lower bound. Throughout this section we only consider the set case, so we let X
be a set of size n, in particular µX = 1. Recall that in this case Subset Sum can be solved in time Õ(n) if
t� mxXΣX/n2 (Theorem 1.2).

Our goal is to show that this regime essentially characterizes all near-linear-time settings, that is,
dense Subset Sum is not in near-linear time for t� mxXΣX/n2. To show that we do not miss any setting,
we consider a notion of parameter settings similarly as in [12]: For the parameters t,mxX ,ΣX we fix
corresponding exponents τ, ξ, σ, and we focus on Subset Sum instances (X, t) that satisfy t = Θ(nτ ),
mxX = Θ(nξ), and ΣX = Θ(nσ). This defines a slice or parameter setting of the Subset Sum problem.
Our goal is to prove a conditional lower bound for each parameter setting in which the near-linear time
algorithms do not apply.

We note that some choices of the exponents τ, ξ, σ are contradictory, in the sense that there exist no
(or only finitely many) instances satisfying t = Θ(nτ ), mxX = Θ(nξ), and ΣX = Θ(nσ). Additionally,
some assumptions can be made that hold without loss of generality. Specifically, we call any parameter
setting (τ, ξ, σ) non-trivial if it satisfies all of the following justified inequalities:

ξ ≥ 1: For any set X of n positive integers we have mxX ≥ n.
σ ≥ 2: For any set X of n positive integers we have ΣX ≥

∑n
i=1 i = Ω(n2).

σ ≤ 1 + ξ: Any set X satisfies ΣX ≤ n ·mxX .
τ ≥ ξ: Since any numbers in X larger than t can be ignored, we can assume t ≥ mxX .
τ ≤ σ: If t > ΣX then there is no solution, so the problem is trivial.

Recall that we only want to prove a super-linear lower bound in the regime t� mxXΣX/n2. We call a
parameter setting hard if it satisfies the corresponding inequality on the exponents:

τ < ξ + σ − 2.
Our goal is to show a lower bound of the form n1+Ω(1) for each hard non-trivial parameter setting.

This discussion is summarized and formalized by the following definition.

Definition 5.9. A parameter setting is a tuple (τ, ξ, σ) ∈ R3. A parameter setting is called non-trivial
if σ ≥ 2 and 1 ≤ ξ ≤ τ ≤ σ ≤ 1 + ξ. A parameter setting is called hard if τ < ξ + σ − 2.

For a parameter setting (τ, ξ, σ) and a constant ρ ≥ 1 we define Subset Sumρ(τ, ξ, σ) as the set of
all Subset Sum instances (X, t) for which the quotients t/|X|τ , mxX/|X|ξ, and ΣX/|X|σ all lie in the
interval [1/ρ, ρ]. In some statements we simply write Subset Sum(τ, ξ, σ) to abbreviate that there exists a
constant ρ ≥ 1 such that the statement holds for Subset Sumρ(τ, ξ, σ).

Note that we can express the running time of an algorithm solving Subset Sum(τ, ξ, σ) either in terms
of n, t,mxX ,ΣX or in terms of n, nτ , nξ, nσ, both views are equivalent. Our main result of this section is:
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Theorem 5.10 (Lower Bound with Parameter Settings). Assuming the Intermediate Hypothesis, for any
non-trivial parameter setting (τ, ξ, σ) there is a constant ρ ≥ 1 such that for any ε > 0 the problem Subset
Sumρ(τ, ξ, σ) cannot be solved in time O

(
(mxXΣX/(nt))1−ε) = O

(
n(ξ+σ−τ−1)(1−ε)).

By Lemmas 5.6 and 5.7, the same lower bound also holds under the Strong Exponential Time
Hypothesis and under the Strong k-Sum Hypothesis. Ignoring the notion of parameter settings, we have
thus shown that Subset Sum cannot be solved in time O

(
(mxXΣX/(nt))1−ε) for any ε > 0, unless the

Strong Exponential Time Hypothesis and the Strong k-Sum Hypothesis both fail. This proves Theorem 1.3.

Note that Theorem 5.10 is trivial when nξ+σ−τ−1 ≤ n, since it is then subsumed by the trivial lower
bound of Ω(n) to read the input. Therefore, we only need to prove the theorem statement for hard
non-trivial parameter settings.

We prove Theorem 5.10 by a reduction from k-Sum to any hard non-trivial parameter setting of Subset
Sum. The reduction transforms the hypothesized time complexity U1−o(1) of k-Sum into a lower bound of
nξ+σ−τ−1−o(1) for Subset Sum.

Lemma 5.11 (The Reduction). Let (τ, ξ, σ) be a hard non-trivial parameter setting and fix k ≥ 3. Set
α := 1/(ξ + σ − τ − 1). Given an instance (Z, T ) of k-Sum with Z ⊆ [U ] and |Z| ≤ Uα, in time O(Uα)
we can construct an equivalent instance (X, t) of Subset Sum(τ, ξ, σ) with |X| = Θ(Uα).

This reduction easily implies Theorem 5.10.

Proof of Theorem 5.10. Assume that some non-trivial parameter setting Subset Sum(τ, ξ, σ) can be
solved in time O(n(ξ+σ−τ−1)(1−ε)) for some ε > 0. Since reading the input requires time Ω(n), we must
have ξ + σ − τ − 1 > 1, which is equivalent to α := 1/(ξ + σ − τ − 1) < 1. Pick any k ≥ 3 and an
instance (Z, T ) of k-Sum with Z ⊆ [U ] and |Z| ≤ Uα. Run the reduction from Lemma 5.11 to produce
an equivalent Subset Sum instance (X, t). The reduction itself runs in time O(Uα). Now we use the
assumed algorithm to solve the instance (X, t) in time O(|X|(ξ+σ−τ−1)(1−ε)) = O(U1−ε). Since (X, t) is
equivalent to (Z, T ), we have thus solved the given instance (Z, T ) in time O(Uα + U1−ε) = O(U1−ε′) for
ε′ := min{ε, 1− α} > 0. This violates the Intermediate Hypothesis.

It remains to design the reduction.

5.3 The Reduction
In this section we prove Lemma 5.11.

Proof of Lemma 5.11. We set

β := ασ − α− 1 and γ := α(ξ − σ + 1).

Given a k-Sum instance (Z, T ), we construct the following Subset Sum instance (X, t). Consider Figure 1
for a visualization.

X :=X1 ∪X2 ∪X3, where
X1 := {8k2U1+β + z · 4kUβ + 2Uβ | z ∈ Z}
X2 := {Uγ · 8k2U1+β + j · 4kUβ + 1 | j ∈ [Uβ ]}
X3 := {8k2U1+β + j · 4kUβ | j ∈ [Uα ]}

t :=(k + Uβ+γ) · 8k2U1+β + (T + Σ[Uβ ]) · 4kUβ + k · 2Uβ + Uβ
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Figure 1 An overview over the reduction from k-Sum to Subset Sum. The given k-Sum instance is (Z, T ), and
we write Z = {z1, . . . , z|Z|}. Bit blocks of the constructed numbers are depicted as boxes, the value of a bit block is
written inside the corresponding box. The constructed target number is visualized at the bottom. The annotations
at the top represent the maximum value of the constructed numbers up to the specified point. The annotations on
the right denote group of constructed numbers. We remark that the number T + Σ[Uβ ] not necessarily fits in its
block, but this is the only overflow that can occur in this figure.

For simplicity, here we assumed that Uα, Uβ , Uγ are integers, more precisely they should be replaced by
dUαe, dUβe, dUγe. For this construction to make sense we need α, β, γ ≥ 0; we will take care of these
bounds later.

We first verify that the Subset Sum instance (X, t) is indeed equivalent to the k-Sum instance (Z, T ).

Claim 5.12. Any solution to the Subset Sum instance (X, t) corresponds to a solution to the k-Sum
instance (Z, T ), and vice versa.

Proof. We start with the easier direction: Any solution to (Z, T ) corresponds to a solution to (X, t). To
that end, let B ⊆ Z denote a solution to the k-Sum instance (Z, T ), that is, we have ΣB = T and |B| = k.
Consider the set A ⊆ X defined by picking the subset of X1 corresponding to B, and picking all numbers
in X2, that is,

A := {8k2U1+β + z · 4kUβ + 2Uβ | z ∈ B} ∪ {Uγ · 8k2U1+β + j · 4kUβ + 1 | j ∈ [Uβ ]}.

Observe that we have

ΣA = (k · 8k2U1+β + T · 4kUβ + k · 2Uβ) + (Uβ+γ · 8k2U1+β + Σ[Uβ ] · 4kUβ + Uβ)
= (k + Uβ+γ) · 8k2U1+β + (T + Σ[Uβ ]) · 4kUβ + k · 2Uβ + Uβ = t,
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completing the proof of the first direction.
For the other direction, let A ⊆ X denote a solution to the Subset Sum instance (X, t), that is, we

have ΣA = t. By construction, we have t ≡ Uβ (mod 2Uβ). Since all numbers in X1 ∪X3 are 0 modulo
2Uβ , and all Uβ many numbers in X2 are 1 modulo 2Uβ , the set A must contain all numbers in X2.

Thus, consider the remaining set A′ := A \X2. We have

t′ := ΣA′ = ΣA − ΣX2 = t− (Uβ+γ · 8k2U1+β + Σ[Uβ ] · 4kUβ + Uβ)
= k · 8k2U1+β + T · 4kUβ + k · 2Uβ . (6)

Observe that we have t′ ≡ k · 2Uβ (mod 4kUβ). Since the numbers in X3 are 0 modulo 4kUβ , and the
numbers in X1 are 2Uβ modulo 4kUβ , it follows that |A′ ∩X1| ≡ k (mod 2k). In particular, we have

|A′ ∩X1| ≥ k. (7)

We can assume without loss of generality that T ≤ kU . This implies

t′ = k · 8k2U1+β + T · 4kUβ + k · 2Uβ < (k + 1)8k2U1+β .

Since all numbers in X1 ∪X3 are bounded from below by 8k2U1+β , the bound on t′ implies that we can
choose at most k items from X1 ∪ X3, that is, |A′| ≤ k. Together with inequality (7), it follows that
A′ ⊆ X1 and |A′| = k.

So let B ⊆ Z be the subset corresponding to A′ ⊆ X1. Then we have

ΣA′ = k · 8k2U1+β + ΣB · 4kUβ + k · 2Uβ .

Comparing with (6), we obtain ΣB = T . Hence, if the Subset Sum instance (X, t) has a solution A, then
the k-Sum instance (Z, T ) has a solution B. This completes the proof of the second direction and thus
the proof of the claim.

We next verify that α, β, γ ≥ 0, in addition to other inequalities that we will need in the following.

Claim 5.13. The parameters α, β, γ satisfy the following inequalities.
1. 0 < α < 1,
2. β ≥ 0,
3. γ ≥ 0,
4. β + γ ≤ α,
5. β ≤ α.

Proof. (1.) Follows from the parameter setting (τ, ξ, σ) being hard. (2.) The non-triviality assumption
τ ≥ ξ yields σ − 1 ≥ σ + ξ − τ − 1 = 1/α. After rearranging, we obtain 0 ≤ ασ − α − 1 = β. (3.) The
non-triviality assumption σ ≤ 1+ξ yields ξ−σ+1 ≥ 0. Together with α > 0 we obtain 0 ≤ α(ξ−σ+1) = γ.
(4.) β + γ ≤ α: The non-triviality assumption τ ≤ σ yields ξ − 1 ≤ σ+ ξ − τ − 1 = 1/α. Rearranging this,
we obtain α ≥ αξ − 1 = β + γ. (5.) Follows from the preceeding inequality and γ ≥ 0.

It remains to verify that the instance (X, t) belongs to the parameter setting Subset Sum(τ, ξ, σ) and
fulfills the claimed size bound |X| = Θ(Uα).

Claim 5.14. The Subset Sum instance (X, t) satisfies n := |X| = Θ(Uα), mxX = Θ(nσ), ΣX = Θ(nξ),
and t = Θ(nτ ).



33 On Near-Linear-Time Algorithms for Dense Subset Sum

Proof. For the size of X we bound Uα ≤ |X| ≤ Uα+Uα+Uβ ≤ 3Uα, where we used β ≤ α (Claim 5.13.5).
Note that in the definition of X1, X2, X3 the leftmost summand is always asymptotically dominating.

In particular, every x ∈ X1 ∪X3 satisfies x = Θ(U1+β) and every x ∈ X2 satisfies x = Θ(U1+β+γ). (Here
we treat k as a constant, and for X1 we use Z ⊆ [U ], for X2 we use β ≤ α ≤ 1, and for X3 we use α ≤ 1.)

This allows us to determine the maximum number as mxX = Θ(U1+β+γ). From the definition of β, γ
we see that 1 + β + γ = αξ. Hence, mxX = Θ(Uαξ) = Θ(nξ).

Note that |X1| = |Z| ≤ Uα, |X2| = Uβ , and |X3| = Uα. From the resulting |X1 ∪X3| = Θ(Uα) and
our bounds on numbers in X1 ∪X3 and X2, we determine the sum of all numbers in X as

ΣX = Θ(Uα · U1+β + Uβ · U1+β+γ).

The inequality β + γ ≤ α (Claim 5.13.4) now yields ΣX = Θ(U1+α+β). From the definition of β, we see
that ΣX = Θ(Uασ) = Θ(nσ).

Finally, we turn to the target t. We claim that t = Θ(Uβ+γ · U1+β), that is, t is asymptotically
dominated by its first summand. This is clear for almost all summands. For the summand T · 4kUβ
we use T ≤ kU = O(U) to see that it is O(U1+β) and thus dominated by the first summand. For the
summand Σ[Uβ ] · 4kUβ we use Σ[Uβ ] = O(U2β) to see that it is O(U3β) = O(U1+2β), since β ≤ α ≤ 1,
so this summand is also dominated by the first one.

It remains to analyze the exponent of t = Θ(U1+2β+γ). First plugging in the definitions of β and γ,
and then expanding 1 = α/α = α(ξ + σ − τ − 1), we obtain

1 + 2β + γ = α(σ + ξ − 1)− 1 = α(σ + ξ − 1)− α(ξ + σ − τ − 1) = ατ.

Hence, we have t = Θ(U1+2β+γ) = Θ(Uατ ) = Θ(nτ ), completing the proof of the claim.

From the size bound |X| = Θ(Uα) and the easy structure of X and t, it follows that (X, t) can be
computed in time O(Uα). Together with Claims 5.14 and 5.12, this finishes the proof of Lemma 5.11.

6 Conclusion and Open Problems

In this paper we designed improved algorithms and lower bounds for dense Subset Sum with respect to the
parameters n, t,mxX ,ΣX . When the input X is a set, we showed a dichotomy into parameter settings
where Subset Sum can be solved in near-linear time Õ(n) and settings where it cannot, under standard
assumptions from fine-grained complexity theory. We also generalized our algorithms to multi-sets. We
conclude with some open problems.

In the set case, our lower bound characterizes all near-linear time settings, but it does not match the
known upper bounds in the super-linear regime. It would be plausible that Subset Sum can be solved in
time Õ(n+ min{t,mxXΣX/(nt)}), which would match our lower bound. So far, this running time can be
achieved for t = Õ(

√
mxXΣX/n) [11] or t� mxXΣX/n2 (Theorem 1.2).

However, this is a hard open problem, since a matching algorithm (or a higher lower bound) would also
answer the open problem from [8] whether Subset Sum can be solved in time Õ(n+mxX). Indeed, bounding
ΣX ≤ n ·mxX and min{t,mx2

X/t} ≤ mxX we obtain time Õ(n+ min{t,mxXΣX/(nt)}) = Õ(n+ mxX).

We generalized our algorithm to the multi-set case, at the cost of a factor µX in the feasibility bound.
Generalizing our lower bounds and gaining a similar factor µX seems complicated. We therefore leave it
as an open problem to determine the near-linear time regime in the case of multi-sets.

Galil and Margalit’s algorithm can be phrased as a data structure: We can preprocess X in time
Õ(n+ mx2

X/n
2) so that given a target t� mxXΣX/n2 we can decide whether some subset of X sums to
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t in time O(1). Our algorithm from Theorem 1.2 can be phrased in the same data structure setting, with
an improved preprocessing time of Õ(n).

However, Galil and Margalit’s data structure can even reconstruct solutions, namely after preprocessingX
and given t they can compute a subset Y ⊆ X summing to t, if it exists, in time Õ(|Y |). We leave it as
an open problem to extend our algorithm to admit this type of solution reconstruction, as we focused on
the decision problem throughout this paper.
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