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Preface

On a sunny afternoon in 1984, one of my officemates told me that there
would be a seminar given by N. Karmarkar, an AT&T scientist, on lin-
ear programming. At the time, my knowledge of linear programming was
limited to one optimization course and one research project with Professor
David Luenberger in the Department of Engineering-Economic Systems,
Stanford University. As a second-year Ph. D. student, I was familiar with
economic terms like cost, supply, demand, and price, rather than mathe-
matical terms like vertex, polyhedron, inequality, and duality.

That afternoon the Terman auditorium was packed. I could not find
a seat and had to sit on the floor for about one and a half hour, where I
saw Professor George Dantzig and many other faculty members. I was not
particular enthusiastic about the statement from the speaker that a new
interior-point method would be 40 times faster than the simplex method
but I was amazed by the richness and applicability of linear programming
as a whole. That was how and when I determined to devote my Ph. D.
study to mathematical programming.

I immediately took a series of courses from George. In those courses I
was fortunate to learn from many distinguished researchers. I also went to
Cornell to work under the guidance of Professor Michael Todd. Since then,
my interest in linear programming has become stronger and my knowledge
of interior-point algorithms has grown broader.

I decided to write a monograph about my understanding of interior-
point algorithms and their complexities. I chose to highlight the underly-
ing interior-point geometry, combinatorica, and potential theory for convex
inequalities. I did not intend to cover the entire progress of linear program-
ming and interior-point algorithms during the last decade in this write-up.
For a complete survey, I refer the reader to several excellent articles or
books by Goldfarb and Todd [116], Gonzaga [127], den Hertog [145], Nes-
terov and Nemirovskii [263], Terlaky [320], Todd [322, 328], Wright [366],
etc.

Special thanks go to Erling Andersen for giving me detailed feedback
from a course he taught in Odense University using an early version of the
manuscript, and to Nadine Castellano for her proof read of the manuscript.
I wish to thank my colleagues Kurt Anstreicher, Dingzhu Du, Panos Parda-
los, Mike Todd, and Steve Vavasis for their support and advice on the pro-
cess of writing the manuscript. I am grateful to the University of Iowa
for the environment and resources which made this effort possible. This
book owes a great deal to the students and other participants in the course
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Institute of Applied Mathematics of Chinese Academy and Huazhong Uni-
versity of Science and Technology for their support and assistance during
my many visits there.

My research efforts have been supported by the following grants and
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8922636, DDM-9207347 and DMI-9522507; the summer grants of the Col-
lege of Business of Administration, the Obermann Fellowship, and the Cen-
ter for Advanced Studies Interdisciplinary Research Grant at the University
of Towa; the Cornell Center for Applied Mathematics and the Advanced
Computing Research Institute, a unit of the Cornell Theory Center, which
receives major funding from the NSF and IBM Corporation, with additional
support from New York State and members of its Corporate Research In-
stitute; NSF Coop. Agr. No. CCR-8809615 at the Center for Research in
Parallel Computation of Rice University; the award of K. C. WONG Ed-
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and support, and my parents Xienshu Ye and Chunxuan Wang for their
inspiration.

Yinyu Ye
Towa City, 1996.






Contents

1 Introduction and Preliminaries 11
1.1 Introduction . . . . . . ... ... ... ... 11
1.2 Mathematical Preliminaries . . . . . .. .. ... ... ... 15

1.2.1 Basicnotations . . . . . ... ... 0L 15
1.2.2 Convexsets . . . . . . . .. 16
1.2.3 Real functions . . . .. ... ... ... ... ... 19
1.2.4 Inequalities . . . . .. ... .. ... ... ...... 21
1.3 Decision and Optimization Problems . . . . . .. . ... .. 22
1.3.1 System of linear equations . . . . . . .. .. ... .. 22
1.3.2 Linear least-squares problem . . . . .. .. ... .. 22
1.3.3 System of nonlinear equations . . . . . . .. ... .. 23
1.3.4 System of linear inequalities . . . . . . . . . ... .. 23
1.3.5 System of nonlinear inequalities . . . . . . . ... .. 24
1.3.6 Linear programming . . . . . . ... ... ...... 25
1.3.7 Quadratic programming . . . .. . ... ... ... 28
1.3.8 Complementarity problem . . . . .. ... ... ... 28
1.3.9 Positive semi-definite programming . . . . . . .. .. 29
1.3.10 Nonlinear programming . . . . . .. ... ... ... 31
1.4 Algorithms and Computation Models . . . . . . ... .. .. 31
1.4.1 Worst-case complexity . . . . . ... ... ... ... 32
1.4.2 Condition-based complexity . . . . . . ... ... .. 33
1.4.3 Average complexity . . . .. .. ... ... ... .. 34
1.4.4 Asymptotic complexity . . . .. .. ... ... ... 35
1.5 Basic Numerical Procedures . . . . . . ... ... ... ... 36
1.5.1 Gaussian elimination method . . . . . ... ... .. 36
1.5.2 Choleski decomposition method . . . . . . .. .. .. 37
1.5.3 The Newton method . . . . . ... ... .. ..... 37
1.5.4 Solve ball-constrained linear problem . . . . . . . .. 38
1.5.5 Solve ball-constrained quadratic problem . . . . .. 38
1.6 Notes . . . . . . . 39



CONTENTS

1.7 Exercises . . . . . .. 40
Geometry of Convex Inequalities 41
2.1 Convex Bodies and Ellipsoids . . . . .. .. ... ... ... 42
2.2 Max-Potential and Analytic Center . . . . . . .. ... ... 45
2.2.1 Dual potential function . . . .. .. ... ... ... 47
2.2.2  Analytic center section . . . . .. ... ... 50
2.3 Primal and Primal-Dual Potential Functions . . . . . . . .. 95
2.3.1 Primal potential function . . . ... ... ... ... 59
2.3.2 Primal-dual potential function . ... ... ... .. 58
2.4 Potential Functions for Linear Programming . . . . . . . . . o8
2.4.1 Primal potential function . . . ... ... ... ... 59
2.4.2 Primal-dual potential function . . ... .. ... .. 60
2.5 Central Path of Linear Programming . . . . . . . .. .. .. 61
2.6 Notes . . . . .. .. 65
2.7 Exercises . . . . . .. 67
Computation of Analytic Center 69
3.1 Proximity to Analytic Center . . . . . . .. ... ... ... 69
3.2 Dual Algorithms . . . . .. .. ... 77
3.2.1 Dual Newton procedure . . . . ... ... ...... 77
3.2.2  Dual potential algorithm . . . . . .. ... ... ... 77
3.2.3 Center-section algorithm . . . . . .. ... ... ... 78
3.3 Primal Algorithms . . . . . .. ... ... o0 82
3.3.1 Primal Newton procedure . . . . ... ... ..... 82
3.3.2  Primal potential algorithm . . . .. ... ... ... 82
3.4 Primal-Dual (Symmetric) Algorithms . . . . . ... ... .. 86
3.4.1 Primal-dual Newton procedure . . . ... ... ... 86
3.4.2 Primal-dual potential algorithm . . . . . . .. .. .. 87
3.0 Notes . . . ... 90
3.6 Exercises . . . .. .. 91
Linear Programming Algorithms 93
4.1 Karmarkar’s Algorithm . . .. ... ... ... ....... 97
4.2 Path-Following Algorithm . . . ... . ... ... ...... 101
4.3 Potential Reduction Algorithm . . . . . ... ... ... .. 104
4.4 Primal-Dual (Symmetric) Algorithm . . . . ... ... ... 109
4.5 Adaptive Path-Following Algorithms . . . . . . .. ... .. 111
4.5.1 Predictor-corrector algorithm . . . . ... ... ... 114
4.5.2  Wide-neighborhood algorithm . . . . . . ... .. .. 117
4.6 Notes . .. .. .. .. ... 119
4.7 EXercises . . . ... e 123



CONTENTS

5 Worst-Case Analysis

5.1
5.2

5.3

5.4
9.5

Arithmetic operation . . . . . . ... ... ... L.
Termination . . . . . . . ... Lo o
5.2.1 Project an interior point onto the optimal face

Initialization . . . . . . ... ... . o oL
5.3.1 A HSD linear program . . . . . . .. .. ... ....
5.3.2 Solving (HSD) . . ... ... ... ... .. .....
5.3.3 Further analysis . . .. ... ... ... .. .. ...
5.3.4 Implementation . . . . . .. ... ... L.
Notes . . . . . .
Exercises . . . . . ..

6 Average-Case Analysis

6.1

6.2

6.3

6.4
6.5

One-Step Analysis . . . .. .. ... .. ... ...
6.1.1 High probability behavior . . . . .. ... ... ...
6.1.2 Proof of the theorem . . . . . . ... ... ... ...
Random-Problem Analysis T . . . . ... ... ... .....
6.2.1 High probability behavior . . . . .. ... ... ...
6.2.2 Random linear problems . . . . . .. ... ... ...
Random-Problem Analysis IT . . . . .. .. ... .. ....
6.3.1 Termination scheme . . ... .. .. ... ......
6.3.2 Random model and analysis . . . . . ... ... ...
Notes . . . . . .
Exercises . . . . . ...

7 Asymptotic-Case Analysis

7.1

7.2

7.3

7.4

7.5

Rate of Convergence . . . . . . ... .. ... .. ......
7.1.1 Order of convergence . . . . . ... ... ... .. ..
7.1.2 Linear convergence . . . . . . . . . . . . .. .. ...
7.1.3 Averageorder. . . ... ... ... ... ... .
7.1.4 Error function . .. .. ... oL oL
Superlinear Convergence: LP . . . . .. .. ... ... ...
7.2.1 Technical results . . . . ... ... ... ... ... ..
7.2.2 Quadratic convergence . . . . . . ... ... ...
Superlinear Convergence: LCP . . . .. .. ... ... ...
7.3.1 Predictor-corrector algorithm for LCP . . . . .. ..
7.3.2 Technical results . . . . ... ... ... ... ... ..
7.3.3 Quadratic convergence . . . . . . ... ... ...
Quadratically Convergent Algorithms . . . . ... ... ..
741 Variant 1 . . . ... ... .
742 Variant 2 . . ... ..o Lo
Notes . . . . . . o

125
126
129
130
135
136
141
144
146
147
149

151
153
154
155
158
161
165
168
169
173
178
179



7.6 Exercises

Nonlinear Convex Optimization
von Neumann Economic Growth Problem
Max-potential of T'(v)
8.1.2 Some technical results
8.1.3 Center-section algorithm
Convex Optimization
Max-potential reduction
Compute a new approximate center
8.2.3 Convergence and complexity

Positive Semi-Definite Programming
Potential reduction algorithm
8.3.2 Primal-dual algorithm
Monotone Complementarity Problem
A convex property
8.4.2 A homogeneous MCP model
8.4.3 The central path
8.4.4 An interior-point algorithm

8.6 Exercises

Nonconvex Optimization

Linear Complementarity Problem
Potential reduction algorithm
9.1.2 A class of LCPs
9.1.3 Some existing classes
P-Matrix Linear Complementarity Problem
Generalized Linear Complementarity Problem
Potential reduction algorithm
9.3.2 Complexity Analysis
9.3.3 Remove the assumptions
9.3.4 Numerical Examples
Indefinite Quadratic Programming
Potential reduction algorithm
9.4.2 Generating an e-KKT point
9.4.3 Solving the ball-constrained QP problem

CONTENTS



List of Figures

1.1
1.2
1.3
1.4

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

2.9

2.10

3.1

Regular and nonregular ellipsoids . . . . .. ... ... ... 17
Polyhedral and nonpolyhedral cones . . . . ... ... ... 18
A hyperplane and half-spaces . . . . .. .. ... ... ... 19

Mlustration of the separating hyperplane theorem; an exte-
rior point y is separated by a hyperplane from a convex set

C. e 20
A hyperplane H cuts through the center of gravity of a con-
vex body. . . . ... oo 43
The max-volume ellipsoid inscribing a polytope and the co-
centered ellipsoid circumscribing the polytope (R/r <m) . 44
Mustration of the min-volume ellipsoid containing a half el-
lipsoid . . . . . . ... 45
Iustration of the Karmarkar (simplex) polytope and its an-
alyticcenter . . . . . . . ... 48

Regular (dual) ellipsoids centered at points s’s on the inter-
section of an affine set A and the positive orthant; they are

also contained by the positive orthant. . . . . . . . ... .. 49
Translation of a hyperplane . . . . . ... ... ... .. .. o1
Addition of a new hyperplane . . . . . . ... .. .. .... 53

Regular (primal) ellipsoids centered at points §’s on an affine
set A; they also contain the intersection of A and the positive
orthant. . . . ... .. .. ... ... 57

Intersections of a dual feasible region and the objective hy-
perplane; b7y > z on the left and b7y > b7y on the right. . 60

The central path of y(z) in a dual feasible region . . . . . . 63

Mlustration of the dual potential algorithm; it generates a se-
quence of contained regular ellipsoids whose volumes increase. 79

9



10

3.2

3.3

4.1

5.1

6.1

8.1

LIST OF FIGURES

Mustration of the primal potential algorithm; it generates
a sequence of containing regular ellipsoids whose volumes
decrease. . . . . . ...
Mlustration of the primal-dual potential algorithm; it gener-
ates a sequence of containing and contained regular ellipsoids
whose logarithmic volume-ratio reduces to nlogn. . . . ..

Mustration of the predictor-corrector algorithm; the predic-
tor step moves y° in a narrower neighborhood of the central
path to 3’ on the boundary of a wider neighborhood and
the corrector step then moves 4’ to y' back in the narrower
neighborhood. . . . . . . . ... oo o

Illustration of the projection of y* onto the dual optimal face 133

Mlustration of the projection of r onto a random subspace U 155

Mlustration of the level set ['(y) on the simplex polytope; the
size of '(y) decreases as 7 increases. . . . . . ... ... ..



Chapter 1

Introduction and
Preliminaries

1.1 Introduction

Complexity theory is the foundation of computer algorithms. The goal of
the theory is to develop criteria for measuring the effectiveness of various
algorithms and the difficulty of various problems. The term “complexity”
refers to the amount of resources required by a computation. In this book,
running time or number of arithmetic operations is the major resource of
interest.

Linear programming, hereafter LP, plays a very important role in com-
plexity analysis. In one sense it is a continuous optimization problem in
minimizing a linear objective function over a convex polyhedron; but it is
also a combinatorial problem involving selecting an extreme point among
a finite set of possible vertices. Businesses, large and small, use linear pro-
gramming models to optimize communication systems, to schedule trans-
portation networks, to control inventories, to plan investments, and to max-
imize productivity.

Linear inequalities define a polyhedron, properties of which have been
studied by mathematicians for centuries. Ancient Chinese and Greeks stud-
ied calculating volumes of simple polyhedra in three-dimensional space.
Fourier’s fundamental research connecting optimization and inequalities
dates back to the early 1800s. At the end of 19th century, Farkas and
Minkowski began basic work on algebraic aspects of linear inequalities. In
1910 De La Vallée Poussin developed an algebraic technique for minimizing
the infinity-norm of b — Az that can be viewed as a precursor of the sim-

11



12 CHAPTER 1. INTRODUCTION AND PRELIMINARIES

plex method. Beginning in the 1930s, such notable mathematicians as von
Neumann, Kantorovich, and Koopmans studied mathematical economics
based on linear inequalities. During World War II, it was observed that
decisions involving the best movement of personnel and optimal allocation
of resources could be posed and solved as linear programs. Linear program-
ming began to assume its current popularity.

An optimal solution of a linear program always lies at a vertex of the
feasible region, which itself is a polyhedron. Unfortunately, the number
of vertices associated with a set of n inequalities in m variables can be
exponential in the dimensions—in this case, up to n!/m!(n — m)!. Except
for small values of m and n, this number is so large as to prevent examining
all possible vertices for searching an optimal vertex.

The simplex method, invented in the mid-1940s by George Dantzig, is a
procedure for examining optimal candidate vertices in an intelligent fashion.
It constructs a sequence of adjacent vertices with improving values of the
objective function. Thus, the method travels along edges of the polyhedron
until it hits an optimal vertex. Improved in various way in the intervening
four decades, the simplex method continues to be the workhorse algorithm
for solving linear programming problems. On average, the number of ver-
tices or iterations visited by the simplex method seems to be roughly linear
in m and perhaps logarithmic n.

Although it performs well on average, the simplex method will indeed
examine every vertex when applied to certain linear programs. Klee and
Minty in 1972 gave such an example. These examples confirm that in
the worst case, the simplex method needs an exponential number of itera-
tions to find the optimal solution. As interest in complexity theory grew,
many researchers believed that a good algorithm should be polynomial—
i.e., broadly speaking, the running time required to compute the solution
should be bounded above by a polynomial in the “size,” or the total data
length, of the problem. Thus, the simplex method is not a polynomial
algorithm.

In 1979, a new approach to linear programming, Khachiyan’s ellipsoid
method, received dramatic and widespread coverage in the international
press. Khachiyan proved that the ellipsoid method, developed during the
1970s by other mathematicians, is a polynomial algorithm for linear pro-
gramming under a certain computational model. It constructs a sequence
of shrinking ellipsoids with two properties: the current ellipsoid always con-
tains the optimal solution set, and each member of the sequence undergoes
a guaranteed reduction in volume, so that the solution set is squeezed more
tightly at each iteration.

The ellipsoid method was studied intensively by practitioners as well as
theoreticians. Based on the expectation that a polynomial linear program-
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ming algorithm would be faster than the simplex method, it was a great
disappointment that the best implementations of the ellipsoid method were
not even close to being competitive. In contrast to the simplex method,
the number of steps required for the ellipsoid method to terminate was al-
most always close to the worst case bound—whose value, although defined
by a polynomial, is typically very large. Thus, after the dust eventually
settled, the prevalent view among linear programming researchers was that
Khachiyan had proved a genuinely polynomial linear programming algo-
rithm, but the simplex method remained the clear winner in practice.

This contradiction, the fact that an algorithm with the desirable the-
oretical property of polynomiality might nonetheless compare unfavorably
with the (worst-case exponential) simplex method, set the stage for excit-
ing new developments. It was no wonder, then, that the announcement
by Karmarkar in 1984 of a new polynomial interior-point algorithm with
the potential to dramatically improve the practical effectiveness of the sim-
plex method made front-page news in major newspapers and magazines
throughout the world.

Interior-point algorithms are continuous iterative algorithms. Compu-
tation experience with sophisticated procedures suggests that the num-
ber of iterations necessarily grows much more slowly than the dimension
grows. Furthermore, they have an established worst-case polynomial iter-
ation bound, providing the potential for dramatic improvement in compu-
tation effectiveness. The success of interior-point algorithms also brought
much attention to complexity theory itself.

The goal of the book is to describe some of these recent developments
and to suggest a few directions in which future progress might be made.
The book is organized as follows. In Chapter 1, we discuss some necessary
mathematical preliminaries. We also present models of computation and
several basic optimization problems used throughout the text.

Chapter 2 is devoted to studying the geometry of inequalities and interior-
point algorithms. At first glance, interior-point algorithms seem less geo-
metric than the simplex or the ellipsoid methods. Actually, they also pos-
sess many rich geometric concepts. These concepts, such as “center,” “vol-
ume,” and “potential” of a polytope, are generally “non-combinatorial.”
These geometries are always helpful for teaching, learning and research.

In Chapter 3 we present some basic algorithms to compute a so-called
analytic center, or, equivalently, to minimize a potential function for a poly-
tope. They are key elements underlying interior-point algorithms. Then,
we present several interior-point linear programming algorithms in Chap-
ter 4. It is impossible to list all the literature in this field. Here, we select
four algorithms: Karmarkar’s projective algorithm, the path-following al-
gorithm, the potential reduction algorithm, and the primal-dual algorithm
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including the predictor-corrector algorithm.

We analyze the worst-case complexity bound for interior-point algo-
rithms in Chapter 5. The main issues are arithmetic operation, termina-
tion, and initialization techniques. We will use the real number computa-
tion model in our analysis because of the continuous nature of interior-point
algorithms. We also compare the complexity theory with the convergence
rate used in numerical analysis.

The worst-case complexity bound hardly serves as a practical crite-
rion for judging the efficiency of algorithms. We will discuss a common
phenomenon arising from using interior-point algorithms for solving opti-
mization problems. It is often observed that effectiveness of an algorithm is
dependent on the dimension or size of a problem instance as well as a param-
eter, called “condition number,” inherited in the problem. This condition
number represents the degree of difficulty of the problem instance. For
two problems having the same dimension but different condition numbers,
an algorithm may have drastically different performances. This classifica-
tion will help us to understand algorithm efficiency and possibly improve
the condition and, therefore, improve the complexity of the problem. We
present condition-based complexity results for LP interior-point algorithms
in Chapter 5.

While most of research has been focused on the worst-case performance
of interior-point algorithms, many other complexity results were quietly es-
tablished during the past several years. We try to cover these less-noticeable
but significant results. In particular, we present some average and prob-
abilistic complexity results in Chapter 6 and some asymptotic complexity
(local convergence) results in Chapter 7. Average complexity bounds have
been successfully established for the simplex method, and asymptotic or
local convergence rates have been widely accepted by the numerical and
continuous optimization community as major criteria in judging efficiency
of iterative procedures.

Not only has the complexity of LP algorithms been significantly im-
proved during the last decade, but also the problem domain solvable by
interior-point algorithms has dramatically widened. We present complex-
ity results for fractional programming, convex programming, positive semi-
definite programming and non-polyhedron optimization in Chapter 8. We
also discuss some approximation complexity results for solving nonconvex
optimization problems in Chapter 9.
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1.2 Mathematical Preliminaries

This section summarizes mathematical background material for linear al-
gebra, linear programming, and nonlinear optimization.

1.2.1 Basic notations

By R we denote the set of real numbers. R, denotes the set of nonnegative
[e]
real numbers, and R4 denotes the set of positive numbers. For a natural
omn
number n, the symbol R" (R, R, ) denotes the set of vectors with n
o]
components in R (R4, R+)-

Addition of vectors and multiplication of vectors with scalars are stan-
dard. The vector inequality £ > y means z; > y; for j = 1,2,...,n. 0
represents a vector whose entries are all zeros and e represents a vector
whose entries are all ones, where their dimensions may vary according to
other vectors in expressions. A vector is always considered as a column vec-
tor. The superscript “T” denotes transpose operation. The inner product
in R™ is defined as follows:

n

Ty = ijyj for z,y e R".
j=1

The I» norm of a vector x is given by

e = VaT

:1:7
and the [, norm is
lolloo = max{larl, 2], .. |a]}.

In general, the p norm is

n 1/1’
o, = (z) e
1

The dual of the p norm is the ¢ norm where

For natural numbers m and n, R™*"™ denotes the set of real matrices
with m rows and n columns. For A € R™*™, we assume that the row index
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set of A is {1,2,...,m} and the column index set is {1,2,...,n}. The ith
row of A is denoted by a; and the jth column of A is denoted by a_j; the
i and jth component of A is denoted by a;;. If I is a subset of the row
index set and J is a subset of the column index set, then A; denotes the
submatrix of A whose rows belong to I, A; denotes the submatrix of A
whose columns belong to .JJ, Aj; denotes the submatrix of A induced by
those components of A whose indices belong to I and J, respectively.

M™ denotes the space of symmetric matrices in R™*™. The identity
matrix is denoted by I. The null space of A is denoted N'(A) and the range
of Ais R(A).

The determinant of an n X n-matrix A is denoted by det(A). The trace
of A, denoted by tr(A), is the sum of the diagonal entries in A. For a
vector x € R™, the upper case X represents a diagonal matrix in R"*"
whose diagonal entries are the entries of z, i.e.,

X = diag(z).
A matrix € R™*" is said to be positive definite (PD) if
z'Qx >0, forall z#0,
and positive semi-definite (PSD) if

zTQx >0, forall =

k

{2*}5° is an ordered sequence z',2?,...,x% ... A sequence {z*F}&° is

convergent to Z, denoted z* — z, if
|lz* — Z|| = 0.

A point  is a limit point of {z¥}5° if there is a subsequence of {z*} con-
vergent to x.

If g(x) > 0 is a real valued function of a real nonnegative variable,
the notation g(x) = O(z) means that g(z) < ¢z for some constant ¢; the
notation g(z) = Q(z) means that g(x) > cx for some constant ¢; the
notation g(xz) = #(x) means that cx < g(z) < c¢z. Another notation is
g(z) = o(x), which means that g(x) goes to zero faster than = does:

1.2.2 Convex sets

If x is a member of the set ), we write z € (Q; if y is not a member of
Q, we write y € Q. The union of two sets S and T is denoted S U T; the
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intersection of them is denoted S NT. A set can be specified in the form
Q= {z: P(z)} as the set of all elements satisfying property P.

Fory € R™ and € > 0, B(y,e) = {z : ||z —y|| < €} is the ball or sphere
of radius € with center y. In addition, for a positive definite matrix () of
dimension n, E(y,Q) = {z: (z —y)"Q(x —y) < 1} is called an ellipsoid.
The vector y is the center of E. When @ is diagonal, E(y, Q) is called a
regular ellipsoid (Figure 1.1).

A

Nonregular

\

Y

Figure 1.1: Regular and nonregular ellipsoids

A set  is closed if ¥ — z, where zF € Q, implies z € Q. A set ( is
open if around every point y € {2 there is a ball that is contained in (2, i.e.,
there is an € > 0 such that B(y,e) C . A set is bounded if it is contained
within a ball with finite radius. A set is compact if it is both closed and

bounded. The (topological) interior of any set {2, denoted SOI, is the set of
points in  which are the centers of some balls contained in €. The closure
of 0, denoted 2, is the smallest closed set containing 2. The boundary of

) is the part of Q that is not in (O]

A set C is said to be convex if for every z', 22 € C and every real
number a, 0 < a < 1, the point az! + (1 — a)z? € C. The convex hull of
a set, () is the intersection of all convex sets containing (2.

A set C'is a cone if ¢ € C implies az € C for all @ > 0. A cone that is
also convex is a convex cone. For a cone C C €, the dual of C is the cone

2

C*:={y:{(z,y) >0 forall zeC},
where (,) is an inner product operation for space Q. A cone C is polyhedral
if
C={z:Ax <0}
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for some matrix A (Figure 1.2).

Polyhedral Cone Nonpolyhedral Cone

Figure 1.2: Polyhedral and nonpolyhedral cones

Theorem 1.1 A convex cone C is polyhedral if and only if it is finitely gen-
erated, that is, the cone is generated by a finite number of vectors by,...,by, :

C = cone(by, ..., by) := {Z biyi: y; >0, 0= 1,...,m} .
i=1

Example 1.1 The n-dimensional positive orthant, R", := {x € R" : = >
0}, is a convex cone. The set of all n-dimensional positive semi-definite
matrices is a convex cone, called the positive semi-definite matriz cone.
The set {(t,z € R™) : t > ||z||} is a convez cone, called the second-order
cone.

Theorem 1.2 (Carathéodory’s theorem) Let convex polyhedral cone C =
cone(by,...,by) and x € C. Then, x € cone(b;,,...,b;,) for some linearly
independent vectors b, ,...,b;, chosen from by,....by,.

The most important type of convex set is a hyperplane. Hyperplanes
dominate the entire theory of optimization. Let a be a nonzero n-dimensional
vector, and let b be a real number. The set

H={zxeR":a"z =10}

is a hyperplane in R" (Figure 1.3). Relating to hyperplane, positive and
negative closed half spaces are given by

Hy={z:a"z >0}
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0

Figure 1.3: A hyperplane and half-spaces

H ={z:aTz <b}.

A set which can be expressed as the intersection of a finite number of
closed half spaces is said to be a convex polyhedron:

P ={z: Az < b}.

A bounded polyhedron is called polytope.

Let P be a polyhedron in R", F is a face of P if and only if there is
a vector ¢ for which F' is the set of points attaining max {c’z : = € P}
provided the this maximum is finite. A polyhedron has only finite many
faces; each face is a nonempty polyhedron.

The most important theorem about the convex set is the following sep-
arating theorem (Figure 1.4).

Theorem 1.3 (Separating hyperplane theorem) Let C C &€ be a closed con-
vex set and let y be a point exterior to C. Then there is a vector a € £*
such that

(a,9) < inf (a,).

Here £ is a finite-dimensional real vector space and £* is the dual space of
E. (In this book we often consider £ being R™ or M™, so that £* =&.)

1.2.3 Real functions

The real function f(z) is said to be continuous at = if z¥ — =z implies

f(z*) — f(x). A continuous function f defined on a compact set Q has
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‘y /a

Figure 1.4: Illustration of the separating hyperplane theorem; an exterior
point y is separated by a hyperplane from a convex set C.

a minimizer in (); that is, there is an z* € (Q such that for all z € (O,
f(z) > f(z*). This result is called the Weierstrass theorem.

A set of real-valued function f, fo, ..., f;, defined on R™ can be written
as a single vector function f = (f1, fo, ..., fm)? € R™. If f has continuous
partial derivatives of order p, we say f € CP. The gradient vector of a
real-valued function f € C! is a row vector

Vf(z) ={0f/0x;}, for i=1,..,n

If f € C?, we define the Hessian of f to be the n-dimensional symmetric
matrix

2
V2f(x) = {aaaf } for i=1,...,n; j=1,...n.
Ti0T;

If f=(fi,f2,- fm)T € R™, then the Jacobian matrix of f is

Vfl (IL‘)
Viz) =
V fm(x)

f is a (continuous) convex function if and only if for 0 < a < 1,

flaz + (1 —a)y) < af(z)+ (1 -a)f(y)

f is a (continuous) quasi-convex function if and only if for 0 < a < 1,

flax + (1 = a)y) < max[f(z), f(y)]-
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Thus, a convex function is a quasi-convex function. The level set of f is
given by
Ly={e: f(z) <b}.

f is a quasi-convex function implies that the level set of f is convex for any
given b.
We have several propositions for real functions.

Theorem 1.4 (Taylor expansion) Let f € C? be in a region containing the
line segment [z,y]. Then there is a 0 < a < 1 such that

fy) = Fl@) + VI(@)(y —2) + (1/2)(y —2)" V' flaz + (1 - a)y)(y - 2).

Proposition 1.5 Let f € C'. Then f is convex over a conver set Q) if and
only if
fy) = f(z) + Vf(x)(y — =)

for all z, y € Q.

Proposition 1.6 Let f € C?. Then f is convex over a conver set Q) if and
only if the Hessian matriz of f is positive semi-definite throughout ().

1.2.4 Inequalities

There are several important inequalities that are frequently used in algo-
rithm design and complexity analysis.
Cauchy-Schwarz: given x,y € R™ then
T
w'y < [lllllyll-

Arithmetic-geometric mean: given z € R}

% > ([T

on

Harmonic: given z € R |

O w) O 1/xy) >0,

Hadamard: given A € R™*™ with columns ay, as, ..., a,, then

Vaet(474) < T Jlas .
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1.3 Decision and Optimization Problems

A decision or optimization problem has a certain form that is usually char-
acterized by the number of decision variables and the number of constraints.
A problem, P, consists of two sets, data set Z, and solution set S,. In gen-
eral, S, can be implicitly defined by the so-called optimality conditions.
The solution set may be empty, i.e., problem P may have no solution.

In what follows, we list several decision and optimization problems that
we will use later.

1.3.1 System of linear equations

Given A € R™*™ and b € R™, the problem is to solve m linear equations
for n unknowns:

Az =b.

The data and solution sets are
Z,={AeR™"beR™} and S,={zeR": Az =b}.

Sp is usually called an affine set. Given an x, one can easily check to see if
z is in Sp.

Theorem 1.7 FEach linear subspace of R"™ is generated by finitely many
vectors, and is also the intersection of finitely many linear hyperplanes;
that is, for each linear subspace of L of R"™ there are matrices A and C
such that L = N'(A) = R(C).

Theorem 1.8 Let A € R™*" and b € R™. The system {x : Az = b} has
a solution if and only if that ATy = 0 implies bTy = 0.

A vector y, with ATy = 0 and b7y # 0, is called a infeasibility certificate
for the system {z: Az = b}.

1.3.2 Linear least-squares problem

Given A € R™*™ and ¢ € R™, the problem is to find an s € R(AT) such
that ||s—c¢|| is minimized. We can write the problem in the following format:

(LS) minimize ||s — ¢||?
subject to s € R(AT).

or
(LS) minimize ||ATy — ¢||?
subject to y € R™.
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In this format, the term ||[ATy — ¢||? is called the objective function, y is
called decision variables. Since y can be any point in R™, we say this
(optimization) problem is unconstrained. The data and solution sets are

Z,={AeR™" ceR"}
and
S, ={y e R™: ||ATy — ¢|> < ||ATz — ¢||®> for every z € R™}.

Obviously, given a y, to see if y € S, is as the same as the original problem.
However, from a projection theorem in linear algebra, the solution set can
be characterized as

S, ={yeR™: AATy = Ac},

which becomes a system of linear equations. The vector s = ATy =
AT(AAT)* Ac is the projection of ¢ onto the range of A", where AAT
is called normal matrix and (AAT)* is called pseudo-inverse.

The vector c— ATy = (I — AT(AAT)* A)cis the projection of ¢ onto the
null space of A. It is the solution of the following least-squares problem:

(LS) minimize ||z — ||
subject to  x € N(A).

1.3.3 System of nonlinear equations

Given f(z) : R™ — R™, the problem is to solve m equations for n un-
knowns:

fla) =0.

The “data” and solution sets are
Z,={f} and S,={zeR": f(z) =0}

Here we call Z, an oracle. For any input z, it returns the value and other
numerical information of the function. Again, given an z one can easily
check to see if z is in S,.

1.3.4 System of linear inequalities

Given A € R™*™ and b € R™, the problem is to find a solution z € R"
satisfying Az < b or prove that the solution set is empty. The inequality
problem may possess other form, for example, find = such that Az = b and
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x > 0, which is a combination of linear equations and inequalities. The
data and solution sets are

Z,={AeR™"™"beR™} and S,={xeR":Az =0, z>0}.

Traditionally, a point in S, is called a feasible solution, and a strictly pos-
itive point in S, is called a strictly or interior feasible solution.

Theorem 1.9 (Farkas’ lemma) Let A € R™*™ and b € R™. Then, the
system {x : Az =b, x > 0} has a solution x if and only if that ATy <0
implies b7y < 0.

A vector y, with ATy < 0 and b7y > 0, is called a (primal) infeasibility
certificate for the system {z : Az =b, = > 0}.

Theorem 1.10 (Farkas’ lemma variant) Let A € R™*™ and ¢ € R".
Then, the system {y : ATy < c} has a solution y if and only if that Az =0
and > 0 imply Tz > 0.

Again, a vector > 0, with Az = 0 and ¢’z < 0, is called a (dual)
infeasibility certificate for the system {y: ATy < c}.

Theorem 1.11 (Approzimate Farkas’ lemma) Let A € R™*" b € R™,
and c € R™. Let

a, = min{||z|| : Az =b, x > 0},

ay = min{ly : ATy <c},
By = min{||ul|* : ATy <u, by = 1}

and
By = min{||v]|* : Az =0, Tz =1, 2> 0}.
Then
awﬂu = ayﬂv =1
Here, ||.|| is an arbitrary norm and ||.||* is the corresponding dual norm.

1.3.5 System of nonlinear inequalities

Given f(z) : R™ — R™, the problem is to find a solution z € R"™ satisfying
f(x) <0 or prove the solution set is empty. The oracle and solution sets
are

Z,={f} and S,={zeR": f(z) <0}
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Given an z, one can easily check to see if z is in S,.
. n n 3 3 M
f(z) : R™ — R™ is a monotone function over a open convex set ) if
and only if

(y — )" (fly) — f(z)) >0
for all z, y € ). Consider the following set

Q={z: f(z) >0, z >0},

where f(x) is continuous and monotone in R’ . We have the following
theorem.

Theorem 1.12  has a feasible solution if and only if for any sequence
(zF > 0,7F > 0) such that

lim 7% f(z* /7%) > 0,

then we have
lim (z")" f(z* /%) > 0.

1.3.6 Linear programming

Given A € R™*" b € R™ and ¢ € R", the linear programming (LP)
problem is the following optimization problem.

(LP) minimize ¢’z

subject to Az =b, x > 0.

The linear function ¢’z is called the objective function, and z is called the

decision variables. In this problem, Az = b and z > 0 enforce constraints
on the selection of z. The set F,, = {z : Az = b,z > 0} is called feasible set
or feasible region. A point z € F,, is called a feasible point, and a feasible
point z* is called an optimal solution if ¢"2* < ¢z for all feasible points
x. If there is a sequence {z*} such that z* is feasible and ¢’z*F — —oc,
then (LP) is said unbounded.

The data and solution sets for (LP), respectively, are
Z,={AeR™"beR" ceR"}
and
Sy,={zeF,:c"v<c'y forevery yeF,}.

Again, given an z, to see if z € S, is as difficult as the original problem.
However, due to the duality theorem, we can simplify the representation of
the solution set significantly.
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With every linear program, another linear program, called the dual
(LD), is the following problem.

(LD) maximize b’y
subject to ATy+s=r¢, s >0,

where y € R™ and s € R™. The components of s are called dual slacks.
Denote by F, the sets of all (y, s) that are feasible for the dual.

Theorem 1.13 (Weak duality theorem) Let F,, and Fq be non-empty. Then,
e >bvTy where ze Fp, (y,s) € Fa.

Corollary 1.14 (Strong duality theorem) Let F, and Fy be non-empty.
Then, x* is optimal for (LP) if and only if the following conditions hold:

i) «* e Fp;

ii) there is (y*,s*) € Fu;

iii) ¢"2* =b"y* or (z9)"s* = 0.

From the optimality condition, the solution set for (LP) and (LD) is
Sp={xeF, (y,s) € Fq: 'z =b"y},

which is a system of linear inequalities and equations.

Theorem 1.15 (LP duality theorem) If (LP) and (LD) both have feasible
solutions then both problems have optimal solutions and the optimal objec-
tive values of the objective functions are equal.

If one of (LP) or (LD) has no feasible solution, then the other is either
unbounded or has no feasible solution. If one of (LP) or (LD) is unbounded
then the other has no feasible solution.

For feasible x and (y,s), ¢z — bTy is usually called the duality gap

and z”'s the complementarity gap. If 7s = 0, then we say = and s are
complementary to each other.

Theorem 1.16 (Strict complementarity theorem) If (LP) and (LD) both
have feasible solutions then both problems have a pair of strictly comple-
mentary solutions x* and s* such that

" +s* > 0.
Moreover, the supports
P*={j: z; >0} and Z"={j: sj>0}

are invariant for all pairs of strictly complementary solutions.
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Given (LP) or (LD), the pair of P* and Z* is called the (strict) com-
plementarity partition. {z : Ap-zp- =b, xp >0, zz- = 0} is called the
primal optimal face, and {y : cz- — AL.y >0, cp- — AL.y = 0} is called
the dual optimal face.

Select m linearly independent columns, denoted by the index set B,
from A. Then matrix Ap is nonsingular and we may uniquely solve

AB.’L‘b =b

for the m-vector xp. By setting the variables of z corresponding to the
remaining columns of A equal to zero, we obtain a solution z such that

Az =b.

Then, z is said to be a (primal) basic solution to (LP) with respect to the
basis Ag. The components of g are called basic variables. A dual vector
y satisfying

Aﬁy =CB

is said to be the corresponding dual basic solution. If a basic solution z > 0,
then z is called a basic feasible solution. If the dual solution is also feasible,
that is

s=c— ATy >0,

then =z is called an optimal basic solution and Ag an optimal basis. A basic
feasible solution is a vertex on the boundary of the feasible region. An
optimal basic solution is an optimal vertex of the feasible region.

If one or more components in zg has value zero, that basic solution
x is said to be (primal) degenerate. Note that in a nondegenerate basic
solution the basic variables and the basis can be immediately identified
from the nonzero components of the basic solution. If all components in
the corresponding dual slack vector s, except for sg, are non-zero, then y
is said to be (dual) nondegenerate. If both primal and dual basic solutions
are nondegenerate, Apg is called a nondegenerate basis.

Theorem 1.17 (LP fundamental theorem) Given (LP) and (LD) where A
has full row rank m,

i) if there is a feasible solution, there is a basic feasible solution;

ii) if there is an optimal solution, there is an optimal basic solution.
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1.3.7 Quadratic programming
Given Q € R™*™, A € R™ " b e R™ and ¢ € R" , the quadratic pro-

gramming (QP) problem is the following optimization problem.

(QP) minimize gq(z) = (1/2)27Qx + 'z
subject to Az =b, = >0,

We may denote the feasible set by F,,. The data and solution sets for (QP)
are

Z,={QeR™MAecR™ " beR™, ceR"}

and
Sp=A{zxe€F,:q(x) <qly) forevery yeF,}.

A feasible point z* is called a KKT point, where KKT stands for Karush-
Kuhn-Tucker, if the following KKT conditions hold: there exists (y* €
R™, s* € R™) such that (z*, y*, s*) is feasible for the following dual problem

(QD) maximize by — (1/2)z"Qx
subject to ATy +s=c+Qzx, z, s >0,

and
(z*)Ts* = 0.

If () is positive semi-definite, then z* is an optimal solution for (QP) if
and only if z* is a KKT point for (QP). In this case, the solution set for
(QP) is characterized by a system of linear inequalities and equations. One
can see (LP) is a special case of (QP).

1.3.8 Complementarity problem

Given M € R™ "™ and q € R", the linear complementarity problem (LCP)
is to find a pair xz,s € R" such that

s=Mz+gq, (z,5)>0 and z;s; =0, j=12,..,n.

A pair (z,s) > 0 satisfying s = Mz + ¢ is called a feasible pair. The data
and solution sets for LCP are

Z,={M e R"*" g€ R"}

Sp={(x,8):8s=Mx+gq, (r,5)>0 and z's=0}.

One can verify that the solution set of (LP) and the KKT set of (QP)
can be formulated as the solution set of an LCP. Hence, the LCP is a
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fundamental decision and optimization problem. The LCP also arises from
economic equilibrium problems, noncooperative games, traffic assignment
problems, and optimization problems. If M is positive semi-definite, i.e.,

"Mz >0, forall =z,

then, the LCP is called a monotone LCP.
Let f(x) : R} — R™ be a real function. Then, the nonlinear comple-
mentarity problem (NCP) is to find a pair x,s € R™ such that

s=f(z), (x,s)>0 and z;5; =0, j=12,..,n
If f(x) is a monotone function over R, meaning

(' —2)T(f(a') — f(2?) >0 forall z',2%e RY,
then the problem is called the monotone complementarity problem.

Theorem 1.18 (Monotone complementarity theorem) If a monotone com-
plementarity problem has a complementary solution, then it has a mazimal
complementary solution pair x* and s* meaning that the number of the
positive components in vector ©* + s* is mazrimized. Moreover, the supports

P ={j: z; >0} and Z"={j: s; >0}

are invariant for all pairs of mazimal complementary solutions.

1.3.9 Positive semi-definite programming

Given C € M" A; € M™, i = 1,2,...,m, and b € R™, the positive
semi-definite programming problem is to find a matrix X € M" for the
optimization problem:

(PSP) inf CeX
subject to A; e X =b;,i =1,2,....m, X >0,

where the e operation is the generalization of the inner product to matrices
AeB := Z AiJBi,j = tI“ATB7
i,j

and the notation X > 0 means that X is positive semi-definite matrix. This
problem has many applications in combinatorial optimization and control
engineering.
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The dual problem can be written as

(PSD) sup by
subject to Y."y;Ai+S=0C, S =0,

which is analogous to the dual of LP. We also have analogous theorems.

Theorem 1.19 (Farkas’ lemma in PSP) Let A; € M" fori=1,...,m and
b e R™. Then, there exists a symmetric matrix X > 0 with

AiOX:bZ‘, z':17...7m7
if and only if > yiA; X0 and Y.;" y; A; # 0 implies b"y < 0.

Theorem 1.20 (Weak duality theorem in PSP) Let F,, and Fq, the feasible
sets for the primal and dual, be non-empty. Then,

CeX >bTy where X ¢ Fp, (y,8) € Fu.
Corollary 1.21 (Strong duality theorem in PSP) Let F), and Fq be non-

empty and have an interior. Then, X is optimal for (PS) if and only if the
following conditions hold:

i) X € Fp;
i) there is (y,S) € Fa;
iii) Ce X =bTy or X ¢« S =0.
Two positive semi-definite matrices are complementary to each other if
X ¢S =0. From the optimality conditions, the solution pair set for (PSP)
and (PSD) is
S, ={X€F, (y,S)€ Fqa:CeX =b"y},

which is a system of linear matrix inequalities and equations.

Theorem 1.22 (PSP duality theorem) If one of (PSP) or (PSD) has a
strictly or interior feasible solution and its optimal value is finite, then the
other is feasible and has the same optimal value. If one of (PSP) or (PSD)
is unbounded then the other has no feasible solution.
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1.3.10 Nonlinear programming

Given f: R* = R, h: R" =5 R™, g : R" = R%, the nonlinear program-
ming problem is the following optimization problem.

(NP) minimize f(z)
subject to h(z) =0b, g(z) > 0.
We may denote the feasible set by F. The oracle and solution sets for (NP)
are

Z,={f,hg} and S,={ze€F:f(z)<fly) forevery ye&F}

Note that the data set is a functional set.
A feasible point 2* is called a KKT point if the following KKT conditions
hold: there exists (y* € R™,s* € R%) such that (z*,y*, s*) is satisfying

VI f(a*) — Vh(z*)y" — Vg(z*)s* =0, s* >0,

and
g(z)Ts* = 0.

Theorem 1.23 (Karush-Kuhn-Tucker theorem) Let x* be a relative (lo-
cal) minimum solution for (NP) and suppose x* is a regular point for the
equality and active inequality constraints, i.e., the Jacobian matriz of these
constraints has full row rank. Then, x* is an KKT point.

If f is convex, h is affine, and g is convex, then z* is optimal if and only
if z* is a KKT point for (NP).

1.4 Algorithms and Computation Models

An algorithm is a list of instructions to solve a problem. For every instance
of problem P, i.e., for every given data Z € Z,, an algorithm for solving
P either determines that S, is empty or generates an output x such that
x € S, or z is close to S, in certain measure. The latter z is called an
(approximate) solution.

Let us use A, to denote the collection of all possible algorithm for solving
every instance in P. Then, the (operation) complexity of an algorithm
A € A, for solving an instance Z € Z, is defined as the total arithmetic
operations: +, —, *, /, and comparison on real numbers. Denote it by
¢o(A,Z). Sometimes it is convenient to define the iteration complexity,
denoted by ¢;(A, Z), where we assume that each iteration costs a polynomial
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number (in m and n) of arithmetic operations. In most iterative algorithms,
each iteration can be performed efficiently both sequentially and parallelly,
such as solving a system of linear equations, rank-one updating the inversion
of a matrix, pivoting operation of a matrix, multiplying a matrix by a
vector, etc.

1.4.1 Worst-case complexity

The worst-case complexity of algorithm A for problem P is defined as

c(A) := sup ¢(A, 7).
Zez,

It is better to distinguish the worst-case complexity of an algorithm, A,
from that of a problem P. The worst-case complexity of the problem is

c? ;= inf c(A).
AEA,

Analyzing the worst-case complexity of a problem is challenging since A, is
an unknown domain, and the analysis of the complexity of the algorithm is
equally difficult since P is also immense. However, the complexity theory
does not directly attack the algorithm complexity for every instance. In-
stead, it classifies P using its data bit-size L, where the data are assumed
rational. This is the Turing Machine Model for computation. We may
call this type of complexity size-based. Then, we express an upper bound
fa(m,n, L), in terms of these parameters m, n, and L, for the size-based
complexity of algorithm A as

c¢(A, L) := sup (A, Z) < fa(m,n, L).

Z€Z,, size(Z)<L
Then, the size-based complexity of problem P has a relation

@(L) = inf (4, L) < fa(m,n, L)

We see that the complexity of algorithms is an upper bound for the com-
plexity of the problem. Another active pursuit in computer science is the
analysis of a lower bound for the problem’s complexity, which is outside of
the scope of this monograph.

If fa(m,n, L) is a polynomial in m, n, and L, then we say algorithm A is
a polynomial-time or polynomial algorithm and problem P is polynomially
solvable. If fs(m,n,L) is independent of L and polynomial in m and n,
then we say algorithm A is a strongly polynomial algorithm.
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In the real number model, the use of L is not suitable. We may use ¢,
the error for an approximate solution as a parameter. Let ¢(A, Z, €) be the
total number of operations of algorithm A for generating an e-approximate
solution, with a well-defined measure, to problem P. Then,

c(A e) := sup c¢(A4,Z,¢€) < fa(m,n,e) forany e>0.
Z€Z,
We call this complexity model error-based.

If fa(m,n,e€) is a polynomial in m, n, and log(1/e), then algorithm A
is a polynomial algorithm and problem P is polynomially solvable. Again,
if fa(m,n,¢€) is independent of € and polynomial in m and n, then we say
algorithm A is a strongly polynomial algorithm. If f4(m,n,€) is a polyno-
mial in m, n, and (1/€), then algorithm A is a polynomial approximation
scheme or pseudo-polynomial algorithm . For some optimization problems,
the complexity theory can be applied to prove not only that they cannot
be solved in polynomial-time, but also that they do not have polynomial
approximation schemes. In practice, approximation algorithms are widely
used and accepted in practice.

We have to admit that the criterion of polynomiality is somewhat con-
troversial. Many algorithms may not be polynomial but work fine in prac-
tice. This is because complexity theory is built upon the worst-case analy-
sis. However, this criterion generally provides a qualitative statement: if a
problem is polynomial solvable, then the problem is indeed relatively easy
to solve regardless of the algorithm used. Furthermore, it is ideal to develop
an algorithm with both polynomiality and practical efficiency.

1.4.2 Condition-based complexity

As we discussed before, in the Turing Machine Model the parameters are
selected as the number of variables, the number of constraints, and the bit-
size of the data of an instance. In fact, expressing the algorithm complexity
in terms of the size of the problem does not really measure the difficulty of
an instance of the problem. Two instances with the same size may result
in drastically different performances by the same algorithm. Consider the
steepest descent method for solving

minimize (1/2)2” Qz + 'z

where () € R™*"™ is positive definite. It is well known that the algorithm
generates a sequence of {z*} such that

|2+ — 2| e, —e

loF — 2 = enter
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where e; < e, ... < e, are n eigenvalues of () with ascending order. Thus,
two matrices with the same size but different eigenvalue-structure will pos-
sess quite different convergence speed. This phenomena is surprisingly com-
mon in optimization, due to mathematical bases upon which algorithms are
designed. Thus, the upper bound for the complexity of an algorithm may
be expressed as fa(m,n,n(Z)) or fa(m,n,e,n(Z)) in both the rational-
number and the real number models, where 7(Z) can be viewed as a condi-
tion number for the instance Z. The better the condition number, the less
difficult the instance. It is our goal to study this phenomena and to improve
the condition number and, thereby, the performance of an algorithm.

1.4.3 Average complexity

Let Z, be a random sample space, then one can define the average or
expected complexity of the algorithm for the problem as

Ca(A) = EZEZp (C(A7 Z))

If we know the condition-based complexity of an algorithm for P, then the
average complexity of the algorithm is

¢*(4) < Ezez(fa(m,n,n(2))).

In many cases, fa(m,n,n(Z)) can be expressed as

fam,n,n(2)) = f'(m,n)f*(n(Z)).

Thus,
c*(4) < f1(m,n)Ezez(f*(n(2))),
which will simplify analysis a great deal.

Another probabilistic model is called high probability analysis. We say
that a problem P can be solved by algorithm A in f4(m,n) time with high
probability if

PI‘{C(A, Z) < fA(m= n)} -1
as m,n — oo. Again, if we have a condition-based complexity and if we
have

Pr{f*(n(2)) < f*(m,n)} =1
as m,n — oo, then the algorithm solves P in

fA(m=n) = fl(mn)fg(m7n)

operations with high probability.
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1.4.4 Asymptotic complexity

Most algorithms are iterative in nature. They generate a sequence of ever-
improving points z°,z',...,z*, ... approaching the solution set. For many
optimization problems and/or algorithms, the sequence will never exactly
reach the solution set. One theory of iterative algorithms, referred to as
local or asymptotic convergence analysis, is concerned with the rate at
which the optimality error of the generated sequence converges to zero.

Obviously, if each iteration of competing algorithms requires the same
amount of work, the speed of the convergence of the error reflects the speed
of the algorithm. This convergence rate, although it holds locally or asymp-
totically, provides evaluation and comparison of different algorithms. It has
been widely used by the nonlinear optimization and numerical analysis com-
munity as an efficiency criterion. In many cases, this criterion does explain
practical behavior of iterative algorithms.

Consider a sequence of real numbers {r*} converging to zero. One can
define several notions related to the speed of convergence of such a sequence.

Definition 1.1 . Let the sequence {r*} converge to zero. The order of
convergence of {r*} is defined as the supermum of the nonnegative numbers

p satisfying
k4]
0 <limsup —— < oc.
k— 00 |rk|p

Definition 1.2 . Let the sequence {r*} converge to zero such that

[t

lim sup < oo.

koo [TH[?

Then, the sequence is said to converge quadratically to zero.

It should be noted that the order of convergence is determined only by
the properties of the sequence that holds as & — oo. In this sense we might
say that the order of convergence is a measure of how good the tail of {r*}
is. Large values of p imply the faster convergence of the tail.

Definition 1.3 . Let the sequence {r*} converge to zero such that

k+1
LN

lim sup —
k— 00 ‘7“ ‘

Then, the sequence is said to converge linearly to zero with convergence
ratio 3.
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Linear convergence is the most important type of convergence behavior.
A linearly convergence sequence, with convergence ratio 3, can be said to
have a tail that converges to zero at least as fast as the geometric sequence
¢f* for a fixed number ¢. Thus, we also call linear convergence geometric
convergence.

As a rule, when comparing the relative effectiveness of two competing
algorithms both of which produce linearly convergent sequences, the com-
parison is based on their corresponding convergence ratio the smaller the
ratio, the faster the algorithm. The ultimate case where § = 0 is referred
to as superlinear convergence.

1.5 Basic Numerical Procedures

There are several basic numerical problems frequently solved by interior-
point algorithms.

1.5.1 Gaussian elimination method

Probably the best-known algorithm for solving a system of linear equations
is the Gaussian elimination method. Suppose we want to solve

Az =b.

We may assume ai; 7# 0, where a;; is the component of A in row i and
column j. Then we can subtract appropriate multiples of the first equation
from the other equations so as to have an equivalent system:

ann A T _ b1

0o A )T \Y )
This is a pivot step, where aq; is called pivot. Now, recursively, we solve
the system of the last m — 1 equations. Substituting the solution z' found

into the first equation yields a value for z;.
In matrix form, the Gaussian elimination method transforms A into the

form
u C
0 O

where U is a nonsingular, upper-triangular matrix,

u C
(5 9)
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and L is a nonsingular, lower-triangular matrix. This is called the LU-
decomposition.
Sometimes, the matrix is transformed further to a form

(0 %)

where D is a nonsingular, diagonal matrix. This whole procedure uses
about nm? arithmetic operations. Thus, it is a strong polynomial-time
algorithm.

1.5.2 Choleski decomposition method
Another useful method is to solve the least squares problem:
(LS) minimize [|ATy — ||
The theory says that y* minimizes ||A”y — ¢|| if and only if
AATy* = Ac.

So the problem is reduced to solving a system of linear equations with a
symmetric semi-positive definite matrix. One method is Choleski’s decom-
position. In matrix form, the method transforms AA7T into the form

AAT = UuT DU,

where U is an upper-triangular matrix and D is a diagonal matrix.

1.5.3 The Newton method

The Newton method is used to solve a system of nonlinear equations: given
f(x) : R™ = R™, the problem is to solve n equations for n unknowns such
that

f@)=o.
The Newton method is defined by the following iterative formula:

oM =t —a(V (") T (),

where scalar a > 0 is called step-size.
A modified or quasi Newton method is defined by

= ok abFf(at),

where M* is an n x n positive definite matrix. In particular, if M* = I,
the method is called the steepest descent method.
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1.5.4 Solve ball-constrained linear problem
The ball constrained linear problem has the following form
(BP) minimize c’x

subject to Az =0, ||z||* <1,
or
(BD) minimize b’y
subject to  ||ATy||? < 1.

z* minimizes (BP) if and only if there is y such that they satisfy
AATy = Ac,
and if ¢ — ATy # 0 then
wt = —(c— ATy)/lle — ATyl|;

otherwise any feasible z is a solution. The solution y* for (BD) is given as
follows: solve
AATy =,

and if § # 0 then set

y = —g/llA g}
otherwise any feasible y is a solution. So these two problems can be reduced
to solving a system of linear equations.

1.5.5 Solve ball-constrained quadratic problem

The ball constrained quadratic problem has the following form

(BP) minimize (1/2)27Qz + cTx
subject to Az =0, ||z||* <1,

or simply
(BD) minimize (1/2)y"Qy + bTy
subject to  ||y||* < 1.
This problem is a classical trust region problem used in nonlinear optimiza-
tion. The optimality conditions for the minimizer y* of (BD) are

(Q@+p Dy*=-b, p* >0, [y*I><1, ply*>=0,

and
(@ +p"I) = 0.
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These conditions are necessary and sufficient. This problem can be solved
in polynomial time log(1/e) and log(log(1/¢€)) by the bisection method or
a hybrid of the bisection and Newton methods, respectively. In practice,
several trust region procedures have been very effective in solving this prob-
lem.

1.6 Notes

The term “complexity” was introduced by Hartmanis and Stearns [143].
Also see Garey and Johnson [101] and Papadimitriou and Steiglitz [272].
The NP theory was due to Cook [69] and Karp [174]. The importance of
P was observed by Edmonds [84].

Linear programming and the simplex method were introduced by Dantzig
[73]. Other inequality problems and convexity theories can be seen in Gritz-
mann and Klee [132], Grotschel, Lovasz and Schrijver [133], Griinbaum
[134], Rockafellar [291], and Schrijver [298]. Various complementarity prob-
lems can be found found in Cottle, Pang and Stone [72]. The positive semi-
definite programming, an optimization problem in nonpolyhedral cones,
and its applications can be seen in Nesterov and Nemirovskii [263], Al-
izadeh [8], and Boyd, Ghaoui, Feron and Balakrishnan [62]. Recently,
Goemans and Williamson [108] obtained several breakthrough results on
approximation algorithms using positive semi-definite programming. The
KKT condition for nonlinear programming was given by Karush, Kuhn and
Tucker [193].

It was shown by Klee and Minty [178] that the simplex method is not
a polynomial-time algorithm. The ellipsoid method, the first polynomial-
time algorithm for linear programming with rational data, was proven by
Khachiyan [176], also see Bland, Goldfarb and Todd [53]. The method was
originally proposed by Shor [303], and discussed in Nemirovskii and Yudin
[258]. The interior-point method, another polynomial-time algorithm for
linear programming, was developed by Karmarkar. It is related to the
classical barrier-function method studied by Frisch [99] and Fiacco and
McCormick [92], see Gill, Murray, Saunders, Tomlin and Wright [106], and
Anstreicher [18]. For a brief LP history, see the excellent article by Wright
[366].

The real computation model was developed by Blum, Shub and Smale
[56] and Nemirovskii and Yudin [258]. The average setting can be seen in
Traub, Wasilkowski and Wozniakowski [335]. The asymptotic convergence
rate and ratio can be seen in Luenberger [198], Ortega and Rheinboldt
[269], and Traub [334]. Other complexity issues in numerical optimization
were discussed in Vavasis [359].
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Many basic numerical procedures listed in this chapter can be found in
Golub and Van Loan [119]. The ball-constrained quadratic problem and
its solution methods can be seen in Moré [248], Sorenson [309], and Dennis
and Schnable [76]. The complexity result of the ball-constrained quadratic
problem was proved by Vavasis [359] and Ye [376, 380].

1.7 Exercises

1.1 Prove Theorem 1.5.

1.2 Function [ being a quasi-convex implies that the level set of f is con-
ver.

1.3 Prove Propositions 1.5 and 1.6.

1.4 Prove Harmonic inequality described in Section 1.2.4.
1.5 Prove Theorem 1.8.

1.6 Prove Theorems 1.9 and 1.10.

1.7 Prove Theorem 1.11.

1.8 Prove Theorem 1.12.

1.9 Prove Theorem 1.17.

1.10 If (LP) and (LD) have a nondegenerate optimal basis Ap, then the
strict complementarity partition in Theorem 1.16

P* =B.

1.11 If Q is positive semi-definite, then x* is an optimal solution for (QP)
if and only if z* is a KKT point for (QP).

1.12 Prove Theorem 1.18.
1.13 Prove Theorem 1.19.

1.14 The optimality conditions for the minimizer y* of (BD) in Section
1.5.5:

Q+p Dy"=-b, p* 20, <1 wy*ll =0,

and
(Q+p"I) =0,

are necessary and sufficient.



Chapter 2

Geometry of Convex
Inequalities

Most optimization algorithms are iterative in nature, that is, they generate
a sequence of improved points. Algorithm design is closely related to how
the improvement is measured. Most optimization algorithms use a merit or
descent function to measure the progress. Some merit or descent functions
are based on the objective function. For example, if we know a lower bound
z of the optimal objective value, f(z) — z is a measure of how far z is from
the solution set. Another example measures the residual or error of the
optimality conditions represented by a system of equations and inequali-
ties involving the derivatives of the objective and constraint functions as
discussed in the preceding chapter.

One particular merit or descent function measures the “size” of the con-
taining set—a set that contains a solution. A typical example is the bisec-
tion method for finding a root of a continuous function within an interval.
The method measures the length of the containing interval. In each step,
the middle point of the containing interval is tested, and, subsequently, a
new containing interval is selected and its length is a half of the previous
one. Thus, these containing intervals shrink at a constant rate 1/2.

A generic center-section algorithm for multiple-variable problems can
be described as follows. Given z*, a “good” interior point in a containing
set, we check to see if z* is desirable. If not, we generate a separating
hyperplane and place it through z* and cut the containing set into two
parts. The separating hyperplane can be generated from an oracle. If we
can assure that the solution set lies in one of the two parts, then the other
part can be deleted. This leads to a new containing set that is smaller than

41
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the previous one. A new “good” interior point in the new containing set
can be tested and the process continues. Obviously, this method can be
applied to any convex problems.

The question that arises is how to select the test point and where to
place the cut. Ideally, we would like to select a “center” point that divides
the containing set into two approximately “equal” parts with respect to
certain measures of the containing set. Then, we will have a shrinking rate
of about 1/2 for the sequence of the containing sets.

Various centers were considered as test points. In this chapter, we review
these centers and their associated measures. We show that, similar to
these center-section algorithms, interior-point algorithms use a new measure
of the containing set represented by linear inequalities. This measure is
“analytic”, and is relatively easy to compute. Its associated center is called
the analytic center.

2.1 Convex Bodies and Ellipsoids

A natural choice of the measure would be the volume of the convex body.
Interest in measure of convex bodies dates back as far as the ancient Greeks
and Chinese who computed centers, areas, perimeters and curvatures of
circles, triangle, and polygons. Unlike the length of a line segment, the
computation of volumes, even in two and three dimensional spaces, is not
an easy task for a slightly complex shaped body. In order to measure
cultivated lands, Chinese farmers weighted the amount of sand contained
in a down-scaled body whose shape is identical to the land, then compared
the weight to the amount of sand in an equally down-scaled unit-square
box.

Associated with the volume of a convex body, the center of gravity will
be the choice as the test point (Figure 2.1). We have the following theorem.

Theorem 2.1 Let Q) be a compact convez body in R™ with center of gravity
y?, and let QT and Q~ be the bodies in which a hyperplane H passing
through y9 divides Q). Then the volumes V(QV) and V(Q™) satisfy the
inequality

V() < (1 —(1- ﬁ)") V(Q), where x=+ or —.

This result shows that by successively cutting through the center of
gravity, these convex bodies shrink at a constant rate of at most (1 —

1/exp(1)), where exp(1) is the natural number 2.718.... This rate is just
slightly worse than 1/2 in the bisection method.
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Figure 2.1: A hyperplane H cuts through the center of gravity of a convex
body.

Let the solution set contain a ball with radius r and the initial containing
set be contained in a ball with radius R. Then we know that the volumes
of the containing sets are bounded from below by m,,r™ and bounded from
above by 7, R™, where 7, is the volume of the unit ball in R™. Thus, a
solution point must be found in O(mlog(R/r)) center-section steps, because
the volumes of the containing sets eventually become too small to contain
the solution set.

The difficulty with the gravity-center section method lies in computing
the center and volume of a convex body. It is well-known that computing
the volume of a convex polytope, either given as a list of facets or vertices,
is as difficult as computing the permanent of a matrix, which is itself # P-
Hard. Since the computation of the center of gravity is closely related to
the volume computation, it seems reasonable to conclude that no efficient
algorithm can compute the center of gravity of (2.

Although computing the center of gravity is difficult for general convex
bodies, it is relatively easy for some simple convex bodies like a cube, a
simplex, or an ellipsoid. This leads researchers to use some simple convex
bodies to estimate (2.

It is known that every convex body contains a unique ellipsoid of maxi-
mal volume and is contained in a unique ellipsoid of minimal volume (Figure
2.2). We have the following general theorem.

Theorem 2.2 For every full dimensional convex body ) C R™ there exists
a unique ellipsoid E(Q) of mazimal volume contained in ). Moreover, ()
is contained in the ellipsoid obtained from E() by enlarging it from its
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center by a factor of m.

Figure 2.2: The max-volume ellipsoid inscribing a polytope and the co-
centered ellipsoid circumscribing the polytope (R/r < m)

Let y® be the center of the max-volume ellipsoid inscribing (2. Through
the center we place a hyperplane H and divide Q into two bodies Q1 and
Q~. Then, we have a center-section theorem:

Theorem 2.3 The Volumes of the new ellipsoids satisfy the inequality
V(E(QY)) <0.843V(E(S)), where x=+4 or —.

Thus, one can use the max-volume inscribing ellipsoid as an estimate
of €. These ellipsoids will shrink at a constant rate in the center-section
method. The volume of E(2) is also bounded from below by 7,7 and
bounded from above by 7, R™. Thus, a solution point must be found in
O(mlog(R/r)) center-section steps. Apparently, to compute y¢ one needs
to use the structure of the convex body. If the convex body is represented by
linear inequalities, there is a polynomial complexity bound for computing
an approximate point of y¢.

Another approach is the original ellipsoid method, which monitors the
volume of an ellipsoid that contains the solution set. This is based on a
similar theorem:

Theorem 2.4 For every convexr body 0 C R™ there exists a unique el-
lipsoid E(Q) of minimal volume containing ). Moreover, Q0 contains the
ellipsoid obtained from E(Q) by shrinking it from its center by a factor of
m.
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Moreover, let 7¢ be the center of an ellipsoid £ C R™. Through its cen-
ters we place a hyperplane H and divide E into two bodies (half ellipsoids)
E* and E~. Let E(E*) and E(E~) be the new min-volume ellipsoids con-
taining Bt and E~ | respectively (Figure 2.3). Then, we have the following
center-section theorem:

Theorem 2.5 The Volumes of the new ellipsoids satisfy the inequality

V(E(E*)) < exp(—.5/m)V(E), where *=+ or —.

Figure 2.3: Tllustration of the min-volume ellipsoid containing a half ellip-
soid

Furthermore, the new containing ellipsoid can be easily constructed and
its center can be computed in O(m?) arithmetic operations. Since the
volumes of the ellipsoids are bounded from below by 7,7 and the initial
one is bounded from above by 7, R™, a solution point must be found in
O(m?log(R/r)) center-section steps. We see that the ellipsoid method does
not keep the “knowledge” of the cutting plane after the new containing
ellipsoid is updated.

2.2 Max-Potential and Analytic Center

The centers discussed in the preceding section are “universal,” meaning
that they are invariant of the representation of a convex body. A drawback
of these centers is that they generally cannot be computed cost-effectively.
For the ellipsoid method, its advantage in not keeping knowledge of the cut-
ting planes is also a disadvantage to practical efficiency for solving certain
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problems, such as linear programs. Thus, another type of center, called the
analytic center for a convex polyhedron given by linear inequalities, was
introduced.

Let 2 be a bounded polytope in R™ defined by n (> m) linear inequal-
ities, i.e.,

Q={yeR™:c— A"y >0},

where A € R™*™ and ¢ € R" are given and A has rank m. Denote the
interior of ) by

O={yeR™:c— ATy > 0).

Given a point in €, define the distance function of y to the boundary of €2
which satisfies

1. d(y,Q) = 0 if y is on the boundary of (;

2. d(y,Q) >0if yisin SO);

3. If ¢ <candlet Q' ={ye R™:c — ATy > 0} (thereby, Q' C Q),
then d(y, Q') < d(y, Q).

This definition is very similar to Huard’s generic distance function, with
one exception, where property (3) was stated as “If Q' C Q, then d(y, ') <
d(y,).” The reason for the difference is that the distance function may
return different values even if we have the same polytope but two different
representations. In other words, the distance function is dependent on the
representation of . We may have d(y, Q') < d(y,Q) even when Q C
geometrically. Thus, the distance function is really a function of point y,
and the data A and ¢ as well.

One choice of the distance functions is

n
d(y, Q) = H(Cj - a’;ry)7 y €,

i=1

where a; is the jth column of A. Traditionally, we let s := ¢ — ATy and
call it a slack vector. Thus, the distance function is the product of all slack
variables. Its logarithm is called the barrier or (dual) potential function,

B(y,Q) =logd(y, Q) = log(c; —aly) = logs;.
j=1 j=1

The interior point, denoted by y®, in  that maximizes the function is
called the analytic center of €0, i.e.,

B(Q) := B(y“, ) = maxlogd(y, Q).
yeQ
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y? is uniquely defined, since the barrier function is strictly concave in . It
satisfies the following optimality conditions. There exists an z® such that

X% =¢, Az°=0, and s®*=c¢—ATy* > 0. (2.1)

Note that the scale of ¢ is immaterial in these conditions. Also, adding or
deleting a redundant inequality changes the location of the analytic center.

Example 2.1 Consider Q ={y € R:y >0, —y > —1} which is interval
[0,1]. The analytic center is y* = 1/2 with z* = (2,2)".

Example 2.2 Consider Q ={y e R:y >0, ..., y >0, —y > —1} which
is again interval [0, 1] but “y > 07 is copied n times. The analytic center for
this system is y* = n/(n+1) withz® = ((n+1)/n, ..., (n+1)/n, (n+1))T.

The analytic center can be defined when the interior is empty or equal-
ities are presented, such as

Q={yeR™:c— ATy >0, By=1»5}

Then the analytic center is chosen on the hyperplane {y : By = b} to
maximize the product of the slack variables s = ¢ — ATy. Thus, the interior
of (2 is not used in the sense that the topological interior for a set is used.
Rather, it refers to the interior of the positive orthant of slack variables:
R :={s: s >0}. When say Q as an interior, we mean that

703+ N{s: s = ¢ — ATy for some y where By = b} # 0.

omn
Again R, := {s € R} : s >0}, i.e., the interior of the orthant R . Thus,

if O has only a single point y with s = ¢ — ATy > 0, we still say ) is not
empty.

Example 2.3 Consider the system Q = {x : Ar =0, e’z =n, = > 0},
which is called Karmarkar’s canonical set. If x = e is in ), then e is the
analytic center of Q (Figure 2.4).

2.2.1 Dual potential function

We may represent 2 = {y € R™: ¢ — ATy > 0} using the slack variable s
only:
Sqg:={seR": ATy+s=c, s>0},
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Figure 2.4: Tllustration of the Karmarkar (simplex) polytope and its ana-
lytic center

or

Sqg:={seR": s—ceR(A"), s> 0},

which is the intersection of the affine set
Ag={seR": s—ceR(A")}
and the positive cone (orthant) R’. The interior of Sq is denoted by
§Q:: Aq N 7021
Let s be an interior point in Sg. Then consider the ellipsoid
B={teR": |5 (t—s)| <1}

This is a regular ellipsoid centered at s and inscribing the positive orthant
R’ . The volume of the regular ellipsoid is

V(E,) =, [] s5-
=1

Moreover, we have

(Es N Aq) C Sqa,
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Sy

A

Figure 2.5: Regular (dual) ellipsoids centered at points s’s on the intersec-
tion of an affine set A and the positive orthant; they are also contained by
the positive orthant.

that is, the intersection of E, and Agq is contained in S (Figure 2.5).

Thus, the potential function at s €§Q plus logm, is the logarithmic
volume of the regular ellipsoid centered at s and inscribing R’}. Therefore,
the inscribing regular ellipsoid centered at the analytic center of Sg, among
all of these inscribing regular ellipsoids, has the maximal volume. We denote
this max-barrier or max-potential of Sq by B((2).

We now argue that the exponential of B(2) is an “analytic” measure of
SQ or .

1. exp(B(Q)) = 0 if Q= 0;

2. exp(B(©Q?)) > 0if (O);é 0, and if Q contains a full dimensional ball with
radius r or {y : ATy < ¢—re} # 0 (here we assume that [|a;|| = 1
for j =1,2,...,n), then B(Q) > nlogr;

3.Ifc <candlet Q' = {ye R™:c — ATy > 0} (thereby, Q' C Q),
then B(QY') < B(Q).

Note that the max-barrier or max-potential B({) is a function of data A
and c.
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Let s (or y®) be the analytic center of Sq (or 2). We now consider the
ellipsoid
nEye = {t € R [[(S7)71(t — 5 < n},

which is enlarged from FEg. by a factor of n. The question is whether or
not this enlarged regular ellipsoid nFs N Aq contains Sg. The answer is
“yes” according to the following theorem.

Theorem 2.6 The analytic center s € Sq is the center of the unique
mazimal-volume regular ellipsoid Es inscribing the orthant R . Its inter-
section with Aq is contained by polytope Sq. Moreover, polytope Sq itself
is contained by the intersection of Aq and the ellipsoid obtained from Fga
by enlarging it from its center by a factor n.

Proof. The uniqueness of the analytic center is resulted from the fact that
the potential function is strictly concave in the interior of the polytope and
A has a full row-rank. Let y® be the analytic center and s = ¢ — ATy,
then there is 2% such that Az® = 0 and X?s® = e. Thus, we have 2% > 0
and ¢T2? =n. For all s = ¢ — ATy > 0 we have

18 (s=sM)II” = [ Xs—ell* = [| X*s]~n < ((2*)"5)*~n = n’—n < n”.

This completes the proof.

2.2.2 Analytic center section

We now develop two center-section inequalities for the analytic center. They
resemble the results for the previously discussed centers. First, we study
how translating a hyperplane in Q = {y : ¢ — ATy > 0} will affect the
max-potential value. More specifically, we have the following problem: If
one inequality in €, say the first one, of ¢ — ATy > 0 needs to be translated,
change ¢; —afy > 0to al y* —aly > 0; i.e., the first inequality is parallelly
translated, and it cuts through the center y* and divides €2 into two bodies
(Figure 2.6). Let

O ={y: aly"—ajy>0¢;—aly>0,j=2,..n}

and let § be the analytic center of Q7. Then, the max-potential for the
new convex polytope Q7 is

exp(B() = (aly” — al3*) [ (e~ a]5").

Regarding B(Q) and B(Q"), we prove the following theorem.
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This hyperpl ane—
istrandated to

ya

Theinitia polytope and
its analytic center

Figure 2.6: Translation of a hyperplane

Theorem 2.7 Let Q and Q7 be defined as the above. Then
BOY) < BE@) 1,

exp(B(2H)) < exp(—1) exp(B(Q)),

where exp(—1) = 1/ exp(1).

Proof. Since y® is the analytic center of 2, there exists z* > 0 such that
X%c— ATy =e and Az =0. (2.2)

Recall that e is the vector of all ones and X® designates the diagonal matrix

of . Thus, we have
s7=(c—ATyy) = (X9 'e and 'z =n.

Let ¢; = ¢; for j = 2,...,n and ¢; = al'y?, and let 5 = ¢ — ATy Then,

we have
e’ X% = e'Xc— ATy =" X6
= 'z —20(c; —aly®) =n 1.
Thus,
exp(B(QF)) 1 5
coB@) L5

J
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=1
1=
< (S YagE)”
j=1
-1
= ()" <exp(-1)

|

Now suppose we translate the first hyperplane by a 8, 0 < 8 < 1, the
fractional distance to the analytic center, i.e.,

O i={y: (1-B)ar+Baly* —aly>0, ¢;—ajy >0, j=2,.n}

If 8 = 0, then there is no translation; if § = 1, then the hyperplane is
translated through the analytic center as in the above theorem. Regarding
B(Q) and B(Q"), we have the following inequality.

Corollary 2.8
B(QF) <B(Q) - 4.

Now suppose we translate k(< m) hyperplanes, say 1,2,...,k, cutting
through ; i.e., use multiple cuts passing through 2, and let

O = {y (1= B))e; + Baly’ —aly >0, j=1,..k,

c;j —ajTy >0,j=k+1,..,n,}
where 0 < 3; <1, j=1,2,...,k. Then, we have the following corollary.

Corollary 2.9
k
B(OY) <B(Q) =Y B;.
j=1

This corollary will play an important role in establishing the current best
complexity result for linear inequality and linear programming problems.
These corollaries show the shrinking nature of the regular ellipsoids after
a cut is translated. They enable us to develop an algorithm that resembles
the center-section method. Again, if a lower bound on the max-potential of
the solution set is nlog r and the max-potential of the initial containing set
is nlog R, then a solution must be found in O(nlog(R/r)) center-section
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The new added
Theinitia polytope and hyperplane
itsanalytic center

Figure 2.7: Addition of a new hyperplane

steps. Moreover, if we can translate multiple inequalities and the max-
potential is reduced by 6(y/n) at each step, a solution must be found in
O(yv/nlog(R/r)) center-section steps.

In the following, we study the problem when placing additional hyper-
planes through the analytic center of Q (Figure 2.7). When a hyperplane
is added, the new convex body is represented by

O ={y:c— ATy >0, a£+1ya - a£+1y > 0}.

Again, the question is how the max-potential of the new polytope changes
compared to that of 2. Let

r(@) = y/al (AXXO)2AT) Ta g = \Jal, (A(S9)2AT) a0
Then, we have an inequality as follows.
Theorem 2.10
B(QT)) < B(Q) +log(r(Q)1) + 2log2 — 1.5.
Proof. Again, % and (y®, s*) satisfy condition (2.2). Let
s =c— ATy® and 5%, =cpp1 —al i y" (2.3)

Then,

. T _
S?H»l = an+1(ya_ya)
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=l (A(X)AT) LAY )R (ATy" - ATy

Al (A(X 2 AT) VAKX (—e + ATy +c— AT
=l (AP AT) AKX (0 - (X7) e)
= a£+1(A(X“)2AT)’1AX“(X“§“ —e). (2.4)

Note that we have
' X% =" X% c— ATy =" X% =n. (2.5)

Thus, from (2.4)

exp(BQF)) S yy
exp(BQ)r(W): 1;[15?

i
AT (A(X7)2AT) TAX (X050 e ﬁ s
() i

IN

a1 (AX)?AT)PAX || X 5" — ﬁ
(2 i

X5 — el [] (=959)- (2.6)
j=1

Let @ = X?5". Then, to evaluate (2.6) together with (2.5) we face a
maximum problem

maximize f(a) =||la — €| H?:l aj

subject to eTa =n,a > 0.

This maximum is achieved, without loss of generality, at a1 = 8 > 1 and
ay=...=a, =(n—0)/(n—1)>0. Hence,

CRW

< / ﬂ*lﬂ n*ﬂ) n—1
2 n—l
5n1

S 4\/n—1(n+1) !

4
Selj-

IN

fla)

This completes the proof.
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O

Note that r(2); = \/angl(A(S“)*QAT)*lanH is the maximal value of
the problem:

max apy(y—y°) st ye{y: (ST ATy -y <1}

Thus, if the initial ellipsoid is contained in a unit ball, then r(2); < 1.
In general, if k additional hyperplanes cut through the analytic center,
ie.,

O ={y:c— ATy >0, azﬂy” — GZ+1?J >0, ...,az+ky“ — aL_ky > 0},

we have

Corollary 2.11

k
BO) < BO) + Y log(r()) + (& + 1 logk +1) = (k + 7).

where

r( )i = /ol (A(S) 2AT) Tapgs, i=1,..k

2.3 Primal and Primal-Dual Potential Func-
tions

From the duality theorem, we have a (homogeneous) linear programming
problem related to Q = {y: ¢ — ATy > 0} as

minimize Tz

subject to Az = 0,2 >0,

which we called the primal problem. If € is nonempty, then the minimal
value of the problem is 0; if  is bounded and has an interior, then the
interior of X := {z € R": Az =0, > 0} is nonempty and = = 0 is the
unique (primal) minimal solution.

2.3.1 Primal potential function

One can define a potential function for Xq as

P(z,Q) = nlog(c'z) — Zlogsnj, x 6/%9 .
j=1
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This is the so-called Karmarkar potential function. We now show that
this quantity represents the logarithmic volume of a regular ellipsoid whose
intersection with Agq contains Sq = R} N Ag.

Recall that we are interested in finding a point s € Sq. Let © €Xq.
Then, for all s € Sg we must have

IXs]? < (275)” = ("), (2.7)

Let §y = (AX2A7)"'AX%c and 5 = ¢ — ATy. Then, we see for any s € S,
we have

[ Xs]” = [1X (s — 8) + X5]* = [|[X (s — 3)|I” + [| X5,

or
1X(s = 8)II° = [IXs]* = [|X8]1* < [|Xs]|* < (7).

Thus, let E, be the regular ellipsoid E, = {s € R" : || X(s —35)|| < c'x}
that is centered at § (Figure 2.8). Then, we must have

Sq C (E,E N AQ)
Furthermore, the volume of E, is

T (clz)" B T (clz)”

det(X) H?:1 zj

where 7, is the volume of the unit ball in R™. Thus,

V(E;) =

P(z,Q) =logV(E,) — logmy,.

In the next chapter, we will show that Karmarkar’s algorithm actually
generates sequences {0 < z* € X} such that

PzF,Q) <P(a*, Q) - 3
for k =0,1,2,.... In other words

V(E:L.k+1 )

VEa) < exp(—.3).

That is, the volume of the containing ellipsoids shrinks at a constant rate.
Note that E,» contains the solution set Sq. Therefore, Karmarkar’s algo-
rithm conceptually resembles the ellipsoid method.

Since the primal potential function represents the volume of a regular

ellipsoid containing Sq, let us minimize it over all x € Yo. Note that the
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Figure 2.8: Regular (primal) ellipsoids centered at points 5’s on an affine
set A; they also contain the intersection of A and the positive orthant.

primal potential function is homogeneous degree 0 in z, so that we can fix
¢’z = n. Then the problem minimizes a strictly convex function and the

optimality conditions become
z € Xg and X (c — A"y) = e for some y € 0. (2.9)

One can see that y in (2.9) is in fact the analytic center y” of €2, since
this condition is identical to condition (2.1) for defining the analytic center
of Q. Let x%, called the primal analytic center, satisfy these conditions.
Recall that s® = ¢ — ATy® is the analytic center of Sg. Then, we have

Theorem 2.12 There is a unique minimal-volume reqular ellipsoid Eya,

where z® G.J%Q, whose intersection with Aq contains polytope Sq. More-
over, polytope Sq contains the intersection of Aq and the ellipsoid obtained
from E, . by shrinking it from its center by a factor of n. In fact, the two
ellipsoids E,« and Esa (in Theorem 2.6) are co-centered, and they can be
obtained from each other by enlarging or shrinking with a factor n (Figures

2.5 and 2.8).

Proof. To prove they are co-centered, we only need to prove that the center
of E,a is the analytic center of Sq. Recall that 5 is the center of E,. with
5§ =c— ATy, where

:l; _ (A(Xa)2AT)71A(Xa)2C.



a8 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIES

On the other hand, from (2.9) we have
X c—ATyY) =e or X% =e+ X*ATy,
where y? is the analytic center of 2. Thus
X c—ATg) =e+ XA Ty — X9AT(A(XY)2AT) TAX Y (e + X2 ATy2)
=e— X AT (A(X*)2AT) 1AX % = .

Thus, ¥ = y® and § = s” since gy also satisfies the optimality condition of
(2.1).

2.3.2 Primal-dual potential function

o o
For z e ¥ and s €Sgq consider a primal-dual potential function which has
the form

Un(z,s) :=nlog(z"s) — Z log(z;s;)

=nlog(cz) — Zlogazj — Zlog sj =P(z,Q) — B(y, Q).

This is the logarithmic ratio of the volume of E, over the volume of Ej.
We also have, from the arithmetic-geometric mean inequality,

Gn(@.5) = nlog(@”s) — 3 log(a;s;) > nlogn,
and
Y (z®, %) = nlogn.

This is the precise logarithmic ratio of the volumes of two co-centered el-
lipsoids whose radii are differentiated by a factor n (Figures 2.5 and 2.8).

2.4 Potential Functions for Linear Program-
ming
We now consider a linear program in the standard form (LP) and (LD)

with the optimal value z*. Denote the feasible sets of (LP) and (LD) by
Fp and Fyq, respectively. Denote by F = F,, x Fy.
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2.4.1 Primal potential function

Consider the level set
Az)={y: ¢~ ATy>0,-z+b"y >0}
where z < z*. Let (2', ) satisfy

Az —bxy =0, (2',2() > 0,

and let z := 2’ /x| e]fi'p, ie.,
Az =0b, x> 0.

Then, the primal potential function for Q(z) (Figure 2.9), as described in
the preceding section, is

P, Qz) = (n+ 1) log(c" ' — za) — Zlog )
j=0

n
=(n+1)log(cl'z — 2) — Zlogazj =: Ppti(z, 2).
j=1
The later, P(x, z)n+t1, is the Karmarkar potential function in the standard
LP form with a lower bound z for z*. We see that it represents the volume
of a regular ellipsoid whose intersection with Agq.) contains Sg(.), as we
discussed earlier.
As we illustrated before, one can represent Q(z) differently:

Qz)={y: ¢ ATy >0, 240"y >0,....,—z+bly >0}, (2.10)

[43

where “—z+bTy > 07 is copied p times. Geometrically, this representation
does not change 2(z), but it changes the location of its analytic center. Let
(z', z) satisfy

Az — b(pzy) =0, (z',z5) > 0,

and let z = 2’/ (pxy) 6_70-",,. Then, the primal potential function for the new

(z) given by (2.10) is

Pz, Q2)) = (n+ p)log(cTs' — zpxp) — Z log 2, — plog

j=1

= (n+p)log(c"z —2) — Zlog xz; + plogp
j=1
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The objective hyperplane The updated objective hyperplane

Figure 2.9: Intersections of a dual feasible region and the objective hyper-
plane; b7y > z on the left and 4Ty > bTy* on the right.

= Prnyp(x, 2) + plogp.

Pn+p(z, 2) is an extension of the Karmarkar potential function in the stan-
dard LP form with a lower bound z for z*. It represents the volume of a
regular ellipsoid whose intersection with Agq.) contains Sq )

2.4.2 Primal-dual potential function

Finally, for x 6,7Ci'p and (y, s) G}d consider the primal-dual potential func-
tion

Ynip(2,8) := (n+ p)log(z” s) Zlog xjs;)
= (n+ p)log(ctz — bTy) — Zlog T — Zlog Sjs

= Priplz, bTy) Zlogsj
where p > 0. Since

Yntp(w,8) = plog(z”'s) + Y (x, 5) > plog(a”'s) + nlogn,
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then, for p > 0, ¥4,(z,5) = —oc implies that 2”'s — 0. More precisely,

we have
Yntp(x,s) — nlogn)

z"s < exp(
We have the following theorem.

Theorem 2.13 Define the level set

W(6) = {(2,,5) €F: Yunipl,s) < 6},

(L) C w(?) if o' <82
i)
U (0) = {(2,9,5) € F: thyp(z,s) <6}

iii) For every &, U(8) is bounded and its closure ¥(8) has non-empty in-
tersection with the solution set.

Later we will show that a potential reduction algorithm generates se-

quences {z* y*, s¥} € F such that

¢n+\/ﬁ(ajk+1=yk+1= Sk+]) < ¢n+\/ﬁ($k=yk7 Sk) —.05

for k = 0,1,2,.... This indicates that the level sets shrink at least a constant
rate independently of m or n.

2.5 Central Path of Linear Programming

Again we consider a linear program in the standard form (LP) and (LD).

Assume that F# 0, i.e., both F,# 0 and Fy# 0, and denote z* the optimal
objective value.
A central path can be expressed as

o T
C= {(az,y,s) EF: Xs= Ee}

n

in the primal-dual form. We also see

C= {(:U,y,s) ejci‘: Yn(z,8) = nlogn}.
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The central path theory is one of the most important foundations for the
development of interior-point algorithms.

For any px > 0 one can derive the central path simply by minimizing the
primal LP with a logarithmic barrier function:

(P) minimize Tz —p 2?21 log z;
subject to Az =1b, x > 0.

Let z(u) be the unique minimizer of (P). Then, it satisfies the optimality
conditions

.’136_7(2",), Xs=pe, and s=c—A"y.

Consider minimizing the dual LP with the barrier function:

(D) maximize bTy+pd) 7 logs;
subject to ATy +s=r¢, s> 0.

Let (y(u),s(u)) be the unique minimizer of (D). Then, it satisfies the opti-
mality conditions

(y,s) 6_70-"(1, Xs=upe, and Az =h.

Comparing these two conditions, we see that they are identical. Thus, both
minimizers (x(u),y(u), s(u)) are on the central path with z(u)”s(u) = npu.
Another way to derive the central path is to consider the dual level set

Q) ={y: c— A"y >0,—z+0b"y >0}

for any z < z* (Figure 2.10). Then, the analytic center (y(z), s(z)) of Q(z)
and a point (z'(2),x,(z)) satisfies

Az'(2) = bzl (2) =0, X'(2)s =¢, s =c— ATy, and z},(2)(b"y — 2) =
Let x(z) = 2'(z)/z{(2), then we have
Az(z) = b, X(2)s(z) = e/xh(z) = (bTy(z) — 2)e.

Thus, the center pair (z(z),y(z),s(z)) is on the central path with yu =
b'y(z) — z and c’'z(2) — bTy(z) = 2(2)Ts(z) = n(bTy(z) — 2) = nu.

Theorem 2.14 Let (x(u),y(u), s(u)) be on the central path.

i) Theocentml pair (x(p), s(u)) is bounded where 0 < p < pu° for any given
n > 0.
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The objective hyperplanes i,

Figure 2.10: The central path of y(z) in a dual feasible region

il) For 0 < p' < p,
a(p) <c'z(p) and bTy(u') > by(w).

iii) (x(p),s(u)) converges to an optimal solution pair for (LP) and (LD).
Moreover, the limit point x(0)p~ is the analytic center on the pri-
mal optimal face, and the limit point s(0)z~ is the analytic center on
the dual optimal face, where (P*,Z*) is the strict complementarity
partition of the index set {1,2,...,n}.

Proof. Note that

(2(1”) = 2()" (s(1) = s(n)) = 0

since (z(u®) — z(p)) € N(A) and (s(u°) — s(u)) € R(AT). This can be
rewritten as

n

Z (s(u®)ja(m); + (1) s(1);) = n(u’ + p) < 2np°,

or

ﬁ: ( w(u)j' N 5(”)]’4) <om.

z(u0);  s(u);

Thus, z(u) and s(u) are bounded, which proves (i).
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We leave the proof of (ii) as an exercise.

Let zp. (2. = 0) and s%. (sh. = 0), respectively, be the analytic
centers on the primal and dual optimal faces: {xp+ : Ap«zps = b, Tp+ >
0} and {sz+ : sz =cy+ — Ag*y >0, cps — A;*y = 0}. Again, we have

Z (S;az(u)] + CU;S(N)]) =nu,

() 5 ()

w(w)i) S5 \s(w);

or

Thus, we have
x(p); > xj/n>0, j€P

and
s(u)y > 53/n >0, € 2

This implies that
QZ(,U)] =0, .7 ez”

and
s(u); =0, j e P
Furthermore,
11 <1
jep 'T(IU)J jez* S(ll’)]
or
I I < U I =i ) | IT sws
jep jezx jep i€z
However, ([[;c p- 7) (I ez~ 87) is the maximal value of the barrier function

over all interior point pairs on the optimal face, and z(0) p+ and s(0) - is
one interior point pair on the optimal face. Thus, we must have

=) (I =1 11 =] II s,

jep* S jeP* S

Therefore,
z(0)ps = xp. and s(0)z« = sk,

since £p. and s7. are the unique maximizer pair of the barrier function.
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We usually define a neighborhood of the central path as

T
o T S
NB) = { (o) €F: 15— el < g and =21,
where ||.|| can be any norm, or even a one-sided “norm” as
] e = | min(0, min(z))].

We have the following theorem
Theorem 2.15 Let (z,y,s) € N (B).
i) The N (B) is bounded where 0 < u < u° for any given u° > 0.

il) Any limit point of N'(B3) is an optimal solution pair for (LP) and (LD).
Moreover, for any j € P*

(1-p)zj

€Tr; >
7= n

where x* is any optimal primal solution; for any j € Z*

(1-B)s;

Si >
7= n

where s* is any optimal dual solution.

2.6 Notes

General convex problems, such as membership, separation, validity, and
optimization, can be solved by the center-section method, see Grotschel,
Lovész and Schrijver [133].

Levin [197] and Newman [255] considered the center of gravity of a con-
vex body, Elzinga and Moore [87] considered the center of the max-volume
sphere contained in a convex body, a number of Russian mathematicians
(for example, Tarasov, Khachiyan and Erlikh [319]) considered the center
of the max-volume ellipsoid inscribing the body, Huard and Liéu [152, 153]
considered a generic center in the body that maximizes a distance func-
tion, and Vaidya [349] considered the volumetric center, the maximizer of
the determinant of the Hessian matrix of the logarithmic barrier function.
See Kaiser, Morin and Trafalis [167] for a complete survey.
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Griinbaum [135] first proved Theorem 2.1, with a more geometric proof
given by Mityagin [227]. Dyer and Frieze [82] proved that computing the
volume of a convex polytope, either given as a list of facets or vertices, is
itself #P-Hard. Furthermore, Elekes [86] has shown that no polynomial
time algorithm can compute the volume of a convex body with less than
exponential relative error. Barany and Firendi [34] further showed that
for 2 € R™, any polynomial time algorithm that gives an upper and lower
bound on the volume of €, represented as V() and V(Q), respectively,
necessarily has an exponential gap between them. They showed

V()/V(Q) > (cm/logm)™,

where ¢ is a constant independent of m. In other words, there is no poly-
nomial time algorithm that would compute V(2) and V() such that

V(Q)/V.(R) < (em/logm)™.

Recently, Dyer, Frieze and Kannan [83] developed a random polynomial
time algorithm that can, with high probability, find a good estimate for the
volume of 2.

Apparently, the result that every convex body contains a unique ellip-
soid of maximal volume and is contained in a unique ellipsoid of minimal
volume, was discovered independently by several mathematicians—see for
example, Danzer, Griinbaum and Klee [74]. These authors attributed the
first proof to K. Léwner. John [165] later proved Theorem 2.2.

Tarasov, Khachiyan, and Erlikh [319] proved the center-section Theorem
2.3. Khachiyan and Todd [177] established a polynomial complexity bound
for computing an approximate point of the center of the maximal inscribing
ellipsoid if the convex body is represented by linear inequalities, Theorem
2.5 was proved by Shor [303] and Nemirovskii and Yudin [258].

The “analytic center” for a convex polyhedron given by linear inequal-
ities was introduced by Huard [152], and later by Sonnevend [306]. The
logarithmic distance function, called the barrier function, was introduced
by Frisch [99]. Theorem 2.6 was first proved by Sonnevend [306], also see
Karmarkar [173] for a canonical form.

Todd [321] and Ye [372] proved that Karmarkar’s potential function
represents the logarithmic volume of a regular ellipsoid who contains the
feasible region. The Karmarkar potential function in the standard form
(LP) with a lower bound z for z* was seen in Todd and Burrell [329],
Anstreicher [19], Gay [103], and Ye and Kojima [384]. The primal potential

3 3

function with p > 1 was proposed by Gonzaga [124], Freund [96], and Ye

[373, 375]. The primal-dual potential function was proposed by Tanabe
[316], and Todd and Ye [330]. Noma [268] proved Theorem 2.13.
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McLinden [212] earlier, then Bayer and Lagarias [37, 38], Megiddo [216],
and Sonnevend [306] analyzed the central path for linear programming and
convex optimization. Megiddo [216] derived the central path simply min-
imizing the primal with a logarithmic barrier function as in Fiacco and
McCormick [92]. McLinden [212] proved Theorem 2.14.

2.7 Exercises
2.1 Find the min-volume ellipsoid containing a half of the unit ball.
2.2 Verify Examples 2.1 and 2.2.

2.3 Prove FExample 2.3.

o o!
24 Let QO={y e R™:c— ATy >0} #0,Q={ye R™ : ' — ATy > 0} #
0, and ¢’ < c. Then B(RY') < B().

2.5 Prove Corollary 2.8.
2.6 Prove Corollary 2.9.
2.7 Prove Corollary 2.11.
2.8 Consider the problem

mazimize f(z) = ||z — el []}—; z;
subject to eTx =n, ©>0¢€R".

Prove that xt1 = > 1l and z9 = ... =2, = (n —PB)/(n —1) > 0 is a
mazimizer.

29 If Q ={y: c— ATy > 0} is nonempty, then the minimal value of
the primal problem described at the beginning of Section $2:3 is 0; if Q is
bounded and has an interior, then the interior of Xo := {x € R": Az =
0, x > 0} is nonempty and = = 0 is the unique primal solution.

2.10 Prove (ii) of Theorem 2.13.
2.11 Prove (ii) of Theorem 2.14.

2.12 Prove Theorem 2.15.
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Chapter 3

Computation of Analytic
Center

As we mentioned in the preceding chapter, a favorable property of the
analytic center is that it is relatively easy to compute. In this chapter,
we discuss how to compute the analytic center using the dual, primal, and
primal-dual algorithms in three situations: 1) from an approximate analytic
center, 2) from an interior-point, and 3) from an exterior point.

3.1 Proximity to Analytic Center

Before we introduce numerical procedures to compute it, we need to discuss
how to measure proximity to the analytic center. Recall that 2 is a bounded
polytope in R™ defined by n (> m) linear inequalities, i.e.,

Q={yeR™: c— ATy >0}.

For a point y €(), denote the barrier or potential function of (2
n
B(y,Q) =) logs;, s=c— A"y,
j=1

simply by B(y) in this section. Ideally, a measure of closeness of y € Q to
the analytic center y® would be

B - B) = (maxB)) - B,

yeQ

69
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The problem is that we have no knowledge of y* or B(y*).
Since y? is the maximizer of B(y), one measure would be the residual
of the optimality condition at y. Note that

VB(y) = ~AS e and V2B(y) = ~AS 2AT, where s=c¢-ATy>0.
Thus, the optimality condition is

VB(y) = —AS ‘e = 0.
Consider a normalized gradient vector of B at y and s = ¢ — ATy:

p(s) = STTAT(AS—2AT)"'VB(y)

— _SflAT(A‘572AT)flASfle7 (31)
and ) )
6(s)* = lp(s)l| (3.2)
= el'STTAT(AS72AT)"1AS e '
Note that §(s) = 0 implies VB(y) = 0. Let
2(s) =S (I -8 TAT(AS2AT) TAS e. (3.3)

Then, we have
Azx(s) =0,
p(s) = Sz(s) —e and d(s) = ||Sz(s) —e]|.
Thus, if 6(s) = 0, then y = y® and s = 5%, and also x(s*) = z* which is the
minimizer of
minimize  P(z,Q)

subject to z €Xo= {z: Az =0, z > 0},

where the primal (homogeneous) potential function
P(z,Q) = nlog(c"z) — Zlog xj.
j=1

As we discussed earlier, this quantity represents the logarithmic volume of

a regular ellipsoid that contains Sq, and the minimization of the potential

function results in the analytic center of 2. In other words, x and y are the

analytic center pair for Q. Denote P(z, ) simply by P(z) in this section.

Another measure is to use the Newton direction of the primal potential

function. Note that P(z) is homogeneous so that we can fix ¢z = n. Then
n 1

VP(z) = %cfo e=c— X e
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Consider a scaled projection of ¢ — X le:

p(xr) = (I-XAT(AXZ?2AT)TAX)X(c— X le) (3.4)
= (I - XAT(AX2AT)"1AX)(Xc—e), '
and
5w = ol .
= (Xe—e)T(I - XAT(AX2AT)TAX)(Xc —e). '
Let

y(x) = (AX?A") TAX (Xc—e) and s(z) =c— Aly(x). (3.6)
Then, we have
p(x) = Xs(z) —e and do(x) = || Xs(z) —e]l.

Again, if §(z) = 0, x = z® and y(z®*) = y®, which are the analytic center
pair for €.

The third measure is to use both the primal and dual. For an x € X =
{r: Az =0, x >0} anday € Qors =c— ATy e Sqg ={s: s =
c— ATy, s > 0}, the measure would be defined as

n(z,s) = || X(c — ATy) —ef| = [ Xs —e]|. (3.7)

Obviously, if n(z,s) =0, x = 2%, y = y°, and ¢, (z, s) = nlogn, where the
primal-dual potential function is

Ul ) = mlog(e™s) > log(ys,).
j=1

To find relations among these measures, we first present a lemma whose
proof is omitted.

Lemma 3.1 Ifd € R"™ such that ||d||oc < 1 then

TN T 1]
e d> log(1+d;) >e'd— —————.
2 ’ 21— )

We have the following theorem to equalize these measures.

Theorem 3.2 Let (y,s) be an interior point and (y®,s*) be the analytic
center of Q) or Sq, and let x be an interior point of Xo and x® be the primal
potential minimizer with ¢'z® = n.
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i) If n(z,s) <1 then
5(5) < n(w, )

and
o(z) < m(z,s).

Conversely, if §(s) < 1 then there is an x(s) E/’OYQ such that
n(x(s),s) < 6(s),

and there is a s(z) €§Q such that
n(z,s(z)) < ().

ii) If n(z,s) < 1, then there is a & > 0 with Az =0 and '3 = s"2 =n
such that
n(z, s)

Z,8) < ——————.
1) S
iii) If n(x,s) <1 with ¢'z = s"x = n, then
2

(a5t < @)
Yal,s) = nla®s") < g o

(g n(z, s)*
P(@) ~ Pla) < gt

and

ay _ n(z,s)°
B(y*) — B(y) < 30—z s)

iv) Let the dual Newton procedure be:

d, = —(AS2A")y'AS e, yT =y+d,, and sT=c—ATy".
(3.8)

Then, if 6(s) < 1,

st'>0 and 6(sT) <d(s)?.

Let the primal Newton procedure be:

dy = X(I-XAT(AX?A") TAX)(Xc—e) and 2" = z+d,. (3.9)

Then, if §(z) < 1,

>0, Azt =0, and (=) <d(x)
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Let the primal-dual Newton procedure be: Solve for d,, d, and ds from
the system of linear equations

Sd, + Xd;, = e— Xs,
Ad, = 0, (3.10)
ATdy +ds = 0,

and assign
T =z+d,, yT=y+d,, st =s+d,.

Then, if n(x,s) < 1,

T >0, Azt =0, sT>0
and
2n(z, s)*
et o) < U
(0 (e s)

v) Ifn(z,s) <1, then
Glgn ol < _MT:8)
15t el <G
and

X1 — el < )
T 1z, %)

Proof. i) Given s > 0 we can verify that d(s) is the minimal value and
z(s) is the minimizer of the least squares problem

minimize ||Sx — e]|
subject to Az = 0.

Since x in n(x, s) is a feasible point for this problem, we must have

d(s) = n(z(s),s) < nlx,s).

Conversely, z = z(s) will do it.

Similarly, given £ > 0 we can verify that d(x) is the minimal value and
(y(z),s(z)) is the minimizer of the least squares problem

minimize || Xs — e||
subject to s=c— ATy.
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Since (y, s) in n(z, s) is any point for this problem, we must have

o(z) = n(z,s(x)) < n(z,s).
Conversely, y = y(z) and s = s(z) will do it.
ii) Let # = (n/z(s)Ts)z(s) and n(#,s) = ||S2 — e||. Then
Az =0 and 'z =sTd=n.
Furthermore,

5(s)7 = [|Sa(s) - ef?
= [ISa(s) = (2(s)"s/m)e + (2(s)Ts/m)e — e
= [ISa(s) = (a(s)"s/m)el* + | (2(s)"s/m)e — e
= IS — el*(a(s) s/m)? + (1 — a(s) s /m)’n
= (@, 9)(a(s) s/m)? + (1 — a(s) s/n)n.

Thus, we have
(z(s)Ts/n)(n(z,5)> +n) — 2(z(s)Ts/n)n +n — 5(s)? = 0.

Consider this relation as a quadratic equation with variable z(s)” s /n. Since
it has a real root, we have

4n? — 4(n(2,8)* +n)(n —6(s)*) >0

or 5(s)?
.\ nd(s
€T, < —F——,
which gives the desired result.
iii) Let n = n(z,s) < 1. From Lemma 3.1 and ¢’z = sTz = n,

- T UN n’
In(z;s;) > e Xs—n— =—- .
2 nags; 20-n)  2(1-n)

j=1
Denote by % and y® (s* = ¢ — ATy?) the center pair of Q. Noting that
X%s* = e, we have

2

a .a\ __ - a.a - n
Yn(x,8) — Pp(z?,8") = jzzlln(mjsj) fj;ln(mjsj) < TR (3.11)

The left-hand side of (3.11) can be written as

Zm(x;)—z1n(a;j)+21n(s;)_21n(sj) = P(z)=P(z")+B(y*)—B(y).
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Since y* maximizes B(y) over the interior of  and z® minimizes P(z) over
the interior of X', we have

B(y") — B(y) > 0

and
P(z) —P(z*) > 0.

Thus, we have the desired result.
iv) Note that from the proof of (i)

0(s7) = ISTa(sT) —ell < [ISTa(s) —ell.

But
[SFz(s) —ell® = |28 — S?x(s))x(s) — el?
= i(sjm(s)j - 1*
< (i(sﬂ(S)j - 1)%)?
= ||]5_;(5) —e*
= 4(s)".

Similarly, we can prove the primal procedure result.
To prove the primal-dual procedure result we first see that

[XTs" —ell = | Dods]l.

Multiplying the both sides of the first equation of (3.10) by (XS)~'/2, we
see

Dd, + D7 'd, =1 := (X8)"?(e — Xs),
where D = SV2X-1/2_ Let p = Dd, and ¢ = D 'ds. Note that p’q =
d’'d, > 0. Then,

IDods||* = || Pgll*

n

= Y (pig;)’
j=1
2 2

n
Z pig; | + Z Djq;

p;jq; >0 P;q; <0

IN
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2
n
2| > pig
pjq; >0

<
2
< 20 ) (pi+g)?/4
P;j4;>0
2
< 2([IrlP/4)".
Furthermore,
0
Il < [1(XS) " 2|Plle = Xs||* < :
(1—n)

which gives the desired result.

v) From (i), d(s) < n(z,s). Let y° = y, s = s, and the sequence
{y*, s*} be generated by the Newton method. Then, we show by induction
that

2k 1
1(8%) 7 sk —el < D d(s).
=1

Obviously, this relation is true for k = 1 by the definition of 6(s°) = §(s).
Now assuming it is true for k. Since we have

skl = sk — Sk(Sky(sk) —e),

18971 ("1 = sl 1(S°) 71 S*(Ska(s") — o)

<8 M) —
< (v % 6<s>f) (8" (s4) )l
<

1+ i 5(S)j) 5(s)2"

Thus,

1S s —el < 18”7 s* —ell +[1(ST) 7 (5" = 8P
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IN

S 66|+ [ 3 o | oty

ok+1_q

Z 5(s)”.

Similarly, we can prove the primal result. This proves (v).

3.2 Dual Algorithms

3.2.1 Dual Newton procedure

Given y € Q, we call it an (5-)approximate (analytic) center if 6(s) < n < 1.
The dual Newton procedure in (iv) of Theorem 3.2, once a y satisfies §(s) <
n < 1, will generate a sequence {y*} that converges to y* quadratically.

The next question is how to generate an (rn-)approximate center with
n <1

3.2.2 Dual potential algorithm

Let y be any interior point in 2. Let us apply the Newton method with a
controlled step-size, which is equivalent to solving a ball-constrained linear
problem with radius o < 1:

maximize VB(y)"d,
subject to  dj (=V?B(y))d, < a?.

or
maximize —el S 1ATd,
subject to  d] AS?ATd] <o’
Note that
st=c—-ATy" =5 ATd, = S(e - S~ 4Ta,),

thus we must have s™ > 0, i.e., y* = y + d,, remains in the interior of Q.

Note that
(AszAT)*lAS”e

— :
VeTSTAT(AS2AT)-1AS e
Recall from (3.1) and (3.3)

dy =

p(s) = =S TAT(AS2AT) TAS e = Sx(s) —e.
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Then,
d, = —a(ASJAT)ilASi]a
Ip(s)ll
dy = ~ATd, = —aSp(s)/Ip(s)]]
and

e’ S7dy = allp(s)|-

Furthermore, st = s +ds = s — aSp(s)/||p(s)|| = S(e — ap(s)/||p(s)), i-e.,
IS~tst —e|]| = a. Thus, from Lemma 3.1 we have

“T(gt _ )2
B(y™) = Bly) > 'S (st —s) - 201 !S|’|S(1(S+ _)|S|)||oo)
> allp(s)]] - 20—a) (3.12)
Thus, if ||p(s)|| > a, we have
Bly*) ~By) 2 ® - 57—

Hence as long as a < 1/2 we have
B(y™) — Bly) >0,

where constant

2
0=« ) > 0.

In other words, the potential function is increased by a constant. Note that

the potential function is bounded above by the max-potential B(y®). Thus,

in a finite time we must have d(s) = ||p(s)|| < «, which implies that the

quadratic-convergence condition is satisfied or y is an approximate center.

The total number of iterations to reach this condition must be bounded by

O(B(y") = B(y))-

3.2.3 Center-section algorithm

The next question is how to compute the analytic center if an interior point
y is not known. This can be done with a center-section method. Consider
the following set

Q@) ={yeR™: ATy < ¢}

Obviously, Q(¢) = 2, whose interior is assumed nonempty and bounded.

Then, for any given é > ¢,  (¢) is also nonempty and bounded. Moreover,
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Sy

A

Figure 3.1: Illustration of the dual potential algorithm; it generates a se-
quence of contained regular ellipsoids whose volumes increase.

y = 0 is an interior point in Q(¢) if ¢ > 0. Let us choose ¢ such that ¢” > e
and c® > ¢. Then from the result in the preceding section we will generate
an approximate center for Q0 := Q(c%) in O(B(Q°) — B(0,Q°)) iterations.
Let y° be an approximate center for Q°. From now on, we will generate a
sequence of {c*} and {y*}, where ¢ < **! < ¥ and y* is an approximate
center for Q% := Q(c*). Moreover,

B(Q) < B(Q*!) < B(QF) -4,

where § is a positive constant, until ¢**! = ¢. This process terminates with
y**1 as an approximate center for Q = Q(c).

We first describe a conceptual center-section algorithm.

Algorithm 3.1 (Conceptual Algorithm) Let (y°,s°) be the analytic
center of QY = Q(c) and let 8 be a constant in (0,1). Set k := 0.
While ¢ # ¢ do:

1. Translating Inequality: Find i such that ¢ > ¢; and update
B = max{e;, B(ck — al'y*) + ol y*} = max{c;, BsF + ]y},

k+1 k Sy
cj+ =cj for j#i.
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Then, from the center-section theorem in the preceding chapter, we
have either

B <BOQY) —(1-8) if > (3.13)
or
B(QM) < B(Q%) if =g, (3.14)
Note that the later case can happen only n times.

2. Updating Center: Compute the center y*+1 of QF1 wusing Newton’s
method from y* which is an approzimate center of QF+T.

3. Set k:=k+ 1 and return to Step 1.

Clearly, the center-section algorithm will stop after O(B(Q°)—B(Q))+n
iterations. If
B(Q°) <nlogR and B(Q)>nlogr,

then, O(nlog(R/r)) + n iterations suffice.

Numerically, we will never be able to compute the exact analytic center.
We must use approximate centers instead of perfect centers in the center-
section algorithm. We discuss this issue now.

Algorithm 3.2 (Using Approximate Centers) Let (y°,s°) be an ap-
proximate analytic center of Q¥ = Q(c), with §(s°) < n < 1, and let 8 be
a constant in (0,1) such that n+ (1 — B)(1+n) < 1. Set k:= 0.

While ¢ # ¢ do:

1. Translating Inequality: Find i such that ¢ > ¢; and update
T = max{e;, Bk + a] y*},
cf“ = cf for j #1i.

2. Updating Approzimate Center: Compute an approximate analytic cen-
ter y**1 of Okt so that §(s**1) < 1, using one of the Newton pro-
cedures in Theorem 3.2 starting from y*, which is an approzimate
center of QF+1,

3. Set k:=k+ 1 and return to Step 1.

To show that y* is an approximate center of Q**1_ we prove the following
Lemma.
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Lemma 3.3 There exists a point x+ > 0 such that
Azt =0 and [|XTst —e]|<n+(1-8)(1+n) <1,
where st = cF+t1 — ATyk,
Proof. Let 27 = z(s*) > 0 with s* = ¢¥ — ATy*. Then,
Azt = Az(s¥) =0

and
o s* — ]| = 6(s*) < n.

Note that sj‘ = sf for j # i and s¥ > sj’ > Bsk. Thus,

|IXTst —e|| = || XTsd —e+ XtsT — XTs¥|
< IXTsE —ef| ([ XFsT - XS
< XFSE el 4 o si (8 - 1)
< n+(1-B)(1+n).

O

Lemma 3.3 shows that, after an inequality is translated, y* is still in the
“quadratic convergence” region of the center of Q¥+ because we choose
n+ (1 —-B)(1+4+mn) < 1. Thus, a closer approximate center, y**! with
§(s**1) < p for Q¥+, can be updated from y* in a constant number of
Newton’s steps. We now verify that the potential function is still reduced
by a constant for a small 7 after a translation.

Lemma 3.4 Let (y*,s*) be an approzimate center for QF with §(s*) < n
and let Q¥ be defined above. Then, if cf“ > ¢; in the update

B < B(Q¥) =6 for a constant § > 0;

otherwise ci™' = ¢; and
B(QF) < B(QY).
The later case can happen only n times.

Proof. The proof of the first case is similar to Theorem 2.7 of Chapter 2.
Let (y*,s%) and (y{,s%) be the centers of QF and Q*+1, respectively. Note
that A(S*) e =0, (c*)"(S*) e = (52)"(S*) 'e = n, and

a _ k+1 _ AT, a
5§ =c Ayt
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where

ka1 koo. o k+1 k k
C],JF =c¢j, j#i and it =¢f — (1-B)s].

Note that we still have
e’ () st = el ()T M =0 - (1 B)(sf/s8) <n - (1 B)(A - ).
The last inequality is due to (v) of Theorem 3.2. Therefore,

exp(BQ*Y) (53
exp(B(F)) 11

IN

< exp(—(1 - B)(1—n)).

The proof of the later case is straightforward.

From the lemma, we can conclude that

Theorem 3.5 In O(B(Q2°) — B(Q)) + n center-section steps, the algorithm
will generate an approximate analytic center for €.

3.3 Primal Algorithms

3.3.1 Primal Newton procedure

Given z € Xg, we call it an (n-)approximate (analytic) center if §(z) <
17 < 1. The primal Newton procedure in (iv) of Theorem 3.2, once a z
satisfies (x) < i < 1, will generate a sequence {z*} that converges to z°
quadratically.

The next question is how to generate an (r-)approximate center with
n <1

3.3.2 Primal potential algorithm

Consider the primal potential function

P(z) = P(x,Q) :=nlog(c'z) — Z log z;,
j=1

where z € Yg= {z : Az =0, z > 0}. Again, this quantity represents the
logarithmic volume of a regular ellipsoid that contains Sg. We now establish
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on
a simple fact about P. Given z €R and d, € R", let 7 = z + d, and
IX~'d.|| < 1. Then, from the concavity of log function we have

T+ T nor o+ _n
nlog(c' ™) —nlog(c' z) < e (z7 —z) = e dy,
and from Lemma 3.1 we have
+ ‘ Ty -1 | X' d,|]?
_Zlogazj —|—Zlog:ﬂ] < —e'X dw+2(17||X71dz||oo)-
Thus,
) X td,||?
2t - P@) < ——cTd, —e"Xd IX~d.
PEm) =P < Grpetds = e X e ¥ 5 T )
X 'd,|)?
= VP@)"d, + I I (3.15)

T 201 X o)

Karmarkar’s algorithm

We now describe Karmarkar’s algorithm to reduce the potential function.
Since the primal potential function is degree-0 homogeneous, we can nor-

malize e’z = n and work in the region

Ky={z: Az =0, ez =n, 2 > 0}.

This is the so-called Karmarkar canonical form. Its related LP canonical
problem is given as
minimize Tz

subject to =z € K.

[e]

Starting from any 2° in K, we generate a sequence {x*} such that
P(zF) < P(a*) —1/8

for £ =0,1,2,... until an approximate center of () is generated.

One observation regarding IC,, is that if Ae = 0, e is the analytic center
of K. Unfortunately, in general we may not have Ae = 0. However, with
a given zF > 0 and Az* = 0, we may transform the LP problem into

(LP') minimize (c*)"a’
subject to z' € Ky = {a': A*z' =0, T2’ =n, 2’ > 0}.

where
" = X% and A* = AXF.
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Note that if a pure affine scaling transformation,
o= (XF) e,

had been used, the last inequality constraint would become e’ X*2' = n.
But as we discussed before, the potential function is homogeneous, so that
we can use a projective transformation,

ky—1
) n(X"*) "tz
r =T(x) = —=—~—— for z€K,,
(z) eT(XF) 1z P
whose inverse transformation is
_ nXkg!
r=T""'(2') = T for 2' € Kp.

Obviously, T'(z*) = e is the analytic center for K,. In other words, Kar-
markar transforms z* into the analytic center of K,y in (LP').
Note that the potential function for (LP') is

P'(z') = nlog((ck)"z") — Z log ;.
=1

The difference of the potential function values at two points of [, is invari-
ant under this projective transformation, i.e.,

n n n
VP (e)lz = d—e)ls =(—c"—e)Ts' = —(F)"2' —n.
@' = (et = 0)"e' = (et = 02’ = ()
Since ¢’z* and n are fixed, we simply solve the following ball-constrained

problem

minimize  (cF)T (2" — e)
subject to  A¥(z' —e) =0, eT(z' —e) =0, ||z’ —e]| < .

According to the discussion in Chapter 1, the solution of the problem is

T —e= —ozi
I
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where

. Ak \T ARANT  Q “Logk .
= () ) ()
— (AR Ty ke,
where \¥ = (cF)Te/n = ¢"x* /n. Thus
P = X*(c— ATyk) — (T2 /n)e.
Using relation (3.15) we consider the difference of the potential values
a’ __nlptl a

P'(z') —P'(e) < VP'(e)(z' —e) + 20— a) = Tk 21— a)

2

Thus, as long as ||p*|| > n# > 0, we may choose an appropriate a such
that

P'(z") = P'(e) < =,

for a positive constant ( = an — a?/2(1 — a). Note we have ¢ = 1/8 if
a=1/2 and n = 3/4. Let

.’Ek+1 — T71 (’El)

Then,
P(a**h) = P(a*) < —¢.

Thus, in O(P(z°) — P(z?)) iterations, we shall generate a pair (z*, y*) such
that

XE (e — ATyR) — (1 2k <CT33k
X5 (e y") — (cTan)ell < n—n,
or n

||CT’I‘ka(C_ ATyk) - 6” <n< 1,

which indicates that y* is an approximate analytic center for Q.

Affine potential algorithm

In this section, we show that we can use the simple affine scaling trans-
formation to achieve the same reduction for P. Given z* > 0 such that
Azx* = 0, the gradient vector of the potential function at z* is

n
LI
cT gk

VP(z") = (X*)~e.
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Thus, we directly solve the problem

minimize  VP(2*)T(z — 2%)
subject to  A(x — %) =0, ||(X*) "Mz —2F)|| < .

Let the solution be z*¥*!. Then

ch k
z_k+171_k:7a_’f)7
¥ ||
and 9
P k+1 _73 k < _ k -
(@) = P) < —alph |+ 57—
where

pF =1 — XFAT(A(XF)2AT)TAXF) XEVP (%) = XEVP () — XFATy*

or

and
s = (AXF?AT) ARV,
If * is normalized such that ¢Tz* = n, then we have
pb = XF*(c— ATyk) —e.

Thus, as long as |[p¥|| > n > 0, we may choose an appropriate a and use
(3.15) to guarantee
P(a*+1) — Pat) < ¢
for some positive constant (.
Thus, in O(P(z°) — P(x?)) iterations, we shall generate a pair (z*, y*)
such that
[X*(e— ATy") —ell <,

which again indicates that y* is an approximate analytic center for (.

3.4 Primal-Dual (Symmetric) Algorithms

3.4.1 Primal-dual Newton procedure

Clearly, the primal-dual Newton procedure in (iv) of Theorem 3.2, once
an approximate center pair pair x € Xq and s € Sq satisfies n(z,s) <
n < 1, will generate a sequence {z* y* s*} that converges to (z%,y?,s%)
quadratically.

The next question is how to generate such a pair with
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Figure 3.2: Illustration of the primal potential algorithm; it generates a
sequence of containing regular ellipsoids whose volumes decrease.

3.4.2 Primal-dual potential algorithm

[e] o
Given any  €Xq and s €Sq with s”z = n, we show how to use the primal-
dual algorithm to generate an approximate analytic center pair using the
primal-dual potential function.

Lemma 3.6 Let the directions (d;,d,,ds) be generated by equation (3.10),

and let
p ay/min(Xs) (3.17)

T IXS) 2 X9

where a is a positive constant less than 1 and min(v € R") = min;{v;| j =
1,...,n}. Then, we have

Yn(x 4+ 0dy, s + 0ds) — P (z, )
o2
< —ay/min(Xs)[|(X8) /2(e — Xs)|| + W —a)

Proof. It can be verified from the proof of the primal-dual procedure ((iv)
of Theorem 3.2) that

7 := max(||0S ™ dy ]| 0o, 10X 'd.]|o) < 1.
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This implies that
gzt =z +4+60d, >0 and s :=s+6d, >0.
Then, from Lemma 3.1 and (3.15) we derive

(™, 5T) = Pn(z,s)
< 6e'(Xd, + Sd,) — 0e” (S 'd, + X 'd,)
165 'ds|]* + [|6X " 'd, ||?
2(1 —1) '

The choice of 6 in (3.17) implies that
105 |2 + 10X |2 < a2,
Hence, we have 7 < a and

[0S~ d,||” + 10X e _ o
2(1—1) —2(1—a)’

(3.18)

Moreover,
fe’ (Xdy + Sd,) — 0e” (S 'd, + X 'd,)
= 0 (el (Xd, + Sd,) — e (S 'dy + X 'd,))
= 0 (el (Xd, + Sd,) — e (XS) 1 (Xd, + Sd,))
= fe—(XS) 'e)T(Xd, + Sd,)
Be — (XS) 'e)" (e — Xs) (from (3.10))
= —fle-X9)"(XS) '(e-XS)
= —OI(XS) (e~ Xs)|?

= —ay/min(Xs)|[(XS)"/2(e — Xs)]. (3.19)
Therefore, we have the desired result combining (3.18) and (3.19).

O

Theorem 3.7 Let % and s+ be defined in Lemma 3.6. Then, if n(z,s) >
1 for a positive constant n < 1, we can choose o such that

Yn(x +0dy, s + 0ds) — Pp(x,8) < =C

for a positive constant (.
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Proof. Consider

ay/min(X s)[|(X S) "2 (e — X s)|| = ay/min(Xs)[|(X S) " /%e — (X 9)' /2|

Let z = Xs and min(z) = z; < 1, since e’z = n. If z; < 1/2, then

ay/min(2)|| 272 — 22| > a|l — 21| > a/2.
Thus, we can select an a such that

a2

Yzt sT) —hp(z,s) < —% + 20 o) =—(

for a constant (.
Now let min(z) > 1/2, that is,

ay/min(2)|| 271 %e — 2V %e|| > (a/V2)||Z7 1 2e — Z1/%¢].
Let z, = max(z) > 1. If z,, > 2, then
(@/V2)|Z71 e — 2" 2| > (a/V2)[Vzm — 1/v/Za] > af2.

Again, we have

2

Yulat %) = ul,8) < —5 + 5

SR TS B

for a constant (.
Now let min(z) > 1/2 and max(z) < 2. Then

ay/min(z)[|Z7 e = 21| = ay/min(2)[|Z7/? (e = 2)|| > (a/2)]le = 2.
Thus, if ||e — z|| = |le — X s|| > 1, we will have
Un (2", 87) = Yn(z,5) < —C
for a constant (.
O

Thus, until [|[Xs —e|| < n < 1, the primal-dual potential function at
(zt,sT) will be reduced by a constant for some a. Therefore, in O (1), (2°, s)—
nlogn) iterations, we shall generate a pair (x,y) such that

n(z,s) = [ Xs el = [ X(c— ATy) — el <n,

which indicates that x and y are an approximate analytic center pair for ().
Note that this complexity bound depends only on the initial point (2, s°).
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Figure 3.3: Illustration of the primal-dual potential algorithm; it generates
a sequence of containing and contained regular ellipsoids whose logarithmic
volume-ratio reduces to nlogn.

3.5 Notes

The proof of Lemma 3.1 is due to Karmarkar [173] and that of Theorem
3.2 is mostly due to Gonzaga [125, 126], Renegar and Shub [286, 288], Roos
and Vial [293], Tseng [337], Vaidya [347], and Goffin et al. [110].

The dual algorithm with a starting interior point, described in this
chapter, is similar to the one of Vaidya [347]. The primal or dual affine
potential algorithm was proposed by Gonzaga [124], Freund [96], and Ye
[373, 375]. The primal-dual algorithm described in this chapter is adapted
from the one in Kojima, Mizuno and Yoshise [184, 183, 185] and Monteiro
and Adler [239, 240]. The primal-dual procedure result in (iv) of Theorem
3.2 was proved by Mizuno [229].

Finally, we remark the relation among potential reduction algorithms.
We provide a simple argument that the primal-dual potential function is
also reduced in either the primal or the dual potential reduction algorithm
described earlier.

Given z and (y, s) in the interior of X and Sq, respectively. We have
shown in the preceding chapter that

Yn(z,8) = nlog(s’ x) — Z log(z;s;) = P(x) — B(y).
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Thus, if we update the dual (y,s) to (y™,s™) such that
B(y*) > B(y) + ¢,
then we must also have
fon(% 5+) < '(,[)n(:lj S) -G
or if we update the primal z to T such that
P(xt) < P(x) - (,
then we must also have
¢n(ﬂf+7s) S '(,[)n(:lj S) - C

Thus, to make either the primal or dual potential reduction leads to the
same reduction in the primal-dual potential function. Therefore, all these
algorithms must stop in O(1),, (2%, s°) —nlogn) iterations. Again, this com-
plexity bound depends only on the initial point (z°,s°). Moreover, the pri-
mal algorithm does not need knowledge of s° and the dual algorithm does
not need knowledge of x°, while the primal-dual algorithm uses both z°
and s°.

3.6 Exercises

3.1 Prove Lemma 3.1.

3.2 Given s > 0 verify that z(s) is the minimizer of the least squares
problem
minimize ||Sx — e||
subject to  Ax = 0.

Given x > 0 verify that y(x) is the minimizer of the least squares problem

minimize || Xs — e||
subject to s =c— ATy.

3.3 Prove the primal procedure result in (iv) of Theorem 3.2.
3.4 Prove the primal inequality in (v) of Theorem 3.2.
3.5 Let e € K,,. Then, prove that

Ky C{z: ||z —e]| <vn(n—1}.

3.6 Consider the projective transformation and Karmarkar’s potential func-
tion. Prove
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Chapter 4

Linear Programming
Algorithms

In the preceding chapter we have used several interior algorithms to com-
pute an approximate analytic center of a polytope specified by inequalities.
The goal of this chapter is to extend these algorithms to solving the stan-
dard linear programming problem described in Section 1.3.6.

We assume that both _;'p and ]O-"d are nonempty. Thus, the optimal faces
for both (LP) and (LD) are bounded. Furthermore, we assume b # 0, since
otherwise (LD) reduces to finding a feasible point in Fj.

Let z* denote the optimal value and F = F, x F4. In this chapter, we
are interested in finding an e approximate solution for the LP problem:

lez—2"<e and 2" —bly<e

For simplicity, we assume that a central path pair (2%, 9%, s%) with pu® =
(2°)"'s%/n is known. We will use it as our initial point throughout this
chapter. We first prove the following proposition.

Proposition 4.1 Consider the dual level set:

Qz)={y: c— ATy >0, —z+b"y >0},

where z° := b"7y% — 4% < 2 < 2*. There exists an z(z) € F, such that the
maz-potential of (2)

B(Q(2)) > B(Q(2") + (n + 1) log % “nlog2,  (4.1)

T
- cTg0 — 20

93
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and for all x € F, the primal potential

T
Pri1(z,2) > Prgr(2°,2°) + (n + 1) log T (0) — —nlog2, (4.2)

Proof. First, recall that the primal potential function associated with
polytope Q(z) is
Puii(r,2) = P(2,Q(2)) = (n+ 1)log(cTe — 2) — Y logz;, = €F,,
j=1

and the max-potential of Q(z) is

B(Q(z)) = = max Zlog ) +log(bTy — 2)

and we have
Posi(@,2) — BQ(2)) > (n+Dlog(n+1), Yz eF, Vz<z* (4.3)

Pr+1(z, z) represents the logarithmic volume of a regular ellipsoid contain-
ing Q(z), and B(§2(z)) represents the logarithmic volume of the max-volume
regular ellipsoid contained in (z); see discussion in Chapter 2.

Let y(z) be the analytic center of Q(z) and let s(z) = ¢ — ATy(2)).
Then, from the central path theory in Section 2.5, there is an z' € R"*!
such that

Az'[n] = bal ;= 0and X'[n]s(z) =€, 2, (b y(2) —2) =1
or x(z) = z'[n]/x;, ., € R" such that

Az(z) = b and X (2)s(z) = u(z)e,

z(2)Ts(z)  cTx(z) —bTy(z)

= = = T — :1 ! .
u(z) - - b y(z) —z=1/z,

Here '[n] denotes the vector of the first n components of 2’ € R"*!. Thus,

n+1

B(Q(z) = - Z log 2
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= (n+1)logu(z Zlog:ﬂ

— (n+1)log(n+1) EJ%w (n -+ 1)log(n + 1)
= (n+1)log(cTx( Zlogr (n+1)log(n+1)
Tr(z) — 2 & z(z);
= (n+Dlog g > log =5~
j=1 J
+Ppi1(2°,2°) — (n 4+ 1) log(n + 1). (4.4)

Note that z(z) is on the central path with u(z) and pu(z) < u° (see Exercise).
Furthermore, we have

(2(z) = 2)7(s(2) = ") =0 or 2(2)"s" + 5(2)a" = n(u + u(2)),

which implies that

Jj=1

and, therefore,

'" (a:(;?)a> <n (1 + %) < 2. (4.5)

=1
Combining inequalities (4.3), (4.4) and (4.5), we have
B(Q(2)) > Puyi(a®2%) = (n+1)log(n + 1)

cle(z) -z
1)log ———— —nlog?2
+(n+1)log 0 5o —nlog
T
> B(Q(z") + (n+1)log TZ(OZ) 5 —nlog2

Also, for all = E](i"p we have from (4.3)
Pnt1(z,z) > B(Q2)) + (n+1)log(n+1)

CTCU(Z) -z

> P (2°,2°) + (n+1)log T, 5 —nlog2.
0—2

These inequalities lead to the desired result.
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O

The proposition indicates that if the net reduction of max-potential or
the primal potential of Q( ), where z = bTy for some y € Fy, is greater
than (n + 1) log(cT2® — 2°) /e + nlog2, then we have

cle(z) -

z €

which implies that

2t bly=2"—2<c'z(z) —z<e
and
c'x(z) — 2" <c'x(z) — 2 <,

i.e., z(z) and y are € approximate solutions for (LP) and (LD).
In the proposition, z(z) is chosen as the minimizer of the primal po-
tential for 2(z). This need not be the case. The proposition holds for any

o
x(z) €Fp that is an approximate minimizer, that is, it satisfies

H( c—AT)> Ta(z) - 2

cle(z) -2
n+1

n+1 (46)

J<o

for a constant 0 < 8 < 1. More specifically, we have
Corollary 4.2 Consider the dual level set where 2° < z < z*:

Qz)={y: c—ATy>0, —z2+bTy >0}.

Let z(z) E]ci'p satisfy condition (4.6). Then

B(Q(2)) > B(2(z")) + (n + 1) log T 0 O(n),
and for all x E]Ci'p the primal potential
0,0 cla(z) -
Puia(2,2) > Pass(a,2%) + (0 + 1) log o =2 — O(n).

—Zz

Several algorithms presented in this chapter will generate a sequence of

¥ E]ci"p and z# < bTy* where y* € F,, and either the primal potential
Pni1(z*, 2¥) or the max-potential of Q(z*) tends to —oo, so that 2* — 2% —
0. Moreover, there is a subsequence of {(z*,y*)} which satisfies condition
(4.6) with z = z¥. Thus, along this subsequence ¢’ z¥ — bTy* — 0 as well.
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k—1 k—l)

The basic idea is the following. Given z*~! we reduce P,41(z, 2
until an approximate center pair (z¥,y*, s¥) of Q(2*) is generated, which is
guaranteed by the discussions of the preceding chapter. Then, we must have
bTyk > z*=1. Thus, we update z¥ = bTy* > 2k~1 that is, translate the
hyperplane b”y > 2*=' to bTy > 2* through y*. This results in reduction
of both the primal potential and max-potential of the containing set Q(z*).

4.1 Karmarkar’s Algorithm

We first show how Karmarkar’s algorithm may be adapted to solve (LP)
and (LD). Starting from (z°,°, s%), the algorithm, which will be described
next, generates sequences {z* E_;"p}, {y* € F4}, and {z* < b"y*} such that

P12 M0 <Py (aF) 24 -6 for k=0,1,....

where constant § > .2. In particular, if

Pn+1 (wk7 Zk) - Pn+1 (21307 ZO) S (n + 1) - nlOgQ:

1 €
og ——
6T 0 50
then from Proposition 4.1, we must have

2 —blyh <zt -2k <e

That is, we have an e approximation solution for (LD). Moreover, we
generate a subsequence of {(z* y*)} which satisfies condition (4.6) with
z = z*. Thus, along this subsequence ¢”z* — b7y* — 0.

Here is how we do it. Given z* € F, and z* < b"y* where y* € F,, we
again transform the (LP) problem into Karmarkar’s canonical form:
(LP') minimize (c*)"a’
subject to ' € K.

where

Kp={a' e R": A2’ =0, "2’ =n+1, 2’ >0},

k
c’“z(X,f), and A% = ( AX*, -b).
—z
This is accomplished via an extended Karmarkar’s projective transfor-
mation

(n+1)(X*) 'z
¥ =T(z) = ( 1+e?£ff))flz > from x € F).

14+eT (XF)~Tx
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Obviously, T'(z*) = e is the analytic center for K. In other words, the
projective transformation maps z* to the analytic center of K, in (LP').
Each feasible point z € F, is also mapped to a feasible point 2’ € K, .
Conversely, each feasible point ' € K, can be transformed back to an
z € F, via the inverse transformation, 7', given by

_ Xk [n]

[
',En+1

r=T""(2) from 2z’ € K,

where z'[n] denotes the vector of the first n components of 2’ € R"*1.

The projective transformation T also induces the potential function
P, ., associated with (LP'):

n+1
Phga (e, 2) = (n+ Dlog(¢") ') = Y- log(al), o' €K -
i=1

Again, the difference of the potential values at two points z', z? €F, is
invariant under the projective transformation, i.e.,

Pr1(T(2°),2") = Pl (T(2'),2%) = Puyi (2, 2%) — Posa(a', 25).

Therefore, a reduction of the potential P/, for the transformed problem
induces the same amount of reduction of the potential P,,; for the original
problem.

To reduce P, (z',2*), we again solve the following ball-constrained
problem

minimize  (cF)T (2" — e)
subject to  A¥(z' —e) =0, eT(z' —€) =0, ||z’ —e]| < .

According to the discussion in Chapter 3, the solution of the problem is

r —e= fa%,
[kl
where
v i Ak \T AR(ART AL .
p= e 0 n e ¢
_ Ck_(Ak)T k_CTﬂ?k_Zk

n+1
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and
vt o= y(F) =g + 2y,
ypr = (AFAM)T)"LAXFp, (4.7)
Yo — (Ak(Ak)T)flA(Xk)Qc.

Consider the difference of the potential values

(n+ DI, o

k k
P;1+1(ml72 ) 7737114—1(672 ) S - CTZEk — ,Zk 2(1 — a)'

k

CTCL‘kfz
n+

7— for a constant 0 <7 < 1 we can choose

Thus, as long as [|p¥|| > n
an appropriate a such that

P;url(f”’:zk) - ;z+1(€=zk) < -4,
for a positive constant § = an — a?/2(1 — a). Let
o =T ().
Then,

Pn+1(xk+1=zk) - Pn+1($k7 Zk) S —4.

In this case, we simply let z*¥*! = z¥.

What is happening when

i cTak — 2F
< - @@
I <n——
Note that p* can be decomposed as
Xke XkAT Tk — 2*
pk ZP(zk) = < ok ) - < T Z/(Zk) - ni-l—le
_ XF(e— ATy(2%)) B cT gk fzke (4.8)
bly(2F) — 2* n+1 .
Thus, ||p*|| < nCTfL:_;Zk implies that (z*,y(2*),2*) satisfies condition

(4.6), which means that (z*,y(z*)) is an approximate center pair for Q(z*).

Consequently,
Xt(e— ATy(24))
< BTy (k) — 2k > 0,
that is
ATy(z%) < ¢ and 2% < bTy(2F).
By the duality theorem, z*+! = bTy(2*) > 2* is a new lower bound for

z*. We may update Q(z*) to Q(z¥+1), that is, we translate the inequality
by > 2* through y(z*) to cut Q(z*).
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However, we can place a deeper cut. We can do a simple ratio test to

obtain

z = argmax{bly(z) : ATy(z) <c}. (4.9)
This leads us to a new dual feasible point and a new lower bound b”y(z) >
bTy(z*) > 2*, and

CT.’Ek — Zk

P y ()] > i

We describe the algorithm as follows.

Algorithm 4.1 Given 2° E](i"p and 2° = bTy" where y° Ej(i"d. Set k := 0.
While (c"z* — 2¥) > € do:

1. Compute y1 and y2 from (4.7).
2. Compute z from (4.9) and let z**t! = bTy(2) and y*+' =y + 2y

3. Let o
r_ k+1
T )

and
.’L‘k+1 — T71 (’El)

4. Set k:=k + 1 and return to Step 1.
We have
Lemma 4.3 For k =0,1,2,...
Prpr (2P M0 <P (%) 2%) — 6,
where 6 > .2.
This lemma leads to the following theorem:

Theorem 4.4 In at most O(nlog(c’z° — 2°)/e +n) iterations, Algorithm

4.1 will generate z* € F), and y* € Fy with 2* < b"y* < 2* such that
2*—2F <e

Moreover, there is a subsequence {z*,y*} which is a sequence of approzi-
mate center pairs for Q(z*) with

ok —pTy* <e.
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4.2 Path-Following Algorithm

While Karmarkar’s algorithm reduces the primal potential function, which
represents the logarithmic volume of a regular ellipsoid containing Q(z*),
the path-following algorithm directly down-sizes Q(z*). Let (y*, s*) be an
approximate analytic center of Q(z*) with §(s¥) <5 < 1, where

c— ATy
Sk: < bTykfzk > > 0.

Let 8 be a constant in (0,1). Then, similar to what has been done in the
center-section algorithm of Chapter 3, we update zf*! from z* at the kth
iteration

R Tk

k
z - /B'Sn+1'

Accordingly,
B(Q(z"*1) < B(Q(zY)) -4,

where 6 is a positive constant. This process stops with y* as an approximate
center for Q(z%), where z¥ > 2* — . The total number of iterations is
bounded by O(nlog(c”z® — 2°) /e + nlog?2) from Proposition 4.1, which is
the same bound as in Karmarkar’s algorithm.

In an additional effort, Renegar developed a new method to improve
the iteration bound by a factor y/n. A similar algorithm can be described
as the following. Consider

Qz) ={y: c—ATy>0,—2+b"y>0,..,—2+b"y > 0},

where “~z+bTy > 0” is copied n times. Note that the slack vector s € R>"
and

c— ATy
§ = by -2 > 0.
by 2
Thus, $p4+1 = ... = Sa,. The primal potential function for this 2(z) is

Pop(z,2) = 2nlog(c’z — 2) — Zlog zj, =« ei‘p )
j=1

Following the proof of Proposition 4.1, we have

cle(z) -z

cTg0 — 20

B(Q(2)) — B(Q(z°)) > 2nlog —O(n).
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Algorithm 4.2 Given an approximate analytic center y° of Q(2°) with
8(s%) <y <1, set k:=0.
While (c¢'z(2%) — bTy*) > € do:

1. Update 28t = pTyk — Bsk .

2. Via the Newton procedure compute an approximate analytic center
YRl with 6(s*Y) < for Q(2FTY). Let ' = x(s**!) be given
by (3.8) for Q(z**1) (note here that the matriz A is augmented to
(A, —b,...,—b)) and x(2*T1) = 2'[n]/(nab,,).

3. Set k:=k+ 1 and return to Step 1.
We now prove the following Lemma.

Lemma 4.5 Let 3 = 1 —n/\/n. Then, there exists a point x+ > 0 such
that
(A, ~b,...,~b)zT =0 and ||[XTsT —e]| <5<,

where
c— ATy*
pTyk — oh+1
= ooz > 0.

pTyk — okt

st

Proof. Let zt = x(s*) > 0 of (3.3) for Q(z*), where matrix A is augmented
to (4, —b,...,—b). Then, $:+1 =.,=ai

(A, -b, ..., fb).’ﬁ_*_ = Ar(sk) =0,

and
IX* 55— el| = 6(s*) <.

Note that sj = s? for j <n and .sj+ = ﬂsf for j > n+ 1. Thus,

|IXTsT — e | XFsk — e+ XTst — XFsF||

| XFsk —ef| + || XTsT — XHs||
[ X+s" — el + v/nlz3,, 5, (8 — 1)
n+v/n(l-B)(1+n)

n+n(l+mn).

IN AN IN N
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Lemma 4.5 shows that, even though it is not perfectly centered, y* is in
the “quadratic convergence” region of the center of Q(z*+1), if we choose
n+n(14+n) < 1. Thus, an approximate center y*+! with §(s**1) < 5 for
Q(zF*1) can be updated from y* in a constant number of Newton’s steps.
We now verify that the max-potential of Q(2**1!) is reduced by \/nd for a
constant 9.

Lemma 4.6 Let (y*,s*) be an approzimate center for QF with §(s*) < n
and let Q(z**1) be given as in Step 1 of Algorithm 4.2. Then,

BQ(zM1) < B(Q(z%) — /nd  for a constant & > 0.

Proof. The proof is very similar to Theorem 2.7 in Chapter 2. Let (y®, s%)
and (y%,s%) be the centers of Q(z*) and Q(z"T1), respectively. Note we
have

Spiq = _s;n:bT"—z’“
Also
(A, =b,...,—b)(SY) e =0,
(¢, =2k, ..., —2F)T(S) " le = (s)T(S") e = 2n
and .
Y
5§ = 9+ 72 >0
bTye - ShH1
where
i1 = = 2t =25 4 (1 B)sy,

Then we have
eT(S”)flsj_ = (8 (e 2L 2
= €' (8% e;—2" s =2%) = n(1 = B)(s5,/55,)
2n —n(1 = B)(s5,/s5,)
< 2 n(l-B)1- ).

The last inequality is due to (v) of Theorem 3.2. Therefore,

expBQ(A)  {r (5%);
exp B(Q(zF) ]1;[1 54
< exp(—n(1-08)(1—n))

exp(—v/nn(1 —n)).
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This completes the proof.

From the lemma, we can conclude that

Theorem 4.7 In at most O(y/nlog(c’z® — 2°) /e + \/n) iterations, Algo-

rithm 4.2 will generate a (z(z*),y*) €F such that it is an approzimate
center for Q(z%) where

cla(2F) =Tyt <clx(2h) - 2F <e

4.3 Potential Reduction Algorithm

At this point, we can see the difference between Karmarkar’s and the path-
following algorithms. The former, called potential reduction algorithms,
are equipped with a primal potential functions, which are solely used to
measure the solution’s progress. There is no restriction on either step-
size or z-update during the iterative process; the greater the reduction of
the potential function, the faster the convergence of the algorithm. The
path-following algorithms are equipped with the max-potential, so that the
z-update needs to be carefully chosen and each step needs to stay close
to the analytic center. Thus, from a practical point of view, Karmarkar’s
algorithm has an advantage.

The next question is whether or not we can improve the complexity

bound by the same factor for potential reduction algorithms. Let ej(i‘p

and (y, s) 6_7?"[1. Then consider the primal-dual potential function
Yt p(m,8) = (n+ p)log(z’'s) Zlog xjs;),
where p = \/n. Let z = b7y, then s72 = ¢’z — 2 and we have
Vntp(T,8) = Pnyp(a, 2) Zlog S5
where the primal potential function

Prip(2,2) = (n+ p)log(c’z — 2) Zlogaz]
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Consider a pair of (z*,y* s¥) €F. Fix z¥ = bTy*, then the gradient
vector of the primal potential function at z* is

(n+p)
(sM)T gk

VP, 2%) = c— (XF) e,

Now we directly solve the problem

minimize VP, (2", 2")T (z — z¥)
subject to  A(x — %) =0, ||(X*) "z —2F)|| < .

Let the minimizer be z*¥*1. Then

k, k
k+1 k X"p

2" — 2 = —am—, (4.10)
[[P*]]

and, in view of Section 3.3.2,

Poio(@ 1, 28) = Poy (2, 25) < —allph|| + ﬁ
where
pbo= (I = XFAT(AXF)2AT) T AXEY XEY P, (25, 2F)
= XkVP,H_p(mk,zk) — XkATy’c
or
o k(((:k;_Tgl CATYR) e,
and

g = (AX))AT) T AXE)IVP,  (aF, o).
Thus, as long as |[p*|| > n > 0, we may choose an appropriate « such that
Pn+p(mk+1azk) - Pn+p(mk:zk) <=0

for some positive constant 4.
Now, we focus on the expression of p¥, which can be rewritten as

(n+p)

P = (0 XRATARAT) AN (X e o)
((ZC)JFTZ Xks(zK) e, (4.11)
with

s(zF) = c— ATy (2%) (4.12)
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and (54)T g
myl, (413)

where y; and y, are given in equation (4.7).
Regarding ||p*|| = ||p(z*)]|, we have the following lemma.

y(zk) =Y2 —

Lemma 4.8 Let

kT ok Tk _ Lk R\T o ok
uk:(az)s _ceo ’u:(:ﬂ)s(z)
n n n

oIl < minGy [ 1= ), (4.14)

then the following three inequalities hold:
s(z¥) >0, [|X*s(2*) — pell <np, and p < (11— 5n/vn)uF. (4.15)

Proof. The proof is by contradiction.

If

i) If the first inequality of (4.15) is not true, then 3 j such that s;(z*) <0

and
(n+p)
nuk

Ip(z")) > 1 - ;s (%) > 1.

ii) If the second inequality of (4.15) does not hold, then

I = Rt - R SRR
B (%V”X’W’“)—uell?+||%e—eu2
> (%)27}24'(%1)211 (4.16)
n
n2n+n2,

where the last relation prevails since the quadratic term yields the

minimum at
(n+p)u n

npk n4n?’

iii) If the third inequality of (4.15) is violated, then

OEDR S 1 -y 2,
np
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which in view of (4.16) leads to

Il > (R,
> (2= ) -
> (155
> (1-n)°

O

Based on this lemma, we have the following potential reduction theorem.
Theorem 4.9 Given z* E_;",, and (y*, s*) E](i"d. Let p = \/n, 2% = bTy*,
o* 1 be given by (4.10), and y**' = y(2*) in (4.18) and s = s(2*) in

(4.12). Then, either

’l/}n+p(wk+17sk) S ¢n+p($k= Sk) Y

or
wn+p(mk> 5k+1) < ¢n+p(mk: Sk) —4

where § > 1/20.

Proof. If (4.14) does not hold, i.e.,

k . n
> 1
llp(z")[] > min(n e m),
then

2
k k kK i _r -
Pn+p(m +172 )77371‘*‘0('1: 1 2 ) S amlﬂ(?}ﬂ:ln)+m7

hence from the relation between P, and ¢y,

2
. n a
U (@1 8%) = by (2, 67) < —amln(nw n+ 1—n)+ 2(1—a)

Otherwise, from Lemma 4.8 the inequalities of (4.15) hold:

o

i) The first of (4.15) indicates that y**! and s**! are in Fy.
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ii) Using the second of (4.15) and applying Lemma 3.1 to vector X *s*+1/
we have

nln T k+1 Zln k+1

= nlnn—Zln kk+1

[ XM — el ?

< 1
TS R[5 y prampe
7,}2
< 1 [ S
< nnn+2(17 )
7,}2
< nin(z Zln:ﬂ 8;

2(1 )’
iii) According to the third of (4.15), we have

\/ﬁ(ln(.rk)Tsk+1 — ln(mk)T.sk) = \/ﬁln% < ,g_

Adding the two inequalities in ii) and iii), we have

2

k k ko k n U
Unrp(@®, M) <y p(ah, s )*§+m-

Thus, by choosing = .43 and a = .3 we have the desired result.

O

Theorem 4.9 establishes an important fact: the primal-dual potential
function can be reduced by a constant no matter where z* and y* are. In
practice, one can perform the line search to minimize the primal-dual poten-
tial function. This results in the following primal-dual potential reduction
algorithm.

Algorithm 4.3 Given 2° E}p and (y°,s°) EJCi"d. Let 20 = pTy0. Set
k:=0.
While (s%)Tz% > ¢ do

1. Compute y1 and y2 from (4.7).
2. Set y**t! = y(2), skt = 5(2), 21 = bTyk ! with

2 = arg min Py (2", 5(2)).
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3. Let 2f*1 = 2% — aXkp(2F+1) with

sk+1).

3

@ = argmin ¥, 4, (2% — aX p(2F+1)
a>0

4. Set k:=k + 1 and return to Step 1.
The performance of the algorithm results from the following corollary.

Corollary 4.10 Let p = \/n. Then, Algorithm 4.3 terminates in at most
O(v/nlog(c”z® — b"y%) /€) iterations with

ok —pTy* <e.
Proof. In O(y/nlog((z°)Ts%/¢)) iterations

—Vilog ()"0 /e)

¢n+p(wk7 Sk) - '(/)n+p(w07 50)
Vilog(a*)Tsk +nlogn — (2, 8°)
Vilog((z*)Ts*/(2%)"s°).

Y

Thus,
Vnlog(c'z® — b"y*) = nlog(z*)"s* < /nloge,

ie.,
b —pTyk = (M) Tsk <e

4.4 Primal-Dual (Symmetric) Algorithm

Once we have a pair (z,y, s) €F with u = 27s/n, we can apply the primal-
dual Newton method to generate a new iterate z and (y*, s*) as follows:
Solve for d,, dy and d, from the system of linear equations:

Sdy + Xds = ~yue— Xs,
Ad, = 0, (4.17)
ATd, +ds = 0.

It is well-known that this is the Newton step starting from (z, s) which
helps to find the point on the central path with duality gap nyu. Note
that dXds = —dX ATd, = 0. We present the following lemma whose proof
is very similar to Lemma 3.6 and will be omitted.



110 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMS

Lemma 4.11 Let the direction d,, d, and d, be generated by equation
(4.17) with vy =n/(n + p), and let

ay/min(Xs)

o , (4.18)
I(XS)~1/2(Zire — X

where a is a positive constant less than 1. Let

T =z +60d, yt=y+0d, and sT =s+60ds.

Then, we have (z7,yT, sT) E](i" and
wn+p('7’l+7 S+) o wn+p(m7 S)

< —ay/min(Xs)||(XS) /(e — (n+p) a

—X —_—.
xTs o)l + 21 — a)

Let v = X's. Then consider

n min(v )
LD i e o)l
elv n+ p)

We now prove the following lemma

Lemma 4.12 Let v be a n-dimensional positive vector and p > \/n. Then,

V@2 e - LRy

3/4.
From these two lemmas we have
¢n+p(w+7 5+) - ¢n+p($= S)
\/— a2
< — 3/4+ ——— = —¢
S T
for a constant §. This leads to

Algorithm 4.4 Given (2°,4°, s%) 6_7?". Set p=+/n and k := 0.
While (s%)Tz% > ¢ do

1. Set (z,5) = (z*,s*) and v = n/(n+ p) and compute (d.,d,,ds) from
(4.17).

2. Let "% = 2k + ad,, y**' = y* + ad,, and s**' = sk + ad, where

a = argm>i{]1 Vi (z® + ad,, s* + ad,).
a7
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3. Set k:=k+ 1 and return to Step 1.

Theorem 4.13 Let p = \/n. Then, Algorithm 4.4 terminates in at most
O(y/nlog((z°)Ts%/€)) iterations with

clak — Ty <e.

4.5 Adaptive Path-Following Algorithms

Here we describe and analyze several additional primal-dual interior-point
algorithms for linear programming. In some sense these methods follow the
central path

0 zl's
C=<(x,8) €EF: Xs=pe where py=—

n

in primal-dual form, but certain algorithms allow a very loose approxima-
tion to the path.
Suppose we have a pair (z,s) € N, a neighborhood of C, where C C

N CF. Consider the neighborhood

o II?TS
sz):{(x,s) €7 | Xs - pell < mu where M:T}

for some 5 € (0,1). We will first analyze an adaptive-step path-following
algorithm that generates a sequence of iterates in N3(1/4). Actually, the
algorithm has a predictor-corrector form, so that it also generates interme-
diate iterates in N5 (1/2).

Next we consider adaptive-step algorithms generating sequences of iter-
ates in either

o II?TS
Noo(n) = {(rs) EF: || Xs— pelloo <nu  where p= T}

or
_ o _ r s
Nt = { o) €5 1 el <o whore = 221,
for any 5 € (0,1). Here, for any z € R™,

2l = 12" [0

and
12115 = 112" o>



112 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMS

where (z7); := min{z;,0} and (z"); := max{z;,0} and || - || is the usual
{~ norm. Note that ||z||oc = max{]|z]|1,||z||-.} and that neither || ||, nor
Il - |I% is a norm, although they obey the triangle inequality.

We easily see that

C C Na(n)) C No(ny) € N(ny) CF for each € (0,1).

Our results indicate that when we use a wider neighborhood of the cen-
tral path, the worst-case number of iterations grows, while the practical
behavior might be expected to improve.

Given (z,5) € N, we again generate a search direction d = (d, ds) using
the primal-dual scaling method by solving (4.17). To show the dependence
of d on the current pair and the parameter v, we write d = d(z, s, 7).

Having obtained the search direction d, we let

z(0) = =z+0d,,
y(d) = y+6d,, (4.19)
s(0) = s+ 6d,.

We will frequently let the next iterate be (z7,s%) = (z(6),s(#)), where 8
is as large as possible so that (z(6), s()) remains in the neighborhood N
for 6 € [0, 4].

Let u(8) = z(0)"s(8)/n and X () = diag(z(#)). In order to get bounds
on 6, we first note that

p@) = (1—60)u+byu, (4.20)
X@)s) —u@e = (1-6)(Xs— pe)+6°D,d,, (4.21)

where D, = diag(d,). Thus D,d; is the second-order term in Newton’s
method to compute a new point of C. Hence we can usually choose a larger
6 (and get a larger decrease in the duality gap) if D,d, is smaller. In this
section we obtain several bounds on the size of D,d,.

First, it is helpful to re-express D ds. Let

p = X °85d,,
q = X555 %dy, (4.22)
roi= (XS8) TP (ype — Xs),

Lemma 4.14 With the notations above,
i)
\/_

2
1Pall < 21
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ii)
BLE
- <pigy <L for each j;
iii)
2 2
Pyl < 12 < 2l
2
1Palit, < 1 o
Il _ e
P < < &
IPqle < IIE < 2

The bounds in lemma 4.14 cannot improved by much in the worst case:
consider the case where

r = e = (1,1,---,1)7,
p = (1/2,1/2,---,1/2,(1++/n)/2)", and
qa = (1/2=1/27"':1/27(1_\/H)/2)T-

To use lemma 4.14 we also need to bound r. The following result is
useful:

Lemma 4.15 Let r be as above.
i) If v =0, then ||r||> = np
ii) Ifn € (0,1), v =1 and (z,s) € Na(n), then |Irl]> < n*p/(1 —n).

i) Ifn € (0,1), v € (0,1), ¥ < 2(1 —n) and (z,5) € No(n), then [[r]]* <
nu. Moreover, if (z,5) € Noo(n) then

Vi=-n>rj/yu>—/14+n
so [Irll%, < (1 +n)p.
Proof. i)Ify=0,r=—(XS)""Xs,so |r||*> = ’I‘TS = nu.
ii) Now r = (XS) *(ne — Xs), so ||r|| < \/—nu, which yields the

desired result.
iii) In this case

S

||2 w]S]

lIr
TJSJ

J=1
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———— —2nyu+nu (since xjs; > (1 —n)u)
(1= n)n ™
< np (since v <2(1-n)).

Now suppose (z,s) € Noo(n), so that z;s; € [(1—n)u, (1+n)u] for each
j. Thus, for each j,

YH / o S 1
\/1——77]\//7_ 1_77\/ﬁ27“]—\/._ VTjs; 2 \/ﬁ\/— + Vi,

which yields the final result since 0 <y < 2(1 —n).

4.5.1 Predictor-corrector algorithm

In this section we describe and analyze an algorithm that takes a single
“corrector” step to the central path after each “predictor” step to decrease
. Although it is possible to use more general values of 7, we will work
with nearly-centered pairs in Na(n) with n = 1/4 (iterates after the cor-
rector step), and intermediate pairs in Na(a) with a = 21 (iterates after a
predictor step).

Algorithm 4.5 Gwen (2°,5°) € Na(n) withn =1/4. Set k := 0.
While (z%)Ts* > ¢ do:

1. Predictor step: set (r,s) = gwk7sk) and compute d = d(x,s,0) from
(4.17); compute the largest 8 so that

(z(8),5(8)) € No(2n) for 6 €]0,0].

2. Corrector step: set (z',s') = (x(0),5(0)) and compute d' = d(z',s',1)
from (4.17); set (x*+1 k1) = (2’ + d.,s' + d.).

3. Set k:=k+ 1 and return to Step 1.

To analyze this method, we start by showing

Lemma 4.16 For each k, (z*,s*) € Ny(n).
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Figure 4.1: Illustration of the predictor-corrector algorithm; the predictor
step moves 3° in a narrower neighborhood of the central path to ' on the
boundary of a wider neighborhood and the corrector step then moves y' to
y! back in the narrower neighborhood.

Proof. The claim holds for k¥ = 0 by hypothesis. For k > 0, let (z', s") be
the result of the predictor step at the kth iteration and let d' = d(z', ', 1),
as in the description of the algorithm. Let z'(8) and s'(f) be defined as
in (4.19) and p', ¢’ and ¢’ as in (4.22) using «', s’ and d'. Let u'(#) :=
2'(0)Ts'(0)/n for all § € [0,1] with ' := p/(0) = (2')Ts'/n and pk+! =
'ul(l) _ (.”I:k+1)TSk+1/n.

From (4.20),
u'(0) = ' for all 6, (4.23)
and in particular p**! = p'. From (4.21),
X'(@)s'0)—p'(@e = (1-6)(X's'—p'e)+6°D.d,

= (1-0)(X's' —ple)+6°Pq, (4.24)
where X'(6) = diag(z'(d)), etc. But by lemma 4.14(i), lemma 4.15(ii) and
(2',s") € N(2n) with n = 1/4,

2
<L 2O Ly
4 112" S 1

I1P'q||
It follows that

! !
. 1
IX(6)s'(6) — w'ell < (1 - ) + 05 < S (4.25)
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Thus X'(6)s' () > &e > 0 for all § € [0, 1], and this implies that 2'(6) > 0,
s'(#) > 0 for all such # by continuity. In particular, zF** > 0, s¥*1 > 0,
and (4.25) gives (z¥+1 skT1) € N5(1/4) as desired when we set § = 1.

O

Now let (z,s) = (z¥,5%), d = d(z,5,0), p = p* = 27s/n, and p, ¢ and
r be as in (4.22); these quantities all refer to the predictor step at iteration
k. By (4.20), )
p' = (1—0)u, or
phtt = (1 - 9)u*. (4.26)
Hence the improvement in the duality gap at the kth iteration depends on
the size of 6.

Lemma 4.17 With the notation above, the step-size in the predictor step
satisfies

_ P
g > .
1+ /1 +4||Pq/pull/n

Proof. By (4.21) applied to the predictor step,

1X()s(8) — p(@)ell = II(1—0)(Xs — pe) + 6 Pq]|
< (1= 0)|Xs — pel + 67| Pl
< (1= O)mp+ 6| Pall,

after using lemma 4.16. We see that for

2
0<6<

~ L+ 1+ 4| Pg/pll/n

(1 —8)n+ 6||Pq/p|
2n(1 —0).

1X(6)s(6) — p(O)ell/n <
<

This is because the quadratic term in 6:
1Pa/ull6* +n8 —n <0

for 6 between zero and the root,

—n+ vn*+ 4 Pa/pln _ 2
2||Pg/pll L+ /1+4(Pq/ull/n
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Thus,
1X(0)s(8) — n(®)ell < 2n(1 —O)p = 2nu(6)
or (z(6),s(#)) € Na(2n) for

0<6< 2

T 1+ /1+4]Pa/ull/n

We can now show

Theorem 4.18 Letn = 1/4. Then Algorithm 4.5 will terminate in at most
O(yv/nlog((z°)Ts%/€)) iterations with

ek — Ty <e.
Proof. Using lemma 4.14(i) and lemma 4.15(i), we have

V3o V2
1Pall < L2012 =

so that
2 2

1+4/1+\/§n/n:1+\/1+4\/§n

at each iteration. Then (4.26) and lemma 4.17 imply that

6>

k

2
k+1
< (1l —
( 1+V1+%ﬁn>

for each k. This yields the desired result.

4.5.2 Wide-neighborhood algorithm

In this section we consider algorithms of the following form based on ~ €
(0,1) and A, where N is a wide neighborhood of either Ny, or N_.

Algorithm 4.6 Let n € (0,1) and v € (0,1) with v < 2(1 —n). Given
(2°,5%) € N(n). Set k:=0.
While (z%)Ts* > ¢ do:

1. Set (z,s) = (z*,s*) and compute d = d(z,s,7) from (4.17).
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2. Compute the largest § so that

(2(6),5(6) €N for 8 € [0,8];
set (a1, $441) = (2(9), 5(0)).
3. Set k:=k+ 1 and return to Step 1.

Again the selection of # makes this an adaptive-step method. We will
analyze this algorithm for N' = N (n) and N (n), where n € (0,1). In
either case, computing 6 involves the solution of at most 2n single-variable
quadratic equations.

Note that, if u* := (z*)Ts* /n, (4.20) implies

prt = (1-6(1 = y)p", (4.27)
so we wish to bound # from below.
Lemma 4.19 Let n € (0,1), v € (0,1), and N = No(n) or N5(n). Let

x, s, d and 6 be as in the kth iteration of Algorithm 4.6, and define p, q
and r by (4.22). Then

6

v
S

k
, = min {1, H’}’]q’r' } if N = Nu (n),

k
6>0, = min{l,ﬂ} if N =N ().
1Pqlls

Proof. Suppose first N' = N_(n). Then, for each § € [0,6;], (4.20) and
(4.21) imply
X(0)s(6) — u(f)e
(1 —6)(Xs — pe) + 6*Pq,
(A= O)IXs — pell, +6%[|1Pall,) e
—((1 = O)np* + Onyp*) e
—nu(f)e.

ARV

Hence, as in the proof of lemma 4.16, (x(6), s(¢)) € N (n) for 6 € [0,6],
when § > 0, . It N = N (n), a similar proof gives

nu(f)e > X(8)s(0) — u(f)e > —nu(f)e

for 6 € [0, 6], which again implies 6 > 6.
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We can now prove

Theorem 4.20 Let n € (0,1) and v € (0,1) be constants with v < 2(1 —
n). Then Algorithm 4.6, with N = N (n) or N2 (n), will terminate in
O(nlog((z°)"s%/€)) iterations.

Proof. In either case, each iterate lies in N_(n), whence
1Pallz < 1Pallso < IIrlI2/4 < nptt /2,
using lemma 4.14(iii) and lemma 4.15(iii). Hence
b, > 0> > dny/n.

Then lemma 4.19 and (4.27) give

prtt < <1 — W) p*, (4.28)

which yields the result.
O

The algorithms for the neighborhoods Ny (n) and N () generate se-
quences of points lying in the boundaries of these sets. Since the results
hold for arbitrary n € (0, 1), the algorithms can generate sequences of points
in a wide area of the feasible region. In particular,

NL() =F,

so when 7 is close to 1, the neighborhood N (n) spreads over almost all of
the feasible region F, and the points generated by the algorithm based on
N (n) are close to the boundary rather than the central path.

o

4.6 Notes

A similar result to Proposition 4.1 has been proved by Todd [328]. This
proposition plays an important role in analyzing several interior-point al-
gorithms.

The Karmarkar projective algorithm in the LP standard form with a
lower bound z for z* was first developed and analyzed by Todd and Burrell
[329], Anstreicher [19], Gay [103], and Ye and Kojima [384]. de Ghellinck
and Vial [104] developed a projective algorithm that has a unique feature: it
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does not need to start from a feasible interior point. All of these algorithms
have an iteration complexity O(nL). Other extensions and analyses of
Karmarkar’s algorithm can be found in Akgiil [7], Anstreicher [17], Asic,
Kovacevic-Vujcic and Radosavljevic-Nikolic [29], Betke and Gritzmann [47],
Blair [52], Blum [54], Dennis, Morshedi and Turner [75], Diao [77], Gonzaga
[123], Kalantari [168], Kovacevic—Vujcic [191], Lagarias [195], McDiarmid
[211], Nemirovskii [256], Nesterov [260], Padberg [270], Sherali [301], Shub

3 3

[304], Tseng [336], Wei [365], Wu and Wu [368], Zimmermann [395], etc.

The path-following algorithm, described in Section 4.2, is a variant of
Renegar [286]. The difference is the analysis used in proving the complexity
bound. Renegar measured the duality-gap, while we used the max-potential
of the level set. A primal path-following algorithm is independently ana-
lyzed by Gonzaga [122]. Both Gonzaga [122] and Vaidya [348] developed
a rank-one updating technique in solving the Newton equation of each it-
eration, and proved that each iteration uses O(n?%) arithmetic operations
on average. Kojima, Mizuno and Yoshise [183] and Monteiro and Adler
[239] developed a symmetric primal-dual path-following algorithm with the
same iteration and arithmetic operation bounds. The algorithm was pro-
posed earlier by Tanabe [316]. Other variants of path-following or homo-
topy algorithms can be found in Blum [55], Boggs, Domich, Donaldson and
Witzgall [57], Nazareth [253, 254], etc.

Recently, Vaidya [349] developed a new center, the volumetric center, for
linear inequalities and a path-following algorithm for convex programming.
The arithmetic operations complexity bound is identical to that of the
ellipsoid method, but its iteration complexity bound is less than that of the
ellipsoid method. Also see Anstreicher [21].

The primal potential function with p > 1 and the affine potential re-
duction algorithm were developed by Gonzaga [124]. His algorithm has
iteration complexity O(nL). The primal-dual potential function and algo-
rithm were analyzed by Anstreicher and Bosch [23], Freund [96], Gonzaga
[124], Todd and Ye [330], and Ye [373]. These algorithms possess O(y/nL)
iteration complexity. Using this function, Ye [375] further developed a pro-
jective algorithm with O(y/nL) iteration complexity, also see Goldfarb and
Xiao [117].

The primal-dual potential reduction algorithm described in Section 4.3
is in the primal form. One can develop a potential reduction algorithm in
dual form, where z, an upper bound for the optimal objective value z*,
is updated down in each iteration, see Ye [373]. The symmetric primal-
dual potential algorithm of Section 4.4 was proposed by Kojima, Mizuno
and Yoshise [185]. Other potential reduction algorithms are by Gonzaga
and Todd [130], Huang and Kortanek [151], and Tuncel [345]. Todd [324]

proposed an extremely simple and elegant O(y/nL) algorithm.
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The adaptive primal-dual algorithms were developed by Mizuno, Todd
and Ye [233], also see Barnes, Chopra and Jensen [36]. A more practical
predictor-corrector algorithm was proposed by Mehrotra [221], based on
the power series algorithm of Bayer and Lagarias [39] and the primal-dual
version of Monteiro, Adler and Resende [242], also see Carpenter, Lustig,
Mulvey and Shanno [63] and Zhang and Zhang [393]. His technique has
been used in almost all of the LP interior-point implementations. Further-
more, Hung [155] developed a O(nnTtlL)—iteration variant that uses wider
neighborhoods. As n becomes large, this bound approaches the best bound
for linear programming algorithms that use the small neighborhood (which
are not practical). Other polynomial wide-neighborhood algorithms can be
found in Jansen [158] and Sturm and Zhang [311].

There was another polynomial interior-point algorithm, a multiplicative
barrier function method, which was developed by Iri and Imai [156], also
see Sturm and Zhang [310].

Another popular interior-point algorithm, called the affine scaling algo-
rithm, was developed by Dikin [78, 79] and was rediscovered by Barnes [35],
Cavalier and Soyster [64], Kortanek and Shi [188], Sherali, Skarpness and
Kim [302], Vanderbei and Lagarias [357], Vanderbei, Meketon and Freed-
man [358], Andersen [15], and Monteiro, Adler and Resende [242]. The al-
gorithm also has three forms as the potential algorithm has; the difference
is that p is chosen as oo in the direction of the affine scaling algorithm.
The primal or dual algorithm has no polynomial complexity bound yet,
but has been proved convergent under very weak conditions, see Tsuchiya
[339, 340], Tsuchiya and Muramatsu [342], Monteiro, Tsuchiya and Wang

[246], Saigal [295], Sun [312], and Tseng and Luo [338]. Mascarenhas [210]

provided a divergénce example for the affine scaling algorithm. Polynomial
affine-scaling-type algorithms can be found in Monteiro, Adler and Resende
[242] and Jansen, Roos and Terlaky [159].

A modified (shifted) barrier function theory and methods were devel-
oped by Polyak [277], also see Pan [271], and Polak, Higgins and Mayne
[276].

Interior-point algorithm computational results can be found in Adler,
Karmarkar, Resende and Veiga [4], Altman and Gondzio [12], Bixby, Gre-
gory, Lustig, Marsten and Shanno [50], Choi, Monma and Shanno [66, 67],
Christiansen and Kortanek [68], Domich, Boggs, Rogers and Witzgall [81],

Fourer and Mehrotra [93], Gondzio [120, 121], Lustig, Marsten and Shanno

[203, 206, 204, 205], McShane, Monma and Shanno [214], Mehrotra [221],

3

Monma [235], Ponnambalam, Vannelli and Woo [279], Vanderbei [355], and

3 3

Xu, Hung and Ye [369].

There are several comprehensive books which cover interior-point linear
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programming algorithms. They are Bazaraa, Jarvis and Sherali [40], Fang
and Puthenpura [88], den Hertog [145], Saigal [296], Murty [250], etc.

Many researchers have applied interior-point algorithms to solving con-
vex QP and monotone LCP problems. The algorithms can be divided into
three groups: the primal scaling algorithm, see Anstreicher, den Hertog,
Roos and Terlaky [24], Ben-Daya and Shetty [42], Goldfarb and Liu [114],
Ponceleon [278], and Ye [387, 374]; the dual scaling algorithm, see Jarre
[160], Mehrotra and Sun [222], Nesterov and Nemirovskii [262], and Rene-
gar and Shub [288]; and the primal-dual scaling algorithm, see Kojima,
Mizuno and Yoshise [184, 185, 183], Mizuno [229], Monteiro and Adler
[240], Monteiro, Adler and Resende [242], and Vanderbei [354].

Relations among these algorithms can be seen in den Hertog and Roos
[147]. Given an interior point (z,y, s), the following is a summary of direc-
tions generated by the three potential algorithms. They all satisfy

Ad, =0, d;=-A"d, for LP,

Ad, =0, ds=Qd, — ATd, for QP,

and
ds, = Md, for LCP.

Furthermore, they satisfy, respectively,

Primal:
bt T8 g g Ty,
(n+p) (n+p)
Dual:
ds + s S, = —p+ — " g
(n+p) (n+ p)
and
Primal-dual:
T
Xdy+ Sdy = Xs+ — 2 ¢,
(n+p)

where p > /n. These algorithms will reduce the primal-dual potential
function by a constant, leading to O(pL) iteration complexity.
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4.7 FExercises
4.1 Prove inequality (4.3).

4.2 Let x(z) € F, be on the central path associated with Q(z) in Proposi-
tion 4.1. Then, z* > z > 2° implies p(z) < p(z°).

4.3 Prove Corollary 4.2.

4.4 Let z be chosen by (4.9) in Karmarkar’s algorithm. Then show

CTCUk — Zk

Iy 2 =

4.5 Develop a potential reduction algorithm in dual form, with z as a upper
bound for the optimal objective value z*.

4.6 Prove Lemma 4.12.
4.7 Prove Lemma 4.14.

4.8 Describe the primal affine scaling algorithm mentioned at the end of
Section 4.6. Starting from x = e, use it to complete the first three iterations
for solving

minimize X1 + 3o
subject to 1 + 12 + 13 = 3,
T1,T2,T3 Z 0.
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Chapter 5

Worst-Case Analysis

There are several remaining key issues concerning interior-point algorithms
for LP. The first is the arithmetic operation complexity. In the previous
chapters, we have analyzed the total number of iterations needed to solve a
LP problem approximately. Since it solves a system of linear equations with
dimension m + n and n > m, each iteration of all interior-point algorithms
uses O(n?) arithmetic operations. Thus, their best operation complexity
bound is O(n*®log(R/¢)), when the initial gap (z°)7s® < R. (We assume
(29)Ts% < R throughout this section.) The question is whether or not the
arithmetic operations can be reduced in each iteration.

The second issue involves termination. Unlike the simplex method for
linear programming which terminates with an exact solution, interior-point
algorithms are continuous optimization algorithms that generate an infinite
solution sequence converging to the optimal solution set. If the data of an
LP instance are integral or rational, an argument is made that, after the
worst-case time bound, an exact solution can be “rounded” from the latest
approximate solution. Thus, several questions arise. First, under the real
number computation model (i.e., the LP data consists of real numbers) how
do we argue termination to an exact solutionI' Second, regardless of the
data’s status, can we utilize a practical test, one which can be computed
cost-effectively during the iterative process, to identify an exact solution so
that the algorithm can be terminated before the worse-case time boundI’
Here, the exact solution means a mathematical solution form using exact
arithmetic, such as the solution of a system of linear equations or the so-
lution of a least-squares problem, which can be computed in a number of
arithmetic operations bounded by a polynomial in n.

The third issue involves initialization. Almost all interior-point algo-

125



126 CHAPTER 5. WORST-CASE ANALYSIS

rithms solve the LP problem under the regularity assumption that ]Ci‘yé 0.
A related issue is that interior-point algorithms have to start at a strictly
feasible point. Since no prior knowledge is usually available, one way is to
explicitly bound the feasible region of the LP problem by a big M number.
If the LP problem has integral data, this number can be set to 2% in the
worst case, where L is the length of the LP data in binary form. This set-
ting is impossible in solving large problems. Moreover, if the LP problem
has real data, no computable bound is known to set up the big M.

5.1 Arithmetic operation

The primary computation cost of each iteration of interior-point algorithms
is to inverse a normal matrix AX2A” in the primal form, AS72A7 in the
dual form, or AXS~' AT in the primal-dual form. In this section, we show
how to use a rank-one technique to update the inverse of the matrix during
the iterative progress. This can be described as follows.

Consider the primal potential reduction algorithm in Section 4.3. Re-
placing X* in the normal matrix by a positive diagonal matrix D such that

1 d; .
HSESII for ]:1,...,77,,
we now have
Dp k
2R gk — g, Ap(i )
1p(=*)]
where
p(z%) = (I - DAT(AD?*A") "' AD)DVP,,(z*, 2").
Then

VPusp(a®, 25T (@ —2*) = —Bllp(")]l,

and the reduction of the potential function is

Pras@H1,28) = Poy (¥, 24) < —alp(:)] + 7L

(T, 2 ntp(l 27 ) S —||P(2 2(1 - 1.1a)’
since

o e P O TN [0 (O Ry T P ]

[(XH)~ID[| D" ("' — b))
L1 D (2! — 2| = 1.1
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Note that p(z*) can be written as
. n + _ _
P(") = oL Ds(e) - D(XY) e = DX pH), (5.)

where the expressions of p(z*) and s(z*) are again given by (4.11) and
(4.12) with

(Sk)Tﬂfk

y(zk) = (ADZAT)AAD(DC —
n+p

D(X*)"te). (5.2)

Thus, we have
155 = IDX*) ") > lpEON/ND X > [Ip(=")]]/1.1.

Noting that Lemma 4.8 still holds for p(z*), we only need to modify the
potential reduction inequality in the proof of Theorem 4.9 by

2
et e Foy e O g [T (Lle)?
Prg (x5, 2%) = Prgp(z”, 2") < 11 min(J3 n+ B2’ ﬂ)+2(1 - 1.1a)"

Therefore, upon choosing 8 = 0.43 and a = 0.25, Theorem 4.9 is still valid
for § > 0.04. As a result, the following modified primal algorithm can be
developed.

Algorithm 5.1 Given z° E]Ci'p and (y°, sY) ei‘d. Let 2° = b"y" and D° =
X0 Seta=0.25and k :=0;
while (s¥)Tz% > ¢ do

1. Forj=1,...,n,if df/rf ¢ [1/1.1,1.1] then df = rf Let D := D*.
Then, compute y(z*) of (5.2), s(z*) of (4.12), p(z*) of (4.11) and
p(z*) of (5.1).

2. Set y*t! = y(z), sk = s5(2), ¢ = bTy*+! where

Z = arg min Yy, (2", 5(2)).

3. Let x*+1 = ok — aDp(2k+t1) /||p(zH+1)]|.
4. Set D**' = D¥ and k := k + 1, and return to Step 1.

The inverse of the normal matrix AD?AT in (5.2) can be calculated
using a rank-one updating technique whenever d; is changed, and each up-
date uses O(n?) arithmetic operations. Now we estimate the total number
of updates needed before the algorithm terminates. Let

I'= {z : —% ¢ [1/1.1,1.1]}.
Ty

Y
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Then, the computation work in the tth iteration is O(n?|It|) operations,
where |I| denotes the number of elements in set I. Thus, the total op-
erations up to the kth iteration is O(n® + n>Yr_, |I*]), where n® in the
estimate is the amount of work at the initial iteration t = 0. We have the
following lemma to bound this estimate.

Lemma 5.1 In Algorithm 5.1,
(DY (2" — d")]|oe 0.1 forany t=0,1,....

and
Zut|<112|| (DY@t — 2ty

Proof. The proof of the first inequality is straightforward. Let
ot = (DY) (&t —d)|, for t=0,1,...

Then, for t = 1,2, ...

ielt zQIt
@} —d;]
= ; dt 1
ot diY af —di
< D +>
ielt d; igIt d;
= (DY) e — Y[ - []/11
— ||(Dt71)71($t _wtfl +$t71 _ dtfl)Hl _ ‘It|/]]
< [(DH 7t - t’1)||+||(Dt’1)’1(wt’1—dt’l)lll—llt\/ll
= [Nz — 2"l + o' 1]/11.

Thus, we have

S < ZHD“ e | )

t=1

= o'-0 +Z||Dt1 (zt — 2t ).

Since 0¥ = 0 and ¢* > 0, we have the desired result.
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From the update in Step 3 of Algorithm 5.1 we have
(D) " — "D <o,
for t = 1,2, ..., which implies that
(D)7 (" — 2" Dl < av/n.

Hence

k
> I < 1lkay/n.
t=1

If k is about O(y/nlog(R/€)), then the total number of rank-one updates is
bounded by O(n log(R/€)) and the total number of operations by O(n? log(R/¢)).

To summarize, we have

Theorem 5.2 Let p = \/n and ¢, 4,(z°,s°) < O(y/nlog R). Then, Algo-
rithm 5.1 terminates in O(y/nlog(R/¢)) iterations and uses O(n> log(R/¢))
total arithmetic operations.

5.2 Termination

We now turn our attention to the termination of interior-point algorithms,
the object of a great deal of research efforts. These efforts resulted in four
basic approaches.

e The first is the standard purification procedure to find a feasible ver-
tex whose objective value is at least as good as the current interior
point. This approach can be done in strongly polynomial time when
using the simplex method, and it works for LP with real number data.
One difficulty which arises with this method is that many non-optimal
vertices may be close to the optimal face, and the simplex method still
requires many pivot steps for some “bad” problems. Moreover, the
(simplex) purification procedure is sequential in nature.

e The second is a theoretical effort to identify an optimal basis. A
test procedure was also developed to show that, if the LP problem
is nondegenerate, the unique optimal basis can be identified before
the worst-case time bound. The procedure seemed to work fine for
some LP problems but it has difficulty with degenerate LP problems.
Unfortunately, most real LP problems are degenerate. The difficulty
arises simply because any degenerate LP problem has multiple opti-
mal bases.
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e The third approach is to slightly randomly perturb the data such that
the new LP problem is nondegenerate and its optimal basis remains
one of the optimal bases of the original LP problem. Questions remain
on how and when to randomize the data during the iterative process,
decisions which significantly affect the success of the effort.

e The fourth approach is to guess the optimal face and to find a feasible
solution on the face. It consists of two phases: the first phase uses
interior point algorithms to identify the complementarity partition
(P*,Z*), and the second phase solves two linear feasibility problems
to find the optimal primal and dual solutions. One can use the solu-
tion resulting from the first phase as a starting point for the second
phase.

In this section we develop a termination procedure to obtain an exact
solution on the interior of the optimal face. We shall see that (i) the ter-
mination criterion is guaranteed to work in finite time, (ii) the projection
procedure (solving a least-squares problem) is strongly polynomial and can
be efficiently performed in parallel, and (iii) the approach identifies the
optimal face, which is useful in sensitivity analysis.

It has been noticed in practice that many interior-point algorithms gen-
erate a sequence of solutions converging to a strictly complementary solu-
tion for linear programming. It was subsequently proved that numerous
interior-point algorithms for linear programming indeed generate solution
sequences that converge to strictly complementary solutions, or interior
solutions on the optimal face. Recall that the primal optimal face is

Qp = {.”Bp* : Ap*.”l?p* = b, €I p= Z 0},
and the one for the dual is
Qu={(y,52+) : Apey = cpr, 70 = cze — Aly > 0},

where (P*, Z*) is the strict complementarity partition of the LP problem.
Note that these faces have strictly feasible solutions. Define

§p(A.byc) = minjep-{max,,.cq, z;} >0,
fd(A,b,C) = minjezx {max(y752*)egd Sj} >0, (53)
E(A,b,c) = min{{,(A,b,c),€q(A,b,¢)} > 0.

5.2.1 Project an interior point onto the optimal face

To measure the magnitude of positivity of a point 2 € R, we let o(z) be
the support, i.e., index set of positive components in x, that is,

o(z) = {i:z; >0}.
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We first prove the following theorem.

Theorem 5.3 Given an interior solution z* and s* in the solution se-

quence generated by any of interior-point algorithms possessing property
(5.7) below, define
k ' k
o ={j ;> s}

Then, for K = O(y/n(log(R/&*(A,b,c)) + logn)) we have
of = P* foradl k>K.

Proof. For simplicity, we use £ = £(A, b, ¢). For a given j € P* let (z*,s*)
be a complementarity solution such that z} is maximized on the primal
optimal face Q,, i.e, 27 > §,(A,b,¢c) > €. Since

Z zish + Z sialh = (aM)Ts". (5.4)

ieP* i€z
Thus, if (z*)Ts* < ¢, then

(:Ek)TSk

xr*

i

k
s; <

< e/t (5.5)

On the other hand, inequality (5.4) can be written as

*

S Dkt + Y kst = (M) (5.6)

ieps "t VA

Almost all interior-point algorithms generate a solution sequence (or sub-
sequence) (z*, s*) such that

min(X*s¥)

W > nio‘, (57)

where «a is a positive constant. Thus, from (5.6) and (5.7) we have

or
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or
azf >n %2 >n % (5.8)

Thus, if € < n=%¢?, recalling (5.5) we must have
S;? <elE<n YE< rf

Similarly, we can prove this result for each j € P*. Moreover, for each
VSR
rf <elE<n Y< sf.

Due to the polynomial bound of these interior-point algorithms, in
O(v/n(log(R/€?) + logn)) iterations we shall have

(")Tsh <e=n"2¢%

This concludes the proof of the theorem.
O

In practice, we don’t wait to see if ¢* = P*. In the following we develop
a projection procedure to test if ¢* = P* and if an exactly optimal solution
can be reached. For simplicity, let P = ¢* and the rest be Z. Then we
solve
(PP) minimize [[(X&) "(zp — 2]
subject to Apxzp = b,

and
(DP) minimize ||(S%)""AL(y — y")||
subject to ALy = cp.

Without loss of generality we assume that Ap has full row rank. These
two problems can be solved as two least-squares problems. The amount
of work is equivalent to the computation in one iteration of interior-point
algorithms. Furthermore, if the resulting solutions z}, and y* satisfy

zh >0 and sy =cy—ALy* >0,

then obviously z* = (z},0) and y* are (exact) optimal solutions for the
original LP problems, and o* = P* (Figure 5.1).

Letd, = (X&) "(zp—2%) and d, = y—y* and ds, = (SE) AL (y—y*).
Then, the two problems can be rewritten as

(PP) minimize ||d,]]
subject to ApXkd, = b— Apzh = A,k
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Objective
hyperplane

Central path

Figure 5.1: Illustration of the projection of y* onto the dual optimal face

and
(DP) minimize ||(S%)"'ALd,||
subject to  Ahd, = cp — ALyt = sk,

Thus, if both ||d, ||~ and ||ds||« are less than 1, we must have zp > 0 and
sy = cy — ALy > 0. Since 0% — P* from the proof of Theorem 5.3 and
the right-hand sides of the constraints of both problems converge to zero
as (z%)Ts* — 0, ||d.|| and ||ds|| must converge to zero. After o* = P = P*,
both (PP) and (PD) are feasible. Note that the solutions of (PP) and (PD)
are

dy = XpAp(Ap(Xp)?Ap) ' Ayaly, and dy = (S3) ' AZ(ApAL) ' Apsp.

Thus,

lldz 1[0
— |IXBAR(Ap(XE)2AD) A XS (XE) AL (AP AR) " Al
< IXBAB(Ap(XE)?AD) T ApXB[II[(XE) T AB(ApAL) T Asaly s
< |(XE) T AR(ApAR) T Ayl
< IXE) AR (APAR) " Azlll2% o

Let

C(A,b,¢) = max(1,||AT. (Ap- AT.) 1A,
Then, if o* = P = P* and min(z%) > ((4, b, ¢) max(z%),

).

[ldr]loc <1 which implies that 23 > 0.
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Similarly, when min(s%) > ((A, b, c) max(s) then

d*|lsc <1 which implies that s% > 0.
s P

Recall (5.5) that each component of 2% and s% is less than €/£(A, b, c)
and (5.8) that each component of z%, and s is greater than £(A4,b,¢)n~ .

This essentially shows that in

iterations the above projection procedure will succeed in generating the
complementarity partition and an exact optimal solution pair. To summa-
rize, we have a condition-based complexity bound.

Theorem 5.4 All O(y/nlog(R/e))-iteration polynomial-time interior-point
algorithms discussed earlier, coupled with the termination procedure, will
generate an optimal solution in O(y/n(log(R((A,b,c)/E*(A,b,c)) + logn))
iterations and O(n®(log(R((A,b,c)/E%(A,b,c)) + logn)) arithmetic opera-
tions. If the LP problem has integral or rational data, then

R<2", ((Ab,c)<2", and &(Abc)>27",

where L is the size of the LP data. Thus, o* = P* and an ezact solution
will be generated in O(\/nL) iterations and O(n®L) operations.

When an interior solution z},, P = P*, on the primal optimal face is
obtained, it can be cornered to a basic solution in no more than n — m
pivot operations. For example, if |o(z%)| < m, then z* is a basic solution;
otherwise, we do the following. Find any nonzero direction dp in the null
space of P, i.e.,

Apdp = 0.

(If the secondary objective exists, we may set dp as the projection to the null
space of Ap from the secondary objective vector.) Note that the null space
was already available when the test procedure was performed. Assume
max(dp) > 0 (otherwise, let dp = —dp). Then assign

* *
Tp = 2p — adp,

where « is chosen such that z} > 0 but at least one of its components
becomes zero. Delete the corresponding column from Ap. This process can
be continued until |o(z},)| < m, i.e., a basic solution is obtained. Also note
that the next null space can be updated from the previous one in O(m?)
arithmetic operations. The total number of required pivots in the process
is at most [o(zp. )| —m < n —m.
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5.3 Initialization

Most interior-point algorithms have to start at a strictly feasible point. The
complexity of obtaining such an initial point is the same as that of solving
the LP problem itself. More importantly, a complete LP algorithm should
accomplish two tasks: 1) affirmatively detect the infeasibility or unbound-
edness status of the LP problem, then 2) generate an optimal solution if
the problem is neither infeasible nor unbounded.

Several approaches have been proposed to resolve these issues:

e Combining the primal and dual into a single linear feasibility problem.
Theoretically, this approach can retain the currently best complexity
result. Practically, the disadvantage of this approach is the doubled
dimension of the system of equations which must be solved at each
iteration.

e The big M method, i.e., add one or more artificial column(s) and/or
row(s) and a huge penalty parameter M to force solutions to become
feasible during the algorithm. Theoretically, this approach holds the
best complexity. The major disadvantage of this approach is the nu-
merical problems caused by the addition of coefficients of magnitude.
It also makes the algorithms slow to converge. This disadvantage
also occurs in the primal-dual “exterior” or “infeasible” algorithm. A
polynomial complexity can be established for this approach if the LP
problem possesses an optimal solution and if the initial point is set
to Me. Thus, the big M difficulty even remains in these polynomial
infeasible interior-point algorithms.

e Phase I-then-Phase II method, i.e., first try to find a feasible point
(and possibly one for the dual problem), and then start to look for an
optimal solution if the problem is feasible and bounded. Theoretically,
this approach can maintain the polynomial complexity result. The
major disadvantage of this approach is that the two (or three) related
LP problems are solved sequentially.

e Combined Phase I-Phase II method, i.e., approach feasibility and
optimality simultaneously. To our knowledge, the currently “best”
complexity of this approach is O(nlog(R/¢)). Other disadvantages of
the method include the assumption of non-empty interior and/or the
use of the big M lower bound. Also, the method works exclusively in
either the primal or the dual form.

In this section, we present a homogeneous and self-dual (HSD) LP al-
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gorithm to overcome the difficulties mentioned above. The algorithm pos-
sesses the following features:

e It solves the linear programming problem without any regularity as-
sumption concerning the existence of optimal, feasible, or interior
feasible solutions, while it retains the currently best complexity re-
sult

e It can start at any positive primal-dual pair, feasible or infeasible,
near the central ray of the positive orthant (cone), and it does not
use any big M penalty parameter or lower bound.

e Each iteration solves a system of linear equations whose dimension is
almost the same as that solved in the standard (primal-dual) interior-
point algorithms.

e If the LP problem has a solution, the algorithm generates a sequence
that approaches feasibility and optimality simultaneously; if the prob-
lem is infeasible or unbounded, the algorithm will produce an infea-
sibility certificate for at least one of the primal and dual problems.

5.3.1 A HSD linear program

Our algorithm is based on the construction of a homogeneous and self-dual
linear program related to (LP) and (LD). We now briefly explain the two
major concepts, homogeneity and self-duality, used in our construction.

In the context of interior-point algorithms, the idea of attacking a
standard-form LP by solving a related homogeneous artificial linear pro-
gram can be traced to many earlier works. (By a homogeneous linear
program, we do not mean that all constraints must be homogeneous, or
equivalently all right-hand sides zero. We allow a single inhomogeneous
constraint, often called a normalizing constraint.) Karmarkar’s original
canonical form is a homogeneous linear program. One advantage of work-
ing in the homogeneous form is that we don’t need to be concerned about
the magnitude of solutions, since a solution is represented by a ray whose
quality is scale-invariant. A disadvantage is that these related homogeneous
problems, especially if they do not use any big M parameters, usually in-
volve combining the primal and dual constraints and thus usually lead to
algorithms requiring the solution of linear systems roughly twice as large
as other methods.

Self-dual linear programs, meaning that the dual of the problem is equiv-
alent to the primal, were introduced many years ago. We state the form
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of such problems, with inequality constraints, and their properties in the
following result, whose proof is omitted.

Proposition 5.5 Let A € RP*? be skew-symmetric, and let b= —¢e RP.
Then the problem

(SDP) minimize ¢
subject to  Au > b, 4> 0,

is equivalent to its dual. Suppose that (SDP) has a feasible solution 4. Then
u 18 also feasible in the dual problem, and the two objective values sum to
zero. Moreover, in this case (SDP) has an optimal solution, and its optimal
value is zero.

The advantage of self-duality is that we can apply a primal-dual interior-
point algorithm to solve the self-dual problem without doubling the dimen-
sion of the linear system solved at each iteration.

We now present a homogeneous and self-dual (artificial) linear program
(HSDP) relating (LP) and (LD). Given any z° > 0, s° > 0, and y°, we let
n® = (2°)7s% + 1 and formulate

(HSDP) min n’g
s.t. Azx —br +06 =0,
—ATy +er - >0,
T _.T -
bly clx +z6 >0,
Ty 4Tz —ZT =-nd,
y free, = >0, 7>0, 6 free,
where
b=b— Az, c=c— ATy —s° z=c"2"4+1-0"y". (5.9)

Here b, ¢, and Z represent the “infeasibility” of the initial primal point, dual
point, and primal-dual “gap,” respectively.

Note that the top three constraints in (HSDP), with 7 = 1 and 8 =
0, represent primal and dual feasibility (with z > 0) and reversed weak
duality, so that they define primal and dual optimal solutions. Making
7 a homogenizing variable adds the required dual variable to the third
constraint. Then, to achieve feasibility for z = 20, (y,s) = (%, s°), we add
the artificial variable 6 with appropriate coefficients, and then the fourth
constraint is added to achieve self-duality.

Denote by s the slack vector for the second constraint and by k the
slack scalar for the third constraint. Denote by Fj the set of all points
(y,z, 7,0, s, k) that are feasible for (HSDP). Denote by F} the set of strictly
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feasible points with (z,7,s,k) > 0 in F,. Note that by combining the
constraints, we can write the last (equality) constraint as

(92 + (2°)"s + 7+ Kk —n%0 = n°, (5.10)

which serves as a normalizing constraint for (HSDP). Also note that the
constraints of (HSDP) form a skew-symmetric system, which is basically
why it is a self-dual linear program.

With regard to the selection of (z°,y°, s%), note that if z° (respectively,
(y°, s°)) is feasible in (LP) ((LD)), then b () is zero, and then every feasible
solution to (HSDP) with 7 > 0 has z/7 feasible in (LP) ((y, s)/7 feasible
n (LD)). Conversely, if z < 0, then every feasible solution to (HSDP) with
6> 0and 7> 0 has ¢’z —b"y < 20 < 0, so either 2/7 or (y,s)/7 must be
infeasible.

Now let us denote by (HSDD) the dual of (HSDP). Denote by y' the dual
multiplier vector for the first constraint, by 2’ the dual multiplier vector
for the second constraint, by 7' the dual multiplier scalar for the third
constraint, and by 6’ the dual multiplier scalar for the fourth constraint.
Then, we have the following result.

Theorem 5.6 Consider problems (HSDP) and (HSDD).

i) (HSDD) has the same form as (HSDP), i.e., (HSDD) is simply (HSDP)
with (y,x,7,0) being replaced by (y',x',7',6").

il) (HSDP) has a strictly feasible point

y=9° 2=2">0, 7=1, =1, s=s">0, k=1

iii) (HSDP) has an optimal solution and its optimal solution set is bounded.
iv) The optimal value of (HSDP) is zero, and

(y,z,7,0,5,k) € Fy implies that n°0 = z"s + k.
v) There is an optimal solution (y*,z*,7*,0* =0,s*,k*) € F), such that
¥ + s*
< ™ 4+ K* ) >0,

which we call a strictly self complementary solution. (Similarly, we
sometimes call an optimal solution to (HSDP) a self-complementary
solution; the strict inequalities above need not hold.)
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Proof. In what follows, denote the slack vector and scalar in (HSDD) by s’
and &', respectively. The proof of (i) is based on the skew-symmetry of the
linear constraint system of (HSDP). We omit the details. Result (ii) can be
easily verified. Then (iii) is due to the self-dual property: (HSDD) is also
feasible and it has non-empty interior. The proof of (iv) can be constructed
as follows. Let (y,x,7,0,s,k) and (y',z',7',0',s', k') be feasible points for
(HSDP) and (HSDD), respectively. Then the primal-dual gap is

n®O+0") =2t +sTa' + 76" + k7.

Let (y',2',7",0',s', k") = (y,z, 7,0, s, k), which is possible since any feasible
point (y',z',7',0',s', k') of (HSDD) is a feasible point of (HSDP) and vice
versa. Thus, we have (iv). Note that (HSDP) and (HSDD) possess a
strictly complementary solution pair: the primal solution is the solution for
(HSDP) in which the number of positive components is maximized, and the
dual solution is the solution for (HSDD) in which the number of positive
components is maximized. Since the supporting set of positive components
of a strictly complementary solution is invariant and since (HSDP) and
(HSDD) are identical, the strictly complementary solution (y*,z*,7*,6* =
0, s*,k*) for (HSDP) is also a strictly complementary solution for (HSDD)
and vice versa. Thus, we establish (v).

O
Henceforth, we simply choose
=0, 2°=e, and s'=e. (5.11)
Then, n = n + 1 and (HSDP) becomes
(HSDP) min (n+1)60
s.t. Ax —br +b60 =0,
—ATy +er -8 >0,
IgTy —cTz +z60 >0,
by  +el'z —zr =—(n+1),
y free, = >0, 72>0, 0 free,
where
b=b—Ade, é¢=c—e, and z=cle+1, (5.12)

Again, combining the constraints we can write the last (equality) constraint
as
elz+els+r+r—(n+1)0=n+1. (5.13)
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Since 6* = 0 at every optimal solution for (HSDP), we can see the normal-
izing effect of equation (5.13) for (HSDP).
We now relate optimal solutions to (HSDP) to those for (LP) and (LD).

Theorem 5.7 Let (y*,z*,7*,0* = 0,s*,k*) be a strictly self complemen-
tary solution for (HSDP).

i) (LP) has a solution (feasible and bounded) if and only if 7 > 0. In this
case, x*/T* is an optimal solution for (LP) and (y*/7*,s*/T*) is an
optimal solution for (LD).

ii) (LP) has no solution if and only if k* > 0. In this case, x*/K* or
s*/Kk* or both are certificates for proving infeasibility: if ¢'z* < 0
then (LD) is infeasible; if —bTy* < 0 then (LP) is infeasible; and if
both cT'a* < 0 and —bTy* < 0 then both (LP) and (LD) are infeasible.

Proof. If (LP) and (LD) are both feasible, then they have a complementary
solution pair z and (g, §) for (LP) and (LD), such that

()5 =0.

Let
n+1 >0
A= (/7 .
eTz +eTs+1
Then one can verify (see (5.13)) that

~k ~ %

=as, kK =0

7' =ay, T*=ar, T =a 6" =0,
is a self-complementary solution for (HSDP). Since the supporting set of
a strictly complementary solution for (HSDP) is unique, 7* > 0 at any
strictly complementary solution for (HSDP).

Conversely, if 7* > 0, then x* = 0, which implies that

Az* =br*, ATy + s =cr*, and (z)'s* =0.

Thus, */7* is an optimal solution for (LP) and (y*/7*, s*/7*) is an optimal
solution for (LD). This concludes the proof of the first statement in the
theorem.

Now we prove the second statement. If one of (LP) and (LD) is in
feasible, say (LD) is infeasible, then we have a certificate Z > 0 such that
Az =0and ¢"z = 1. Let ( = 0,5 =0) and

n+1

== >0.
@ eTz+eTs+1
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Then one can verify (see (5.13)) that

~ % ~x *

v =ay, " =ar, =0, 0°=0, 5 =as5 F=a

is a self-complementary solution for (HSDP). Since the supporting set of
a strictly complementary solution for (HSDP) is unique, k* > 0 at any
strictly complementary solution for (HSDP).

Conversely, if 7* = 0, then x* > 0, which implies that ¢ z* — b7y* < 0,
i.e., at least one of ¢"z* and —b"y* is strictly less than zero. Let us say
c¢Tz* < 0. In addition, we have

Az* =0, ATy*+5* =0, (z*)'s*=0 and z*+s*>0.

From Farkas’ lemma, z*/k* is a certificate for proving dual infeasibility.
The other cases hold similarly.

From the proof of the theorem, we deduce the following

Corollary 5.8 Let (§,%,7,0 = 0,3, k) be any optimal solution for (HSDP).
Then if & > 0, either (LP) or (LD) is infeasible.

5.3.2 Solving (HSD)

The following theorem resembles the central path analyzed for (LP) and
(LD).

Theorem 5.9 Consider problem (HSDP).

i) For any p > 0, there is a unique (y,z,7,0,s,k) in F; such that

Xs \
e ) HE

ii) Let (dy,dy,d;,dg,ds,d,) be in the null space of the constraint matriz of
(HSDP) after adding surplus variables s and &, i.e.,

Ad, —bd, +bdg —_

—ATd, +ed, —édy —ds = 0,
b, —'d, +2dg 4, = o 14

0.

—-vTd, +eTd, —zd, =

Then
(de)'ds + drdy = 0.
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Proof. For any pu > 0, there is a unique feasible point (y,z, 7,6, s, k) for
(HSDP) and a unique feasible point (y',z',7',6', s’ k") for (HSDD) such
that

Xs'=pe, Sz'=pe, 7' =p, k' =p.

However, if we switch the positions of (y,x, 7,0, s, k) and (3',z', 7,60, s', k")
we satisfy the same equations. Thus, we must have

(y’7w’77—’7 9’7 S’7 H’) = (y7 :I/': 7_1 91 S! H)7

since (HSDP) and (HSDD) have the identical form. This concludes the
proof of (i) in the theorem.

The proof of (ii) is simply due to the skew-symmetry of the constraint
matrix. Multiply the first set of equations by dg, the second set by dI, the
third equation by d, and the last by dy and add. This leads to the desired
result.

O

We see that Theorem 5.9 defines an endogenous path within (HSDP):

T

which we may call the (self-)central path for (HSDP). Obviously, if X%s? =
e, then the initial interior feasible point proposed in Theorem 5.6 is on the
path with g = 1. Our choice (5.11) for 2° and s° satisfies this requirement.
We can define a neighborhood of the path as

N = { i rbosm € 721 (5 ) el <

where u = 1
n

zl's + 71k }
for some § € (0,1). Note that from statement (iv) of Theorem 5.6 we have
0 = u for any feasible point in Fp,.

Since the (HSDP) model constructed and analyzed does not rely on any
particular algorithm for solving it, we may use any interior-point algorithm,
as long as it generates a strictly complementary solution. Given an interior
feasible point (y*,z*, 7% 6% sk k*) € FP. consider solving the following
system of linear equations for (d,,d,,d-,dp, ds, dy):

(dy,dy,dr,dg,ds,dy) satisfies (5.14),
X*d, + S*d, XkEgk
( hd, + kFd, ) = e~ ( TRk ) (5.15)



5.3. INITIALIZATION 143

In what follows we apply the predictor-corrector algorithm in Chapter 4 to
solving (HSDP):

Predictor Step. For any even number k, we have (y*, 2%, 7%, 0% s* kF) €
N(B) with 8 = 1/4. We solve the linear system (5.14,5.15) with v = 0.
Then let

y(a) ==y* +ad,, z(a):=z*+ad,,

7(a) ="+ ad,, 6(a):= 6"+ ady,

s(a) = sf +ad,, k(a):= k" + ad,.

We determine the step size using

a:=max{a: (y(a),z(a), 7(a),0(a), s(a), k(a)) € N(28)}. (5.16)

Then compute the next points by y**! = y(a), z**! = z(a), 7"+ = 7(a),

gh+1 = 9(a), s*+1 = 5(a), and ”FT! = k(). '

Corrector Step. For any odd number k, we solve the linear system
(5.14,5.15) with v = 1. Then let y**' = y* 4+ d,, 2k = 2* + d,,
TRl = 7k pd,, 08 = 0F 4 dy, sFT = sF + dy, and kFTD = kF 4 d,.
We have

(yk+1,mlc+17Tk+170k+178k+1, Kk+1) € N(ﬂ)

Termination. We use the termination technique described earlier to ter-
minate the algorithm. Define o be the index set {j : :Uf > 55?7 j =
1,2,..,n}, and let P = o and the rest be Z. Then, we again use a
least-squares projection to create an optimal solution that is strictly self-

complementary for (HSDP).
Case 1: If 7% > k*, we solve for y, zp, and 7 from
min [|(SE) 7T AZF - )P +II(XE) T (@h —ap)?
s.t. Apzp :ka,
ngy = —cpr*,

otherwise,

Case 2: 7" < k¥, and we solve for y and zp from

min [[(SE) T AZ(F —IIP +I(XE) (@b —ap)l?
s.t. Apxp =0,
*Agy =Y,
by ~cLzp =k".
This projection guarantees that the resulting z% and s}, (s} = cz7F —
ALy* in Case 1 or s3, = —ALy* in Case 2) are positive, as long as (z¥)T s* +
T#k* is reduced to be sufficiently small by the algorithm according to our

discussion in the preceding section on termination.
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Theorem 5.10 The O(y/nlog(R/¢€)) interior-point algorithm, coupled with
the termination technique described above, generates a strictly self comple-
mentary solution for (HSDP) in O(y/n(log(c(A,b,c)) + logn)) iterations
and O(n?(log(c(A,b,c)) + logn)) operations, where c(A,b,¢) is a positive
number depending on the data (A,b,c). If (LP) and (LD) have integer
data with bit length L, then by the construction, the data of (HSDP) re-
mains integral and its length is O(L). Moreover, ¢(A,b,c) < 2F. Thus, the
algorithm terminates in O(y/nL) iterations and O(n3L) operations.

Now using Theorem 5.7 we obtain

Corollary 5.11 Within O(y/n(log(c(A4,b,¢)) + logn)) iterations and
O(n3(log(c(A,b,c)) +logn)) operations, where c(A,b,c) is a positive num-
ber depending on the data (A,b,c), the O(\/nlog(R/¢€)) interior-point al-
gorithm, coupled with the termination technique described above, generates
either optimal solutions to (LP) and (LD) or a certificate that (LP) or (LD)
is infeasible. If (LP) and (LD) have integer data with bit length L, then
c(A,b,c) < 2.

Again, ¢(A, b, ¢) plays the condition number for the data set (4, b, ¢).
Note that the algorithm may not detect the infeasibility status of both
(LP) and (LD). Consider the example where

A:(fIOO) b=1, and c:(Olfl).

y* =2, z*=(0,2,1)T, =0 6"=0, s°=(2,00)7" k=1
could be a strictly self-complementary solution generated for (HSDP) with
e =1>0, bvly*=2>0.

Thus (y*,s*) demonstrates the infeasibility of (LP), but z* doesn’t show
the infeasibility of (LD). Of course, if the algorithm generates instead z* =
(0,1,2)", then we get demonstrated infeasibility of both.

5.3.3 Further analysis

In practice, we may wish to stop the algorithm at an approximate solution.
Thus, we wish to analyze the asymptotic behavior of 7% vs. @*.

Theorem 5.12 . If (LP) possesses an optimal solution, then

1-2
> B

2 el D) for all k
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where T and (y,8) are any optimal solution pair for (LP) and (LD); other-

wise,
1-28
k
> n k
P2 Ty sy e
where T and (y,8) are any certificate for proving the infeasibility of (LP)
or (LD), and moreover,

1-283 <1—2,6<T’“<1+2,6<(eT:E+eT§+1)(1+2ﬂ)
2n+1) = Kb —OF = gF = (1—2p)

where € is a fized positive number independent of k.

for all k

=

K

Proof. Note that the sequence generated by the predictor-corrector algo-
rithm is in A(28). Note that

y'=ay, z¥=ar, T =a 6°=0, s =as, kK"'=0,

where
n+1 >0
a= —
e’z +els+1 ’

is a self-complementary solution for (HSDP). Now we use
(zF —2*)T(s* = ")+ (7F = ) (k* — k%) = 0,

which follows by subtracting the constraints of (HSDP) for (y*, ..., x*) from
those for (y*,...,k*) and then multiplying by ((y* —y*)7,..., k" — k*).

This can be rewritten as
(@) Ts* + ()T a* + kb7 = (n+ D)p* = (n + 1)6*.

Thus,
> > T = — — .
(n+ 1)uk n+1 (T +eTs+1)
The second statement, follows from a similar argument. We know that
there is an optimal solution for (HSDP) with

. TF Kk 1-268 , 1-283

sl
~ (eTz+eTs+1) '

Thus
ks 1-25
~ (eTz +eT5+1)
for all k. In addition, from relation (5.13) we have k% < (n+1)+(n+1)6* <
2(n + 1) for all k.
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O

Theorem 5.12 indicates that either 7% stays bounded away from zero
for all k, which implies that (LP) has an optimal solution, or 7% and 6%
converge to zero at the same rate, which implies that (LP) does not have
an optimal solution. In practice, for example, we can adopt the following
two convergence criteria:

o (a*/T)T(s" /) < €1, and (8% /7H)]|(b, 0) < €2,
o T <y

Here €1, €, and e3 are small positive constants. Since both (z¥)Ts* +
Tk Kk and % decrease by at least (1 — 1/y/n+ 1) in every two iterations,
one of the above convergence criteria holds in O(y/nt) iterations for ¢ =
max{In((z°)"s%/(e1€2)), In(||b, €||/(e2¢3)}. If the algorithm terminates by
the first criterion then we get approximate optimal solutions of (LP) and
(LD); otherwise we detect that (LP) and (LD) have no optimal solutions
such that ||(Z,5)]]1 < (1 —208)/es — 1 from Theorem 5.12.

5.3.4 Implementation

From the implementation point of view, each iteration of our algorithm
solves the linear system (5.14,5.15). It can be shown that

dg =v—1

Then eliminating ds and d,, we face the KKT system of linear equations:

Xkgk —XkAT  Xkerk (X’“)*ldz
AXk 0 —7kp d,
_chTXIc kaT Tkh;k (Tk)fld_r
ke — XFs _xks

0 f
= +(1- b
%uk _hk ( ) e
0

Thus, the dimension of the system is increased only by 1 over the case
when strictly feasible points for both (LP) and (LD) are known and used
for starting primal-dual interior-point algorithms. It seems that the benefit
of knowing a starting interior point is not great.
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5.4 Notes

Using the rank-one updating technique to improve the arithmetic operation
complexity of interior-point algorithms by a factor of /n was first due to
Karmarkar [173]. Gonzaga [122] and Vaidya [348] used this technique to
obtain the current-best LP arithmetic complexity bound O(n3L), see also
Mizuno [228] for a general treatment. Parallel worst-case complexity results
on interior-point algorithms can be seen in Goldberg, Plotkin, Shmoys and
Tardos [112, 113] and and Nesterov and Nemirovskii [262].

The convergence behavior of various interior-point trajectories was stud-
ied by Adler and Monteiro [5], Giiler [136], Lagarias [194], McLinden [212],
Megiddo and Shub [219], Monteiro [236] [237], and Monteiro and Tsuchiya
[245]. The analysis of identifying the optimal partition of variables at a
strictly complementary solution was due to Giiler and Ye [140]. Adler and
Monteiro [6], Jansen, Roos and Terlaky [158], Greenberg [131], and Mon-
teiro and Mehrotra [243] provided a post-optimality analysis based on the
optimal partition of variables.

The termination procedure described here was developed by Mehrotra
and Ye [224]. They also reported effective computational results for solv-
ing Netlib problems. A more recent termination or cross-over procedure
for obtaining a basic optimal solution is developed by Andersen and Ye
[13], Bixby and Saltzman [51], Kortanek and Zhu [189], and Megiddo [217].
Andersen and Ye proved a polynomial bound and showed its practical effec-
tiveness. For a comprehensive survey on identifying an optimal basis and
the optimal partition, see El-Bakry, Tapia and Zhang [85].

The homogeneous and self-dual algorithm is due to Mizuno, Todd and
Ye [386], which is based on the homogeneous model of Goldman and Tucker
[118, 344]. The algorithm is simplified and implemented by Xu, Hung
and Ye [369] (also see Tutuncu [346]). A combined phase I and phase II
algorithm was proposed by Anstreicher [20], also see Freund [97]. Other
infeasible-starting algorithms, which are very popular and effective, were
developed and analyzed by Lustig [202], Kojima, Megiddo and Mizuno

[180], Mizuno [230], Mizuno, Kojima and Todd [232], Potra [280], Tanabe
[317], Wright [367], and Zhang [389]. These algorithms start from some

3

2% > 0, s° > 0 and ¢°, then each iteration generates directions from

Ad, b— Axk,
—ATd, —dy = sk —c+ ATy,

and

Xkd, + S*d, = ~ypke— XFsk.
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Under certain conditions for choosing the initial point, these algorithms
have polynomial iteration bounds (e.g. Zhang [389] and Mizuno [230]).
A surface theory of all infeasible interior-point algorithms can be seen in
Mizuno, Todd and Ye [234].

There have also been efforts to look for lower bounds on the number of
iterations required; see Anstreicher [22], Bertsimas and Luo [46], Ji and Ye
[164], Powell [283], Sonnevend, Stoer and Zhao [307, 308], and Zhao and
Stoer [394]. One important recent result is due to Todd [327], who obtains
a bound of at least n'/? iterations to achieve a constant factor decrease in
the duality gap. The algorithm he studies is the primal-dual affine-scaling
algorithm, which is close to methods used in practical implementations. He
allows almost any reasonable step size rule, such as going 99.5% of the way
to the boundary of the feasible region, again as used in practical codes; such
step size rules definitely do not lead to iterates lying close to the central
path. The weakness of the primal-dual affine-scaling algorithm is that no
polynomiality or even global convergence has been established for it, except
for the case of very small step sizes, and practical experiments indicate that
the algorithm alone may not perform well.

Todd also showed that his lower bound extends to other polynomial
primal-dual interior-point methods that use directions, including some cen-
tering component if the iterates are restricted to a certain neighborhood of
the central path. Todd and Ye [331] further extended his result to long-
step primal-dual variants that restrict the iterates to a wider neighborhood.
This neighborhood seems the least restrictive while also guaranteeing poly-
nomiality for primal-dual path-following methods, and the variants are even
closer to what is implemented in practice.

Recently, Atkinson and Vaidya [350] used a combined logarithmic and
volumetric potential function to derive an algorithm for LP in O(n'/*m'/*L)
iterations. Their algorithm is simplified and improved by Anstreicher [21]
and Ramaswamy and Mitchell [284].

Condition-based complexity analyses could be found in Renegar [287],
who developed a general condition number and ill-posedness theory for the
generalized linear programming. See also Filipowski [91], Freund and Vera
[98], and Todd and Ye [332] for a related discussion. More recently, Vavasis
and Ye [362] proposed a primal-dual “layered-step” interior point (LIP)
algorithm for linear programming. This algorithm follows the central path,
either with short steps or with a new type of step called a “layered least
squares” (LLS) step. The algorithm returns an exact optimum after a finite
number of steps; in particular, after O(n35¢(A)) iterations, where c(A) is
a function of the coefficient matrix, which is independent of b and ¢. One
consequence of the new method is a new characterization of the central
path: we show that it composed of at most n? alternating straight and
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curved segments. If the LIP algorithm is applied to integer data, we get as
another corollary a new proof of a well-known theorem of Tardos that linear
programming can be solved in strongly polynomial time provided that A
contains small-integer entries. Megiddo, Mizuno and Tsuchiya [218] further
proposed an enhanced version of the LIP algorithm.

5.5 Exercises

5.1 Verify inequality

« n (1.1a)?
1.

k+1 _ky E kY « 7 i - 51 13
,PTH-p('T , 2 ) Pn+p(m y 2 ) = 1 mln( n+/627 ﬂ) + 2(1 — 110()

in Section 5.1

5.2 In the termination section, prove if both ||d;||eo and ||ds||c are less
than 1, then one must have xp > 0 and sy = ¢y — Agy > 0, which imply
that o* = P*.

5.3 Analyze the complexity bound if Ap has no full row rank in the ter-
mination procedure.

5.4 Prove that if the LP problem has integral data, then
((A,b,¢) <28 and £(A,bc) > 271,
where L is the size of the binary LP data.

5.5 Prove that the total number of required pivots in the process described
at the end of Section 5.2.1 is at most |o(zp.)] —m < n —m.

5.6 Prove Proposition 5.5.

5.7 Prove Theorem 5.10 for the predictor-corrector algorithm described in
Section 5.3.2.

5.8 Similar to £(A,b,¢) and ((A,b,¢), derive an expression for the condi-
tion number ¢(A,b,c) in Theorem 5.10. Prove that if the LP problem has

integral data, then
C(A7 b: C) S 2L7

where L is the size of the binary LP data.

5.9 If every feasible solution of an LP problem is large, i.e., ||x|| is large,
then the problem is near infeasible. Prove this statement using Theorem
1.11.
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Chapter 6

Average-Case Analysis

The idea of average-case analysis is to obtain rigorous probabilistic bounds
on the number of iterations required by an iterative algorithm to reach some
termination criterion. Although many interior point algorithms devised
in the last several years are polynomial time methods, in practice they
generally perform much better than worst-case bounds would indicate. A
“gap” between theory and practice exists that average-case analysis might
(at least partially) close.

There are two main viewpoints in the probabilistic analysis of algo-
rithms. First one can develop randomized algorithms, and show that, on a
worst-case instance of a problem, the average running time of the algorithm
has a certain bound, or the running time satisfies a certain bound with high
probability, or the running time always satisfies a certain bound and the
algorithm gives a correct answer with high probability, meaning converging
to 1 as the dimension of the problem goes to co.

Second one can consider the expected running time of a deterministic
algorithm when applied to problem instances generated according to some
probability distribution (or class of such distributions). For linear pro-
gramming, researchers have provided some theoretical justification for the
observed practical efficiency of the simplex method, despite its exponential
worst-case bound. Of course, this viewpoint might be less compelling, since
one can always argue that the distribution chosen for problem instances is
inappropriate.

Another minor viewpoint is the so called “one-step analysis:” at an
iteration we make an nonrigorous but plausible assumption concerning the
current data generated by the algorithm, and then address the expected
behavior or behavior which occurs with high probability at that iteration.
The anticipated number of iterations is then defined to be the number of

151
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iterations required if this behavior actually occurs at every iteration (or
at least once every, say, ten iterations). This analysis is distinct from the
two just described. As the reader will see, the assumptions we make at
each iteration can be inconsistent with one another. Nevertheless, such
an approach might add insight in the case where a more rigorous analysis
seems intractable.

In this chapter, we first develop a one-step analysis for several adaptive
interior-point algorithms described in Section 4.5, which all have complex-
ities of O(n'/?log(1/€)) or O(nlog(1/e)) iterations to attain precision e.
(Here we assume, without loss of generality, that (z°)7s® = R = 1.) Based
on the one-step analysis, we anticipate that these algorithms would only
require O(n'/*log(1/€)) or O((logn)log(1/€)) iterations, where n is the
number of variables in (LP).

We then develop a rigorous analysis, based on the second main view-
point of probabilistic analysis, of interior-point algorithms coupled with the
termination procedure described in Chapter 5. We will first show that a
random linear feasibility problem can be solved in O(y/nlogn) iterations
with high probability. Using the homogeneous and self-dual algorithm de-
scribed in Chapter 5, we then show that the expected number of iterations
required to solve a random LP problem is bounded above by O(y/nlogn).

Let us formally define high probability: an event in n-dimensional space
is true with probability approaching one as n — oco. Such an event is called
a high probability event. Note that a result based on high probability
may be stronger than the one based on the standard expected or average
analysis. We first derive some Observations:

1) Let events E; and Es be true with high probability. Then the event
E,; N E, is also true with high probability.

2) Let the event E; be true with high probability, and let E; imply Es.
Then the event F, is also true with high probability.

Observation (1) can not be induced to n events. However, we have
Lemma 6.1 Let n events be Ey, Es,..., E, and their complements be E.,
E,,..., E,, respectively. Then, if the probability

n
lim P(E;) =0,
j=1

then B4y N EsN...N E, is true with high probability.
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Proof. The proof simply follows

n

P(E\NEyN..NE,) >1-Y P(Ej).

j=1

6.1 One-Step Analysis

Consider two adaptive interior-point algorithms in Section 4.5: the predictor-
corrector and wide-neighborhood algorithms, with worst-case complexities
O(n'/?1og(1/€)) and O(nlog(1/e)) iterations to attain precision €, respec-
tively. The progress will be far greater in the predictor-corrector algorithm
if || Pq|| are typically much smaller than the bound given by Lemma 4.14.
From (4.23) and (4.24), the corrector step will be much better centered
than is guaranteed by Lemma 4.16, and the predictor step will be much
larger than O(n~'/?) by Lemma 4.17.

On the other hand, Lemma 4.14 shows that, for the wide-neighborhood
algorithm, ||Pg||s and ||Pql|, can only be bounded by a multiple of ||r||?,
not ||7]|2,, unless an extra factor of n is introduced. But ||r|| may be large
compared to |||/, which is related to 8 with (z,s) € N (B). Again, if
[|Pgll~ and ||Pq||5, are typically much smaller than the bound given by
Lemma 4.14, then the duality gap reduction will be far greater.

For now, we note

Corollary 6.2 Consider the predictor-corrector and wide-neighborhood al-
gorithms in Section 4.5.

i) If at a particular iteration we have ||Pq|| < n'/?p in the predictor step of
the predictor-corrector algorithm, then the duality gap at that iteration
will decrease at least by a factor of (1 — —2—).

14+4/14+8vn

ii) Let B and v be as in Theorem 4.20. If at a particular iteration of
the wide-neighborhood algorithm we have ||Pql|o < p*logn for N' =
N (B) and ||Pqllo, < p¥logn for N = N_(B), then the duality gap
at that iteration will decrease at least by a factor (1 — M) with

either Noo (8) or N (8). s

Proof. These follow immediately from Lemmas 4.17 and 4.19, and inequal-
ities (4.26) and (4.27).
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6.1.1 High probability behavior

In this section we provide heuristic arguments as to why we might expect
[|Pqll, ||Pqlleo, and || Pg||, to be of the sizes stated in the above corollary.
Recall that p and q are the projections of r € R™ onto the subspaces U and
U~ respectively. In this section we suppose r is fixed, but assume that

Assumption 6.1 U is a random subspace of R™ of dimension d :=n—m,
drawn from the unique distribution on such subspaces that is invariant under
orthogonal transformations.

Given that U is the null space of AX/2871/2 =. A, this assumption
would hold, for example, if each entry of the matrix A were independently
drawn from a standard normal distribution. Note that such assumptions,
made at different iterations and hence values of X and S, are not consistent
with one another. Further, for several interior-point algorithms the asymp-
totic behavior of (z*,s*) is known, and this behavior is also inconsistent
with our assumption, see the next chapter. We will comment further on our
approach at the end of the section. For now, we examine the consequences
on Pgq of our assumption. Note that to compensate for the deficiencies of
our assumption, the results we obtain hold with probability approaching
one as n — oo.

We now establish the following theorem.

Theorem 6.3 Let p = ||r||oo/||7]|. Then, with the assumption above,

i)
2 1/2
Pr <||Pq|| < @ <2p2 + %) > —1 as n— oo

ii)
Pr (||Pqll% < (log(n)/n)||r[|*) = 1 as n — occ.

Before we show how these results are proved, we indicate how they
relate to the bounds on ||Pg|| that form the hypotheses of Corollary 6.2.
In Corollary 6.2(i), we are analyzing the predictor step, so r = —(XS)'/?e
and (x,8) € Na(1/4). Hence ||7||*> = 2Ts = np and ||r]|%, = [|[X sl <
p+ || Xs — pe|| < 5u/4. Thus p? < 5/(4n) and by Theorem 6.3(i), with
probability approaching 1

||r||2< 5 6.5>”2_3||r||2

1Pl < = 2+ = 117 <n'/?y
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which is the hypothesis of Corollary 6.2(i).
For Corollary 6.2(ii), we consider first the case where N' = N_(3). Then
by Theorem 6.3(ii) and Lemma 4.15(iii), with probability approaching 1

1Pqlls, < (log(n)/n)llr[* < log(n)u",

which gives the hypothesis of Corollary 6.2(ii) in this case. Now suppose
N = Ny (B). Then with high probability

| Pl < log(n)u

as above. Also, by Lemma 4.14(iii) and Lemma 4.15(iii),

2 1 k k
4 4 2

Hence ||Pq||s < log(n)u* with probability approaching 1, which gives the
hypothesis for Corollary 6.2(ii) with A" = N ().
6.1.2 Proof of the theorem

Now we indicate the proof of Theorem 6.3. The proof of (i) is long and
technical and hence we omit it here. However, we will prove a slightly
weaker version of (i) at the end of this section.

A

\j

Figure 6.1: Hlustration of the projection of r onto a random subspace U

Because p and g are homogeneous of degree 1 in ||r||, we assume hence-
forth without loss of generality that r is scaled so that

g =1/2 satisfies ||g|| = 1.
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Let F' = (g, H) be an orthogonal n x n matrix. If we express the vector p
in terms of the basis consisting of the columns of F', we get

Lemma 6.4 We can write

p=(14()g+nHv, (6.1)

where % has a beta distribution with parameters % and F;n=+/1-(%

and v is uniformly distributed on the unit sphere in R™ 1.

Proof. Since p and ¢ are orthogonal with p + ¢ = 7, p lies on the sphere
of center r/2 = g and radius ||g|| = 1. Thus p can be written in the form
(6.1), with n = /1 — (% and ||v|]| = 1. We need to establish that ¢ and v
have the given distributions.

Note that [|p|]? = (1 +¢)? +1? = 2(1 + ¢). However, we can obtain the
distribution of ||p||? directly. The invariance under orthogonal transforma-
tions implies that we can alternatively take U as a fixed d-subspace, say
{z € R" : 441 = -+ = x, = 0}, and r uniformly distributed on a sphere
of radius 2. Then r can be generated as

<2>\1 2o 2>\n>T
AN 7 A

where A ~ N(0, ) in R™ (i.e., the components of A are independent normal
random variables with mean 0 and variance 1, denoted by N(0,1)). But

then .
2A1 22X, 2\ >
b= _7_7"'7_70:"'70 )
<||/\|| 1Al 1Al

and ||p||? = 4(A\ + -+ A2)/(A\} + - + A2). This has the distribution of
four times a beta random variable with parameter % and 7, which confirms
the distribution of (.

Now let W be an orthogonal matrix with W g = g. W can be thought of
as rotating the sphere with center g around its diameter from 0 to 2g = r.
We can view the random d-subspace U as the null space of an m xn random
matrix A with independent standard normal entries. The fact that p is the
projection of r onto U is then equivalent to Ap = 0, r —p = ATv for some v.
But then (AWT)Wp=0andr—Wp=Wr—-Wp= (AW")Tv, so that Wp
is the projection of r onto U’ = {x : (AWT)z = 0}. If A has independent
standard normal entries, so does AW, so U’ is also a random d-subspace.
Thus Wp has the same distribution as p. But writing W as HW'H™T 4 gg7,
where W' is an arbitrary orthogonal matrix of order n — 1, we see that v
has the same distribution as W'v. Since ||v|| = 1, v is uniformly distributed
on the unit sphere R"~!.
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O
Since p + ¢ = r = 2g, relation (6.1) implies
g = (1-¢)g—nHv, so that
Pq = n’¢* —2(nGHv — n*(Hv)? (6.2)
= —(Hv)’ + (ng — CHv)?
> —[[Ho[%e, (6.3)

where G := diag(g), and g%, (Hv)?, and (ng — (Hv)? denote the vectors
whose components are the squares of those of g, Hv, and ng — (Hv respec-
tively.

The proof of Theorem 6.3(i) proceeds by using (6.2) to evaluate || Pg]|?,
and then analyzing all the terms in the resulting expression. The proof of
Theorem 6.3(ii) follows from (6.3) (which gives ||Pql|~ < ||Hv|%) and the
following result:

Lemma 6.5 Let F' = [g, H] be an orthogonal matriz. If v is uniformly
distributed on the unit sphere in R"~ L,

logn

Pr <||Hv||00§ 3 >—>1 as n — oo.

Proof. Since v is uniformly distributed on the unit sphere in R* 1, it can be
generated as follows: v = A/||A||, where A ~ N(0,1) (the standard normal
distribution in R"~'). Hence we wish to obtain an upper bound on ||H ||
and a lower bound on [|A]|, both of which hold with high probability. Now
[IA]|? is a x? random variable with n — 1 degrees freedom, so

E(IIA1%)
Var(JAP) = 2(n - 1).

n—1,

From Chebychev’s inequality, we have
Pr(JA >(1—e)vVn—-1) =1 as n— oo (6.4)
for any € > 0.
Let Ag be a standard normal variable, and let X' = (Ao, A), also N (0, 1)
but in R™. Then ||| = max{v; : j =0,1,2,---,n — 1} where v; = ||
has the positive normal distribution. Then 1 — N (z) = 2(1 — N(x)) where

N; is the distribution function of v, and N is the normal distribution
function. It now follows from results in extreme value theory ! that

Pr (||/\’||Oo < 210g(2n)) — 1asn — oc.

1S. I. Resnick, Eztreme Values, Regular Variation, and Point Processes, Springer-
Verlag (1987), pp. 42 and 71.



158 CHAPTER 6. AVERAGE-CASE ANALYSIS

Since F\' is also N(0,1),
Pr (||FX||OO < 210g(2n)) 1 asn — oo.

Now we have
I1H oo < 1FN oo + [IMoglloo-

Since [lgl] = 1,

Pr (||/\gg||DO < e\/logn) —lasn— o0

for any € > 0. From the above relations and (6.4), we get the result of the
lemma.

|

We conclude this section by showing how (6.2) and Lemma 6.5 imply a
slightly weaker form of Theorem 6.3(i). Indeed, (6.2) yields

1Pl 11192 + 21¢nlllglloo | H ol + 57| (Hv)? |
lIgllscllgll + 2[lglloc + [[Hvlloo| [ Hvll

= 3p+[|Ho|l.

<
<

By lemma 6.5, this is at most 3p + /3log(n)/n with probability ap-
proaching 1 as n — oc. This bound would lead one to hope that ||Pql|
would be at most (nlog(n))'/?u at a typical predictor step. The predictor-
corrector algorithm, with the worst-case bound O(y/nlog(1/e)), would re-
quire at most O((nlog(n))'/*log(1/€)) iterations of this type, while the
wide-neighborhood algorithm, with the worst-case bound O(nlog(1/€)),
would require at most O((logn)log(1/¢)) iterations of this type.

6.2 Random-Problem Analysis I

We now develop a rigorous analysis, based on the second main viewpoint
introduced at the beginning of the chapter, of interior-point algorithms
coupled with the termination procedure described in Chapter 5. We use a
simple problem, the homogeneous linear feasibility problem, to illustrate the
analysis and show that a random such problem can be solved in O(y/nlogn)
iterations with high probability.

Consider finding a feasible point for the homogeneous linear system

F={z:Az=0, x>0, z#0} (6.5)



6.2. RANDOM-PROBLEM ANALYSIS I 159

We assume that A € R™*" has full row-rank. Let us reformulate the
problem as a Phase I LP problem

minimize z

subject to Az + (—Ae)z =0, elz =1, (z,2) >0, (6.6)
and its dual
maximize A (6.7)

subject to s= ATy —eX >0, s.=1+eTATy > 0.

Obviously, LP problem (6.6) has nonempty interior, its optimal solution
set is bounded, and its optimal objective value is 0 if and only if F is non-
empty. In fact, we can select an initial feasible point as 2° = e/n, 2° = 1/n

for the primal, and ¥ = 0, A\ = —1, s = e and s? = 1 for the dual.
Thus, (2°,2°) and (y°, \°) are “centered,” and the initial primal-dual gap
is (1+1/n).

We now specialize the termination procedure proposed in Chapter 5 for
solving problem (6.6). Suppose A = (Ap, Az), where

P={j: :U;“Zsf} and Z={j: a:f<sf}
We solve the least-squares problem
(PP) minimize I(XE) 1 (zp — b))
subject to  Ap(zp —zk) = Ay zh + (—Ae)2*.
and
(DD) minimize [|(S3) "' AZ(y — y")
subject to  AL(y —y*) = sk.
Here, we have ignored variable z and the last (normalization) equality con-
straint e’z = 1 in the problem when we apply the termination projection.
In particular, if A = Ap, then the minimizer 2* = 2% of (PP) satisfies
(XE) Tz —2%) = XPAT (A(XF)2AT)(—Ae)2F.
Thus

IXF) 7 — )
[ XEAT(A(XF)2AT) (- Ae)2"||
[ XEAT(AXF)2AT)AXH(XF) 7T AT (AAT) 7! (- Ae)2"|
[XFAT(AXF)?AT) AXH|(XF) 7T AT (AAT) (-~ Ae)2t|
[(X*)71 AT (AAT) " e (2]
X)) AT(AAT) ™" e[| 2]
Ve[ (X5) 7.

VAN VANRVANRPVA
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(Note that ((A,b,c) defined in Section 5.2.1 is less than or equal to y/n
here.) This implies that if min(z*) > \/nz*, then the projection z* satisfies

1(XF) 1 —ef| < Vn2t[|(X") Y < 1, (6.8)

and z* must be a point in ]Ci‘

Let the optimal partition of problem (6.6) be (P*,Z*). If system (6.5)
has an interior feasible point, then A = Ap- and z* = 0. Using Theorem
5.4 with a = 1 in (5.7), we have, when the duality gap z¥ — ¥ < ¢2/n?,

sk <& <&n<ak, jeprt and s >¢/n>¢m?>al jezr

or
ns§<m§,j€P* and s§>nmf jEZ",

3

where recall from (5.3) that for the standard LP problem

6 = S(A, b7 C) = min{ép: £d}
Thus, in O(y/n(|log&|+logn)) iterations we have Ap = A} = A and (6.8),

and therefore we generate an interior-point in _;‘

Consider the case that system (6.5) is empty, then the optimal value
2* = X* of problem (6.6) is positive and we can choose y = y* in (DD) and
have

s=—ATykF = g% 4 eXF.

Thus, if A¥ > 0, then we must have s > 0 which proves that F is empty
from the Farkas lemma. Note that in O(y/n(|log z*| + logn)) iterations we
have the duality gap z¥ — A*¥ < z* or A¥ > 2% — 2* > 0.

Let us estimate & for problem (6.6) if system (6.5) has an interior feasible
point Z such that

p(l/n) <z; <p(n) for j=1,2,..,n+1, (6.9)

where p(a) is a polynomial a for a constant d > 1. Then, for problem
(6.6) we must have

& 2 p(1/n)/(np(n)) and & =1,

since (/eTZ,0) is a primal optimal solution and § = 0 is a dual optimal
solution with § = (0, 1)T. Thus, £ > p(1/n)/(np(n)).

On the other hand, if system (6.5) is empty then {s: s = —ATy > 0}
has an interior feasible point (y, 5). Let (y, 5) satisfy

p(1/n) <5; <p(n) for j=1,2,..,n+1 (6.10)
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Then, the dual LP problem (6.7) has a feasible point y = jj/e’'5, s = 5/e’3,
A =min(s), and s, = 0. Thus, z* > X > p(1/n)/(np(n)).
To summarize, we have

Theorem 6.6 Let p(a) = a for a constant d > 1 and let the homogeneous
system (6.5) either have a feasible point & satisfying (6.9) or be empty with
an 5 = — A"y satisfying (6.10). Then, finding a feasible point for system
(6.5) or proving it empty can be completed in O(y/nlogn) iterations by
an O(y/nlog(1/€)) interior-point algorithm, where each iteration solves a
system of linear equations.

We emphasize that £ or z* is a non-combinatorial measure of the fea-
sible region F or its dual. For an LP problem (as opposed to a feasibility
problem), £ or z* is determined by the geometry of the optimal face.

6.2.1 High probability behavior

From Lemma 6.1 we can derive several propositions.

Proposition 6.7 Let 2, j = 1,2,...,n, have the identical standard Gauss
distribution N (0, 1) and condition on the event that ; > 0 for j =1, ..., n.
Then, with high probability

p(1/n) <&; <p(n) for j=1,2,..,n.

Proposition 6.8 Let #;, j = 1,2,...,n, have the identical Cauchy distri-
bution, i.e., the quotient of two independent N(0,1) random variables, and
condition on the event that £; > 0 for j = 1,...,n. Then, with high proba-
bility

p(1/n) <&; <p(n) for j=1,2,..,n

Proposition 6.9 Let Ag, A1,..., Am be independent N(0,1) random vari-
ables and condition on the event that \; < |Xo|/Vd fori=1,...,m (d =
n—m > 1). Then, the non-negative random variables, &; := 1 —\/d\;/| o]
fori=1,...,m, satisfy

p(1/n) <& <p(n) for i=1,...,m,
with high probability, where p(n) = ne for some constant d.

The first two propositions are relatively easy to prove. To prove the
third, we first prove a similar proposition:
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Proposition 6.10 Let Ao, A1,..., Ay, be independent N (0,1) random vari-
ables and condition on the event that \; < |Xo|/V/d fori=1,...,m (d =
n —m > 1). Then, the non-negative random variables, x; := |Xo|/Vd — \;
fori=1,...,m, satisfy

p(1/n) <y <p(n) for i=1,...,m,
with high probability.

Proof. In proving Proposition 6.10, we fix p(n) = n*. Let f(\) be the

probability density function of N(0,1),
P(m) ::P(wl ZO7ZE2 207"'::17771 2 0)

and
P(m —1):=P(z2 >0,...,2ym > 0).

Also note that |N (0, 1)| has the probability density function 2 f(A) in [0, 00).
Then, we have

P(m)
= P(zx; >0,20>0,...,2, >0)

[ 2f<Ao>/f f(m/f f(&)---/f f(Am)f[dAz-

m

/OOO 2f(/\o)/ooo f(/\l)/ooo f(,\z).../ooo f(/\m)l:[d/\i

- )

We also have

v

P(m)
= P(x;1 >0,20>0,...,2, >0)

/OOOQf(Ao)/% f(Al)/% f(/\Q).../% f(/\m)f[d,\i
| 2on/ m/g (ha)- /f m)ﬁdki
= (1/2)/0 Qf()\o)/ F(A) - /f d>\i

= P(m-1)/2.

Y
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Consider the probability

P =Pz <p(l/n)|z1 >0,...,z,m > 0).

We have
P
1 i f ~f M
= P—m)/o 2f(Xo) - /\1/ / Hd/\i
1 * 1 v Vi -
< —P(m)/o 2 () %nq(ﬁ)/m f(m.../m fom [T
_ nlPm-1)
~ V2r P(m)
277,74 —9
< 2 —ow)

Now consider the probability
P = P(zy > p(n)|z1 >0, ..., 2, > 0).
We have
Py

- ﬁ/ﬂmmxo)/%# () /” ) /ﬁf(/\m)Hd/\z'
N Y
+ﬁ/:2f(xo)/fn4 Al/ F)- /f ﬁd&

= PT+pP".

For P|'t, we have

Pt
1 H-nt 7 % M
1
<

m/ﬂz 2f(Ao)dXo
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oo 2 9
- —x2/2
e /n2 5 exp(—z-/2)dz
1 2

—[exp(—a?/20")]" d(w/n?)

< —/OO el exp(—(n* — 1)/2) exp(—2?/2n*)d(z/n?)

_ n exp(;((v:n - 1/2) /1°° Ji_ﬂexpwmd(w)
2"n? exp(—(n* —1)/2)
= 0O(n?

IN

for n large enough. For P/*, we have

prt
s |20 [T g0 [T o [T 11

< L /"22f<A>/”W"4f<A>/%f<A>---/%f<A ne

>~ P(m) o 0 ] 1 e N 2 ] o J m P 7
_ n?/Vd—n*

< %/ ' f(A)d\
n?/Vd—n*

< 2/ " Fndn

. / FOW) A,
n*—n2/Vd

= 0O(n?).
Thus, the probability, Py, that either 0 < z1 < p(1/n) or 1 > p(n)

satisfies
P =P +P =P +P"+P"<0n?)

The same result holds for P;, i = 2,...,m, the probability that either 0 <
z; < p(1/n) or x; > p(n). Thus, we shall have

m

which approaches zero as n — oco. Using Lemma 6.1 we prove Proposition
6.10.
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O

In a similar manner, we can prove that P(n=? < |[\o| < n?lzy >
0,...,x, > 0) approaches 1 as n — oo. This leads to the final proof of
Proposition 6.9 for d = 7.

In the next section, we prove that the conditions in Theorem 6.6 are
satisfied with high probability for some random LP problems.

6.2.2 Random linear problems

Let A € R™*™ of the homogeneous linear system (6.5) be standard Gaus-
sian: Each entry of A is independently distributed as a standard Gauss
random variable.

Since each column, a;, of A is also standard Gaussian, a;/||a;|| is uni-
formly distributed on the unit sphere in R™. This is a special case of a
rotationally-symmetric distribution. Denote by d = n—m. Todd has shown
that the null space of A is an d x n standard Gaussian matrix.

Corollary 6.11 The probability that system (6.5) has a feasible point is

(”51)+.._+(’;j>.

2n71

Pnd =

Corollary 6.12 The probability that system (6.5) has an interior feasible

point is
n—1 I n—1
0 d—1

2n71

Pnd =

Proof. From the strictly complementary property of linear systems, this
probability is the probability that the dual

s=ATy >0, s#0 (6.11)
is infeasible. However, the latter probability is exact
L = Pnm = Pna-
O

Theorem 6.13 With probability one, exactly one of systems (6.5) and
(6.11) is empty and the other has an interior feasible point.

Proof. The probability that (6.11) has an interior feasible solution is pym,-
Note that these two events are exclusive, and p,q + Prm = 1.
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O

We now prove another lemma.

Lemma 6.14 System (6.5) is feasible if and only if there is a partition
A= (Ap, An), where Ag is m by m, such that

Aprp + (An€)Tymi1 =0, #0 and z>0 (6.12)
is feasible.

Proof. It is obvious that system (6.12) being feasible implies that (6.5)
is feasible. Conversely, if (6.5) is feasible, then it implies that 0 belongs
to the polytope P defined as the convex hull of the columns of A. Let
(a1, as,...,aq) be a minimal affinely independent set of columns of A such
that 0 belongs to the convex hull of (ai,as,...,aq). By Carathéodory’s
theorem d < m + 1, if d < m + 1, take as columns of Ag as (a1,as, ..., aq)
plus m — d any other columns of A. If d = m + 1, then there is an (m + 1)-
vector @ such that

(ar1,a2,...,ams1)u =0 and u > 0.

Let b be the sum of the rest of the columns in A, and let (v, 1) be a vector
in the null space of the matrix (a1, as, ..., amy1,b) (since b can be expressed
as a linear combination of (aj,as, ..., am+1)). Then, for scalars a and 3,

(i) o4(})

is also in the null space of (ai,as, ..., Gma1,b). Let

k= argmin{? s j=12,..,(m+1)}.
Uj

If oy = 1, then select a® = 0 and 8* = 1; if vy < 1, then select a® = 1 and

8% = uy /(1 — vg); else select a* = —1 and B* = ug/(vx — 1). In all of the

three cases, z* = z(a*, 3*) > 0 and x} = z}, . In other words, the lemma

is true by selecting Ap = (@1, .oy Gk 1, g1y ey Qp1)-

O

Let us call the partition satisfying the condition in Lemma 6.14 a basic
feasible partition. We now analyze a feasible solution of (6.5) or (6.11). We
develop the following result.
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Theorem 6.15 With high probability, a feasible point of system (6.5) or
(6.11) satisfies condition (6.9) or (6.10), respectively.

Proof. Let (Ap, An) be any partition of A and b = Anye/v/n —m. Con-
sider the system

(A, D)z =0, xz#0 and =z >0. (6.13)

Since (Ag, b) is standard Gaussian, the vector & in the null space of (Ag, b)
is the line generated by a standard Gauss random vector (A1, A2, ..., At1),
that is,

’)AL‘ZZ(SAZ for 1=1 2,...,’[77,4—17

3

where ¢ is a scalar. Without loss of generality, we can let § > 0. Hence,
(Ap, An) is a basic feasible partition or % is feasible for system (6.13) if
and only if z; = A\; > 0 for ¢ = 1,2,...,m + 1. Thus, each component of
a feasible solution of (6.13) has the identical distribution |N(0,1)|. Thus,
due to Proposition 6.7, with high probability

p(1/n) <& <pn) for i=1,2,...,m+1.
Note that & induces a feasible solution for system (6.5) by assigning
g = (&1, &p)" and zx = (Zmi1/VR — m)e.

This completes the proof for (6.5).
The same result applies to the dual slack vector s of system (6.11) when
it is feasible, where m is replaced by n — m.

Based on Theorems 6.13 and 6.15, we have the final result

Theorem 6.16 With high probability the homogeneous random linear fea-
sibility problem (6.5) can be solved in O(y/nlogn) iterations.

Proof. From Theorem 6.13, with probability one either A = A}, or z* > 0
for problem (6.6) associated with (6.5). Then from Theorem 6.15, with high
probability, there exists positive primal variables or positive dual slacks (not
both) satisfying condition (6.9) or (6.10). Thus, the theorem follows from
Theorem 6.6.
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Note that the non-homogeneous linear system
x>0, (6.14)

where (A, b) is standard Gaussian, can be solved by solving the system
(6.5) with A := (A, b), which remains standard Gaussian. Note that system
(6.14) is feasible if and only if b € P* where (P*, Z*) is the optimal partition
of problem (6.6). Thus,

Corollary 6.17 With high probability the random linear feasibility problem
(6.14) can be solved in O(y/nlogn) iterations.

6.3 Random-Problem Analysis II

This section analyzes the average complexity of interior-point algorithms
for solving the probabilistic LP model of Todd. This model allows for de-
generate optimal solutions, and does not provide a feasible starting point.
We refer to this model as “Todd’s degenerate model.” The lack of an initial
solution in the degenerate model is problematic for many interior point al-
gorithms, which require an interior solution to start. We obtain a bound of
O(y/nInn) iterations for the expected number of iterations before termina-
tion with an exact optimal solution, using the homogeneous and self-dual
algorithm of Chapter 5 as applied to this model.

Denote by Fj the set of all points that are feasible for (HSDP). Denote
by F} the set of strictly feasible (interior) points in Fj, with (z, 7, s, %) > 0.
It is easily seen that (HSDP) has a strictly feasible point: y =0, x = e >
0, 7=1,0=1,s=e>0, k=1.

From Theorem 5.7, it is clear that the key to solving a LP problem,
or alternatively detecting its infeasibility or unboundedness, is to find a
strictly self-complementary solution to (HSDP). Many interior point algo-
rithms might be used to solve (HSDP), as long as they generate a sequence
or subsequence of feasible pairs which converge to a strictly complemen-
tary solution of the problem being solved, such as the predictor-corrector
or wide-neighborhood algorithm described in Chapter 4. By using the
analysis employed in Section 5.3, with 8 = 1/4, we generate a sequence
(y*,zk, 7% 6% sk kk) € N(B), and

6k+1 k+1 2
I (6.15)

k | )
0 H 14+ 4/14+4v2(n+1)
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6.3.1 Termination scheme

In this section we consider the problem of generating an exact optimal
solution to (HSDP). For simplicity, we denote

u:<m>€72”+1, v:<s>eR”+1.
T K

To begin, let (u*, y*,v*,8* = 0) be any strictly self-complementary solution,
i.e., u* +v* > 0. Note that

efu +eTv =eTa* +17° +el's* + k" =n + 1.

Define
op=4{i:0<i<n+1, uj >0}, and & = min(uj +v;).
2

We refer to o} as the self-complementary partition of (HSDP), and clearly
0 < & < 1. Our goal here is to use the iterates (u*,v¥) of the algorithm to
eventually identify the complementary partition, and to generate an exact
optimal solution of (HSDP). Using the techniques developed in Chapter 5,
we can prove the following result.

Lemma 6.18 Let ( = (1 — )& /(n+1). Then in order to obtain v% <
(< uf Jj €op, and uf <(< vf, j ¢ oy, it suffices to have

3

]- - ﬂ *\ 2
oF < m(gh) . (6.16)

k

3

Given an iterate (z* 7% y* s* k¥), let Ap denote the columns of A
having :Uf > sf and let zp denote the corresponding components of z.
Similarly let A, and sz denote the remaining columns of A4, and the corre-
sponding components of s. Note that (6.15) implies that % — 0, so Lemma
6.18 implies that eventually we always have P = o} \ {n + 1}. In what fol-
lows, we assume that k is in fact large enough so that P = o} \ {n + 1}.
We employ the following projections to generate an exact optimal solution.
We distinguish two cases:

Case 1. (7% > kF). Find the solution %, of

(PP1) min ||.77p7.77f3||

s.t. Apﬂfp:ka.
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If #% > 0, then compute the solution g* of

(DP1) min ||szf.s]§||

st. ALy =cpr*

k T
cxT — Ayy = sy,

and set
ok k Tk k T~k k
Sy =czTmh — Ayt = s, — Ay (9" —y").

Case 2. (7% < kF). Find the solution 3%, of

(PP2) min ||azp—a:§3||

s.t. Apxp =0.
If #% > 0, then compute the solution g* of

(DP2) min |[sz — S%||
st. ALy=0, ~ALy =sy,
and set 85 = —ALg* and &% = "% — cLak.

According to Lemma 6.18, exactly one of the above cases occurs for
all sufficiently large k. Also, Case 1 eventually occurs exactly when (LP)
has an optimal solution, in which case (PP1) and (DP1) are both clearly
feasible. In what follows, we consider Case 1 only, since our random model
always has a solution.

It is easily seen from the definition of (HSDP) that:

(PP1) is equivalent to

min ||:Up - a:j,%”

7 1
st. Ap(zp — k) = Ak + bok; (6.17)
(DP1) is equivalent to
min  [lez6* — AZ(y — y")]|
st AL(y —y*) = cpb" + s, (6.18)
because
sty — sy = AL (y" — y*) + ez0". (6.19)

From (5.4) and 8% — 0, we conclude that (2%, s&) — 0 as k — oo, and
also k¥ — 0 if {n + 1} € o}. Using these facts and (6.17)—(6.18) we can
easily deduce that

(3% —2%) 5 0and (8% —sb) 50 as &k — 0.
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From this relation and Lemma 6.18 it follows that (2%, 7% > 0,3%) > 0 (if
k is large enough) is a strictly complementary solution to (HSDP).

The above discussion shows that our projection scheme works provided
k is large enough. Below we give a more precise characterization of this
fact. Again, for our probabilistic model, to be described below, only Case
1 occurs provided k is large enough. Therefore in what follows we assume
that £ is large enough and that we are always in Case 1.

A matrix Ap satisfies the Haar condition if every square submatrix of
Ap is invertible. It is well known that the standard Gaussian matrix Ap
is a Haar matrix with probability one. Thus, for the purposes of studying
probabilistic behavior, we only have to deal with matrices that satisfy the
Haar condition. Let AB denote any square submatrix of Ap with its full
row or column dimension. Also, if Ap has more rows than columns, let A,
Ay, and b denote the le—correspoqding rows of A, Az, and b, respectively;

Otherwise, A = A, Ay = Az, and b = b. Then we have

Lemma 6.19 Let (3 > 0,7 > 0,y*,s% > 0) be any strictly (self) com-
plementary solution for (HSDP). Then Case 1 occurs and (PP1) generates
% >0 and 8% > 0 whenever

gt < a-pE?
T (n+ 1201+ i | A5t Ag)

Proof. Assume that (6.20) holds. Since (6.20) implies (6.16), we have

% > gk and P must be the self-complementary partition o} \ {n + 1}, by
Lemma 6.18. From (6.17), the constraint in (PP1) is clearly equivalent to

Ap(zp —2b) = Ayzh + (b — Ae)d*,

(6.20)

and it is consistent. Note that b = Apx},. We have

Ap(zp — b + eb® — 250%) = Ay (ah, — eh*). (6.21)
One solution to (6.21) is

zp — ot +eft — a0t = AL Ay (ah, — ebF)
if Ap has more rows than columns, or

A1 k _ ,pk
mpm’;g+60km}‘30’“:<ABAZ($z 69)>

0

otherwise. Thus, the solution 7% of (PP1) must satisfy

&% — 2h| < HA;AZ(;U’; - eGk)H 05 fle— ab| - (6.22)
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For the first term in (6.22), we have

At Ay (o — eGk)H

IN

|45t Az [t - e6¥]

IN

max{max(m'gx 6} |l

i
< O i

where the last inequality is from (5.5). For the second term of (6.22), we
have

0 lle—apll < 6%/ P = 2T + [l
< o \/\P\ —2elay, + (eTa})?
< B+,

since eT'z}, < n + 1. Substituting the above two inequalities into (6.22)
results in

a?ﬂ% —561;3”

IN

1
n+ \/|Z HA 1AzH+ (n+1)6

(HfHA o+ (6.29)
h

IN

0 (6.20), (6.23) and (5.7) imply that &% > 0.
Now consider (DP1). From (6.18), the constraint in (DP1) is clearly
equivalent to
Ab(y = y*) = (cp — )" + sk
and it is consistent. Note that cp = PTy*. We have
Ab(y —y* —y* %) = sk — eb*. (6.24)

Similarly, the solution g% of (DP1) must satisfy

— sk < HAT (AT)"1(s ’;,feak)H + 6% |le — s3] (6.25)

For the first term in (6.25), we have

AL (AR) (s — eth)|

IN

|45t Az | |15t — 6]

IN

max{max(s’;,),ak} lell HA*AZH

1)6
< ”+ (4 16% HA il
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where the last inequality is from (5.5). For the second term of (6.25), we
have

B e — syl < 6%y/12] 26Ty + ||s3?
< 0512 - 2T + (eTsy)?
< B+ 1).

Substituting the above two inequalities into (6.25) results in

- skl < %\/WHAB%@ZH‘F(H-FI)QIC
< (1+\/EHA,;AZH)(n+1)%, (6.26)

so (6.20), (6.26) and (5.7) imply that % > 0.

6.3.2 Random model and analysis

In this section we describe a random LP model proposed by Todd, and
perform a probabilistic analysis of the behavior of the homogeneous and self-
dual algorithm, using the finite termination scheme described above. We
will refer to the model under consideration as “Todd’s degenerate model.”

Todd’s Degenerate Model. Let A = (A4, Ay), where A4; is m x n;, n; >
1, n1 + no = n, and each component of A is i.i.d. from the N(0,1) distri-

bution. Let
p=( % s=( 0
' - 0 ) - §2 3

where the components of #; and § are i.i.d. from the |N(0,1)| distribu-
tion. Finally let b = AZ,c = § + AT#. We assume that either # = 0, or
the components of 7 are i.i.d. from any distribution with O(1) mean and
variance.

Clearly this model allows for degenerate solutions, and produces in-
stances of (LP) having no easy feasible starting point. This presents an
obstacle for most interior point methods, which require interior feasible
points for initialization. Since an instance of Todd’s degenerate model al-
ways has an optimal solution, it follows from Theorem 5.7 that n +1 € o}.
Therefore, if the homogeneous and self-dual algorithm described in Chapter
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5 is applied to an instance of Todd’s degenerate model, we are eventually
always in Case 1.

Now, we begin a probabilistic analysis of the self dual algorithm equipped
with the termination scheme described in the preceding section. Since our
finite termination criterion in Lemma 6.19 depends on &}, from a strictly
complementary solution (z*,7*,s*) to (HSDP), we must first infer a valid
value of & from the given strictly complementary solution (z, §) for (LP)
and (LD).

Let

€ = min(é + §) = min ( zl > ,p=1+e"i+es (6.27)

Note that z* = (n + 1)z/p, 7* = (n+ 1)/p, y* = (n + )7 /p, * = 0, and

s* = (n+1)§/pis a strictly self-complementary solution to (HSDP). Thus,
we have the following proposition.

Proposition 6.20 Consider Todd’s degenerate model with optimal solu-
tion (Z,8). Then there is a strictly self-complementary solution (x*, 7%, y*, s*, k*)

to (HSDP) such that £ > £/p.
This proposition and Lemma 6.19 lead to

Lemma 6.21 Consider an instance of Todd’s degenerate model, and leté
and p be as in (6.27). Suppose that k is large enough so that the following
inequality is satisfied:

0’6 < (1_ﬂ)£2 _ _
T (n+ 1221+ VallAG Ay

(6.28)

where
APZAl {md AZ:A2.

Then (PP1) and (DP1) generate solutions &% > 0 and g*, 3% > 0, so that
& = (2p,0) and 9,3 = (0,3%) solve (LP) and (LD), where ip = &% /7%,
9 =9%/7%, and 5, = 3% /r*.

Using the criterion in the previous lemma, we can terminate the algo-

rithm once (6.28) holds. From 6° = 1, (6.15), and (6.28), this definitely
happens if

k

2 (1-B)¢2

< —
1+/1+42n+1)) — +D22(01+ Val Az Agl)

gk < [1-



6.3. RANDOM-PROBLEM ANALYSIS 11 175

which requires
k= 0(v/n) (lnn +1np+In(l + oAz Azl — 1n£) .

We now introduce a lemma which is frequently used later and whose
straightforward proof is omitted.

Lemma 6.22 Let ¢ and 7 be two continuous random variables, with sample
space (0,00). Define the new variables & = min({,n) and p = max((,n).
Then, for any x > 0,

fe(@) < fe(o) + folx) and  f,(z) < fe(x) + fo(2)

where fy (-) is the probability density function (p.d.f.) of a random variable
X.

Let A have distribution |N(0,1)| with the p.d.f.
f(@) = V3T exp(—52/2).
Then,

R 1/n oo
E(In¢) /0 Inzf(z)de + /1/ Inzf(x)de

1/n
> —1nn+/ Inzf(z)dz
0

1/n
> flnnf/ |111’I‘|f£(’1‘)d’1‘
0

Using Lemma 6.22, we have

1/n 1/n
[ imali@as < a [ i@
1/n
< n\/2/7r/ |In 2| exp(—z?/2)dx
0
1/n
< n\/2/7r/ |In z|dz
0
1/n
= 771\/2/71’/ In zdx
Jo
= ny2/x(1+1nn)/n

< l+Inn.
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Also, we have
E[lnp] = E[ln(1 + "% +¢e"8,)] <In(1+ E[e”# + e’ s5]) = O(Inn).

Moreover, consider

1/2
Elln(1+ val|Ag' Az < B |In[1+va | Y A5 4|
j€Z
1/2
< E{ln|(1+vn) [ 121+ 1451407
JEZ

= 1+ V) + (1/29)E [InZu + ||A;aj||2>] ,
= |
where a; is the jth column of A. Note that (AB7 —a;) is a Gaussian matrix,
AB a; has the distribution of the Cauchy random variables \;/A¢ where
Ai, i =0,1,. . |Ag|, are independent N(0,1) random variables. Note that
|Ap|, the dlmensmn of Ap, is less than or equal to m. Without losing
generality, we assume |Ag| = m. Hence

- N+ A2+ .+ A2 3
1+ || Az a)° ~ 22— 2 o~ g
0 Vi

where 12 has a chi-square distribution with m+1 degrees of freedom, x?(m+
1), and v; is a [N(0,1)] random variable. Thus,

maxjeZ{U?}

minjez{ujz}
= Ellnmax{nj}] - Elln(min{;})’]
= E[ln7?] — E[ln(»)?].

Using Lemma 6.22 again, we have

Eln) (1+ |45 a)]

jez

IN

E[ln ]

5
=)
>
N
I

/000 Inz fzo (z)d
ln(/oDo z fze (x)dx)

IN
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IN

([ 2121,p(w)d)

IN

1n(|Z|/0Oo T fp2 (x)dx)
In(|Z|(m + 1)),

where 7? is a x?(m + 1) random variable, whose expected value is m + 1.
Finally,

E[ln(p)?] = 2E[n7]
2/0 Inzf;(z)dz

1/n [
= 2/ lnmf,;(m)dm-l—?/ Inzf;(z)de
Jo 1/n

1/n
> 721nn+2/ Inzf;(z)de
Jo

1/n
> 721nn72/ |1n x| f; (z)dx
Jo

and
1/n 1/n
/ |Inz|f;(z)de < / |Inz||Z|fr(z)dx
0 0
1/n
< \Z\\/Q/ﬂ'/ |In 2| exp(—z?/2)dx
0
1/n
< \Z\\/Q/ﬂ'/ | In z|dx
0

< Z|W/2/x(1+1nn)/n
< 14Inn.

Therefore, termination occurs on an iteration k, whose expected value
is bounded as

E[k] < O(V/nlnn).
Thus we have proved the main result:

Theorem 6.23 Assume that the homogeneous and self dual algorithm, us-
ing the termination scheme described in the preceding section, is applied to
an instance of Todd’s degenerate model. Then the expected number of iter-

ations before termination with an exact optimal solution of (LP) is bounded
above by O(y/nlnn).
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6.4 Notes

For examples in linear programming randomized algorithms, we cite the
recent paper of Seidel [299], who gives a simple randomized algorithm whose
expected running time for (LP) is O(m!n), and the references therein.

For the expected running time of the simplex method, a determinis-
tic algorithm, when applied to LP instances generated according to some
probability distribution (or class of such distributions), see Adler, Karp and
Shamir [2], Adler and Megiddo [3], Borgwardt [60], Megiddo [215], Smale
[305], Todd [325], and the references cited there.

“One-step analysis” of a variant of Karmarkar’s method can be seen in
Nemirovsky [256]. Similar analysis of a primal-dual method can be seen
in Gonzaga and Todd [130]. The analysis described in Section 6.1 is due
to Mizuno et al. [233]. Let us describe a possible program to make one-
step analysis rigorous. Suppose we assume that our original problem (LP)
is generated probabilistically as follows: the entries of A are independent
standard normal random variables, b = Ae and ¢ = ATy + e for some y.
Then (z,s) = (e, e) is an initial point on the central path C. Moreover, for
all of our algorithms, r is a multiple of e and U is a random subspace with
the orthogonal transformation-invariant distribution. Hence our analysis
holds at the initial iteration. We now apply an algorithm which requires
that each iterate lies in C and hence r = e at each iteration. However,
the null space U of AX'/25-1/2 will have a different induced distribution
at later iterations. We could hope that before (z,s) gets too close to an
optimal pair, this induced distribution is somewhat close to what we have
assumed in Section 6.1.2, so that its Radon-Nikodym derivative with respect
to our distribution is suitably bounded. In this case, the probability that
|| Pql| exceeds n'/?p, which is small under the distribution we have assumed,
will also be small under the distribution induced by the initial probabilistic
generation of (LP). Hence, for most iterations, the improvement in the
duality gap would be as in Corollary 6.2. A great number of difficulties need
to be resolved before such an approach could succeed. We would probably
need bounds on how fast the probabilities in Theorem 6.3 approach 1, and
clearly as (z,s) approaches the optimum the induced distribution differs
drastically from what we have assumed.

In the meantime, we hope that the one-step nonrigorous analysis has
lent some insight into the practical behavior of primal-dual algorithms.
Our algorithms using N' = N (3) for 3 close to 1 are quite close to imple-
mented primal-dual methods, and the result of our nonrigorous analysis,
that O((logn)log(1/¢€)) iterations typically suffice, is borne out by several
large-scale tests.

The properties of the Gaussian matrix in Section 6.2 and the rotationally-
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symmetric distribution LP model can be found in Borgwardt [60]. In par-
ticular, system (6.5) was discussed in Girko [107], Schmidt and Mattheiss
[297], and Todd [326]. Our probabilistic analysis is essentially focused on
the initialization and termination of interior-point algorithms. In other
words, we have focused on the factor £(A, b, c) and o(A) in the worst com-
plexity result of Section 5.2. Essentially, we have proved that, for the above
random problem, o(A) = 1 with probability 1 and £(A4,b,¢) > p(1/n) with
high probability. Possible new topics for further research in this area in-
clude whether our analysis will hold for other probability distributions and
the expected behavior.

Most of results in Section 6.3 are due to Anstreicher et al. [26, 25],
where they proved that Theorem 6.23 holds for a more general degenerate
model:

Todd’s Degenerate Model. Let A = (A, Ay, A3), where A; is m X
n;, n; > 1, ny <m, my+ns + n3z =n, and each component, of A is i.i.d.
from the N(0,1) distribution. Let

& 0
i=1 o0 |, s=( o0 |,
0 43

where the components of #; and §3 are i.i.d. from the |[N(0,1)| distribu-
tion. Finally let b = A%, ¢ = § + AT#. We assume that either # = 0, or
the components of 7 are i.i.d. from any distribution with O(1) mean and
variance.

6.5 Exercises

6.1 Prove Proposition 6.7.
6.2 Prove Proposition 6.8.
6.3 Prove Corollary 6.11.

6.4 Let A\g, A1,..., A\ be independent N(0,1) random variables and con-
dition on the event that \; < |Xo|/Vd fori=1,....m (d=n—m > 1).
Prove that P(n=2 < |X\o| < n%|lz1 >0, ..., > 0) approaches 1 as n — oc,
where z; := |Xo|/N/d — X\ fori=1,...,m.

6.5 Prove Proposition 6.20.

6.6 Prove Lemma 6.22.
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Chapter 7
Asymptotic-Case Analysis

Interior-point algorithms generate a sequence of ever-improving points z°, x!,

...,z¥, ... approaching the solution set. For many optimization problems, the
sequence never exactly reaches the solution set. One theory of iterative al-
gorithms is referred to as local or asymptotic convergence analysis and is
concerned with the rate at which the optimality error, {r¥}, of the gener-
ated sequence converges to zero. Obviously, if each iteration of competing
algorithms requires the same amount of work, the speed of the convergence
reflects the effectiveness of the algorithm. This convergence rate, although
it holds locally or asymptotically, allows quantitative evaluation and com-
parison among different algorithms. It has been widely used in classical
optimization and numerical analyses as an efficiency criterion. Generally,
this criterion does explain the practical behavior of many iterative algo-
rithms.

In this chapter we analyze the asymptotic convergence rate of iteration
sequences generated by some interior-point algorithms. The asymptotic
complexity presented in this chapter has several surprising but pleasing as-
pects. First, the theory is simple in nature. Second, it partially explains
the excellent behavior of interior-point algorithms in practice. Third, it
provides a tool to identify the strict complementarity partition for the ter-
mination method discussed in Chapter 5.

7.1 Rate of Convergence
The asymptotic convergence rate is a rich and yet elementary theory to
predict the relative efficiency of a wide class of algorithms. It consists of

two measures: the order and ratio of convergence.

181
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7.1.1 Order of convergence

In Section 1.4.4 we have introduced, p, the order of convergence. To ensure
that those definitions are applicable to any sequence, they are usually stated
in terms of limit superior rather than just limit and 0/0 is regarded as a
finite number. In optimization, these technicalities are rarely necessary
since {r* > 0} represents a measure towards optimality, and ¥ = 0 implies
that optimality is exactly reached.

We might say that the order of convergence is a measure of how good
the tail of {r*} is in the worst case. Large values of p imply the faster
convergence of the tail. The convergence of order equal two is called (sub)
quadratic convergence. Indeed, if the sequence has order p > 1 and the
limit

o pktt
8 Gy =P

exists, then there exists a finite K, such that

Pkt
() <2p
or
(25)1/(”’1)rk+1 < [(25)1/(071)#]@
and

(28)/ =K <1
for all £ > K. Thus, if we wish to reduce

(2B)1/ =Nk < ¢

we need only

o loglog(1/€) + loglog [(28)"/ (P~ 1)K ] -
- log p

iterations, since

k—K

(28)/ (P~ Dk < [(2,3)1/@*1)7""]'7
We also have the following proposition.

Proposition 7.1 Let the positive sequence {r*} converge to zero. Then,
the order of convergence equals

lim inf
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Example 7.1 The sequence with r* = (a)¥ where 0 < a < 1 converges to
zero with order unity.

Example 7.2 The sequence with r* = (01)21c where 0 < a < 1 converges to
zero with order two, and therefore the sequence is quadratically convergent.

7.1.2 Linear convergence

Most of iterative algorithms have an order of convergence equal to unity,
i.e., p = 1. It is therefore appropriate to consider this class in greater detail
and develop another measure of speed for this class: the ratio of linear
convergence, which was introduced in Section 1.4.4.

Linear convergence is the most important type of convergence behavior.
A linearly convergence sequence, with convergence ratio 3, can be said to
have a tail that converges to zero at least as fast as the geometric sequence
M (B)* for some fixed positive number M independent of k. Thus, we also
call linear convergence geometric convergence.

As a rule, when comparing the relative effectiveness of two competing
algorithms both of which produce linearly convergent sequences, the com-
parison is based on their corresponding convergence ratio—the smaller the
ratio the faster the convergence. The ultimate case where 5 = 0 is referred
to as superlinear convergence. We note immediately that convergence of
any order greater than unity is superlinear. It is possible for superlinear
convergence to have unity convergence order.

Example 7.3 The sequence with r* = 1/k converges to zero. The conver-
gence is of order one but it is not linear, since lim(r**! /rk) = 1, that is, 3
s not strictly less than one.

Example 7.4 The sequence with r* = (1/k)* is of order unity, and it is

superlinearly convergent.

7.1.3 Average order

In practical optimization, the convergence order at each iteration may not
be the same during the iterative process. We now define the average order
related to the speed of convergence of such a sequence.

Definition 7.1 Let the positive sequence {r*} converge to zero. The aver-
age order of convergence of {r*} between k and k + K is defined as

K
p = (le)l/K/
i=1
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where p; is the convergence order from k+i—1 to k + 1.

In other words, the average convergence order during this period is the
geometric mean of the orders of each iteration. Using the average order,
from k to k + K we should have

The right hand side is precisely the accumulated convergence orders be-
tween k and K + k.

Example 7.5 The sequence with r® = a, 0 < a < 1, r¥*1 = (rF)2 if k is
even and r*t1 = 1% if k is odd. Then, the average converge order between

ktok+2is+2.

7.1.4 Error function

In optimization, the decision variables form a vector in R", and iterative
algorithms generate a sequence {z*} in R" space. Thus, if {z*} converges
to the optimal solution set, the convergence properties of such a sequence
are defined with respect to some particular error or residual function, r(z),
that converts the vector sequence into a real number sequence. Such an
error function satisfies the property that r(z) > 0 for all non-optimal solu-
tions and r(z) = 0 for every optimal solution. Hence, the convergence rate
of {z*} is represented by the convergence rate of {rk := r(z*)}.

It is common to choose the error function by which to measure conver-
gence as the same function that defines the objective function of the original
optimization problem. This means that we measure convergence by how
fast the objective converges to its optimum. Alternatively, we sometimes
use the function min,¢ x- ||z¥ — z|| which represents the distance from z*
to the optimal solution set X*.

In the analysis of interior-point algorithms the error function is chosen
as the primal-dual or complementary gap z” s, which should be zero at an
optimal solution pair. For an optimization problem that possesses a strict
complementarity solution, the above two error functions will have the same
convergence rate.

7.2 Superlinear Convergence: LP

Consider the predictor-corrector algorithm described in Section 4.5. We will
show that this O(y/nlog(R/¢€))-iteration algorithm actually forces quadratic
convergence of the duality gap ¥ := (z%¥)Ts* > 0 to zero. In the context
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of the present work it is important to emphasize that the notions of con-
vergence, superlinear convergence, or quadratic convergence of the duality
gap sequence in no way require the convergence of the iteration sequence
{(a*, )}

We follow the same notations in Section 4.5. At the kth predictor step,
let p* = (2%)Ts* /n, (d,, ds) := d(z*,s*,0), and

D,d;

E_
6_11’“

. (7.1)

If 9% = @ is the largest step-size chosen in Algorithm 4.5, then from Lemma
4.17 (note 6 = Pq/u*),

1— 9k

IN

2
BTy A|[5%][/ B
V1+4k)/8 -1
1+ +/1+4||6%]|/8
419%11/8
(1+ /1 +4[[o*]]/B)?
16%(1/8 (7.2)

IN

and i
)
(.’I,‘k+1)TSk+1 < (1 _ Hk)(mk)Tsk < w(mk)TSk. (73)
Our goal is to prove that [|6%|| = O((z*)"'s*). Then, inequality (7.3) guar-
antees quadratic convergence of (z%)7's* to zero. (In this section, the big
“0” notation represents a positive quantity that may depend on n and/or
the original problem data, but which is independent of the iteration k.).

7.2.1 Technical results

We first introduce several technical lemmas. For simplicity, we drop the
index k£ and recall the linear system during the predictor step

Xdy+Sd, = —Xs
Ad, = 0 (7.4)
ATd, +ds, = 0.

Let p = 27s/n and z = Xs. Then from (z,s) € Ny(a) we must have

lI-apu<zi<(1+a)p for j=1,2,..,n (7.5)
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We shall estimate ||d.|| and ||ds||. Our present objective is to demon-
strate that ||d,|| = O(p) and ||ds|| = O(u). We start by characterizing the

solution to (7.4).
Lemma 7.2 Ifd, and ds satisfy the equation
Xds + Sd, = —Xs

and the inequality
(de)"ds > 0,

then,
D~ d|” + || Ddy|* < 27's,

where D = X1/285-1/2,
Proof. Multiplying the diagonal matrix (XS)~'/? on both sides of the

equation, we have
D7 'd, + Dd, = —(XS)"/?e.

Take the norms of both sides.
|D~'d, + Dd,||* = 2T

or
||l)71d96||2 + ||Dd8||2 + (dw)Tds =z's.

Using the linear inequality, we have the lemma.
O

Let (P, Z) = (P*, Z*) be the strict complementarity partition of the LP
problem. For all k&, Theorem 2.15 and relation (5.8) imply that

/¢ for jeP (7.6)

w?
/€ for jeZ,

k
5j

INIA
==

where £ < 1 is a fixed positive quantity independent of k.
Lemma 7.3 If d, and ds are obtained from the linear system (7.4) and

u=x"s/n, then

[(d2)zll = O(p) and ||(ds)pll = O ().
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Proof. From Lemma 7.2 and relation (7.6), we obtain

[I(d2) 2l

1D2D " (do) ]|
1DzI1DZ" (da) 2]
1D2]10(/1)
1(X%52)*57110(v/m)
O(vVm)O(Vi) = O(p).

ININ

This proves that ||(d;)z|| = O(u). The proof that ||(ds)p| = O(u) is
similar.

O

The proofs of |[(d:)p|| = O(p) and ||(ds)z|| = O(u) are more involved.
Towards this end, we first note

r+d, € R(D?AT),

s+d, € N(AD?). (7.7)

This is because from the first equation of (7.4) we have

S +d,) = —Xd,
X(s+ds) = —-Sd,.

Thus,
t+d, = —(XS "ds=D>A"d,
s+dy = —(SX Yd,=-D ?d,,
which gives relation (7.7).

Lemma 7.4 If d, and ds are obtained from the linear system (7.4), then
(de)p is the solution to the (weighted) least-squares problem

min,€  (1/2)D5lul?
subject to Apu = —Az(ds)z

and (ds)z = ALv and v is the solution to the (weighted) least-squares prob-
lem

min,  (1/2)||Dzv|?
subject to ALy = —(d,)p.
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Proof. From (7.7), we see that
zp + (d,)p € R(DHAL). (7.8)
Since s% = 0 for all optimal s*, we must have cp € R(AL). Thus,
sp=cp— ALy € R(AL),

which implies that
zp = D%sp € R(DLAL). (7.9)

From (7.8) and (7.9) we have
(d.)p € R(D%A}).
Moreover, (d,)p satisfies the equation
Ap(dy)p = —Az(dy)z.

Thus, (d, ) p satisfies the KKT conditions for the first least squares problem.
Since AD?(s + dy) = —Ad, = 0 and AD?s = Az = b, it follows that

—b = AD2dS = APD%D(ds)P + AzD%(ds)Z. (710)

Also, since z%, = 0 for all optimal z*, we have Apz} = b implying b €
R(Ap). Therefore, relation (7.10) implies

AyzD%(ds)z € R(Ap).
Moreover, d, satisfies the equation
Agdy = —(ds)p.
Thus, d, satisfies the KK'T conditions for the second least squares problem.

O

7.2.2 Quadratic convergence

Theorem 7.5 If d, and ds are obtained from the linear system (7.4) and
pu=1xls/n, then

[(d2)pll = O(n)  and ||(ds) 2]l = O(p)-
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Proof. Since the first least-squares problem is always feasible, there must
be a feasible u such that

lall = O([l(da) z 1),
which together with Lemma 7.3 implies
lall = O(u).-

Furthermore, from Lemma 7.4 and relations (7.5) and (7.6)

) el = DD (d:)rll
IDPIIDE (da)
IDpIIDy al
IDp DRl
I(XpSp) 2 Xpllll(XpSe) 2 X 5" ||l
I(XpSp) 21X PRSP 21X R ]l
O(llall) = O(u)-

Similarly, we can prove the second statement of the theorem.

AN VAN VAN

IN

O

Theorem 7.5 indicates that at the kth predictor step, d’; and df satisfy
I@)pll = O(u*) and [[(@4)2]] = O(), (7.11)

where p* = (2%)"'s* /n. We are now in a position to state our main result.

Theorem 7.6 Let {(z*,s%)} be the sequence generated by Algorithm 4.5.
Then, with constants 0 < f < 1/4 and a = 20:

i) the Algorithm has iteration complexity O(\/nlog(R/e));
ii) 1-0F = O((=*)Ts%);
iii) (2%)7s* - 0 quadratically.
Proof. The proof of (i) is in Theorem 4.18, which also establishes
kh—g)lo ut =0.
From relation (7.1), Lemma 7.3 and Theorem 7.5 we have
181 = (| Dads /u* || < O((=*)TsY),

which together with inequality (7.2) establishes (ii).
From inequality (7.3) we see that (ii) implies (iii). This proves the
theorem.

O
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7.3 Superlinear Convergence: LCP

Given M € R™ ™ and q € R", recall that the LCP is to find a pair 2, s € R"
such that
s=Mz+q, xz's=0, and =z,5>0.

In this section, we consider the monotone LCP extension of the predictor-
corrector LP algorithm. We show that this O(y/nlog(R/¢€))-iteration al-
gorithm for the monotone LCP actually possesses quadratic convergence
assuming

Assumption 7.1 The monotone LCP possesses a strict complementarity
solution.

This assumption is restrictive since in general it does not hold for the
monotone LCP. We will actually show by example, however, that assump-
tion 7.1 appears to be necessary in order to achieve superlinear convergence
for the algorithm.

Again, the LCP being monotone means that the iterate direction

dy = Md, implies dLd, > 0.

Note that for LP, we have d’d, = 0. This is the only difference between
LP and LCP analyses. Almost all technical results on iterate directions
developed for LP (dXds = 0) hold for the monotone MCP (dfds > 0).

7.3.1 Predictor-corrector algorithm for LCP

In this section, we briefly describe the predictor-corrector LCP algorithm.

We let ,7?' denote the collection of all strictly feasible points (z,s). Consider
the neighborhood

No(a) = {(z,5) €F: | Xs/p—el| < a},

where p = 27s/n and a is a constant between 0 and 1.

To begin with choose 0 < # < 1/4 (a typical choice would be 1/4).
All search directions d,., d,, and d, will be defined as the solutions of the
following system of linear equations

Xds +Sd, = ~pe— Xs

d, = Md,, (7.12)

where 0 < v < 1. To show the dependence of d = (d,, ds) on the pair (z, s)
and parameter v, we write d = d(z, s,7).
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A typical iteration of the algorithm proceeds as follows. Given (z¥,s*) €
N2(B), we solve system (7.12) with (z,s) = (2 s*) and v = 0, ie,
(dy,ds) = d(z*, s*,0). For some step length 6 > 0 let

z(0) = 2% +60d,, s() =s* +6d,,

and p(#) = 2(0)"s(f)/n. This is the predictor step. B
Again, we can choose the largest step length 6 = 6 < 1 such that
(z(0),s(8)) € Na(a) for « = B+ 7 and some 0 < 7 < 3, and let

2 =z(f) and s = s(6).

We can compute 6 by finding the roots of a quartic equation.
Next we solve system (7.12) with (z,s) = (2',s') € N(B+ 1), ' =
(x)Ts'/n, and v = 1, ie., (d,,d)) = d(2',s',1). Let 2**! = 2’ + d’, and

skt = ¢ + d.. This is the corrector (or centering) step.
Similar to Lemma 4.16, for all £ we can show that

(z¥, s*) € Na(B) (7.13)
aslongas 0 < f<1/4and 0 < 7 < f3, and
(@)Ts" = (1= 05)(")Ts" + (6%)(da)"ds
)T = (@) 4 ()T d], (T
One can also show that
T E\T (K
FAT A (71
Let 6* = D,d,/p* in the predictor step. Then, we can show that
16%]] < V2n/4, (7.16)

and the following lemma, which resembles Lemma 4.17.

Lemma 7.7 If 0% := @ is the largest 6 such that (z(),s(8)) € Nao(a) with
a=0+T1and 0 <1<, then

k

1+ 4[]6%|| /7

Clearly, this lemma together with (7.14), (7.15) and (7.16) implies that
the iteration complexity of the algorithm is O(y/nlog(R/€)) for a constant
0 < 7 < . Note again that

[16%1]

T

16k < (7.17)
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Relations (7.14), (7.15), (7.16), and (7.17), and Lemma 7.7, imply
k
< (/s Ay (7, m) = (141780

RN
T Vn
(7.18)
From (7.18), we see that if

ldoll = O(1*) and |lds|| = O(u"),

then the complementary gap converges to zero quadratically.

7.3.2 Technical results

For a LCP possessing a strict complementarity solution, a unique partition
P and Z, where PN Z = {1,2,...,n} and PU Z = 0, exists such that
z3 = 0 and s}, = 0 in every complementarity solution and at least one
complementarity solution has z}, > 0 and s%, > 0. We can also prove that
relation (7.6) holds for the sequence generated by the predictor-corrector
MCP algorithm. Let u = 2”s/n and z = Xs. We must also have relation
(7.5) if (z,s) € Na(a).

We now introduce several technical lemmas. For simplicity, we drop the
index k£ and recall the linear system during the predictor step

Xds+Sd, = —Xs

i — Md. (7.19)

Define D = X'/28-1/2. We now estimate ||d,|| and ||ds||. Since M
is monotone, i.e., (d;)"d, > 0, both Lemma 7.2 and the following lemma
hold.

Lemma 7.8 Ifd, and ds are obtained from the linear system (7.19), and
pu=1xls/n, then

[(d2)zll = O(p) and ||(ds)pll = O(p)-

The proofs of |[(d.)p|| = O(u) and ||(ds)z|] = O(u) are again more
involved. We first note

Sx+d,) = —Xds,
X(s+ds) = —8Sd,,
and therefore
r+d, = —(XSYd,=-D%,

(7.20)

s+ dy —(X"'8)d, = —D~%d,.
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Before proceeding, we need some results regarding (non-symmetric) positive
semi-definite (PSD) matrices that may be of independent interest. In what
follows, we will consider M to be partitioned (following a re-ordering of
rows and columns) as

Mpp Mpy
M = . 7.21
( Myzp Myy ) (721)

Lemma 7.9 Let M be a PSD matriz, partitioned as in (7.21). Then
Mppxp = 0 if and only if M?;Pmp = 0. Furthermore, Mppxp = 0 implies
that (MZP + M;";Z)ZEP = 0.

Proof. Let x = (z5,07)T. If either Mppzp = 0 or M}Lpzp = 0, then
2T Mz =0, so z is a global minimizer of the quadratic form y” My. Con-
sequently (M + M ™)z = 0, which is exactly

(Mpp + MEp)zp =
(MZP + M};Z).’Ep = 0.

Lemma 7.10 Let M be a PSD matriz, partitioned as in (7.21). Then
Mpp Mpz | _ Mpp Myp
(M M) =R (M M),

Proof. From the fundamental theorem of linear algebra, it is equivalent to

prove that
ML, 0\ _ Mpp O
V(g 7 )= G 5 ).

where A/(+) denotes the null space of a matrix. To begin, assume that

Mpp 0 0
(D) e

From Lemma 7.9, Mppzp = 0. Also zz = — gzmp, so showing that
Mzprp — 27 = 0 is equivalent to showing that (Mzp + M}, )zp = 0,
which also holds by Lemma 7.9. Thus

< %1; ,01 ) ( :1; ) =0. (7.23)

The argument that (7.23) implies (7.22) is similar.
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7.3.3 Quadratic convergence

Now we can establish

Lemma 7.11 If d, and ds are obtained from the linear system (7.19),
and p = x's/n, then u = (d,)p and v = (ds)z are the solutions to the
(weighted) least-squares problem

ming,, (1/2)[[Dp ul]® + (1/2)[| Dol
s.t. Mppu = 7Mpz(dz)z + (ds)p (724)
MZPU — U= 7Mzz(dz)z.

Proof. Note that from (7.19), u = (dy)p, v = (ds)z is certainly feasible in
the problem (7.24). Next, from (7.19) and (7.20), we see that

'TP+(dz)P = 7D2PMB-dz
gl 7.25
sz+(ds)z = —Dzz(dw)z. ( )
Since sp = 0 for all optimal s*, with 2}, = 0, we must have gp =

—Mppzp € R(Mpp). Therefore,
Dp’zp =sp=Mpx+qp = Mpp(zp —zp) + Mpzzys.
Substituting this into the first equation of (7.25) obtains
D2 (dy)p = —Mpp(zp — o5 + (ds)p) — Mpz(zz + (ds)z).  (7.26)

Also sz = D,’zz, which substituted into the second equation of (7.25)
yields
Dy(ds)z = w7 — (da) 2. (7.27)

Then (7.26) and (7.27) together imply that

(39’%2((13)23)”(]%513 Mfz)'

Applying Lemma 7.10, we conclude that

DRe | ¢ g ( MEr My
D% (ds)# 0 -1 ’

which shows exactly that u = (d,) p, v = (ds) 7 satisfies the KKT conditions
for optimality in the least squares problem (7.24).
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Theorem 7.12 If d, and ds are obtained from the linear system (7.19),
and p = x%s/n, then ||d.|| = O(p) and ||ds|| = O(u).

Proof. Due to Lemma 7.8, we only need to prove

1(dz)pll = O(p) and [|(ds) 2] = O(n).

Since the least-squares problem (7.24) is always feasible, there must be
feasible u and v such that

lall = O(ll(d2) z|l + |l(ds) pll) and [[o]] = O([[(d) z[| + [|(ds) P 1),

which together with Lemma 7.8 implies ||a|]| = O(p) and ||5]] = O(p).
Furthermore, from Lemma 7.11 and relations (7.5) and (7.6),

1(de) plI” + [[(ds) zI*

= |IDpDp' (do)pl* + 11Dz Dz(ds) 2|*

< DRIND R (da) el + 1D, 1Dz (ds) 2]

= [(XpSp) ' XPI DR (de)pll? + +I1(X2S52) ' SHI 1D (ds) 21

< (XpSe) ' Xpll+ 11(X2S2) ' SZI) (1D (de) plI* + D2 (ds) 21I7)
< (XpSe) 'XBI+ 1(X2S2) "SI (1D all> + |1D£ol?)

< (IXpSp) ' XRIl+ 1(X2S2) 7" SZI) (DRI all® + |1 DZ]| [1o]1%)
< o(/w) (DR Nal® + 1D 1o]1?)

= O (IIDR*[1 + D7)

= O (I(XpSp)Xp2|l + I(X252)S7>|)

= 0.

O

The above theorem leads to the result described in Theorem 7.6 for
the predictor-corrector LCP algorithm. The following proposition concerns
assumption 7.1.

Proposition 7.13 There is a monotone LCP problem, where a strict com-
plementarity solution does not exist, for which the predictor-corrector algo-
rithm or affine scaling algorithm possesses no superlinear convergence.

Proof. Consider the simple monotone LCP with n =1, M =1 and ¢ = 0.
The unique complementarity solution is s = z = 0, which is not strictly
complementary. Note that the feasible solution s = ¢ = € is a perfectly
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centered pair for any € > 0. The direction in the predictor step (or affine
scaling algorithm) is

d, =—x/2 and ds=—s/2.

Thus, even taking the step size § = 1, the new solution will be s = z = ¢/2.
Thus, the complementarity slackness sequence is reduced at most linearly,
with constant 1/4, which proves the proposition.

7.4 Quadratically Convergent Algorithms

The predictor-corrector algorithm described in previous sections needs to
solve two systems of linear equations or two least squares problems—one in
the predictor step and one in the corrector step. If one counts each iteration
as solving one system of linear equations, as is usually done in the classical
analysis of interior-point algorithms, the average order of convergence of
this algorithm is only v/2. In this section we further show how to construct
an algorithm whose order of convergence exactly equals 2. We also show
that the solution sequence generated by the algorithm is a Cauchy, and
therefore convergent, sequence.

7.4.1 Variant 1

An iteration of the variant proceeds as follows. Given (z*, s¥) € Ny (8), we
perform T'(> 1) successive predictor steps followed by one corrector step,
where in tth predictor step of these T steps we choose 7 = 73 > 0 where

T
Y m=4 (7.28)
t=1

In other words, at the tth predictor step of these T steps, we solve system
(7.12) with g’ = (2')"'s'/n and (x,8) = (2',8') € N(B+71 + ...+ 74 1) (the
initial (2, s') = (z*,s%) € N(B)) and v = 0, i.e., (d,,ds) = d(z',s',0). For
some 6 > 0 let

z(0) =2’ +60d,, s(0) =s +60d, and p(d) = (2(6))"s(6)/n.

Our specific choice, 8, for 6 is similar as before: the largest # such that

(z(0),5(0)) € Na(a) for

a:ﬁ-f‘Tl—F...-‘th,l-‘th.
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From the first inequality in (7.14), the fact § < 1, (7.17), and Theorem 7.12
we have

ID.di]| , 1ID.d,]

n@) < - Y0
< M(T“’)Q (7.29)

for some fixed positive quantity M independent of k and f. Now update
z' = x(0) and s’ := s(6).
After T predictor steps we have (', s') € N2(28). Now we perform one

corrector step as before to generate
("1, M) € Ny ().

Based on the previous lemmas and results, each predictor step within an
iteration achieves quadratic convergence order for any positive constant
sequence {73} satisfying (7.28). For example, one natural choice would be
7 = B/T for t = 1,2,...,T. Since each iteration solves T' 4+ 1 systems of
linear equations, the average order of the convergence of the complementary
gap to zero in Variant 1is 27/(T+1) per linear system solver for any constant
T>1.

Theorem 7.14 Variant 1 generates a sequence {z*,s*} such that the aver-
age convergence order is 27TtV per linear system solver for any constant
T>1.

7.4.2 Variant 2

Now we develop a new variant where we let T' = oo, that is, no correc-
tor step is needed anymore in the rest of the iterations of the algorithm.
The algorithm becomes the pure Newton method or the primal-dual affine
scaling algorithm.

After (25, s%) € N(B) for some finite K, we perform only the predictor
step, where we choose 7 = 7 > 0 satisfying (7.28). One natural choice will
be

= p(1/2)" for t=1,2,...

For simplicity, let us reset K := 1. Then, in the kth iteration we solve
system (7.12) with

k—1 0
(z,s) = (z*,s*) e N(B + Zn) (where Zn = 0>

t=1
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and v = 0, i.e., (d,,d,) = d(z*, s*,0). For some § > 0 let
z(0) = z* +6d,, s(0) = s* + 0d,. (7.30)

Our specific choice for  is §, the largest # such that (z(6),s(6)) € No(a)
for

k
a = ﬂ + Z T¢.
t=1
Now directly update
2= 2(0) and s*T = s(6). (7.31)

Theorem 7.15 Let (z%)7s¥ be small enough. Then, Variant 2 generates
a sequence {x* s*} with k > K such that

i) the order of the convergence of the complementary gap to zero equals at
least 2,

ii) {z% 5"} is a Cauchy, and therefore convergent, sequence.

Proof. At the kth iteration (k > K := 1) we have from (7.29)

LRI T Gkt M{(z*)"s")? _ kT k129K
ket < MELED —apinyropat s,
log, [(z* )T sk 1) < 21og, [(*)T's*] + log, (M/B) + k. (7.32)

For (z5)T s small enough, the inequality (7.32) implies that {log,[(z*)Ts*]}
is a geometric sequence (with base close to 2, say 1.5) tending to —oc. Since
k is just an arithmetic sequence and log, (M /() is fixed, we should have

k + log, (M/3)

P g [(F) s (7.:33)

geometrically. This implies that
[(.’Ek+1)TSk+1]

lim inf —&
hsoe  log[(aF)Tsk] =

which from Proposition 7.1 proves (i).
Now from Theorem 7.12, (7.30) and (7.31)

124" — 2*|| = 8lld5|l < lldh Il = O(u*) = O((")"'s" /n)

and

Is*4E = s* | = alldi| < lldi]l = O(u*) = O((=")" " /n).
Hence, {z*,s*} must be a Cauchy sequence, since {(z*)Ts*} converges to
zero superlinearly from (i). This proves (ii).
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O

To actually achieve the order 2 of convergence of the primal-dual gap,
we need to decide when to start the primal-dual affine scaling procedure
described in Variant 2. Note from (7.32) that as long as {log,[(z*)Ts*]} is
a geometric sequence with base close to 1.5 tending to —oc, we shall have
the order 2 of convergence of {(z*)7s%/(2°)"s%} to zero. Thus, we can
start the procedure at any time when (z%)7s% < 1. Again for simplicity,
let K := 1. Then we add a safety check to see if for k = 1,2, ...

|[log[(«*+1)" s5F1]|/[log|(z*)"s*]| > 1.5

@I T < -, 3

If both inequalities in (7.34) are satisfied, we continue the predictor step.
Otherwise we conclude that (z%)”'s® was not “small enough,” and we do
one corrector step and then restart the predictor procedure. This safety
check will guarantee that the algorithm maintains the polynomial com-
plexity O(y/nlog(R/€)) and achieves the order 2 of the convergence of the
complementary gap to zero, since eventually no corrector (or centering) step
is needed anymore in the rest of the iterations, according to the theorem.

Thus, we have shown that after the complementary gap becomes smaller
than a fixed positive number, the pure primal-dual Newton method with
the step-size choice in Variant 2 generates an iteration sequence which not
only polynomially converges to an optimal solution pair, but one whose
convergence is actually quadratic.

In practice, the step size, %, in the predictor step can be simply chosen
as the bound given in Lemma 7.7. Thus, no quartic equation solver is
needed to guarantee our theoretical results. Also we see that the step
size in Variant 2 converges to 1 superlinearly while the solution sequence
remains “centered,” i.e., (z*, s¥) € N3(28), without any explicit centering.
This may partially explain why the large step strategy does not hurt the
convergence of the algorithm in practice.

7.5 Notes

The issue of the asymptotic convergence of interior-point algorithms was
first raised in Iri and Imai [156]. They showed that their (product) barrier
function method with an exact line search procedure possesses quadratic
convergence for nondegenerate LP. Then, Yamashita [371] showed that a
variant of this method possesses both polynomial O(nL) complexity and
quadratic convergence for nondegenerate LP, and Tsuchiya and Tanabe
[343] showed that Iri and Imai’s method possesses quadratic convergence
under a weaker nondegeneracy assumption.
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Zhang, Tapia and Dennis [391, 390] first showed that a primal-dual
algorithm exhibits O(nL) complexity, with superlinear convergence under
the assumption of the convergence of the iteration sequence, and quadratic
convergence under the assumption of nondegeneracy. Kojima, Megiddo
and Mizuno [179], Ji, Potra and Huang [163], and Zhang, Tapia and Po-
tra [392] also showed quadratic convergence of a path-following algorithm
for linear complementarity problems under the nondegeneracy assumption.
McShane [213] showed that a primal-dual algorithm exhibits O(y/nL) com-
plexity, with superlinear convergence under the assumption of the conver-
gence of the iteration sequence. Other algorithms, interior or exterior, with
quadratic convergence for nondegenerate LP include Coleman and Li’s [70].
Some negative results on the asymptotic convergence of Karmarkar’s origi-
nal algorithm and a potential reduction method (with separate primal and
dual updates) were given by Bayer and Lagarias [39], and Gonzaga and
Todd [130], respectively.

Quadratic convergence for general LP, assuming neither the convergence
of the iteration sequence nor nondegeneracy, was first established by Ye,
Gller, Tapia and Zhang [383], and independently by Mehrotra [220] and
Tsuchiya [341]. The algorithm of Mehrotra, and Ye et al., is based on the
predictor-corrector algorithm of Mizuno et al. (also see Barnes). As we
mentioned before, if one counts each iteration as solving one system of lin-
ear equations, as is usually done in the analysis of interior-point algorithms,
the (average) order of convergence of the algorithm is only v/2. Tsuchiya’s
result is based on Iri and Imai’s O(nL) method which requires knowledge
of the exact optimal objective value in advance. A standard way of dealing
with this difficulty is to integrate the primal and dual problems into a single
LP problem, whose size is twice that of the original problem. Thus, the
(average) order of convergence would actually be below /2. The conver-
gence order 2 algorithm for general LP, counting each iteration as solving
one system of linear equations of the size of the original problem, was first
given in Ye [378].

Quadratic convergence for the monotone LCP, described in section 7.3,
is based on Ye and Anstreicher [382]. They also give an example to show
that the predictor step cannot achieve superlinear convergence if the LCP
has no a strictly complementary solution. Monteiro and Wright [247] fur-
ther shows that any algorithm that behaves like Newton’s method near the
solution set cannot converge superlinearly when applied to an LCP which
does not have a strictly complementary solution.

Recently, Mizuno [231] proposed a superlinearly convergent infeasible-
interior-point algorithm for geometrical LCPs without the strictly comple-
mentary condition.

Most recently, Gonzaga and Tapia [129, 128] proved that the itera-
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tion sequence (z*,y*,s*) generated by the predictor-corrector algorithm
converges to an optimal solution on the interior of the optimal face. Con-
sequently, Luo et al. [201] announced a genuine quadratically convergent
algorithm. Bonnans and Gonzaga [59] developed a simplified predictor-
corrector where the same Jacobian matrix is used in both the predictor
and corrector steps within one iteration. The convergence order of the
complementary gap to zero is 7'+ 1 where T is the number of predictor
steps in each iteration. Luo, Sturm and Zhang [199] analyzed the superlin-
ear convergence behavior of the predictor-corrector algorithm for positive
semi-definite programming.

In the analysis of interior-point algorithms, the error function is chosen
as the primal-dual gap or complementary z”s which should be zero at
an optimal solution pair. For an optimization problem that possesses a
strict complementarity solution, this error bound will lead to the same
convergence rate for distances from iterates to the solution set, see Hoffman
[149], Mangasarian [207, 208], and Luo and Tseng [200], and references
therein.

7.6 Exercises

7.1 Prove Proposition 7.1.

7.2 Prove that the sequence with r* = (1/k)* is of order unity, and it is
superlinearly convergent.

7.3 Prove relation (7.6).
7.4 Prove Lemma (7.7).

7.5 Prove that the safety check described at the end of Section 7.4 works.
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Chapter 8

Nonlinear Convex
Optimization

In this chapter, we discuss interior-point algorithms for solving nonlinear
convex optimization problems. These algorithms illustrate how widely ap-
plicable potential functions and interior-point algorithms could be in solving
broader optimization problems.

8.1 von Neumann Economic Growth Prob-
lem

Consider the von Neumann economic growth (NEG) problem:
v i=max{y|3y#0: y>0, (B-~vyA4)y>0},

where A = {a;; > 0} and B = {b;; > 0} are two given nonnegative matrices
in R™*" and

Assumption 8.1 A has no all-zero columns.
Note that v* is bounded above based on this assumption. In fact,

m
< max D iy bij

it aij

(The NEG problem is a fractional program, and the results developed in
this section are applicable to other fractional programs.)

203
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The NEG problem has an economic interpretation. Each row-index i
stands for a “good,” while each column index j stands for a “process.”
Process j can convert a;; units of good 4, in one time period, into b;; units
of good i. So a process uses goods as materials or inputs, and gives goods
as products or outputs. Matrix B is referred as output matrix, and A is
the input matrix. Component y; of y denotes the “intensity” by which we
let process j work. Vector By gives the amounts of outputs produced, and
Ay gives the amounts of inputs consumed, during one time period. Then,
v represents the growth factor at intensity y. So By > Ay requires that,
for each good i, the amount of good i produced in period ¢t is at least the
amount, of good i required in period (¢ + 1) with the growth factor . The
NEG problem is to find the largest growth factor using an optimal intensity
vector.

There is a related dual NEG problem,

n*:=min{n |3z #0: >0 (nd-B)'z>0}.
We further assume that
Assumption 8.2 B has no all-zero rows.

Then, n* is also bounded below. But a duality overlap may exist, i.e., it is
possible n* < v*. However, under the following irreducibility assumption
the model is well behaved: n* = v*.

Assumption 8.3 There is no (proper) subset S of the rows and no subset
T of the columns such that A;; = 0 for all i € S and all j € T, and such
that for all i € {1,2,....,m}\ S, B;; >0 for some j €T,

Moreover, the y-level set,
I(y):={yeR": ely=1, y>0, (B A4y >0}, (8.1)

has a nonempty interior for v < +*, meaning in this paper that

o]

Fr()={yeR": e'y=1 y>0, (B-—v4)y>0}

is nonempty for v < v*. Note that we have replaced y # 0 with e’y = 1 in
the NEG problem, where e is the vector of all ones. This is without loss of
generality since the system is homogeneous in y.

Obviously, the underlying decision problem related to the NEG problem
can be solved in polynomial time: Given matrices A and B, and a number
v, does the linear system

{e"y=1, y>0, (B-~vyAy>0}
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has a feasible pointI’ Let 0 < v* < R for some positive R. Then, one can
use the bisection method to generate a 4 such that v* —e¢ < 5 < 4* in
O(log(R/e)) bisection steps where each step solves a linear feasibility prob-
lem with data A, B and 7. Therefore, the NEG problem is polynomially
solvable.

In this section, we develop an interior-point algorithm to directly solve
the NEG problem. The algorithm is in the same spirit of the earlier center-
section algorithm for linear programming, that is, it reduces the max-
potential of the y-level set ['(y) by increasing v. We show that the algorithm
generates an e approximate solution in O((m + n)(log(R/€) + log(m + n))
iterations where each iteration solves a system of (m + n) linear equations.

8.1.1 Max-potential of I'(y)

We apply the analytic center and the max-potential theory to the inequality
system I'(y) of (8.1) for a fixed 7 < v*. Recall that the max-potential of
[(~), if it has a nonempty interior, is defined as

B(7) = BL(7) = max | > log(By —yAy)i + > _logy,

y€er(v) ra

In the following, we frequently use the slack vector s := By — vAy.
Clearly, since B is a nonnegative matrix, we must have v* > 0. Without
loss of generality, we further assume that T'(0) of (8.1) has a nonempty
interior. This fact automatically holds if Assumption 8.2 holds. We also
need the system I'(y) to have a bounded and nonempty interior for all v <
~v*, so that the analytic center and the max-potential are well defined for
all v < v*. As we discussed earlier, this is true under Assumptions 8.1 and

8.3. In what follows, we replace Assumption 8.3 by a weaker assumption:

Assumption 8.4 There exists an optimal intensity vector y* € T'(y*) such
that
7:=(B+ A)y* > 0.

Then, we prove the following lemma.

Lemma 8.1 Let 0 < v < v*. Then, the system T'(y) under Assumptions
8.1, 8.2 and 8.4 has a bounded and nonempty interior. Moreover, the mazx-
potential

B0) 2 (m ) log( =) + 3 log(7/2) + g€/
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where

> 0.

f:max{z: ( 7+ Ae/n)z <

Proof. T'(y) being bounded is obvious since e’y = 1 and y > 0. Let y* be
the one in T'(y*) such that

7 +1

ely*=1, y*>0, (B—y*Ay* >0, (8.2)

and it satisfies
(B+ Ay =7>0.
Let i
5 1d+77)
1+~
Then, for 0 < < 7* we must have

y<d< gt

The left inequality follows from 1 + v* > 1 + «, and the right inequality
follows from v < #* which implies v(1 + ~v*) < v*(1 + =), which further
implies
1 *
L A
1+~

Thus, we have
(v =8B+ Ay =H" -7 >0. (8.3)

Adding two inequalities (8.2) and (8.3), we have
(L+7"=0)B = dA)y" > (v" —0)7 >0,

or

) v =4
B——Ay*">— 7 >0,
( 14+~4*=§ )y _1+7*—67T ’
which implies
(B—'yA)y*>7*_77’T>07
214
since
_ )
7_1+'y*—5'

Therefore, there is an 0 < w < 1 such that

y=01-w)y* +we/n>0
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and

(B—~A)y > 0.

That is, g is in the interior of I'(y).
Specifically, let w = £(y* — v)/~v*. Then, we have

(B—~4)y

v

Y

Y

v

Y

(B —~A)((1 - ) + we/n)

(B 44) £(y* v)y*+€(7*7)e/n>

- 0y e

T =&y —)Ae/n

Y- Y=y A — -
— A
01 T STy — €07 =) Ae/n

_ . P g1
s+ 0 (g~ S )

Furthermore, we have

£(v* =)
1+

y > we/n= e/n > e/n.

£(y* =)
o

Note that the max-potential

(7) > log(By — yAp)i + »_ log;,

i=1 j=1

which together with the above two bounds give the desired result.
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Note that the above lemma may not hold in general.

Example 8.1 Let

2 1 1 0
B—<01> and A—<01>.

Then, for this problem v* = 2. However, for any 1 < v < 2, it must be
true that (y1 = 1, y2 = 0) is on the boundary of T'(0).

It can be shown that Assumption 8.3 implies Assumption 8.4. However,
Assumption (8.4) is weaker than Assumption 8.3. Consider

1 0 1 0
p=(10) waaz (1Y),

This system is reducible but I' () has a nonempty interior for all v < v* = 1,
and it satisfies Assumption 8.4.

There is also an economic interpretation for Assumption 8.4: if I'(y) has
an empty interior for some v < «*, then at every optimal intensity vector

*

y
(B+A)y™ 40,

which implies that for some good i
biy* = a;y* =0

at every optimal intensity vector y*, where b; and a; are the ith row of
the matrices B and A, respectively. Thus, the ith good is irrelevant, as
it is neither produced nor consumed, and so can be removed from further
consideration. Therefore, we can set up a reduced NEG problem (both row
and column dimensions may be reduced) such as

max{y |3y #0: y>0, (Ba—742)y>0, (bi+a;)y=0}

where By and A, are the remaining matrices of B and A after deleting
b; and a;, respectively. Now the reduced ~v-level set will have a nonempty
interior for any v < v*.

We now prove two more lemmas to indicate that the max-potential of
['(v) is an effective measure for the «-level set of the NEG problem.

Lemma 8.2 Let 70 < v! < ~*. Then,

B(") > B(+").
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Proof. Let 4! be the analytic center of T'(y!). Then, since
(B—7"A)y' = (B —7'A)y' + (v —1")4y’
and (y' —4%)Ay" > 0, we must have
(B=1"A)y' > (B-~'A)y" > 0.

This shows that y! is in the interior of ['(y"). Moreover, (y! —~%)Ay! # 0,
since A has no all-zero columns and y* > 0. Thus,

B(y°) > Y log(By' =1 Ay')i+ > logy]
i=1 j=1
i=1

= > log(By' —y' Ay + (v —7°)Ay")i + ) _logy;
=1

i=1

> > log(By' —~'Ay')i + ) _logy;
j=1

Y1
(1,0,0)

(0,1,0
Y2

Figure 8.1: Illustration of the level set T'(y) on the simplex polytope; the
size of I'(7y) decreases as <y increases.
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Lemma 8.3 Let min(7) > 1/R and £ > 1/R for some positive R, and let
v satisfy (v* —v)/(v* + 1) > €. Then, the maz-potential

B(y) > (m + n)log(e/R) — mlog2 — nlogn.

Proof. This is directly from Lemma 8.1.

Lemma 8.3 indicates that if we reduce
B(y) < —O((m + n)(log(R/e) + logn)),

then it must be true that (v* — v)/(1 +7*) < € and any y € I'(7) is an
€ approximate solution. The algorithm actually returns an approximate
(analytic) center of T'(%).

8.1.2 Some technical results

Most, of technical results presented in this section are related to those dis-
cussed earlier in Section 2.2. Let 0 < A < 4*. Then, the analytic center
y° of T(7?), or simply T, satisfies the following conditions.

() e
where (s%,4°) is feasible with v = ~9 for the system
s—(B-qA)y=0, e'y=1 (s,y) >0, (8.5)
and (2, 2Y) is feasible with v = 40 for the system
(B—yA) T2+ 2= (m+n)e, (x,2)>0. (8.6)

Now let y! be the analytic center of I'' = T'(y!) with 4! = 4%+ A~. For
a suitable choice of Ay, we can show that 40 < 4! < 4* and

P(y") < P(y°) —Q(1).
We prove a lemma on how to select A~y.

Lemma 8.4 Let

1 1
A~y = Bmi
7 ﬁmm{nxmyoen’ ||Y0ATXOe||}’
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for some constant 0 < B8 < 1 and let v* = +° + A~. Furthermore, let
5=5"—AvAy® and y=1",

and
=2 and z=2"+AyA"2".

Then, (5,7) and (Z, 2) are feasible for systems (8.5) and (8.6) with v = ~*,
respectively. Moreover,
Xs—e
(7= )]= v

(s,9) >0 and (z,2) >0.

and

Proof. The two equations in systems (8.5) and (8.6) for v = 4! can easily
be verified. The inequality for the norm can be proved from relation (8.4)
and the choice of A~.

X5 —el® = [|X°(s" — AyAy’) —elf?
= ||AyXAY0¢|?
< B
Similarly,
1Zy —ell® = [Y°(2" + AyAT2%) —¢|?

= [JAyYY AT X0
< B
These relations also imply that
§>0 and z>0,

since
z=2">0 and g=1y°>0.
O

The above lemma establishes a fact that (5,y) and (z, z) are approxi-
mate centers for systems (8.5) and (8.6) with v = 4!, respectively. Thus,
(Z,z) or (3,y) can be used as an initial pair of Newton’s method to generate
the new center pair (z!,2%) and (s*,y!).

We now state another technical result.
Proposition 8.5 Let H = {h;;} be a nonnegative m x n-matriz. Then
|He|| < e He,

and
|He|]| < e HTe = T He.
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8.1.3 Center-section algorithm

We now present a conceptual algorithm, which uses the perfect center, to
illustrate the basic idea of our approach:

1. Let 4% = 0. Then generate the analytic center y° of T = I'(7°). Set
k:=0.

2. Let
1 1 )

| XEAY ke||” ||V kAT Xke||

for some constant 0 < 3 < 1 and let 4+ = ~¥ + Ay* Then use

Newton’s method, which is described below, to generate the analytic
center y*F+1 of TA+1 = [(yk+1).

Ay* = Bmin{

3. If B(v**1) > —O((m + n)(log(R/€) + logn), then set k := k + 1 and
return to Step 2.

We can use the primal-dual Newton procedure to accomplish Step 1 of
the algorithm: Let (z, z, 8, y) be defined in Lemma 8.4 and repeatedly solve
for (ds,dy) and (dg,d.):

Sd, + Xd, = e— 75,
Yd, + Zd, = e—jyz,
(B - 71A)sz +d. = 0, (87)
ds — (B—~'A)d, = 0.
Then, let
r:=x+d, and ZzZ:=2zZ+d,,
and

5:=5+d, and y:=y+d,.

We now analyze the algorithm using approximate center pairs (s°,y%)
and (2°,2%) that are feasible for systems (8.5) and (8.6) with v = 4,

respectively, and
X0 —e
(o2 )] < e

As we proved in Theorem 3.2(iii),

m n 52
B(y") > B(s°,y") == Zlogs? + Zlogy? > B(y°) - 20=0)
i=1 j=1

Thus, B(s,y) is close to B(y) when (s,y) is an approximate center of I'(7y),
and it can be used to terminate the algorithm.
The following lemma is an analogue to Lemma 8.4.
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Lemma 8.6 Let positive constants 6 and [ satisfy 6 + /28 < 1. Let
(2°,29) and (s°,y°) be an approzimate center pair for T'(7°). Let Ay, 41,
(5,9) and (Z,2) be selected as in Lemma 8.4. Then, (5,9) and (T,Z) are

feasible for systems (8.5) and (8.6) with v =", respectively. Moreover,
Xs—e
I
and
(s,9) >0 and (z,2) >0.

Now, using (Z,Z) and (3,y) as the initial pair, we apply the Newton
procedure descrlbed by (8. ) to generate a new approximate center pair
(s',y') and (z',2') for T(y!'). Note that we terminate the procedure in
one step, then asmgn

(s',y") = (5 +ds,y+d,) and (wl,zl):(:ﬁ—l—dw,é—l—dz).

Note that (iv) of Theorem 3.2 and (8.6) indicate that
161 _
PN @+ /267 (8.9)
Zy —e 4 1-6-— \/_,8
and 3
_ 0+ 20
YO~ - Yo < (8.10)
1628
Next, for suitable constants § and 3, for example,
§=1/12 and B =1/4V2, (8.11)

we prove that the potential value at (s!,y!) in I't = I'(y!) is reduced by a
constant from the value at (s°,4%) in T? = T'(y?).

Theorem 8.7 Let § and 3 be chosen as in (8.11), and (2°,4°, 5%, 2°) sat-
isfy (8.8). Let

Afy:ﬂmin{ 1 , L }

[[X0AYOe]|” [[YOAT X O¢||

and v = 7% + Ay. Let (s',yt) and (z',y') be generated in one step of the
Newton procedure. Then,
<At <y

X's' —e
(2 =)] <o

B(s',y') < B(s",y") - Q(1).

and
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Proof. v!' > +% because Ay > 0 and 4! < ¥* because I'' = I'(y!) has a
nonempty interior. From inequality (8.9) we have

Xl 1 _
(250
Now we prove the potential reduction inequality. We have
@)'s' + (' = (B =~ Ay + () Ty
y)" (B =~"4)"a" +2°%) — Ay(a%)" Ay!
Jely' — Ay(a%)T Ay
) — Ay (a)7 Ay

n
n

Thus,

—
—
8
V2]
N
==
—
R
‘E-ib—l
N
N

m—+n

((z%%l + 0"y ) e

m-+n
exp(—Ay(z)" Ay").

Moreover, using (z°)7 Ay! > 0, Lemma 8.5 and relation (8.10), we have

(1 B Av(mO)TAy1>’”+"

IN

Ay T Ayt = AfyeTXOAY1
1

i o oA
S eTX0AY e
- el X0AY O¢
> B(1- M
1-56-+28
1-2(6 +v28)
1-0-V28

leTX%4y1e

)

B

Finally, we have
B(Slzyl) - B( 07y0)

= Z log + Z log
= Z log(xYs}) + Z log(2Yy}) — Zlog(m Zlog 20y9)
i=1 i=1 i=1
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1-200+Vv20) <~ -
A s ya A et = 3 tos(=l)

1f2(5+\/§ﬂ)+ 52
1-6-v28  2(1-0)

< -p (from Lemma 3.1 and (8.8)).

One can verify

ﬂ172(5+\/§ﬂ)7 # 1 1
1—-6—283 2(1-6) 8/2 264

This gives the desired result.

> 0.

We now formally state the algorithm.

Algorithm 8.1 Let v° = 0. Then generate a 6-approzimate center y° of
% ="1(+"). Set k:=0.
While B(sk*! yk+1) > —O((m + n)(log(R/€) + logn)) do

1 1
A~F = i .
7= fmin { [XFAVE] ||YkATXke||}

1. Let

for some constant 0 < 3 < 1 and let "1 = 4% + Ay*. Let
5=s—AyAy* and gy =y*,

and

k

T=a" and z=2"+ AyATLk

2. Solve for (ds,dy) and (d,d.) from (8.7) and let

2t =72 4+d, and zk+1:2+dz,

and

s =54d, and y*t! =y+d,.

3. Set k:=k+ 1 and return to Step 1.
It is well known that an initial J-approximate center pair, (2°,y") and

(29,29), can be generated in no more than O((m + n)(log(R/¢) + logn))
interior-point algorithm iterations. Thus, we conclude the following.
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Theorem 8.8 Algorithm 8.1, with a suitable choice of d and 3, terminates
in k= 0((m + n)(log(R/e) +logn)) iterations and each iteration solves a
system of (m+n) linear equations. The resulting y* € T'(v*) and v* satisfy

*

=7
1+

The algorithm also generates the optimal dual vector. More precisely,
we prove the following result.

0< <€

Proposition 8.9 Any limit point of

zk

Koo €Tk
where ¥ is generated by Algorithm 8.1, is a solution for the dual NEG
problem with n = n* under Assumptions 8.1, 8.2 and 8.4.

Proof. For simplicity, we assume that (z* y* s* zF) is exactly centered,
i.e., it satisfies relations (8.4), (8.5) and (8.6). Since at least one component
of s* converges to zero, e’ z* = e (S*)~'e tends to +oc. Moreover, from
(8.6) we have

k Zlc

eTxk

B —~kA)T L
(B—7» )eTm

=(m+n)

k el pk”

Thus, the right-hand vector of the above equation converges to zero. Since
2k /elzk > 0 for all k,
k N

= — lim
k— o0

— < 0.
eTak —

x
lim (B —~*4)"
Icgr;o( v ) el xk
Furthermore, under Assumptions 8.1, 8.2 and 8.4 we have ¥ — ~* = p*.
Therefore, any limit point of the sequence of positive 2* /e z* is a solution
for the dual.

O

Finally we turn our attention to the question raised earlier, that is,
what happens if I'(y) has an empty interior for some v < ~v*. It turns
out that there exists a nice duality theorem for the NEG problem, that
is, under Assumptions 8.1 and 8.2, I'(y) has a nonempty interior for all
v < n* < 4" (see Kemeny et al. and Gale [175]). Thus, the algorithm
discussed in this paper will precisely generate n* under only Assumptions
8.1 and 8.2. Similarly, the n-level set of the dual has an nonempty interior
for all n > v* > n*. Thus, one can apply the algorithm for solving the dual
to generate v* in the same manner. Thus, we can solve the NEG problem
under only Assumptions 8.1 and 8.2, which are basic assumptions for a
meaningful economic growth model.



8.2. CONVEX OPTIMIZATION 217

8.2 Convex Optimization

The problem studied is that of finding an interior point in a convex set
I', where we assume I' C R™ has a nonempty interior and is contained in
the cube Q° = {y € R™ : 0 < y < e} = [0,1]™. The set I is defined
implicitly by a separating oracle which for every j € Q0 either answers

that § belongs to ' or generates a separating hyperplane {y € R™ :a’y <
aly} D T. Without loss of generality, we assume that a is normalized so
that ||a|| = 1.

The problem of finding an interior point in a convex set defined by a
system (finite or infinite) of convex inequalities

T={yeR™: fi(y) <0, i=1,2,..},

where each f; : R™ — R is convex, can be cast in this manner. In
particular, the separating oracle just needs to select a to be g;/||gil|, where
gi is an arbitrary subgradient of any of the functions f; satisfying f;(y) > 0,
ie. g; € 0fi(y) (the subdifferential of f;). Note that for any g; € 0fi(7),
fily) < fi(y) implies gf (y — 7) < 0. Thus, if f;(g) > 0, fi(y) < 0 then
gF(y — 9) < 0. (In fact, the requirement that f;(g) be computed exactly
and g; € 0f;(y) can be significantly relaxed.) All that is required from
the oracle is that the following query be answered: Find any i such that
fi(g) >0, and a such that a’(y —g) <0 forally € {y € R™: fi(y) < 0}.

The problem under investigation may also be cast as that of finding
the solution to an infinite system of linear inequalities, which is defined
implicitly by the oracle T = {y € R™ : GTy < g} for some G € R™*4
and g € R? and d is infinite. The classical centering methods that have
been suggested for the above convex feasibility problem include the center
of gravity method, the max-volume sphere method, the ellipsoid method,
the max-volume ellipsoid method, and the volumetric center method.

The column generation or cutting plane method computes § as the an-
alytic center of the system of inequalities generated so far. In this section,
we show that for any given convex feasibility problem with a nonempty
interior, the algorithm is a fully polynomial-time approximation scheme
that uses only linear inequalities to approximate the solution set. A fully
polynomial-time approximation scheme means that for every €, the accu-
racy at termination, the running time is a polynomial in the dimension m
and e.

8.2.1 Max-potential reduction

Now, we use an approximate center y* to generate a cut, where (y*, s¥) is
an interior point in Q = {y € R™ : ATy < ¢} and there is z*¥ > 0 with
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Az* = 0 such that
IXEsk — el < (8.12)

for some 0 < 7 < 1. Let us place a cut exactly at y*, that is, we add a new
inequality aTy < aTy* to Q, and consider the new set

OF ={y: ATy <e¢c, a"y<a'yt}
We now prove a lemma resembling Theorem 2.10.

Lemma 8.10 Denote by (y,3) the analytic center of Q and let

F=\faT(AS-24T) 1
Then the maz-potential of QF
B(O*) < B(Q) + log(r) —

for some constant a depending only on 1. Moreover, if 0 < n < 1/100,
then we have a > 0.

Proof. Denote by y* the analytic center for QF. Let 57 =c— ATyt >0
and 5, | = a’y* —a’y*. Then we have

EZH aT(yk -y7)
= a"(AS2AT) TN (AS2 AT (yk - g )
aT(AS’72AT) 1AS Q(AT k AT +)
aT(AS2ATY T AS 2 (—c+ ATyF 4 c— ATy™)
— aT(A572AT)71A572(§+ _s )
= a'(AS2AT)TTASTH(S st - S TsY)
< [a"(AS2AT) T AS IS s - S|
= 7S5t —e4e—S1sM
< F(ISTE —el +lle— STt
< (ST —ell + (117 ) ) (from Theorem 3.2)
Thus,
exp B(QT) 50 57
7 exp B() TS
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Note that we still have
eTgflé+ =n.

This can be seen as follows:
'S st =" X5t =" X(c— ATy ) =" Xe=e"X5=n,

where the first and fifth equalities are due to X5 = e, and the second and

fourth equalities follow from Az = 0.
Thus, from the proof of Theorem 2.10

St el + —L—) [ L < dexp(=m—23).
(Il | (1_77)2)]]‘:_[151‘_ p(2(1_n)2

Thus,
+ _ 87’] -3
B(QT) — B(Q) <log(r) +log4) + ——.
2(1 —n)?
Let 8 _3
n—
=—log(4) - —-
o=y
Let n = 1/100. Then we have o > 0 and the desired result.
O

8.2.2 Compute a new approximate center
In this section, we show how to construct a pair (z,y,s) from (2*,y*, s*)
such that (A,a)r = 0 with z > 0, (y, s) is in the interior of 0T, and

[ Xs—el| <n<l1.

Suppose a pair (z¥,y*, s*) is given which satisfies (8.12), we use the dual

scaling for the construction of (x,y,s). Let

\/GT(A(SIC)72AT)71G=
Ay = —(B/r)A(SY)2AT) e,
As = (B/r)AT(A(SH)2AT) g,
Ar = —(B/r")(S") 2AT(A(S")2AT) N,

T'k

Then we set
y=y"+ Ay
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and

o [ JA ] _ [ . w/rk)(sk);ﬁ(A(sk)?AT)1a } |

It can be readily verified that

_[ c— AT(y" + Ay) ]:{sk—FAs}

L a"yF —a" (Yt + Ay) Brk
_ [ st + (B/rF)AT(A(S*)2AT) 1 ]
— e .

First, we have

(A,a)z = Aa* — (B/r*)a + (8/r*)a = 0,
Second, we have

sk (B)rF)AT(A(S*) 2 AT Ta = (S¥) (e + pb)
and
o (B/r)(S*) PAT(A(SH) P AT) e = (8*) N (XASPe — ph),

where

pk — (ﬁ/rk)(Slc)flAT(A(Sk)72AT)71a.
Note that we have

[p*] = 5. (8.13)

On the other hand, we have

k k
zijs; 2 1—m.

Thus, if we select 7 and 8 such that

1-n—8>0, (8.14)
then both ($)(e 4 5)
s = [ Brk ] >0
and

. [ ($5) 1 (XEShe — ph)

vt )L
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A simple calculation yields

Xs—e— [ X'“SS —e ] _ [ (»*)? ] N [ (stko— I)p*

where the vector
") = ()% (05)*, (k)"

Therefore, we have

[ Xs —ell

IN

1¥5¥ = el + lER2IR + (1= 202 + 18" = el
B AP +u8

where the last step follows from (8.12) and (8.13). Let 8 = 1/v/2 and
n = 0.15, then

[ Xs—e| <v=015+1/vV2+0.15/v2 < 1.

IN

Or, we can let
n=1/100, and have ~:=1/100+1.01/v2 < 1.

Furthermore, it can also be easily verified that (8.14) holds.

Hence, using this (y, s) as a starting pair, we can apply the dual Newton
procedure of Chapter 3 to generate a pair (y**!, s¥*1) and 2Ft! = z(y*+1)
such that

(A,a)z*tt = 0, 21 >0,
s = (T aTy")T = (4,0)TyH T > 0,
and
[ XA — el <.

By Theorem 3.2(iv) and the above given values of v and 7, this can
be accomplished in 4 dual Newton steps due to the fact v'¢ < 5. This
column generation process can be repeated, and from Lemma 8.10 the
nested sequence of polyhedral sets Q* generated by the algorithm satisfies

B < B(QF) + log(7*) — a (8.15)

where « is some constant,

= \Jal (A(SF)2AT) Tagy,

(g*,5*) is the analytic center of Q% and ay; is the cut generated at the kth
iteration. Note that (g*,5") is solely used for analysis, and the algorithm
does not need any knowledge of (y*, s%).
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8.2.3 Convergence and complexity

Let the solution set T’ be contained in Q° = {y € R™ : 0 < y < e}, and f‘
contain a full dimensional closed ball with € < % radius. We also assume

that there exists an oracle which for every § € Q° either returns that Gf‘
or generates a separating hyperplane {y : a’y < aTy} D I, with |jal| = 1
being assumed.

The column-generation, or cutting plane, algorithm from approximate
analytic centers is as follows:

Algorithm 8.2 Let

A = (I,-I) e R™2™ O = < 8 > € R*™, (8.16)
o_ 1 m 0 _ 0 T, 0 _ 1 2m 0 2m
Y :56672 , 8 :c—(A)yZEeGR , x =2e€R™.
Set
k:=0.

While y* ¢T do

1. Query the oracle to generate a hyperplane {y : aZHy < a;‘cr;rlyk} or
with ||ags1|] =1, and let

Qk+1 — {y c R™ . Ck+1 _ (Alc+1)Ty Z 0}

where

k
ARt = (Ak:ak+1) and = ( Tc k >
ag41Y

2. Compute (y*+1 sh+1 ok+1) such that y*+! is an n-approzimate an-
alytic center of Q*t', using the Newton method with the updating
scheme of section 8.2.2 and starting from (y*, s*, x*), an n-approzimate
of QF.

3. Set k:=k+ 1 and return to Step 1.

Let the potential function computed at the exact analytic center y* be:

2m+k

BQ¥) = ) log(c" — (4M)T5");.

Jj=1

Clearly the following relations hold, provided that termination has not oc-
curred:
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rcof vk, (8.17)

and
BO1) < B©Y) + L log(r*)’ — o (by Lemma 8.10) (8.18)
where
()2 = T, (AF(S")2(AMT) T apyy and s = b — (4F)T gk
Lemma 8.11 For all k> 0,
B(Q*) > (2m + k) loge.

Proof. From (8.17), T C Q*. Thus QF contains a full dimensional ball
with e radius. Let the center of this ball be . Then ¢* — (A*)Tg > ee; thus

2m+-k 2m+-k 2m+k

Z log(ck — (AM)T' %) Z log(ck — (AF)" Z loge

where 3* denotes the analytic center of QF.

Lemma 8.12 Let s = c¥ — (A¥)Ty for any y € QF. Then

i) 0<s; <1, j=1,....,2m

il) 0<s; <v/m, j=2m+1,...2m+k.

Proof. For j=1,...,m,s;=1—y;;since0<y; <1,0<s; < 1.

Forj=m+1,...,2m, s; = yj_m;since 0 < y;_,, <1,0<5; < 1.
Forj=2m+1,...,2m + k,

j—2m Jj—2m

—yll =1y " —yll < Vm

The last inequality is due to the fact that 0 < 477 2™ <eand 0 <y < e or
Yy =2 € Q% and y € O°.

Sj = a‘,jl'lme - arjl'lme < ||aj*2m|| ||y

O

Lemma 8.11 indicates that in order to prove finite convergence, one
needs to show that B(Q*) grows more slowly than 2m + k. By Lemma
8.10, this means finding upper bounds on #*. In the following Lemma this
is achieved by using a construction which bounds A*(S*)~2(4*)T from
below by using a certain matrix B¥ which is simple enough to handle.
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Lemma 8.13 Let s = c* — (A¥)Ty for any y € QF and B = 81, B*! =
Bk + %ak+la{+1' Then
Ak572(Ak)T - Bk;

that is,
Ak572(Alc)T _ Bk

is positive semi-definite.

Proof. Let Y = diag(y). Then

ARS2ANT = vy Ry ey

1
- Y2 4+(I-Y)24+ = ol (by L 8.12
- + ( ) +m2aja (by Lemma )

Y
o)
~
_|_

|
QQ
IS
N
0
o
N
<
N
=&

O

Lemma 8.14 Let 58 = c* — (A¥)Ty* be the slack vector at the analytic
center §* of O and (W*)? = af | (B*)Lags1, then
(w")? > ai i (A5 (SH) (AN T) Haps = (7).
This lemma implies that upper bounds on the series of (w¥)? will lead
to upper bounds on the series (7%)2.

Lemma 8.15

k
) kE+1
N2 < 2m?log(l + ——).
jgzo(w )* < 2m”log(1 + Y )

Proof. Note that

1
det B¥1 = det(Bk + Eak+1az+l) =1+

Thus
log det B*' = log det B¥ + log(1 +
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But ( k)z
w 1 1
m < gakT+1ak+1 = g;
hence
k\2 kN2 (w*)?\2
10g(1+(w)) > (W?)” _ (mzw
m 2(1 — (wm) )
() L
= (1 B m(wk)z )
m 2(1 - — )
S (wk)Z
- 2m
Thus we have
k 2 k N2
log det B**! > log det B® + Z % =mlog8 + Z (;)77)1 )
Jj=0 j=0
But .
1 trace B k+ 1
n logdet B < log T = log(8 + =),
Thus .
7)? k+1
) <mlog(8 + —5) —mlog8
=0 2m m
or
- k4l
7\2 <92 21 1 ]
j:O(w) < 2m”log(1+ 8m2)

|

Theorem 8.16 The cutting plane algorithm stops with a feasible solution
as soon as k satisfies:

2 L +2mlog(l+ &) E+1

—_> 8m?” exp(—200———
m 2m+k+1 xp( ak+1+2m

).
Proof. From relation (8.18) and Lemma 8.11,
(2m +k+1)loge < B(Q

k
< B(QY)+ % Zlog(ff)2 —(k+1)a

k
11 e
= 2m 10g§ t3 jE_O log(7)* — (k+ 1)a.
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Thus
log e + E+1
ogeE+ ———a
T Ikt 1
1 { 1 < ]
< ———— 2mlog- log ()
= 2@m+k+1) [m°g4+;°g(r)J
1 2mi 4+ (79)2
< ilog ;m —?li_—}?(l ) (from the concavity of log)
m k i )2
1 T+ oW
< Elog% (from Lemma 8.14)
1, 2 +2m?log(l+ &
< Elog 2 27;+i(+1 m?) (from Lemma 8.15)
or
2 54 2mlog(l+ &4 1
C  a2mbogld ) g BEL )
m 2m+k+1 E+142m

|

Theorem 8.16 implies that the complexity of the column generation
scheme, counted by the calls to the oracle, is O*(T—;); the notation O*
means that lower order terms are ignored. The largest value of 7 that
guarantees v < 5 (so that 4 dual Newton steps are enough to recenter) is
about n = .09 with 8 = .691. In this case @ may be negative; nonetheless

the algorithm will still terminate after O*(T—;) iterations.

Theorem 8.17 The approximate analytic center algorithm, which uses the
updating scheme of Section 8.2.2 and the Newton method, is, for appropri-
ate values of n and B which depend on the exact miz of recentering and
updating steps, a fully polynomial-time approzimation scheme.

8.3 Positive Semi-Definite Programming

Recall that M™ denotes the set of symmetric matrices in R"*". Let M’}

o n
denote the set of positive semi-definite matrices and M, the set of positive
definite matrices in M™. The goal of this section is to extend interior-point
algorithms to solving the positive semi-definite programming problem:

(PSP) inf CeX
subject to A; e X =b;,i =1,2,....m, X >0,
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where C € M", A; € M"™, i =1,2,....,m, and b € R™. The dual problem
can be written as

(PSD) sup by
subject to >."y;Ai+S=0C, S =0,

which is analogous to the dual of LP.
Denote the primal feasible set by F, and the dual by F4;. We assume

that both .7?',, and .;‘d are nonempty. Thus, the optimal solution sets for
both (PSP) and (PSD) are bounded. Let z* denote the optimal value and
F = Fp x Fy. In this section, we are interested in finding an e approximate
solution for the PSP problem:

CeX —bly=SeX <e

For simplicity, we assume that a central path pair (X°,¢°, S%), which sat-
isfies

(XO)'5SO(X0)'5 — //'0] and //'0 — XO ° SO/T%

is known. We will use it as our initial point throughout this section.
Define the “co-norm” of M™ by

[X[loe = _max {|X;(X)]},

je{l,...,n}

where \;(X) is the jth eigenvalue of X, and the “Euclidean” norm by
X[ =VXeX = > (\(X)?
j=1
Furthermore, note that for X € M"

tr(X):zn:Aj(X) and det(I+X):ﬁ(1+/\j(X)).

Then, we have the following lemma which resembles Lemma 3.1.

Lemma 8.18 Let X € M" and || X||o < 1. Then,

tr(X) > logdet(I + X) > tr(X) — %



228 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATION

8.3.1 Potential reduction algorithm

Let X e]ti'p, (y,S) Gji"d, and z < z*. Then consider the primal potential
function

P(X,z) = (n+ p)log(C ¢ X — z) — logdet X,

and the primal-dual potential function
P(X,S)=(n+p)log(SeX)—logdet XS,
where p = /n. Let z = b"y. Then Se X = C e X — 2, and we have

Y(x,s) = P(x,z) — logdet S.

Consider a pair of (X* y* S*) ¢ F. Fix zF = bTy*, then the gradient
vector of the primal potential function at X* is

VP(XE Ay = P

ky—1
= SrexrC (X

The following corollary is an analog to inequality (3.15).

Corollary 8.19 Let X* Ej\o/l+ and [[(X*)7?(X — XF)(X*) 79| < 1.
Then, X 6/{)/14_ and
P(X,2%) — P(X* 2%) < VP(XE, 2F) o (X — XF)

[(XH) (X = X)) )2

+ .
2(1 — [|(XF) (X — XF)(XF)F|0)
Let
Ay
A= | A2
Am
Then, define
A1 o X
AX _ A2 o X — b,
Ao X
and

ATy ="y
im1
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Then, we directly solve the following problem
minimize VP (XF 2%) e (X — XF)
subject to  A(X — X*) =0,
I(XH) (X — XF)(X) 3| <a < 1.
Let X' = (X*)75X(X*)=®. Note that for any symmetric matrices Q,T €
M?" and X €M, ,
Qe XSTX5 = X5QX5 o T and | XQ|. = QX = [|X5QX ).

Then we transform the above problem into

minimize  (X*)SVP(X*, 2k)(X*)5 e (X! — 1)
subject to A(X'—1)=0,i=1,2,...,1,

X' =1|| < o,
where
All (Xk).5A1(XIc).5
A’ _ AI2 — (Xk).5A2(XIc).5
A;n (ch).SAm(Xk).E)

Let the minimizer be X' and let X*+! = (X*)-5X'(X*)->. Then

Pk
X - I= -a——.
1P|
k\.5 pk ky.5
kel ok (XP)PPR(XT)
XXt = et e (8.19)
where
Pk — P_A’ (Xk)ﬁva(Xk,zk)(Xk)ﬁ
— (Xk)'5VP(Xk7Zk)(Xk)'5 _ AITyk
or
n+
Pk _ Sk .)f;k (Xk)5(0 _ ATyk)(Xk)B _ 17
and
k Sk .ch

_ (A/A/T)flAl(Xk)ﬁvtp(Xk:Zk)(Xk)ﬁ_
n+p
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Here, P4 is the projection operator onto the null space of A’, and

Ale Al Aledy, .. AleA
AT | Ao Al Ayedy L e |
Al oAl A e AL .. Al eAl

In view of Corollary 8.19 and

VP(Xk, Zk) ° (Xk).BPk(Xk).B

VP(XE 2F) e (XHL — XF) = —q TBF
_ (ch).Svp(Xk7Zk)(Xk).5.Pk
PRl
|| P*[? k
—a = —al[P"|l,
| P¥||
we have )
PXFH 2F) — P(X*,2%) < —al | PH|| + 5
2(1 — «)

Thus, as long as ||P*|| > 8 > 0, we may choose an appropriate a such that
P(XFH 2F) —P(XE, 2F) < =0

for some positive constant 4.
Now, we focus on the expression of P*, which can be rewritten as

n+p

Ey._ pk _ k\.5Q( ky(vk\5
P(e*) = PP = g B (XRISEN (XY 1 (8.20)

with
S(zF)=C — ATy(2Y) (8.21)

and

Sk o Xk Ce Xk _ 5k
Y =yt m g - ey — g - ———— 2y (8.22)
n+p n+p
where g1 and y» are given by

poo= (WA AT = (AAT) D, (8.23)

Yo = (A/A/T)—lAl(ch).50(Xk).5_

Regarding || P*|| = ||P(2*)||, we have the following lemma resembling
Lemma 4.8.



8.3. POSITIVE SEMI-DEFINITE PROGRAMMING 231

Lemma 8.20 Let

& Ske Xk CeXk_k S(z%) e X*
ut = = and p=—"——.
n n
If
|1P(z*)|| < min(3 n+ﬂ2’1 ) (8.24)

then the following three inequalities hold:

() = 0, I(XF) )XY~ pell < Bu,  and < (1—58/V)ut.
(8.25)

Proof. The proof is by contradiction. For example, if the first inequality
of (8.25) is not true, then (X*)>S(z*)(X*)® has at least one eigenvalue
less than or equal to zero, and

1P(R)] > 1.

The proof of the second and third inequalities are similar to that of Lemma
4.8.

|

Based on this lemma, we have the following potential reduction theorem.

Theorem 8.21 Given X* E](i"p and (y*, S*) E](i"d, let p = \/n, 2% = bTy*,
X*+1 be given by (8.19), and y**' = y(2*) in (8.22) and S**+1 = S(z*) in
(8.21). Then, either

w(Xk+17Sk) S w(Xk/Sk) -4

or

w(Xk7Sk+1) < w(Xk/Sk) —0
where § > 1/20.

Proof. If (8.24) does not hold, i.e.,
1PGH)] > min(8, -1 8),

n a
m;1*5)+

then

P(XML 28— P(XF 2%) < —amin(B
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hence from the relation between P and ),

n (0%

PN, 84 (Xt 8 < amin(@y [ 1= )+ gy

Otherwise, from Lemma 8.20 the inequalities of (8.25) hold:

i) The first of (8.25) indicates that y**! and S**! are in Fa.

ii) Using the second of (8.25) and applying Lemma 8.18 to matrix
(X*)-5Sk+L(X*)5 /1. we have

nlog S**1 e X* —log det S¥+1 x*
= nlogSH*! e X* /i —logdet(X*)5 Sk (Xk)5/y
= nlogn — logdet(X*)5Sk1(Xk)>/pn
1K) 35+ (XF) S )2

< ) )
S logn S R SR (XR) 5 — T])
ﬁZ
< nlogn+ ——
S T )
k k k k ﬂZ
< nlogS" e X" —logdet S" X" + ——.

iii) According to the third of (8.25), we have

Vn(log S¥! e X —1og S* ¢ X*) = \/ﬁlogﬁk < -
7

IV

Adding the two inequalities in ii) and iii), we have

P(XF, SEFL) <Xk, Sk — by ’672.
‘ - ‘ 2 2(1-p)

Thus, by choosing 3 = .43 and a = .3 we have the desired result.

O

Theorem 8.21 establishes an important fact: the primal-dual potential
function can be reduced by a constant no matter where X* and y* are. In
practice, one can perform the line search to minimize the primal-dual po-
tential function. This results in the following potential reduction algorithm.
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Algorithm 8.3 Given zV ei‘p and (y°,s°) e;‘d. Let 29 = b7y, Set
k:=0.
While S* ¢ X* > ¢ do

1. Compute y1 and yo from (8.23).
2. Set y*t! = y(z), Sk = S(2), 2kt = pTyk+! with

z = arg min (X*, 5(2)).

z>zk
If h(X*, SFHL) > p(XF, SF) then ykt! = yk Skl = Gk h+l — 5k
3. Let X*+1 = Xk — q(XFk)5P(2F+1)(XF)® with

a = argm;rgz/)(Xk o a(XIc).5P(ZIc+1)(XIc).57Sk+1)'

4. Set k:=k + 1 and return to Step 1.

The performance of the algorithm results from the following corollary.

Corollary 8.22 Let p = \/n. Then, Algorithm 8.3 terminates in at most
O(y/nlog(C e X — bTy%) /€) iterations with

CoeXF—pTyk <e.

Proof. In O(y/nlog(S° e X°/¢)) iterations

Z/J(Xk:Sk) _¢(XO7SO)
Vnlog Sk e« X* 4+ nlogn — (X9, 59
= nlog(S* e X*/S% e X7).

—/nlog(S° e X9 /e)

v

Thus

)

Vnlog(C e XF — b"yk) = /nlog S* e X* < \/nloge,

ie.,
CoeXF_plyrt =5Fe Xk <e
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8.3.2 Primal-dual algorithm

Once we have a pair (X,y,S) E}O' with 4 = S ¢ X/n, we can apply the
primal-dual Newton method to generate a new iterate X and (y™,S™) as
follows: Solve for dx, d,, and dg from the system of linear equations:

D 'dxD'+4+ds = R:=~uX'-8,
Adx = 0, (8.26)
ATd, +ds = 0,

where

D= X'5(X'5SX'5)7'5X'5.

Note that ds edx = 0.
This system can be written as

dXI —|— dS/ = R’7
Aldx = 0, (8.27)
A’Tdy +dsr = 0,

where

dxl — D7'5dXD7'57 dSI — D'5dSD'5, RI — D.5(,YMX71 _ S)D.5=

and
All D'5A1D'5
A, A’2 L D'5A2D'5
A D3A,,D*

Again, we have dg' e dx: = 0, and
dy = (AAY AR, dg = —A'"d,, and dx, = R' — dg.

Then, assign
ds = A%d, and dx = D(R—ds)D.
Let
V1/2 — D7'5X.D7'5 — D.5SD.5 6./\()/{+ .
Then, we can verify that Se X = I ¢ V. We now present the following

lemma whose proof is very similar to that for Lemmas 3.6 and 4.11 and
will be omitted.
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Lemma 8.23 Let the direction dx, d, and ds be generated by equation
(8.26) with vy =n/(n+ p), and let

(67

g = :
VPl VP = V7]

(8.28)

where o is a positive constant less than 1. Let

Xt =X+60dx, y"=y+0d, and ST =5+6ds.

Then, we have (X, y*,ST) EJCi' and
1/)(X+7S+) _’l/}(Xz S)

_a||V71/2 _ 711._+‘5)V1/2|| N a?
- V=12l 21— a)

Applying Lemma 4.12 to v € R™ as the vector of the n eigenvalues of
V', we can prove the following lemma

Lemma 8.24 Let V Ej\o/l+ and p > \/n. Then,

s A

vl 2 VA

From these two lemmas we have

’(/)(X+7S+) _’l/}(X: S)

2

«
< — 44 —=-9
< —ay/3/4+ 21— a)

for a constant §. This leads to

Algorithm 8.4 Given (X°,y°, S9) €F. Set p=+n and k:=0.
While S*¥ ¢ X* > ¢ do

1. Set (X,S) = (X*,S%) and v = n/(n + p) and compute (dx,d,,ds)
from (8.26).

2. Let X**1 = XF fady, y*+! = yk-l-ddy, and S**1 = S* + ads where

a= a1rgm>i1011[)(X]C + adx, S* + ads).

3. Set k:=k+ 1 and return to Step 1.
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Theorem 8.25 Let p = \/n. Then, Algorithm 8.4 terminates in at most
O(y/nlog(SY e X%/¢)) iterations with

CeXF—plyr <e.

Primal-dual adaptive path-following algorithms, the predictor-corrector
algorithms and the wide-neighborhood algorithms similar to those in Sec-
tion 4.5 can also be developed for solving (PSP).

8.4 Monotone Complementarity Problem

We present a generalization of the homogeneous self-dual linear program-
ming (LP) algorithm to solving the monotone complementarity problem
(MCP) in the form:

(MCP) minimize zTs
subject to s = f(x), (z,s) >0,

where (z,s) € R*" and f(x) is a continuous monotone mapping from R
to R™. In other words, for every z', 2% € R, we have

(' — )T (f(a") — F(2?)) > 0.

Denote by V f the Jacobian matrix of f, which is positive semi-definite in
(MCP) is said to be (asymptotically) feasible if and only if there is a
bounded sequence (zf > 0,st > 0),t=1,2,..., such that

lim st — f(z') =0,

t— o0
where any limit point (Z, §) of the sequence is called an (asymptotically)
feasible point for (M CP). (MCP) has an interior feasible point if it has
an (asymptotically) feasible point (& > 0,8 > 0). (MCP) is said to be
(asymptotically) solvable if there is an (asymptotically) feasible (&, §) such
that 275 = 0, where (&, 3) is called the “optimal” or “complementary”
solution for (M CP). (MCP) is (strongly) infeasible if and only if there is
no sequence (z! > 0,s* > 0), t = 1,2, ..., such that

lim  s' — f(z') = 0.

t—o0

Denote the feasible set of (M CP) by F and the solution set by S. Note

that (M CP) being feasible does not imply that (M CP) has a solution. If
(MCP) has a solution, then the solution set is convex and it contains a
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maximal solution (z*,s*) (the number positive components in (z*, s*) is
maximal).
Cousider a class of (MCP) where f satisfies the following condition.
Let
v:(0,1) = (1,00)

be a monotone increasing function such that
IX(f(z +ds) — f(z) = Vf(2)do)|l, < v(@)dy Vf(2)d, (8.29)

whenever
d, €R", zeRY,, |X 'df_<a<l
on
Then, f is said to be scaled Lipschitz in R .

Given 2z > 0 and s° = f(2°) > 0 one can develop an interior-point
algorithm that generates a maximal complementary solution of the scaled
Lipschitz (M CP) in O(y/nlog(1/¢)) interior-point iterations, where € is the
complementarity error.

However, the initial point z° is generally unknown. In fact, we don’t
even know whether such a point exists or not, that is, (M CP) might be
infeasible or feasible but have no positive feasible point. To overcome this
difficulty, in Section 5.3 we developed a homogeneous linear programming
(LP) algorithm based on the construction of a homogeneous and self-dual
LP model. In this section, we present a homogeneous model for solving the
monotone complementarity problem. The algorithm again possesses the
following desired features:

e It achieves O(y/nlog(1/e))-iteration complexity if f satisfies the scaled
Lipschitz condition.

e If (MCP) has a solution, the algorithm generates a sequence that
approaches feasibility and optimality simultaneously; if the problem
is (strongly) infeasible, the algorithm generates a sequence that con-
verges to a certificate proving infeasibility.

8.4.1 A convex property

on
Let f(x) be a continuous monotone mapping from R to R™. Consider the
set of residuals

Rii ={s—f(z) eR": (z,s) >0},
and for ar € R™ let

Sir(r) ={(z,s) e R+ s= f(z) +r}
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on

Since f is continuous in R, we can easily verify that R, is an open
set. Furthermore, we have

Theorem 8.26 Consider the mapping F = (Xy,s — f(z)) € R*" from

(x,5) € R®™. Then F maps 'Ri’ﬂr onto 703+ X Ry homeomorphically, that

on
is, F' is one-to-one on Rﬁ_ﬁ_, F maps 'Rf_’q_ onto Ry xRy, and the inverse

omn
mapping F~' is continuous on Ry xR y.
Simply using the monotone of f, we also have the following lemma

Lemma 8.27 Letr € R™. Assume that (x',s') € S, (0'r) and (22, s%) €
S+ 1 (0%r) where 8 and 62 are two real numbers. Then

(92 _ 91)7“T(332 _ 2131) S (2132 _ m1)T(52 _ 81).
This lemma leads to the next lemma:

Lemma 8.28 Let r € R" and 6° < 0'. Assume S, (0°r) # 0 and
Sy (0'7) #0. Then, for every § > 0, the union of

Cyy(0r,0) = {(2,y) € S11(0r) : «"y <5}, 6e[6°,0']
is bounded.
Proof. Let (z°,5°) € S, (6°r) and (2',s') € S, (8'r), and
max((s®)"2%, (s")"z') < 6.
Let 6 € [6°,60'] and (x,s) € C14(fr,8). Then we have by Lemma 8.27 that
(sHTz + (@) Ts < (0 = 0)rTz + !

and
(T2 4+ (2°)"s < (8° = 0)r" z + ¢,

where
=" =6 r"z'| 4+ 20 and & = (8" — 0°)|r"2°| + 26.
Thus, if #° < ! then we have
(60— 0°)((s) T + (+1)T8) + (8 — B)((s°) 'z + (+°)T's)
<(B—-6%c + (8" —0)c .
Thus, we have

1.0
eT.r-|-eT.s§ : mazi{CO:Cl} —
min{ (a0, 80, 21, 51)}

which implies that (x, s) is bounded. The lemma is obviously true if 8° = §!.
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O
To prove the convexity of Ry, it suffices to prove that if the system
s=f(@)+r"+0r, (2,8) >0

has a solution at # = 0 and # = 1, then it has a solution for every 6 € [0, 1].
Without loss of generality, we may assume r% = 0. Let (2°,5°%) € S, (0),
(z',s') € S;(r), and max((s°)72%, (s')"2!) < 6*. Now consider the
system

Xs=(1-60)X""+6X"'s" and s-— f(z)=06r, (z,5) >0. (8.30)

Let
© = {0 € R: system (8.30) has a solution}.

Then, from the openness of R, and Theorem 8.26 we can derive

Lemma 8.29 O is an open set and system (8.30) has a unique solution
(2(6),s(0)) for every 6 € ©. Moreover, (z:(0),s(8)) is continuous in 6 € ©.

We now ready to prove the following theorem.
Theorem 8.30 R, is an open convex subset of R™.
Proof. The openness has been discussed earlier. Let

6* =inf{f: [6,1] C ©}.

Since 1 € O, we know by Lemma 8.29 that §* < 1 and 6* € ©. If 8* < 0,
Or € R, for every 6 € [0, 1]; hence the theorem follows. Suppose on the
contrary that 6* > 0. Let {#* € (6*,1]} be a sequence converging to 6*.
Then, for k = 1,2, ..., we have

X(0%)s(6%) = (1 —0F) X0 4 9k X 15!
s(0%) — f(x(8%)) = 6%, and (x(6*),s(6*)) > 0,
which implies that
(@(6°)"s(8%) = (1 — 6°)(a*)"s° + 6% (a")"s" <67

Thus, (x(6%),s(6*)) is in the union of Cy(fr,6*), § € [0,1]. Since the

union is a bounded subset by Lemma 8.28, we may assume without loss
of generality that the sequence {(z(6%),s(6%))} converges to some (z,3) €
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R3™. By the continuity of the mapping Xy : R3" — R, the point (z, 5)
satisfies B
Xs=(1-6)X""+6"X"'s' e R} .
By the continuity of f: R, — R", we then see that
s—f(&)=(1-0"0+0"r =06"r

This implies that (z, 8) € S;(6*r) and 6* € O, the contradiction of which
is 8* ¢ ©. Thus we have shown that R, is a convex set.

O
8.4.2 A homogeneous MCP model
Consider an augmented homogeneous model related to (M CP):
(HMCP) minimize z7s+ 7k
. s\ Tf(z/T)
subject to ( . ) = ( —2" f(z)7) > , (z,7,8,k) > 0.
- (/7 “
. Tf(z/T oon 1
1/)(3377—) - ( *.’ETf(.’E/T) > - R+ — R . (831)

Then, it is easy to verify that Vi is positive semi-definite as shown in the
following lemma.

Lemma 8.31 Let Vf be positive semi-definite in R’} . Then V1 is positive
on+1l
semi-definite in R, i.e. giwen (z;7) > 0,
(dy; d.,-)TV’(/)(:E, 7)(dy;dr) >0

for any (d.;d,) € R™", where

_ Vi a/7) £(a/7) N f /) (/7
Viten) = (giopmir it emressrer, )
(8.32)
Proof.

(da; d.,-)TVUJ(."E, 7)(dz; dr)
= d'Vf(z/r)d, — IV f(z/T)z(d, |T)

—(d, Jtaw)xTV f(z /)T dy + 22TV f(z/7)x | T>
= (dy —d;z/7)"Vf(z/7)(d; — drx/T)

(8.33)
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O
Furthermore, we have the following theorem.
Theorem 8.32 Let v be given by (8.31). Then,
on+1l
i. @ is a continuous homogeneous function in R,  with degree 1 and for

on+l
any (x;7) ER

(;7) " (2, 7) = 0

and
('T; T)TV1/)(.’E,T) = *w(-’ﬂ: T)T'

ii. If f is a continuous monotone mapping from R} to R"™, then 1 is a
on+l1
continuous monotone mapping from R,  to R

iii. If f is scaled Lipschitz with v = vy, then 1) is scaled Lipschitz, that is,
it satisfies condition (8.29) with

2Uf(2a/(1+a)))< 1 )

1—« 1—«

v =wvy(a) = <1+

iv. (HMCP) is (asymptotically) feasible and every (asymptotically) feasi-
ble point is an (asymptotically) complementary solution.

Now, let (z*,7*,8*,k*) be a maximal complementary solution for
(HMCP). Then

v. (MCP) has a solution if and only if 7 > 0. In this case, (z*/7*,s*[7*)
is a complementary solution for (M CP).

vi. (MCP) is (strongly) infeasible if and only if k* > 0. In this case,
(z*/K*,s*[K*) is a certificate to prove (strong) infeasibility.

Proof. The proof of (i) is straightforward.

We leave the proof of (ii) as an exercise.

We now prove (iii). Assume (z;7) € R" and let (d,;d,) be given such
that |[(X 'dy;771d;)||eo < a < 1. To prove 1 is scaled Lipschitz we must
bound

H( )0( 2 > <¢($+dz=7+d7)w(m,r) — V(a7 < Zw ))

T

1

(8.34)
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From (8.31) and (8.32), the upper part in (8.34) is identical to

X (fly+dy)(r+d:) = fly)r = (Vf(y)ds + f(y)d- —Vf
= (T+d)X (f(y+dy) — f(y) = VI(y)dy)
= 7(r+d)Y (fly+dy) — fly) — V(y)dy)
where
y=x/7 and y+dy:f__-::—jz,
that is,
L e —ad, _ dy = (d/7)a
Yoor(r+dy) T4+d,
Note
||}”1dy||OO = ||TX’1(Td fd x)/(r(r +d;, ))Hoo
= i ia - aosire ),
< (X +a)/(1-a)
< 2a/(1 - a)

(8.37)

(8.38)

Per the assumption that f is scaled Lipschitz with v = vy, it follows for

€ [0,1) that

I7(r +d)Y (f(y + dy) — f(y) — V(y)dy)l],
(7 +d; o (20/ (1 — @))dI 'V f(y)d,
TGS (4, — xd, /7)Y f(y)(dy — zd. /T)
w(dz, d)'Vip(x, 7)(dy; dy)
w(dw, d.)"V(z,7)(dys ).

A

IA

Next we bound the lower part of (8.34). This part is equal to

(y +dy)"(z + do) — (= f(y)" )

T

- (y)sz —wTVf( )'de /7 + 2" f(y)zd, /77])

x + dz)TVf( )dy + (2/7)"V f(y)d
7 ((x+d)" (= fly+dy) + fly) + VIy)d,)
~(ds —d w/T)TVf() v)
= e+ X 'd)"Y (= fly+dy)+ fly) + V(y)
—T(T+d7)d5Vf(y)dy.

d.))

(—f

—-[-f y
T(((r 2) T (—fly +dy) + ()+Vf(§/))
((

dy)

(8.39)
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Thus, using (8.33) and (8.38)

7 (—fy+dy)" (z +da) = (—f(y)" 2)
—[=fW)Tds — 2TV ()T do /7 + 2T f(y)2d, [/7%]) |
7 e+ X7 | IV (=fy +dy) + (= fy) = VIW)dy))ll,

<

o+ d)|dTV F(y)d,

< (FP(1+ a)vf(2a/(1 — a)) +7(1 +d.)) dZVf(y)dy

_ 72(1+a)vf(2§c:/+(dla))+-r(-r+d.,) (dT d. ’E/T)Tv_f( )(d o d.,—.’E/T)
= Ll D ) Vi, 7) (s )

< (% + m) (dz;dr)va(T/T)(dz;dr)

(8.40)
The sum of (8.39) and (8.40) is equal to

Uy (a)(dz ) dT)Tv¢(w7 T) (dl‘ ; d'r)

and it bounds the term in (8.34) leading to the desired result.

We leave the proof of (iv) as an exercise too.

We now prove (v). If (z*,7* s*,k*) is a solution for (HMCP) and
7* > 0, then we have

/0 = fat/r) and (@)7s/(r)? =

that is, (z*/7*,s*/7*) is a solution for (M CP). Let (&, §) be a solution to
(MCP). Thent =1,z =%, s =§, and kK = 0 is a solution for (HMCP).
Thus, every maximal solution of (HMCP) must have 7* > 0.

Finally, we prove (vi). Consider the set

Rii ={s—f(z) eR": (z,s)>0}.

As proved in Theorem 8.30, R, is an open convex set. If (MCP) is
strongly infeasible, then we must have 0 ¢ R, where R, represents the
closure of Ry,. Thus, there is a hyperplane that separates 0 and R, .,
that is, there is a vector a € R™ with ||a]| = 1 and a positive number £ such
that

a’(s—f(x))>€6>0 V>0, s>0. (8.41)

For j =1,2,...,n, set s; sufficiently large, but fix £ and the rest of 5, a; > 0
must be true. Thus,
a>0, or a€Rl.

On the other hand, for any fixed x, we set s = 0 and see that

—a"f(x)>¢>0 Ya>0. (8.42)
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In particular,
—alf(ta) > >0 Vt>0. (8.43)

From the monotone of f, for every x € R’} and any ¢ > 0 we have

(tr — )" (f(tx) — () > 0.

Thus,

o7 f(tx) > a7 f(x) (8.44)
and

tl;rgo ' f(tx)/t > 0. (8.45)

Thus, from (8.43) and (8.45)

lim a” f(ta)/t = 0.

t—o0

For an z € R, denote
F(@) == lim f(ta)/t,
t—o0

where f°°(x) represents the limit of any subsequence and its values may
include oo or —oc.

We now prove f>*(a) > 0. Suppose that f(a); < —d. Then consider
the vector © = a + ee; where e; is the vector with the jth component being
1 and zeros everywhere else. Then, for e sufficiently small and # sufficiently
large we have

2 f(tz)/t = (a+ee;) f(t(a+ee;))/t
= a’ f(tla+ee;))/t +ee] f(t(a+ ee;))/t
< eej f(tla+ee;))/t (from (8.42))
Sltla+ee)); - f(ta);  [(ta);

t t
< € (O(e) + @) (from continuity of f)
= €(O(e) —4/2)
< —ed/4.

But this contradicts relation (8.45). Thus, we must have

f=(a) 2 0.
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We now further prove that f°°(a) is bounded. Consider

0 < (ta—e)'(f(ta) — f(e))/t
= a’ f(ta) — e f(ta)/t —a” f(e) + €T f(e)/t
< —elf(ta)/t —a” f(e) +e" f(e)/t.

Taking as a limit ¢ — oo from both sides, we have
e’ f*(a) < —a” f(e).

Thus, f*(a) > 0 is bounded. Again, we have a’ f(ta) < —¢ from (8.43)
and a® f(ta) > a® f(a) from (8.44). Thus, lima® f(ta) is bounded. To
summarize, (HMCP) has an asymptotical solution (z* = a,7* = 0,s* =
f(a),k* = lim —a” f(ta) > €).

Conversely, if there is a bounded sequence (z* > 0,7% > 0,s% > 0,x% >
0), then

lims® = lim 7% f(2* /7%) > 0, lim &k =lim —(2*)" f(2*/7%) > ¢ > 0.

Then, we claim that there is no feasible point (z > 0,s > 0) such that
s — f(x) = 0. We prove this fact by contradiction. If there is one, then

0 < ((@"7") = (z:1)" (0(a*, 7*) — ¥(x, 1))
= (@ —a)T (7 f )~ f@) + (7 = D) (@ f () — ()T fF ).
Therefore,
(@)L f(* )% > @M fz) + th2T fah)rh) — Rt f(a).

Since the first two terms at the right-hand side are positive and lim 7% = 0,

we must have
lim(z*)T f (2% /7%) > 0,

which is a contradiction to k% = —(z*)" f(z*/7%) > ¢ > 0. Also, any limit
of z* is a separating hyperplane, i.e., a certificate proving infeasibility.

8.4.3 The central path

Due to Theorem 8.32, we can solve (M CP) by finding a maximal comple-
mentary solution of (HMCP). Select z° > 0, s > 0, 7° > 0 and &° > 0
and let the residual vectors

0 =" — 10 (2%/79), 2% =K+ (2°)T f(2°/70).
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Also let
i = ()70 + 2070 = (2°)Ts% + 190,
For simplicity, we set
=e =1, s"=¢, k=1, 0° =1,
with
X%%=¢ and 7°° =1.

Note that 7 = n + 1 in this setting.
We present the next theorem.

Theorem 8.33 . Consider (HMCP).

i. For any 0 < 6 < 1, there exists a strictly positive point (x > 0,7 > 0,5 >
0,k > 0) such that

(2)-ven=( 700 ) =0 (W) e

ii. Starting from (z2° = e,7° = 1,5 = €,k° = 1), for any 0 < 6 < 1 there
is a unique strictly positive point (:

K
x(0),7(0),5(0),k(0)) that satisfies
equation (8.46) and

( Xz ) — fe. (8.47)

ili. Forany 0 < 6 <1, the solution (z(0),7(0), s(0), k() in [ii] is bounded.
Thus,

c(6) ::{(x,T,s,n): < Z>—¢(m,7):9< ZE ) <f: ) :96}

(8.48)

for 0 < 6 <1 is a continuous bounded trajectory.

iv. The limit point (x(0),7(0), s(0),x(0)) is a mazimal complementary so-
lution for (HMCP).

Proof. We prove [i]. Again, the set

Hioi = {( Z ) (7)) (2,78, K) > 0.}

is open and convex. We have (r°; 2°) € Hy by construction. On the other
hand, 0 € Hy; from Theorem 8.32. Thus,

e
( 0 ) €H, ..
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The proof of [ii] is due to Theorem 8.26.
We now prove [iii]. Again, the existence is due to Theorem 8.26. We
prove the boundedness. Assume (z,T,s,&) € C(#) then

(5 7)7 (% 2%)
(

= (&) (") = (& 7) (2" 7°)
= @) (%K) + (57 (0% 7) — () (0% 1) = (@3 7) (% )
= (1) (%K% + (5;6)" (2°; 70)

Y
B
2
)ﬂ
.
MO
=
o
T -
S —
\EIJ
2
)ﬂ
8
B
o

= ()" (%K) +
= ()" (%K) +
= @) () +
Alsofor 0 < <1,
0(z; 1) (r%;2%) = (;7) " ((s:5) — (a, 7)) = (257) (55 8)
=0(n+1)=0(z";7°)7(s°; k°).
From the above two relations, we have
(z;7) T (5% 6°) + (s;0)T (22 7%) < (1 4 0)(2°; 70)T (55 £0).

Thus, (z;T;s; k) is bounded.
Finally, we prove (iv). Let (z*,7*,s*,£*) be any maximal complemen-
tarity solution for (HMCP) such that

(s*; k%) = h(x*;7*) and (2")Ts* +7%6* =0,
and it is normalized by
(r% 20 (2% 7%) = (1% 2T (2% 7°) = (8% 6T (2% 7°) = (n + 1),

For any 0 < 6 < 1, let (z,7,s,k) be the solution on the path. Then, we
have

((a;7) = (@ 7)) ((56) = (573 67))
(

= ((z57) = (@57)" (¥
> 0% 2" (2 7) = (2%77).

*
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Therefore,
(;7) T (5% 6%) + (s50) T ("5 7%)
< (mn)"(sik) = 0% 20 (2 7) — (25 77))
)T

(576) = (@37)" (s38) +0(r%; 2%) " (2™ 77)

|
—

=

\]

Using z;5; = 6 we obtain,
(3 1) T (575 8%) + (s8) T (275 7%)
S"f H* x* 7_*
= 4§ 24T 24
D D D e
< O(n+1).

Thus, we have

S; K*
< <(n+1), and —<(n+1)
Sj K

and
Tt *
o< (n+1), and — < (n+1).
.’Ej T

Thus, the limit point, (x(0),7(0), s(0), (0)), is a maximal complementarity
solution for (HMCP).

O

We now present an interior-point algorithm that generates iterates within
a neighborhood of C(#). For simplicity, in what follows we let z := (z;7) €
R 5= (s;k) € R™1, and r0 := (; 20). Recall that, for any x,s > 0

' P(z) =0 and z"Vi(z) = —(z)". (8.49)

Furthermore, 1 is monotone and satisfies the scaled Lipschitz. We will use
these facts frequently in our analyses.

8.4.4 An interior-point algorithm

At iteration k with iterate (z¥,s*) > 0, the algorithm solves a system of
linear equations for direction (d,,ds) from

ds — Vy(z¥)d, = -—nrk (8.50)
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and
Xkd, + S*d, = ~pFe — XFsk, (8.51)
where 1 and ~ are proper given parameters between 0 and 1, and
B (z*)7 sk

b=k —(z*) and p*

n+1 "

First we prove the following lemma.

Lemma 8.34 . The direction (d,ds) satisfies
dyds = dg Vip(a*)d, + (1 =1 —7)(n+ 1"

Proof. Premultiplying each side of (8.50) by d gives

dld, — dIVip(a*)d, = —ndl (s* — (a")). (8.52)
Multiplying each side of (8.50) by z* and using (8.49) give
(#)7d, + o(at)d, = —pat)Trk
- :ZE;:;iiik ~vle) (8.53)
= —n(n+1)uk
(8.

df'd, = dI'Vi(a*)d, —n(dls* +dlak + n(n + 1)u*)
= dIVy(t)d, —n(—(n+ Dpk +y(n+ 1)k + n(n + 1)p*)
= dIVi(a*)d, + (1 =5 —n)(n + 1)p*.

—
3

O
For a step-size a > 0, let the new iterate
2t = 2% + ad, >0, (8.54)
and
. &iﬁd:warﬁfﬂd%ﬁﬁ<% )
S S B T i (8.55)
— G) + (-t

The last two equalities come from (8.50) and the definition of 7. Also let
rt=st —ah).

Then, we have
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Lemma 8.35 . Consider the new iterate (x,s™) given by (8.54) and
(8.55).

a). rt=(1-an)rk
). ()5t = T all 7)) +a2n(l— g 7+ 1)t

Proof. From (8.55)
rt st —(a™)
(1 an)rt

Next we prove b). Using (8.49), (8.51), and Lemma 8.34, we have

$+)T(S + ad; +1/)(93+) %ZJ(CUk)—aV%/J(CUk)dz)

)" (s ) = (&) (Y(z )+04V¢(€Uk)dz)
T+)T(S +ads) — («* +Oéd) ((z*) + aVy(a)d,)

; ES +ad) az )va() Ydp — adlp(z*) — a?dEVey(a*)d,
a:’“—l— d.)T (s +ad)—a2dTV¢( kd,

(dek—f-dT k)—}-a (de —dva( ) <)

’“)T (dTS’“rdT ") +a?n(l —n - 7)(n+1)u
- (1 () Ts* +a?n(l —n—7)(n+ 1)k

I
AAAAAAAAA EIJ
8
+
~
CIJ
+
Q
Q.
\
R
o
ISH
ﬂ
<
@

O

This lemma shows that, for setting n = 1 — -, the infeasibility residual and
the complementarity gap are reduced at exactly the same rate, as in the
homogeneous linear programming algorithm. Now we prove the following.

Theorem 8.36 . Assume that 1 is scaled Lipschitz with v = vy and at
iteration k

k\T ok
Xkk _ kel < Buk. k:(m)s
|t —pbel| < gt pt =T

where 1

f=— - <1/3.
3+ 4uy(V2/2) /

Furthermore, let n = f/v/n+1, vy =1—mn, and a = 1 in the algorithm.
Then, the new iterate

et >0, sT=o¢@Et)+ (1 -nrk >0,

and
(zt)"st

|XFsT —uTe < But, wt =y
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Proof. Tt follows from Lemma 8.35 that u* = yu*. From (8.51) we further
have
Skd,E + XkdS = _—Xkgk 4 ,u+e.

Hence,
D7 'd, + Dd, = —(X*8*) 712 (xksk — pte)

where D = (X*)'/2(S¥)~1/2. Note
dld, = dLvy(z*)d, >0

from Lemma 8.34 and v = 1 — 5. This together with the assumption of the
theorem imply

| | ‘ ‘ Xksh — e
1D~ || + [|Ddy |* < [[(XE8%) 712 (X k5% — pte)|? < %

Also note

||X’“sk—,u+e||2 ||X’“s’“—u’“e—l—(l—w),u’“e”2

[XEs — pke]|” + (1= 7)u)? el

< (B + 0+ 1) (k)2
= 26%(u").
Thus,
Ey—1 _ kaky—1/2 y—1 ||D71dz||
[ | = [ (xtsh) 2D e < —

V2Bt V28 V2

< - 3
“(A-Bpk 1= 2
since B < 1/3. This implies that ¥ = z* + d, > 0. Furthermore, we have

HDwdsH = ||D71D$Dds||
< | D7t || D4l
< (|D 7 da|” + ||Dds ) /2
< kst ekt 2
< X" sk — e’
- 2(1 - p)u*
o 28w
- 21 =Pt
ﬁZ,uk

1- 3
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and
B B 3
dydy = d; D' Ddy < [ D7V dy || |Dds]| < 7 i

Consider

Xtst —pute
= Xt(s* +ds +o(at) - p(a*) - Vi(ab)d,) -
= (X* 4+ Dy)(s" +ds) — .U6+X+(UJ( ") - UJ( ) Vi (a*)d,)
Dyds + X (p(z) — p(z*) — V(a¥)d,).

Using that ¢ is the scaled Lipschitz, d Ve (z*)d, = d¥d, and the above
four relations we obtain
|XFs™ — el
|Deds + XF (4(27) = 9p(a*) — Vi
| Dads + (X'“) 'XTXE (") — p(a’) - V() ds) |
[Dadall + [[(XF) X [ X (™) — (@) = Vep(ah)dn)
[Deds|| + 2 | X* () = v(a*) = Vip(a*)dy) ||,
[Dods|| + 204 (V2/2)d; Vip(2*)d,
= ||Dads|| + 204(V2/2)d} d,
B2k 32k
1-p 1-p
(1+ 2v4(v2/2)) 8 *
1-p '

z*)d ||

IANCIN

IN

IN

+ 204 (V2/2)

IN

Finally, 8 = 1/(3 + 4vy4(v/2/2)) implies that

(1+ 20, (VE/2)%F _ f

1-3 =2

and
| XFst —pute| <pBu*/2 < Byt = put.
It is easy to verify that z© > 0 and || XTsT — pute|| < Bu™ implies s > 0.
O

The above theorem shows that the homogeneous algorithm will gen-
erate a sequence (z¥ s*) > 0 with (z*+! s¥*1) := (z+ s%) such that
sk = (zk) + % and || XFsh — uk|| < Buk, Where both ||r*| and (z*)"s*
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converge to zero at a global rate v = 1—3/v/n + 1. We see that if vy (v/2/2)
is a constant, or v;(2/(14+/2)) is a constant in (M CP) due to (iii) of The-
orem 8.32, then it results in an O(y/nlog(1/e)) iteration algorithm with
error €. It generates a maximal solution for (HMCP), which is either a
solution or a certificate proving infeasibility for (M CP), due to (v) and (vi)
of Theorem 8.32.

One more comment is that our results shotélg hold for the case where

f(z) is a continuous monotone mapping from R, to R". In other words,
f(x) may not exist at the boundary of R’}. In general, many convex op-
timization problems can be solved, either obtaining a solution, or proving
infeasibility or unboundedness, by solving their KKT system which is a
monotone complementarity problem.

8.5 Notes

For the NEG problem, see Gale [100], Kemeny, Morgenstern and Thompson
[175], and Robinson [290]. A recent description of the problem can be
found in Schrijver [298], and Tan and Freund [315]. It is easy to show that
Assumption 8.3 implies Assumption 8.4, see Theorem 2 of Robinson [290].

The method described here is based on the paper of Ye [381]. Similar
methods for the fractional programming over polyhedral and nonpolyhedral
cones were developed by Boyd and Ghaoui [61], Freund and Jarre [95, 94],

3

Nesterov and Nemirovskii [264], and Nemirovskii [257].

Various centers were considered for the center-section method as we
mentioned earlier. Goffin, Haurie and Vial [109], Sonnevend [306], and Ye
[377] were among the first to propose the analytic center-section or cutting
plane method. Its complexity issues were addressed by Atkinson and Vaidya
[31], Goffin, Luo and Ye [110, 111], and Nesterov [261]. In particular,
Atkinson and Vaidya developed a scheme to delete unnecessary inequalities
and managed to prove a polynomial analytic center-section algorithm. The
analytic center-section method was used and tested for a variety of large
scale problems, where they performed quite well, see, for example, Bahn,
Goffin, Vial and Merle [32], Bahn, Merle, Goffin and Vial [33], and Mitchell
[225, 226].

The primal potential reduction algorithm for positive semi-definite pro-
gramming is due to Alizadeh [9, 8], in which Ye has “suggested studying
the primal-dual potential function for this problem” and “looking at sym-
metric preserving scalings of the form Xgl/QXXgl/z,” and to Nesterov
and Nemirovskii [263], and the primal-dual algorithm described here is due

to Nesterov and Todd [265, 266]. One can also develop a dual potential
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reduction algorithm. In general, consider

(PSP) inf CeX
subject to Ae X =0, X € K,

and its dual

(PSD) sup by
subject to A*eY +S=C, S€ K,

where K is a convex homogeneous cone.
Interior-point algorithms compute a search direction (dx,dy,ds) and a
new strictly feasible primal-dual pair X+ and (Y ;S%) is generated from

Xt=X+ady, YT =Y + Bdy, ST =5 + Bdg,

for some step-sizes a and .
The search direction (dx,dy,dg) is determined by the following equa-
tions.

Aedy =0, ds=—A"edy (feasibility) (856)
and
n n + p ! .
dx + F"(S)ds = — X — F'(S) (dual scaling), (8.57)
XeS
or
n n + p ! . .
ds + F"(X)dx = X SS — F'(X) (primal scaling), (8.58)
[ ]
or
1" n+p ' .. .
ds+ F'(Z)dx = X SS — F'(X) (joint scaling), (8.59)
[ ]

where Z is chosen to satisfy
S=F"2)X. (8.60)

The differences among the three algorithms are the computation of the
search direction and their theoretical close-form step-sizes. All three gen-
erate an e-optimal solution (X,Y,5), i.e.,

XeS<e

in a guaranteed polynomial time.

Other primal-dual algorithms for positive semi-definite programming
are in Alizadeh, Haeberly and Overton [10, 11], Boyd, Ghaoui, Feron and
Balakrishnan [62], Helmberg, Rendl, Vanderbei and Wolkowicz [144], Jarre
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[161], Kojima, Shindoh and Hara [186], Vandenberghe and Boyd [351, 352],
and references therein. Efficient interior-point algorithms are also developed
for optimization over the second-order cone, see Andersen and Christiansen
[16] and Xue and Ye [370]. These algorithms have established the best
approximation complexity results for some combinatorial problems.

The scaled Lipschitz condition used in Section 8.4 was proposed by Ko-
rtanek and Zhu [190] for linearly constrained convex minimization, related
to the work of Monteiro and Adler [241], and later extended by Potra and
Ye [282] for the monotone complementary problem. This condition is in-
cluded in a more general condition analyzed by Nesterov and Nemirovskii
[263], den Hertog [145], den Hertog, Jarre, Roos and Terlaky [146], and
Jarre [162].

Results in Section 8.4.1 are based on Kojima, Megiddo and Mizuno
[179]. A similar augmented transformation in Section 8.4.2 has been dis-
cussed in Ye and Tse [387] and it is closely related to the recession function
in convex analyses of Rockafellar [291]. All other results in Section 8.4 are
based on Andersen and Ye [14]. Interior-point algorithms for convex pro-
gramming include: Abhyankar, Morin and Trafalis [1] for multiple objective
optimization, Anstreicher, den Hertog, Roos and Terlaky [24], Ben Daya
and Shetty [42], Bonnans and Bouhtou [58], Carpenter, Lustig, Mulvey and

3

Shanno [63], Goldfarb and Liu [114], Jarre [160], Kapoor and Vaidya [172],

Mehrotra and Sun [222], Pardalos, Ye and Han [275], Ponceleon [278], Ye
[374], Ye and Tse [387], etc. for quadratic programming; Ding and Li [80],
Giiler [137], Harker and Xiao [142] Ji, Potra and Huang [163], Polak, Hig-

gins and Mayne [276], Shanno and Simantiraki [300], Sun and Zhao [314],

Tseng [337], etc. for the monotone complementarity I;roblem; Ben—Tal and
Nemirovskii [43], Faybusovich [89], Goldfarb and Scheinberg [115], Giiler

[138], Giiler and Tuncel [139], Luo, Sturm and Zhang [199], Monteiro and
Pang [244], Nesterov, Todd and Ye [267], Ramana, Tuncel and Wolkowicz
[292], Vandenberghe, Boyd, and Wu [353], etc. for nonpolyhedral opti-
mization; Anstreicher and Vial [27], Coleman and Li [70] Giiler [138], den

Hertog, Roos and Terlaky [148], Kortanek, Potra and Ye [187], Mehrotra

and Sun [223], Monteiro [238], Nash and Sofer [252], Potra and Ye [281],

Sun and Qi [313], Tanabe [154], Wang, Monteiro, and Pang [364], Zhang
[388], etc. for nonlinear programming; Asic and Kovacevic-Vujcic [28], Fer-
ris and Philpott [90], Todd [323], etc. for semi-infinite programming; Birge
and Holmes [48], Birge and Qi [49], etc. for stochastic programming.
Applications, decompositions, inexact iteration, and special data struc-
tures of interior-point algorithms were described in Bixby, Gregory, Lustig,
Marsten and Shanno [50], Choi and Goldfarb [65], Christiansen and Ko-
rtanek [68], Gondzio [120], Han, Pardalos and Ye [141], Ito, Kelley and

3 3

Sachs [157], Kaliski [169], Pardalos, Ye and Han [275], Ponnambalam, Van-
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nelli and Woo [279], Resende and Veiga [289], Tone [333], Wallacher and
Zimmermann [363], etc.

8.6 Exercises

8.1 Show that Assumption 8.3 implies Assumption 8.4.

8.2 Prove Lemma 8.6.

8.3 Prove Proposition 8.5.

8.4 Prove Lemma 8.1/

8.5 Prove Corollary 8.19.

8.6 Prove Lemma 8.23.

8.7 Describe and analyze a dual potential algorithm for positive semi-
definite programming in the standard form.

8.8 If (MCP) has a solution, then the solution set is convezx and it con-
tains a mazimal solution (z*,s*) where the number positive components in
(z*, s*) is mazimal. Moreover, the indices of those positive components are
invariant among all maximal solutions for (MCP).

8.9 Prove Theorem 8.26.
8.10 Prove Lemma 8.27.
8.11 Prove Lemma 8.29.

8.12 Prove (ii) and (iv) of Theorem 8.32.



Chapter 9

Nonconvex Optimization

The aim of this chapter is to describe some results in interior-point algo-
rithms for solving “hard” problems, such as the nonmonotone linear comple-
mentarity problem (LCP) and the quadratic programming (QP) problem,
and to suggest some directions in which future progress might be made.
These problems play important roles in optimization theory. In one sense
they are continuous optimization and fundamental sub-problems for general
nonlinear programming, but they are also considered the most challenging
combinatorial optimization problems.

9.1 Linear Complementarity Problem

In this section, we are concerned with the LCP described in Section 1.3.8,
where we assume, without loss of generality, that

,7?': {(z,s):s=Mz+q, £>0and s >0}
is nonempty. We also use F to denote the “feasible region,” i.e.,
F={(z,s) :s=Mz+q, >0and s >0}.

Thus, the LCP can be viewed as an optimization problem

(LCP) minimize z"s

subject to  (z,s) € F.

Similar to solving the LP problem, we will describe a “condition-based”
iteration complexity bound for solving the LCP. This condition number
characterizes the degree of difficulty of the LCP solution when a potential
reduction algorithm is used. We show how the condition number depends
on the data (M, q).

257
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9.1.1 Potential reduction algorithm

We again use the same potential function
P(z,8) = Y,(z,8) = pln(zls) — Zlog(:ﬂjsj)7
j=1

with p > n as described in Chapter 4 (p here corresponds to n + p there),
for an interior feasible point (z, s). Starting from an interior point (z°,s%)
with

1/)(330750) =: 1/10:
((2°, s%) can be chosen as an approximate analytic center of F, see Chap-
ter 4), the potential reduction algorithm generates a sequence of interior
feasible points {z*, s¥} terminating at a point such that

P(zk, s*) < (p—n)loge + nlogn.
From the arithmetic-geometric mean inequality,
nin((z*)Ts*) — Zlog(xfsf) > nln(n) > 0.
j=1

Thus, we must have
(zF) sk <e.
To achieve a potential reduction, we again use the scaled gradient pro-

jection method. The gradient vector of the potential function with respect
to x is

Vip, = %s ~ X e
and the one to s is
Vip, = %az — S e,

where A = 27s. Now, we solve, at the kth iteration, the following linear

program subject to an ellipsoid constraint:

(EP) minimize V74,ud, + VT gd,
subject to ds = Md,
I(XF) e |12 + [1(S*) M| < 52 < 1.

Denote by d, and d, the minimal solution for (EP). Then, we have

(x*)1d, \ ot
( (5514, )—‘ﬁw 6-1)
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where . , k( . . )
p—<plsc>—< ﬁskmk*ﬂ')fe , (9-2)
and
. . Ak
= ((S*)? + M(X*)2M")" 1 (S — MXF)(XEsh — —e). (9.3)
p

From the concavity of log function and Lemma 3.1,

Pt st d) vt < At Do ) 0
- g min( 2L 1y oy 9.5)
p+2 p+2° '
Then we have
A

%ZJ(SU'“ + szsk + dS) - ¢(wk=5k) < — min(

200+ 20+ OO

The algorithm can be described as follows:

Algorithm 9.1 Given 2°,5° > 0 and s = M2° + q and k := 0.
While (z%)Ts* > ¢ do

1. Compute 7 of (9.3) and p* of (9.2), and select 3 of (9.5); construct

d, and dg of (9.1).
2. Let 21! = 2% + Az and s*t! = s¥ + As.
3. Set k:=k+ 1 and return to Step 1.

Clearly from inequality (9.6), ||p*||> can be used to measure the potential
reduction at the kth iteration of the potential reduction algorithm. For any

on

z,8 ER Y, let
g(z,s) = %Xs —e€

and
H(z,s) =2 — (XMT - S)(S? + MX*’MT) ' (MX — ).
Note that H(z,s) is positive semi-definite (PSD), and

"1 = g" (2", s*) H (2", s*)g(z", s*). (9.7)
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Let us use ||g(z, s)||% to denote g (z,s)H (z, s)g(x,s). Then, we define
a condition number for the LCP (M, q) as

Y(M,q,€) = inf{||g(z, s)||% : "5 > ¢, ¥(z,8) < ° and (z, s) 6,7(2'} (9.8)
We describe a sequence of propositions for y(M, ¢, €).

Proposition 9.1 Let p > 2n. Then, for M being a diagonal and PSD
matriz, and any ¢ € R,
Y(M,q,€) > n.

Proof. If M is diagonal and PSD, then the matrix
I—(XM" -8)(S* + MX*M") " (MX - S)
is diagonal. It is also PSD since the jth diagonal component is

(Mjjzj —s5)°  2Mjjz;s;

1— = > 0.
2 2 ,.2 2 2,2 =
sj+ Mjay  sj+ Mj;aj
Therefore, for all (z, s) EJCi' and p > 2n,
2
p—n
(M, 0,0) > gl 5)[* > L >

O

Proposition 9.2 Let p > 2n + /2n. Then, for M being a PSD matriz
and any q € R",
(M, q,€) > 1.

We leave its proof to the reader.

Definition 9.1 A matriz M is a P matriz if and only if its every principal
submatriz has a positive determinant.

Proposition 9.3 Let p > 3n + «/2n. Then, for M being a P-matriz and
any q € R",
(M, q,€) > min(nf(M)/|A(M)],1)

where \(M) is the least eigenvalue of (M +M7T)/2, and §(M) is the positive
P-matriz number of M7, i.e.,

z;(MTz);
6(M) = min{max ~~———*1
(M) = i tmax =

1.
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We will prove this proposition in the next section.

Definition 9.2 A matriz M is row-sufficient if and only if for every vector
¢, diag(E)MTE < 0 implies diag(6)MT¢ = 0. A matriz M is column-
sufficient if and only if M7 is row-sufficient. A matriz M is a sufficient
matriz if and only if it is both row- and column-sufficient.

Note that the class of row-sufficient matrices contains some popular matri-
ces such as PSD and P matrices.

Proposition 9.4 Let p > n and be fized. Then, for M being a row-
sufficient matriz and {(z,s) €F: Y(x,s) < Y} being bounded,

(M, q,¢€) > 0.

Proof. It is easy to show that for any (z, s) Gﬁ",

lg(z, )l > 0.

Moreover, for all (z, s) E]Ci', zTs > e and ¢(z,5) < YO,

’l/JO

> P(z,s)

= pln(z"s) Zlog x;s;)

= (p—n+1) ln(:n 5) 4+ (n —1)In(z"s) Z log(z;s;) — log(x;y:)
J#i

> (p—n+1DIn(z"s)+ (n—1)In(z"s — z;,)

=) log(xs;) — log(x;si)
i
> (p—n+1DIn"s)+ (n—1)In(n — 1) — log(z;s;)
> —(p—n+1In(l/e)+ (n—1)In(n — 1) — log(x;s;),

where i € {1,2,...,n}. Thus,
In(z;s;) > —(p—n+1)log(1/€e) + (n — 1) In(n — 1) =,

that is, x;s; is bounded away from zero for every i. Since {(z,s) €F:
¥ (z,s) < ¢