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Chapter 1Introduction andPreliminaries1.1 IntroductionComplexity theory is the foundation of computer algorithms. The goal ofthe theory is to develop criteria for measuring the e�ectiveness of variousalgorithms and the di�culty of various problems. The term \complexity"refers to the amount of resources required by a computation. In this book,running time or number of arithmetic operations is the major resource ofinterest.Linear programming, hereafter LP, plays a very important role in com-plexity analysis. In one sense it is a continuous optimization problem inminimizing a linear objective function over a convex polyhedron; but it isalso a combinatorial problem involving selecting an extreme point amonga �nite set of possible vertices. Businesses, large and small, use linear pro-gramming models to optimize communication systems, to schedule trans-portation networks, to control inventories, to plan investments, and to max-imize productivity.Linear inequalities de�ne a polyhedron, properties of which have beenstudied by mathematicians for centuries. Ancient Chinese and Greeks stud-ied calculating volumes of simple polyhedra in three-dimensional space.Fourier's fundamental research connecting optimization and inequalitiesdates back to the early 1800s. At the end of 19th century, Farkas andMinkowski began basic work on algebraic aspects of linear inequalities. In1910 De La Vall�ee Poussin developed an algebraic technique for minimizingthe in�nity-norm of b � Ax that can be viewed as a precursor of the sim-11



12 CHAPTER 1. INTRODUCTION AND PRELIMINARIESplex method. Beginning in the 1930s, such notable mathematicians as vonNeumann, Kantorovich, and Koopmans studied mathematical economicsbased on linear inequalities. During World War II, it was observed thatdecisions involving the best movement of personnel and optimal allocationof resources could be posed and solved as linear programs. Linear program-ming began to assume its current popularity.An optimal solution of a linear program always lies at a vertex of thefeasible region, which itself is a polyhedron. Unfortunately, the numberof vertices associated with a set of n inequalities in m variables can beexponential in the dimensions|in this case, up to n!=m!(n�m)!. Exceptfor small values of m and n, this number is so large as to prevent examiningall possible vertices for searching an optimal vertex.The simplex method, invented in the mid-1940s by George Dantzig, is aprocedure for examining optimal candidate vertices in an intelligent fashion.It constructs a sequence of adjacent vertices with improving values of theobjective function. Thus, the method travels along edges of the polyhedronuntil it hits an optimal vertex. Improved in various way in the interveningfour decades, the simplex method continues to be the workhorse algorithmfor solving linear programming problems. On average, the number of ver-tices or iterations visited by the simplex method seems to be roughly linearin m and perhaps logarithmic n.Although it performs well on average, the simplex method will indeedexamine every vertex when applied to certain linear programs. Klee andMinty in 1972 gave such an example. These examples con�rm that inthe worst case, the simplex method needs an exponential number of itera-tions to �nd the optimal solution. As interest in complexity theory grew,many researchers believed that a good algorithm should be polynomial|i.e., broadly speaking, the running time required to compute the solutionshould be bounded above by a polynomial in the \size," or the total datalength, of the problem. Thus, the simplex method is not a polynomialalgorithm.In 1979, a new approach to linear programming, Khachiyan's ellipsoidmethod, received dramatic and widespread coverage in the internationalpress. Khachiyan proved that the ellipsoid method, developed during the1970s by other mathematicians, is a polynomial algorithm for linear pro-gramming under a certain computational model. It constructs a sequenceof shrinking ellipsoids with two properties: the current ellipsoid always con-tains the optimal solution set, and each member of the sequence undergoesa guaranteed reduction in volume, so that the solution set is squeezed moretightly at each iteration.The ellipsoid method was studied intensively by practitioners as well astheoreticians. Based on the expectation that a polynomial linear program-



1.1. INTRODUCTION 13ming algorithm would be faster than the simplex method, it was a greatdisappointment that the best implementations of the ellipsoid method werenot even close to being competitive. In contrast to the simplex method,the number of steps required for the ellipsoid method to terminate was al-most always close to the worst case bound|whose value, although de�nedby a polynomial, is typically very large. Thus, after the dust eventuallysettled, the prevalent view among linear programming researchers was thatKhachiyan had proved a genuinely polynomial linear programming algo-rithm, but the simplex method remained the clear winner in practice.This contradiction, the fact that an algorithm with the desirable the-oretical property of polynomiality might nonetheless compare unfavorablywith the (worst-case exponential) simplex method, set the stage for excit-ing new developments. It was no wonder, then, that the announcementby Karmarkar in 1984 of a new polynomial interior-point algorithm withthe potential to dramatically improve the practical e�ectiveness of the sim-plex method made front-page news in major newspapers and magazinesthroughout the world.Interior-point algorithms are continuous iterative algorithms. Compu-tation experience with sophisticated procedures suggests that the num-ber of iterations necessarily grows much more slowly than the dimensiongrows. Furthermore, they have an established worst-case polynomial iter-ation bound, providing the potential for dramatic improvement in compu-tation e�ectiveness. The success of interior-point algorithms also broughtmuch attention to complexity theory itself.The goal of the book is to describe some of these recent developmentsand to suggest a few directions in which future progress might be made.The book is organized as follows. In Chapter 1, we discuss some necessarymathematical preliminaries. We also present models of computation andseveral basic optimization problems used throughout the text.Chapter 2 is devoted to studying the geometry of inequalities and interior-point algorithms. At �rst glance, interior-point algorithms seem less geo-metric than the simplex or the ellipsoid methods. Actually, they also pos-sess many rich geometric concepts. These concepts, such as \center," \vol-ume," and \potential" of a polytope, are generally \non-combinatorial."These geometries are always helpful for teaching, learning and research.In Chapter 3 we present some basic algorithms to compute a so-calledanalytic center, or, equivalently, to minimize a potential function for a poly-tope. They are key elements underlying interior-point algorithms. Then,we present several interior-point linear programming algorithms in Chap-ter 4. It is impossible to list all the literature in this �eld. Here, we selectfour algorithms: Karmarkar's projective algorithm, the path-following al-gorithm, the potential reduction algorithm, and the primal-dual algorithm



14 CHAPTER 1. INTRODUCTION AND PRELIMINARIESincluding the predictor-corrector algorithm.We analyze the worst-case complexity bound for interior-point algo-rithms in Chapter 5. The main issues are arithmetic operation, termina-tion, and initialization techniques. We will use the real number computa-tion model in our analysis because of the continuous nature of interior-pointalgorithms. We also compare the complexity theory with the convergencerate used in numerical analysis.The worst-case complexity bound hardly serves as a practical crite-rion for judging the e�ciency of algorithms. We will discuss a commonphenomenon arising from using interior-point algorithms for solving opti-mization problems. It is often observed that e�ectiveness of an algorithm isdependent on the dimension or size of a problem instance as well as a param-eter, called \condition number," inherited in the problem. This conditionnumber represents the degree of di�culty of the problem instance. Fortwo problems having the same dimension but di�erent condition numbers,an algorithm may have drastically di�erent performances. This classi�ca-tion will help us to understand algorithm e�ciency and possibly improvethe condition and, therefore, improve the complexity of the problem. Wepresent condition-based complexity results for LP interior-point algorithmsin Chapter 5.While most of research has been focused on the worst-case performanceof interior-point algorithms, many other complexity results were quietly es-tablished during the past several years. We try to cover these less-noticeablebut signi�cant results. In particular, we present some average and prob-abilistic complexity results in Chapter 6 and some asymptotic complexity(local convergence) results in Chapter 7. Average complexity bounds havebeen successfully established for the simplex method, and asymptotic orlocal convergence rates have been widely accepted by the numerical andcontinuous optimization community as major criteria in judging e�ciencyof iterative procedures.Not only has the complexity of LP algorithms been signi�cantly im-proved during the last decade, but also the problem domain solvable byinterior-point algorithms has dramatically widened. We present complex-ity results for fractional programming, convex programming, positive semi-de�nite programming and non-polyhedron optimization in Chapter 8. Wealso discuss some approximation complexity results for solving nonconvexoptimization problems in Chapter 9.



1.2. MATHEMATICAL PRELIMINARIES 151.2 Mathematical PreliminariesThis section summarizes mathematical background material for linear al-gebra, linear programming, and nonlinear optimization.1.2.1 Basic notationsBy R we denote the set of real numbers. R+ denotes the set of nonnegativereal numbers, and �R+ denotes the set of positive numbers. For a naturalnumber n, the symbol Rn (Rn+, �Rn+) denotes the set of vectors with ncomponents in R (R+, �R+).Addition of vectors and multiplication of vectors with scalars are stan-dard. The vector inequality x � y means xj � yj for j = 1; 2; :::; n. 0represents a vector whose entries are all zeros and e represents a vectorwhose entries are all ones, where their dimensions may vary according toother vectors in expressions. A vector is always considered as a column vec-tor. The superscript \T" denotes transpose operation. The inner productin Rn is de�ned as follows:xT y := nXj=1 xjyj for x; y 2 Rn:The l2 norm of a vector x is given bykxk = pxTx;and the l1 norm is kxk1 = maxfjx1j; jx2j; :::; jxnjg:In general, the p norm iskxkp =  nX1 jxj jp!1=p ; p = 1; 2; :::The dual of the p norm is the q norm where1p + 1q = 1:For natural numbers m and n, Rm�n denotes the set of real matriceswith m rows and n columns. For A 2 Rm�n, we assume that the row index



16 CHAPTER 1. INTRODUCTION AND PRELIMINARIESset of A is f1; 2; :::;mg and the column index set is f1; 2; :::; ng. The ithrow of A is denoted by ai: and the jth column of A is denoted by a:j ; thei and jth component of A is denoted by aij . If I is a subset of the rowindex set and J is a subset of the column index set, then AI denotes thesubmatrix of A whose rows belong to I , AJ denotes the submatrix of Awhose columns belong to J , AIJ denotes the submatrix of A induced bythose components of A whose indices belong to I and J , respectively.Mn denotes the space of symmetric matrices in Rn�n. The identitymatrix is denoted by I . The null space of A is denoted N (A) and the rangeof A is R(A).The determinant of an n�n-matrix A is denoted by det(A). The traceof A, denoted by tr(A), is the sum of the diagonal entries in A. For avector x 2 Rn, the upper case X represents a diagonal matrix in Rn�nwhose diagonal entries are the entries of x, i.e.,X = diag(x):A matrix Q 2 Rn�n is said to be positive de�nite (PD) ifxTQx > 0; for all x 6= 0;and positive semi-de�nite (PSD) ifxTQx � 0; for all x:fxkg10 is an ordered sequence x1; x2; :::; xk; :::. A sequence fxkg10 isconvergent to �x, denoted xk ! �x, ifkxk � �xk ! 0:A point x is a limit point of fxkg10 if there is a subsequence of fxkg con-vergent to x.If g(x) � 0 is a real valued function of a real nonnegative variable,the notation g(x) = O(x) means that g(x) � �cx for some constant �c; thenotation g(x) = 
(x) means that g(x) � cx for some constant c; thenotation g(x) = �(x) means that cx � g(x) � �cx. Another notation isg(x) = o(x), which means that g(x) goes to zero faster than x does:limx!0 g(x)x = 0:1.2.2 Convex setsIf x is a member of the set 
, we write x 2 
; if y is not a member of
, we write y 62 
. The union of two sets S and T is denoted S [ T ; the



1.2. MATHEMATICAL PRELIMINARIES 17intersection of them is denoted S \ T . A set can be speci�ed in the form
 = fx : P (x)g as the set of all elements satisfying property P .For y 2 Rn and � > 0, B(y; �) = fx : kx� yk � �g is the ball or sphereof radius � with center y. In addition, for a positive de�nite matrix Q ofdimension n, E(y;Q) = fx : (x � y)TQ(x � y) � 1g is called an ellipsoid.The vector y is the center of E. When Q is diagonal, E(y;Q) is called aregular ellipsoid (Figure 1.1).
Regular

Nonregular

Figure 1.1: Regular and nonregular ellipsoidsA set 
 is closed if xk ! x, where xk 2 
, implies x 2 
. A set 
 isopen if around every point y 2 
 there is a ball that is contained in 
, i.e.,there is an � > 0 such that B(y; �) � 
. A set is bounded if it is containedwithin a ball with �nite radius. A set is compact if it is both closed andbounded. The (topological) interior of any set 
, denoted �
, is the set ofpoints in 
 which are the centers of some balls contained in 
. The closureof 
, denoted �
, is the smallest closed set containing 
. The boundary of
 is the part of �
 that is not in �
.A set C is said to be convex if for every x1; x2 2 C and every realnumber �, 0 < � < 1, the point �x1 + (1� �)x2 2 C. The convex hull ofa set 
 is the intersection of all convex sets containing 
.A set C is a cone if x 2 C implies �x 2 C for all � > 0. A cone that isalso convex is a convex cone. For a cone C � 
, the dual of C is the coneC� := fy : hx; yi � 0 for all x 2 Cg;where h; i is an inner product operation for space 
. A cone C is polyhedralif C = fx : Ax � 0g



18 CHAPTER 1. INTRODUCTION AND PRELIMINARIESfor some matrix A (Figure 1.2).

Polyhedral Cone Nonpolyhedral ConeFigure 1.2: Polyhedral and nonpolyhedral conesTheorem 1.1 A convex cone C is polyhedral if and only if it is �nitely gen-erated, that is, the cone is generated by a �nite number of vectors b1,...,bm:C = cone(b1; :::; bm) := ( mXi=1 biyi : yi � 0; i = 1; :::;m) :Example 1.1 The n-dimensional positive orthant, Rn+ := fx 2 Rn : x �0g, is a convex cone. The set of all n-dimensional positive semi-de�nitematrices is a convex cone, called the positive semi-de�nite matrix cone.The set f(t; x 2 Rn) : t � kxkg is a convex cone, called the second-ordercone.Theorem 1.2 (Carath�eodory's theorem) Let convex polyhedral cone C =cone(b1; :::; bm) and x 2 C. Then, x 2 cone(bi1 ; :::; bid) for some linearlyindependent vectors bi1 ,...,bid chosen from b1,...,bm.The most important type of convex set is a hyperplane. Hyperplanesdominate the entire theory of optimization. Let a be a nonzero n-dimensionalvector, and let b be a real number. The setH = fx 2 Rn : aTx = bgis a hyperplane in Rn (Figure 1.3). Relating to hyperplane, positive andnegative closed half spaces are given byH+ = fx : aTx � bg
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0Figure 1.3: A hyperplane and half-spacesH� = fx : aTx � bg:A set which can be expressed as the intersection of a �nite number ofclosed half spaces is said to be a convex polyhedron:P = fx : Ax � bg:A bounded polyhedron is called polytope.Let P be a polyhedron in Rn, F is a face of P if and only if there isa vector c for which F is the set of points attaining max fcTx : x 2 Pgprovided the this maximum is �nite. A polyhedron has only �nite manyfaces; each face is a nonempty polyhedron.The most important theorem about the convex set is the following sep-arating theorem (Figure 1.4).Theorem 1.3 (Separating hyperplane theorem) Let C � E be a closed con-vex set and let y be a point exterior to C. Then there is a vector a 2 E�such that ha; yi < infx2Cha; xi:Here E is a �nite-dimensional real vector space and E� is the dual space ofE. (In this book we often consider E being Rn or Mn, so that E� = E.)1.2.3 Real functionsThe real function f(x) is said to be continuous at x if xk ! x impliesf(xk) ! f(x). A continuous function f de�ned on a compact set 
 has
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C

ayFigure 1.4: Illustration of the separating hyperplane theorem; an exteriorpoint y is separated by a hyperplane from a convex set C.a minimizer in 
; that is, there is an x� 2 
 such that for all x 2 
,f(x) � f(x�). This result is called the Weierstrass theorem.A set of real-valued function f1; f2; :::; fm de�ned on Rn can be writtenas a single vector function f = (f1; f2; :::; fm)T 2 Rm. If f has continuouspartial derivatives of order p, we say f 2 Cp. The gradient vector of areal-valued function f 2 C1 is a row vectorrf(x) = f@f=@xig; for i = 1; :::; n:If f 2 C2, we de�ne the Hessian of f to be the n-dimensional symmetricmatrix r2f(x) = � @2f@xi@xj � for i = 1; :::; n; j = 1; :::; n:If f = (f1; f2; :::; fm)T 2 Rm, then the Jacobian matrix of f isrf(x) = 0@ rf1(x):::rfm(x) 1A :f is a (continuous) convex function if and only if for 0 � � � 1,f(�x+ (1� �)y) � �f(x) + (1� �)f(y):f is a (continuous) quasi-convex function if and only if for 0 � � � 1,f(�x+ (1� �)y) � max[f(x); f(y)]:



1.2. MATHEMATICAL PRELIMINARIES 21Thus, a convex function is a quasi-convex function. The level set of f isgiven by Lb = fx : f(x) � bg:f is a quasi-convex function implies that the level set of f is convex for anygiven b.We have several propositions for real functions.Theorem 1.4 (Taylor expansion) Let f 2 C2 be in a region containing theline segment [x; y]. Then there is a 0 � � � 1 such thatf(y) = f(x) +rf(x)(y � x) + (1=2)(y � x)Tr2f(�x + (1� �)y)(y � x):Proposition 1.5 Let f 2 C1. Then f is convex over a convex set 
 if andonly if f(y) � f(x) +rf(x)(y � x)for all x; y 2 
.Proposition 1.6 Let f 2 C2. Then f is convex over a convex set 
 if andonly if the Hessian matrix of f is positive semi-de�nite throughout 
.1.2.4 InequalitiesThere are several important inequalities that are frequently used in algo-rithm design and complexity analysis.Cauchy-Schwarz: given x; y 2 Rn thenxT y � kxkkyk:Arithmetic-geometric mean: given x 2 Rn+Pxjn � (Yxj)1=n:Harmonic: given x 2 �Rn+(Xxj)(X 1=xj) � n2:Hadamard: given A 2 Rm�n with columns a1; a2; :::; an, thenqdet(ATA) �Y kajk:



22 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.3 Decision and Optimization ProblemsA decision or optimization problem has a certain form that is usually char-acterized by the number of decision variables and the number of constraints.A problem, P , consists of two sets, data set Zp and solution set Sp. In gen-eral, Sp can be implicitly de�ned by the so-called optimality conditions.The solution set may be empty, i.e., problem P may have no solution.In what follows, we list several decision and optimization problems thatwe will use later.1.3.1 System of linear equationsGiven A 2 Rm�n and b 2 Rm, the problem is to solve m linear equationsfor n unknowns: Ax = b:The data and solution sets areZp = fA 2 Rm�n; b 2 Rmg and Sp = fx 2 Rn : Ax = bg:Sp is usually called an a�ne set. Given an x, one can easily check to see ifx is in Sp.Theorem 1.7 Each linear subspace of Rn is generated by �nitely manyvectors, and is also the intersection of �nitely many linear hyperplanes;that is, for each linear subspace of L of Rn there are matrices A and Csuch that L = N (A) = R(C).Theorem 1.8 Let A 2 Rm�n and b 2 Rm. The system fx : Ax = bg hasa solution if and only if that AT y = 0 implies bT y = 0.A vector y, with AT y = 0 and bT y 6= 0, is called a infeasibility certi�catefor the system fx : Ax = bg.1.3.2 Linear least-squares problemGiven A 2 Rm�n and c 2 Rn, the problem is to �nd an s 2 R(AT ) suchthat ks�ck is minimized. We can write the problem in the following format:(LS) minimize ks� ck2subject to s 2 R(AT ):or (LS) minimize kAT y � ck2subject to y 2 Rm:



1.3. DECISION AND OPTIMIZATION PROBLEMS 23In this format, the term kAT y � ck2 is called the objective function, y iscalled decision variables. Since y can be any point in Rm, we say this(optimization) problem is unconstrained. The data and solution sets areZp = fA 2 Rm�n; c 2 Rngand Sp = fy 2 Rm : kAT y � ck2 � kATx� ck2 for every x 2 Rmg:Obviously, given a y, to see if y 2 Sp is as the same as the original problem.However, from a projection theorem in linear algebra, the solution set canbe characterized as Sp = fy 2 Rm : AAT y = Acg;which becomes a system of linear equations. The vector s = AT y =AT (AAT )+Ac is the projection of c onto the range of AT , where AATis called normal matrix and (AAT )+ is called pseudo-inverse.The vector c�AT y = (I�AT (AAT )+A)c is the projection of c onto thenull space of A. It is the solution of the following least-squares problem:(LS) minimize kx� ck2subject to x 2 N (A):1.3.3 System of nonlinear equationsGiven f(x) : Rn ! Rm, the problem is to solve m equations for n un-knowns: f(x) = 0:The \data" and solution sets areZp = ffg and Sp = fx 2 Rn : f(x) = 0g:Here we call Zp an oracle. For any input x, it returns the value and othernumerical information of the function. Again, given an x one can easilycheck to see if x is in Sp.1.3.4 System of linear inequalitiesGiven A 2 Rm�n and b 2 Rm, the problem is to �nd a solution x 2 Rnsatisfying Ax � b or prove that the solution set is empty. The inequalityproblem may possess other form, for example, �nd x such that Ax = b and



24 CHAPTER 1. INTRODUCTION AND PRELIMINARIESx � 0, which is a combination of linear equations and inequalities. Thedata and solution sets areZp = fA 2 Rm�n; b 2 Rmg and Sp = fx 2 Rn : Ax = b; x � 0g:Traditionally, a point in Sp is called a feasible solution, and a strictly pos-itive point in Sp is called a strictly or interior feasible solution.Theorem 1.9 (Farkas' lemma) Let A 2 Rm�n and b 2 Rm. Then, thesystem fx : Ax = b; x � 0g has a solution x if and only if that AT y � 0implies bT y � 0.A vector y, with AT y � 0 and bT y > 0, is called a (primal) infeasibilitycerti�cate for the system fx : Ax = b; x � 0g.Theorem 1.10 (Farkas' lemma variant) Let A 2 Rm�n and c 2 Rn.Then, the system fy : AT y � cg has a solution y if and only if that Ax = 0and x � 0 imply cTx � 0.Again, a vector x � 0, with Ax = 0 and cTx < 0, is called a (dual)infeasibility certi�cate for the system fy : AT y � cg.Theorem 1.11 (Approximate Farkas' lemma) Let A 2 Rm�n, b 2 Rm,and c 2 Rn. Let �x := minfkxk : Ax = b; x � 0g;�y := minfkyk : AT y � cg;�u := minfkuk� : AT y � u; bT y = 1gand �v := minfkvk� : Ax = v; cTx = 1; x � 0g:Then �x�u = �y�v = 1:Here, k:k is an arbitrary norm and k:k� is the corresponding dual norm.1.3.5 System of nonlinear inequalitiesGiven f(x) : Rn ! Rm, the problem is to �nd a solution x 2 Rn satisfyingf(x) � 0 or prove the solution set is empty. The oracle and solution setsare Zp = ffg and Sp = fx 2 Rn : f(x) � 0g:



1.3. DECISION AND OPTIMIZATION PROBLEMS 25Given an x, one can easily check to see if x is in Sp.f(x) : Rn ! Rn is a monotone function over a open convex set 
 ifand only if (y � x)T (f(y)� f(x)) � 0for all x; y 2 
. Consider the following set
 = fx : f(x) � 0; x � 0g;where f(x) is continuous and monotone in Rn+. We have the followingtheorem.Theorem 1.12 
 has a feasible solution if and only if for any sequence(xk � 0; �k > 0) such that lim �kf(xk=�k) � 0;then we have lim (xk)T f(xk=�k) � 0:1.3.6 Linear programmingGiven A 2 Rm�n, b 2 Rm and c 2 Rn, the linear programming (LP)problem is the following optimization problem.(LP ) minimize cTxsubject to Ax = b; x � 0:The linear function cTx is called the objective function, and x is called thedecision variables. In this problem, Ax = b and x � 0 enforce constraintson the selection of x. The set Fp = fx : Ax = b; x � 0g is called feasible setor feasible region. A point x 2 Fp is called a feasible point, and a feasiblepoint x� is called an optimal solution if cTx� � cTx for all feasible pointsx. If there is a sequence fxkg such that xk is feasible and cTxk ! �1,then (LP) is said unbounded.The data and solution sets for (LP), respectively, areZp = fA 2 Rm�n; b 2 Rm; c 2 Rngand Sp = fx 2 Fp : cTx � cT y for every y 2 Fpg:Again, given an x, to see if x 2 Sp is as di�cult as the original problem.However, due to the duality theorem, we can simplify the representation ofthe solution set signi�cantly.



26 CHAPTER 1. INTRODUCTION AND PRELIMINARIESWith every linear program, another linear program, called the dual(LD), is the following problem.(LD) maximize bT ysubject to AT y + s = c; s � 0;where y 2 Rm and s 2 Rn. The components of s are called dual slacks.Denote by Fd the sets of all (y; s) that are feasible for the dual.Theorem 1.13 (Weak duality theorem) Let Fp and Fd be non-empty. Then,cTx � bT y where x 2 Fp; (y; s) 2 Fd:Corollary 1.14 (Strong duality theorem) Let Fp and Fd be non-empty.Then, x� is optimal for (LP) if and only if the following conditions hold:i) x� 2 Fp;ii) there is (y�; s�) 2 Fd;iii) cTx� = bT y� or (x�)T s� = 0.From the optimality condition, the solution set for (LP) and (LD) isSp = fx 2 Fp; (y; s) 2 Fd : cTx = bT yg;which is a system of linear inequalities and equations.Theorem 1.15 (LP duality theorem) If (LP) and (LD) both have feasiblesolutions then both problems have optimal solutions and the optimal objec-tive values of the objective functions are equal.If one of (LP) or (LD) has no feasible solution, then the other is eitherunbounded or has no feasible solution. If one of (LP) or (LD) is unboundedthen the other has no feasible solution.For feasible x and (y; s), cTx � bT y is usually called the duality gapand xT s the complementarity gap. If xT s = 0, then we say x and s arecomplementary to each other.Theorem 1.16 (Strict complementarity theorem) If (LP) and (LD) bothhave feasible solutions then both problems have a pair of strictly comple-mentary solutions x� and s� such thatx� + s� > 0:Moreover, the supportsP � = fj : x�j > 0g and Z� = fj : s�j > 0gare invariant for all pairs of strictly complementary solutions.



1.3. DECISION AND OPTIMIZATION PROBLEMS 27Given (LP) or (LD), the pair of P � and Z� is called the (strict) com-plementarity partition. fx : AP�xP� = b; xP� � 0; xZ� = 0g is called theprimal optimal face, and fy : cZ� � ATZ�y � 0; cP� � ATP�y = 0g is calledthe dual optimal face.Select m linearly independent columns, denoted by the index set B,from A. Then matrix AB is nonsingular and we may uniquely solveABxb = bfor the m-vector xB . By setting the variables of x corresponding to theremaining columns of A equal to zero, we obtain a solution x such thatAx = b:Then, x is said to be a (primal) basic solution to (LP) with respect to thebasis AB . The components of xB are called basic variables. A dual vectory satisfying ATBy = cBis said to be the corresponding dual basic solution. If a basic solution x � 0,then x is called a basic feasible solution. If the dual solution is also feasible,that is s = c�AT y � 0;then x is called an optimal basic solution and AB an optimal basis. A basicfeasible solution is a vertex on the boundary of the feasible region. Anoptimal basic solution is an optimal vertex of the feasible region.If one or more components in xB has value zero, that basic solutionx is said to be (primal) degenerate. Note that in a nondegenerate basicsolution the basic variables and the basis can be immediately identi�edfrom the nonzero components of the basic solution. If all components inthe corresponding dual slack vector s, except for sB , are non-zero, then yis said to be (dual) nondegenerate. If both primal and dual basic solutionsare nondegenerate, AB is called a nondegenerate basis.Theorem 1.17 (LP fundamental theorem) Given (LP) and (LD) where Ahas full row rank m,i) if there is a feasible solution, there is a basic feasible solution;ii) if there is an optimal solution, there is an optimal basic solution.



28 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.3.7 Quadratic programmingGiven Q 2 Rn�n, A 2 Rm�n, b 2 Rm and c 2 Rn , the quadratic pro-gramming (QP) problem is the following optimization problem.(QP ) minimize q(x) = (1=2)xTQx+ cTxsubject to Ax = b; x � 0;We may denote the feasible set by Fp. The data and solution sets for (QP)are Zp = fQ 2 Rn�n; A 2 Rm�n; b 2 Rm; c 2 Rngand Sp = fx 2 Fp : q(x) � q(y) for every y 2 Fpg:A feasible point x� is called a KKT point, where KKT stands for Karush-Kuhn-Tucker, if the following KKT conditions hold: there exists (y� 2Rm; s� 2 Rn) such that (x�; y�; s�) is feasible for the following dual problem(QD) maximize bT y � (1=2)xTQxsubject to AT y + s = c+Qx; x; s � 0;and (x�)T s� = 0:If Q is positive semi-de�nite, then x� is an optimal solution for (QP) ifand only if x� is a KKT point for (QP). In this case, the solution set for(QP) is characterized by a system of linear inequalities and equations. Onecan see (LP) is a special case of (QP).1.3.8 Complementarity problemGiven M 2 Rn�n and q 2 Rn, the linear complementarity problem (LCP)is to �nd a pair x; s 2 Rn such thats =Mx+ q; (x; s) � 0 and xjsj = 0; j = 1; 2; :::; n:A pair (x; s) � 0 satisfying s = Mx+ q is called a feasible pair. The dataand solution sets for LCP areZp = fM 2 Rn�n; q 2 RngSp = f(x; s) : s =Mx+ q; (x; s) � 0 and xT s = 0g:One can verify that the solution set of (LP) and the KKT set of (QP)can be formulated as the solution set of an LCP. Hence, the LCP is a



1.3. DECISION AND OPTIMIZATION PROBLEMS 29fundamental decision and optimization problem. The LCP also arises fromeconomic equilibrium problems, noncooperative games, tra�c assignmentproblems, and optimization problems. If M is positive semi-de�nite, i.e.,xTMx � 0; for all x;then, the LCP is called a monotone LCP.Let f(x) : Rn+ ! Rn be a real function. Then, the nonlinear comple-mentarity problem (NCP) is to �nd a pair x; s 2 Rn such thats = f(x); (x; s) � 0 and xjsj = 0; j = 1; 2; :::; n:If f(x) is a monotone function over Rn+, meaning(x1 � x2)T (f(x1)� f(x2)) � 0 for all x1; x2 2 Rn+;then the problem is called the monotone complementarity problem.Theorem 1.18 (Monotone complementarity theorem) If a monotone com-plementarity problem has a complementary solution, then it has a maximalcomplementary solution pair x� and s� meaning that the number of thepositive components in vector x�+s� is maximized. Moreover, the supportsP � = fj : x�j > 0g and Z� = fj : s�j > 0gare invariant for all pairs of maximal complementary solutions.1.3.9 Positive semi-de�nite programmingGiven C 2 Mn, Ai 2 Mn, i = 1; 2; :::;m, and b 2 Rm, the positivesemi-de�nite programming problem is to �nd a matrix X 2 Mn for theoptimization problem:(PSP ) inf C �Xsubject to Ai �X = bi; i = 1; 2; :::;m; X � 0;where the � operation is the generalization of the inner product to matricesA �B :=Xi;j Ai;jBi;j = trATB;and the notation X � 0 means that X is positive semi-de�nite matrix. Thisproblem has many applications in combinatorial optimization and controlengineering.



30 CHAPTER 1. INTRODUCTION AND PRELIMINARIESThe dual problem can be written as(PSD) sup bT ysubject to Pmi yiAi + S = C; S � 0;which is analogous to the dual of LP. We also have analogous theorems.Theorem 1.19 (Farkas' lemma in PSP) Let Ai 2Mn for i = 1; :::;m andb 2 Rm. Then, there exists a symmetric matrix X � 0 withAi �X = bi; i = 1; :::;m;if and only if Pmi yiAi � 0 and Pmi yiAi 6= 0 implies bT y < 0.Theorem 1.20 (Weak duality theorem in PSP) Let Fp and Fd, the feasiblesets for the primal and dual, be non-empty. Then,C �X � bT y where X 2 Fp; (y; S) 2 Fd:Corollary 1.21 (Strong duality theorem in PSP) Let Fp and Fd be non-empty and have an interior. Then, X is optimal for (PS) if and only if thefollowing conditions hold:i) X 2 Fp;ii) there is (y; S) 2 Fd;iii) C �X = bT y or X � S = 0.Two positive semi-de�nite matrices are complementary to each other ifX � S = 0. From the optimality conditions, the solution pair set for (PSP)and (PSD) is Sp = fX 2 Fp; (y; S) 2 Fd : C �X = bT yg;which is a system of linear matrix inequalities and equations.Theorem 1.22 (PSP duality theorem) If one of (PSP) or (PSD) has astrictly or interior feasible solution and its optimal value is �nite, then theother is feasible and has the same optimal value. If one of (PSP) or (PSD)is unbounded then the other has no feasible solution.



1.4. ALGORITHMS AND COMPUTATION MODELS 311.3.10 Nonlinear programmingGiven f : Rn ! R, h : Rn ! Rm, g : Rn ! Rd, the nonlinear program-ming problem is the following optimization problem.(NP ) minimize f(x)subject to h(x) = b; g(x) � 0:We may denote the feasible set by F . The oracle and solution sets for (NP)areZp = ff; h; gg and Sp = fx 2 F : f(x) � f(y) for every y 2 Fg:Note that the data set is a functional set.A feasible point x� is called a KKT point if the following KKT conditionshold: there exists (y� 2 Rm; s� 2 Rd) such that (x�; y�; s�) is satisfyingrT f(x�)�rh(x�)y� �rg(x�)s� = 0; s� � 0;and g(x�)T s� = 0:Theorem 1.23 (Karush-Kuhn-Tucker theorem) Let x� be a relative (lo-cal) minimum solution for (NP) and suppose x� is a regular point for theequality and active inequality constraints, i.e., the Jacobian matrix of theseconstraints has full row rank. Then, x� is an KKT point.If f is convex, h is a�ne, and g is convex, then x� is optimal if and onlyif x� is a KKT point for (NP).1.4 Algorithms and Computation ModelsAn algorithm is a list of instructions to solve a problem. For every instanceof problem P , i.e., for every given data Z 2 Zp, an algorithm for solvingP either determines that Sp is empty or generates an output x such thatx 2 Sp or x is close to Sp in certain measure. The latter x is called an(approximate) solution.Let us useAp to denote the collection of all possible algorithm for solvingevery instance in P . Then, the (operation) complexity of an algorithmA 2 Ap for solving an instance Z 2 Zp is de�ned as the total arithmeticoperations: +, �, �, =, and comparison on real numbers. Denote it byco(A;Z). Sometimes it is convenient to de�ne the iteration complexity,denoted by ci(A;Z), where we assume that each iteration costs a polynomial



32 CHAPTER 1. INTRODUCTION AND PRELIMINARIESnumber (inm and n) of arithmetic operations. In most iterative algorithms,each iteration can be performed e�ciently both sequentially and parallelly,such as solving a system of linear equations, rank-one updating the inversionof a matrix, pivoting operation of a matrix, multiplying a matrix by avector, etc.1.4.1 Worst-case complexityThe worst-case complexity of algorithm A for problem P is de�ned asc(A) := supZ2Zp c(A;Z):It is better to distinguish the worst-case complexity of an algorithm, A,from that of a problem P . The worst-case complexity of the problem iscp := infA2Ap c(A):Analyzing the worst-case complexity of a problem is challenging since Ap isan unknown domain, and the analysis of the complexity of the algorithm isequally di�cult since P is also immense. However, the complexity theorydoes not directly attack the algorithm complexity for every instance. In-stead, it classi�es P using its data bit-size L, where the data are assumedrational. This is the Turing Machine Model for computation. We maycall this type of complexity size-based. Then, we express an upper boundfA(m;n; L), in terms of these parameters m, n, and L, for the size-basedcomplexity of algorithm A asc(A;L) := supZ2Zp; size(Z)�L c(A;Z) � fA(m;n; L):Then, the size-based complexity of problem P has a relationcp(L) := infA2Ap c(A;L) � fA(m;n; L):We see that the complexity of algorithms is an upper bound for the com-plexity of the problem. Another active pursuit in computer science is theanalysis of a lower bound for the problem's complexity, which is outside ofthe scope of this monograph.If fA(m;n; L) is a polynomial inm, n, and L, then we say algorithm A isa polynomial-time or polynomial algorithm and problem P is polynomiallysolvable. If fA(m;n; L) is independent of L and polynomial in m and n,then we say algorithm A is a strongly polynomial algorithm.



1.4. ALGORITHMS AND COMPUTATION MODELS 33In the real number model, the use of L is not suitable. We may use �,the error for an approximate solution as a parameter. Let c(A;Z; �) be thetotal number of operations of algorithm A for generating an �-approximatesolution, with a well-de�ned measure, to problem P . Then,c(A; �) := supZ2Zp c(A;Z; �) � fA(m;n; �) for any � > 0:We call this complexity model error-based.If fA(m;n; �) is a polynomial in m, n, and log(1=�), then algorithm Ais a polynomial algorithm and problem P is polynomially solvable. Again,if fA(m;n; �) is independent of � and polynomial in m and n, then we sayalgorithm A is a strongly polynomial algorithm. If fA(m;n; �) is a polyno-mial in m, n, and (1=�), then algorithm A is a polynomial approximationscheme or pseudo-polynomial algorithm . For some optimization problems,the complexity theory can be applied to prove not only that they cannotbe solved in polynomial-time, but also that they do not have polynomialapproximation schemes. In practice, approximation algorithms are widelyused and accepted in practice.We have to admit that the criterion of polynomiality is somewhat con-troversial. Many algorithms may not be polynomial but work �ne in prac-tice. This is because complexity theory is built upon the worst-case analy-sis. However, this criterion generally provides a qualitative statement: if aproblem is polynomial solvable, then the problem is indeed relatively easyto solve regardless of the algorithm used. Furthermore, it is ideal to developan algorithm with both polynomiality and practical e�ciency.1.4.2 Condition-based complexityAs we discussed before, in the Turing Machine Model the parameters areselected as the number of variables, the number of constraints, and the bit-size of the data of an instance. In fact, expressing the algorithm complexityin terms of the size of the problem does not really measure the di�culty ofan instance of the problem. Two instances with the same size may resultin drastically di�erent performances by the same algorithm. Consider thesteepest descent method for solvingminimize (1=2)xTQx+ cTxwhere Q 2 Rn�n is positive de�nite. It is well known that the algorithmgenerates a sequence of fxkg such thatkxk+1 � x�kkxk � x�k � en � e1en + e1 ;



34 CHAPTER 1. INTRODUCTION AND PRELIMINARIESwhere e1 � e2; ::: � en are n eigenvalues of Q with ascending order. Thus,two matrices with the same size but di�erent eigenvalue-structure will pos-sess quite di�erent convergence speed. This phenomena is surprisingly com-mon in optimization, due to mathematical bases upon which algorithms aredesigned. Thus, the upper bound for the complexity of an algorithm maybe expressed as fA(m;n; �(Z)) or fA(m;n; �; �(Z)) in both the rational-number and the real number models, where �(Z) can be viewed as a condi-tion number for the instance Z. The better the condition number, the lessdi�cult the instance. It is our goal to study this phenomena and to improvethe condition number and, thereby, the performance of an algorithm.1.4.3 Average complexityLet Zp be a random sample space, then one can de�ne the average orexpected complexity of the algorithm for the problem asca(A) = EZ2Zp(c(A;Z)):If we know the condition-based complexity of an algorithm for P , then theaverage complexity of the algorithm isca(A) � EZ2Z(fA(m;n; �(Z))):In many cases, fA(m;n; �(Z)) can be expressed asfA(m;n; �(Z)) = f1(m;n)f2(�(Z)):Thus, ca(A) � f1(m;n)EZ2Z(f2(�(Z)));which will simplify analysis a great deal.Another probabilistic model is called high probability analysis. We saythat a problem P can be solved by algorithm A in fA(m;n) time with highprobability if Prfc(A;Z) � fA(m;n)g ! 1as m;n ! 1. Again, if we have a condition-based complexity and if wehave Prff2(�(Z)) � f3(m;n)g ! 1as m;n!1, then the algorithm solves P infA(m;n) = f1(m;n)f3(m;n)operations with high probability.



1.4. ALGORITHMS AND COMPUTATION MODELS 351.4.4 Asymptotic complexityMost algorithms are iterative in nature. They generate a sequence of ever-improving points x0; x1; :::; xk; ::: approaching the solution set. For manyoptimization problems and/or algorithms, the sequence will never exactlyreach the solution set. One theory of iterative algorithms, referred to aslocal or asymptotic convergence analysis, is concerned with the rate atwhich the optimality error of the generated sequence converges to zero.Obviously, if each iteration of competing algorithms requires the sameamount of work, the speed of the convergence of the error re
ects the speedof the algorithm. This convergence rate, although it holds locally or asymp-totically, provides evaluation and comparison of di�erent algorithms. It hasbeen widely used by the nonlinear optimization and numerical analysis com-munity as an e�ciency criterion. In many cases, this criterion does explainpractical behavior of iterative algorithms.Consider a sequence of real numbers frkg converging to zero. One cande�ne several notions related to the speed of convergence of such a sequence.De�nition 1.1 . Let the sequence frkg converge to zero. The order ofconvergence of frkg is de�ned as the supermum of the nonnegative numbersp satisfying 0 � lim supk!1 jrk+1jjrk jp <1:De�nition 1.2 . Let the sequence frkg converge to zero such thatlim supk!1 jrk+1jjrkj2 <1:Then, the sequence is said to converge quadratically to zero.It should be noted that the order of convergence is determined only bythe properties of the sequence that holds as k !1. In this sense we mightsay that the order of convergence is a measure of how good the tail of frkgis. Large values of p imply the faster convergence of the tail.De�nition 1.3 . Let the sequence frkg converge to zero such thatlim supk!1 jrk+1jjrk j = � < 1:Then, the sequence is said to converge linearly to zero with convergenceratio �.



36 CHAPTER 1. INTRODUCTION AND PRELIMINARIESLinear convergence is the most important type of convergence behavior.A linearly convergence sequence, with convergence ratio �, can be said tohave a tail that converges to zero at least as fast as the geometric sequencec�k for a �xed number c. Thus, we also call linear convergence geometricconvergence.As a rule, when comparing the relative e�ectiveness of two competingalgorithms both of which produce linearly convergent sequences, the com-parison is based on their corresponding convergence ratio|the smaller theratio, the faster the algorithm. The ultimate case where � = 0 is referredto as superlinear convergence.1.5 Basic Numerical ProceduresThere are several basic numerical problems frequently solved by interior-point algorithms.1.5.1 Gaussian elimination methodProbably the best-known algorithm for solving a system of linear equationsis the Gaussian elimination method. Suppose we want to solveAx = b:We may assume a11 6= 0, where aij is the component of A in row i andcolumn j. Then we can subtract appropriate multiples of the �rst equationfrom the other equations so as to have an equivalent system:� a11 A1:0 A0 �� x1x0 � = � b1b0 � :This is a pivot step, where a11 is called pivot. Now, recursively, we solvethe system of the last m� 1 equations. Substituting the solution x0 foundinto the �rst equation yields a value for x1.In matrix form, the Gaussian elimination method transforms A into theform � U C0 0 �where U is a nonsingular, upper-triangular matrix,A = L� U C0 0 � ;



1.5. BASIC NUMERICAL PROCEDURES 37and L is a nonsingular, lower-triangular matrix. This is called the LU -decomposition.Sometimes, the matrix is transformed further to a form� D C0 0 �where D is a nonsingular, diagonal matrix. This whole procedure usesabout nm2 arithmetic operations. Thus, it is a strong polynomial-timealgorithm.1.5.2 Choleski decomposition methodAnother useful method is to solve the least squares problem:(LS) minimize kAT y � ck:The theory says that y� minimizes kAT y � ck if and only ifAAT y� = Ac:So the problem is reduced to solving a system of linear equations with asymmetric semi-positive de�nite matrix. One method is Choleski's decom-position. In matrix form, the method transforms AAT into the formAAT = UTDU;where U is an upper-triangular matrix and D is a diagonal matrix.1.5.3 The Newton methodThe Newton method is used to solve a system of nonlinear equations: givenf(x) : Rn ! Rn, the problem is to solve n equations for n unknowns suchthat f(x) = 0:The Newton method is de�ned by the following iterative formula:xk+1 = xk � �(rf(xk))�1f(xk);where scalar � � 0 is called step-size.A modi�ed or quasi Newton method is de�ned byxk+1 = xk � �Mkf(xk);where Mk is an n � n positive de�nite matrix. In particular, if Mk = I ,the method is called the steepest descent method.



38 CHAPTER 1. INTRODUCTION AND PRELIMINARIES1.5.4 Solve ball-constrained linear problemThe ball constrained linear problem has the following form(BP ) minimize cTxsubject to Ax = 0; kxk2 � 1;or (BD) minimize bT ysubject to kAT yk2 � 1:x� minimizes (BP) if and only if there is y such that they satisfyAAT y = Ac;and if c�AT y 6= 0 thenx� = �(c�AT y)=kc�AT yk;otherwise any feasible x is a solution. The solution y� for (BD) is given asfollows: solve AAT �y = b;and if �y 6= 0 then set y� = ��y=kAT �yk;otherwise any feasible y is a solution. So these two problems can be reducedto solving a system of linear equations.1.5.5 Solve ball-constrained quadratic problemThe ball constrained quadratic problem has the following form(BP ) minimize (1=2)xTQx+ cTxsubject to Ax = 0; kxk2 � 1;or simply (BD) minimize (1=2)yTQy + bT ysubject to kyk2 � 1:This problem is a classical trust region problem used in nonlinear optimiza-tion. The optimality conditions for the minimizer y� of (BD) are(Q+ ��I)y� = �b; �� � 0; ky�k2 � 1; ��ky�k2 = 0;and (Q+ ��I) � 0:



1.6. NOTES 39These conditions are necessary and su�cient. This problem can be solvedin polynomial time log(1=�) and log(log(1=�)) by the bisection method ora hybrid of the bisection and Newton methods, respectively. In practice,several trust region procedures have been very e�ective in solving this prob-lem.1.6 NotesThe term \complexity" was introduced by Hartmanis and Stearns [143].Also see Garey and Johnson [101] and Papadimitriou and Steiglitz [272].The NP theory was due to Cook [69] and Karp [174]. The importance ofP was observed by Edmonds [84].Linear programming and the simplex method were introduced by Dantzig[73]. Other inequality problems and convexity theories can be seen in Gritz-mann and Klee [132], Gr�otschel, Lov�asz and Schrijver [133], Gr�unbaum[134], Rockafellar [291], and Schrijver [298]. Various complementarity prob-lems can be found found in Cottle, Pang and Stone [72]. The positive semi-de�nite programming, an optimization problem in nonpolyhedral cones,and its applications can be seen in Nesterov and Nemirovskii [263], Al-izadeh [8], and Boyd, Ghaoui, Feron and Balakrishnan [62]. Recently,Goemans and Williamson [108] obtained several breakthrough results onapproximation algorithms using positive semi-de�nite programming. TheKKT condition for nonlinear programming was given by Karush, Kuhn andTucker [193].It was shown by Klee and Minty [178] that the simplex method is nota polynomial-time algorithm. The ellipsoid method, the �rst polynomial-time algorithm for linear programming with rational data, was proven byKhachiyan [176], also see Bland, Goldfarb and Todd [53]. The method wasoriginally proposed by Shor [303], and discussed in Nemirovskii and Yudin[258]. The interior-point method, another polynomial-time algorithm forlinear programming, was developed by Karmarkar. It is related to theclassical barrier-function method studied by Frisch [99] and Fiacco andMcCormick [92], see Gill, Murray, Saunders, Tomlin and Wright [106], andAnstreicher [18]. For a brief LP history, see the excellent article by Wright[366].The real computation model was developed by Blum, Shub and Smale[56] and Nemirovskii and Yudin [258]. The average setting can be seen inTraub, Wasilkowski and Wozniakowski [335]. The asymptotic convergencerate and ratio can be seen in Luenberger [198], Ortega and Rheinboldt[269], and Traub [334]. Other complexity issues in numerical optimizationwere discussed in Vavasis [359].



40 CHAPTER 1. INTRODUCTION AND PRELIMINARIESMany basic numerical procedures listed in this chapter can be found inGolub and Van Loan [119]. The ball-constrained quadratic problem andits solution methods can be seen in Mor�e [248], Sorenson [309], and Dennisand Schnable [76]. The complexity result of the ball-constrained quadraticproblem was proved by Vavasis [359] and Ye [376, 380].1.7 Exercises1.1 Prove Theorem 1.3.1.2 Function f being a quasi-convex implies that the level set of f is con-vex.1.3 Prove Propositions 1.5 and 1.6.1.4 Prove Harmonic inequality described in Section 1.2.4.1.5 Prove Theorem 1.8.1.6 Prove Theorems 1.9 and 1.10.1.7 Prove Theorem 1.11.1.8 Prove Theorem 1.12.1.9 Prove Theorem 1.17.1.10 If (LP) and (LD) have a nondegenerate optimal basis AB, then thestrict complementarity partition in Theorem 1.16P � = B:1.11 If Q is positive semi-de�nite, then x� is an optimal solution for (QP)if and only if x� is a KKT point for (QP).1.12 Prove Theorem 1.18.1.13 Prove Theorem 1.19.1.14 The optimality conditions for the minimizer y� of (BD) in Section1.5.5: (Q+ ��I)y� = �b; �� � 0; ky�k � 1; ��ky�k = 0;and (Q+ ��I) � 0;are necessary and su�cient.



Chapter 2Geometry of ConvexInequalitiesMost optimization algorithms are iterative in nature, that is, they generatea sequence of improved points. Algorithm design is closely related to howthe improvement is measured. Most optimization algorithms use a merit ordescent function to measure the progress. Some merit or descent functionsare based on the objective function. For example, if we know a lower boundz of the optimal objective value, f(x)� z is a measure of how far x is fromthe solution set. Another example measures the residual or error of theoptimality conditions represented by a system of equations and inequali-ties involving the derivatives of the objective and constraint functions asdiscussed in the preceding chapter.One particular merit or descent function measures the \size" of the con-taining set|a set that contains a solution. A typical example is the bisec-tion method for �nding a root of a continuous function within an interval.The method measures the length of the containing interval. In each step,the middle point of the containing interval is tested, and, subsequently, anew containing interval is selected and its length is a half of the previousone. Thus, these containing intervals shrink at a constant rate 1=2.A generic center-section algorithm for multiple-variable problems canbe described as follows. Given xk , a \good" interior point in a containingset, we check to see if xk is desirable. If not, we generate a separatinghyperplane and place it through xk and cut the containing set into twoparts. The separating hyperplane can be generated from an oracle. If wecan assure that the solution set lies in one of the two parts, then the otherpart can be deleted. This leads to a new containing set that is smaller than41



42 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIESthe previous one. A new \good" interior point in the new containing setcan be tested and the process continues. Obviously, this method can beapplied to any convex problems.The question that arises is how to select the test point and where toplace the cut. Ideally, we would like to select a \center" point that dividesthe containing set into two approximately \equal" parts with respect tocertain measures of the containing set. Then, we will have a shrinking rateof about 1=2 for the sequence of the containing sets.Various centers were considered as test points. In this chapter, we reviewthese centers and their associated measures. We show that, similar tothese center-section algorithms, interior-point algorithms use a new measureof the containing set represented by linear inequalities. This measure is\analytic", and is relatively easy to compute. Its associated center is calledthe analytic center.2.1 Convex Bodies and EllipsoidsA natural choice of the measure would be the volume of the convex body.Interest in measure of convex bodies dates back as far as the ancient Greeksand Chinese who computed centers, areas, perimeters and curvatures ofcircles, triangle, and polygons. Unlike the length of a line segment, thecomputation of volumes, even in two and three dimensional spaces, is notan easy task for a slightly complex shaped body. In order to measurecultivated lands, Chinese farmers weighted the amount of sand containedin a down-scaled body whose shape is identical to the land, then comparedthe weight to the amount of sand in an equally down-scaled unit-squarebox.Associated with the volume of a convex body, the center of gravity willbe the choice as the test point (Figure 2.1). We have the following theorem.Theorem 2.1 Let 
 be a compact convex body in Rm with center of gravityyg, and let 
+ and 
� be the bodies in which a hyperplane H passingthrough yg divides 
. Then the volumes V (
+) and V (
�) satisfy theinequalityV (
�) � �1� (1� 1n+ 1)n�V (
); where � = + or � :This result shows that by successively cutting through the center ofgravity, these convex bodies shrink at a constant rate of at most (1 �1= exp(1)), where exp(1) is the natural number 2:718:::. This rate is justslightly worse than 1=2 in the bisection method.



2.1. CONVEX BODIES AND ELLIPSOIDS 43

H

+

-

Figure 2.1: A hyperplane H cuts through the center of gravity of a convexbody.Let the solution set contain a ball with radius r and the initial containingset be contained in a ball with radius R. Then we know that the volumesof the containing sets are bounded from below by �mrm and bounded fromabove by �mRm, where �m is the volume of the unit ball in Rm. Thus, asolution point must be found in O(m log(R=r)) center-section steps, becausethe volumes of the containing sets eventually become too small to containthe solution set.The di�culty with the gravity-center section method lies in computingthe center and volume of a convex body. It is well-known that computingthe volume of a convex polytope, either given as a list of facets or vertices,is as di�cult as computing the permanent of a matrix, which is itself #P -Hard. Since the computation of the center of gravity is closely related tothe volume computation, it seems reasonable to conclude that no e�cientalgorithm can compute the center of gravity of 
.Although computing the center of gravity is di�cult for general convexbodies, it is relatively easy for some simple convex bodies like a cube, asimplex, or an ellipsoid. This leads researchers to use some simple convexbodies to estimate 
.It is known that every convex body contains a unique ellipsoid of maxi-mal volume and is contained in a unique ellipsoid of minimal volume (Figure2.2). We have the following general theorem.Theorem 2.2 For every full dimensional convex body 
 � Rm there existsa unique ellipsoid E(
) of maximal volume contained in 
. Moreover, 
is contained in the ellipsoid obtained from E(
) by enlarging it from its



44 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIEScenter by a factor of m.
R

E-

rFigure 2.2: The max-volume ellipsoid inscribing a polytope and the co-centered ellipsoid circumscribing the polytope (R=r � m)Let ye be the center of the max-volume ellipsoid inscribing 
. Throughthe center we place a hyperplane H and divide 
 into two bodies 
+ and
�. Then, we have a center-section theorem:Theorem 2.3 The Volumes of the new ellipsoids satisfy the inequalityV (E(
�)) � 0:843V (E(
)); where � = + or � :Thus, one can use the max-volume inscribing ellipsoid as an estimateof 
. These ellipsoids will shrink at a constant rate in the center-sectionmethod. The volume of E(
) is also bounded from below by �mrm andbounded from above by �mRm. Thus, a solution point must be found inO(m log(R=r)) center-section steps. Apparently, to compute ye one needsto use the structure of the convex body. If the convex body is represented bylinear inequalities, there is a polynomial complexity bound for computingan approximate point of ye.Another approach is the original ellipsoid method, which monitors thevolume of an ellipsoid that contains the solution set. This is based on asimilar theorem:Theorem 2.4 For every convex body 
 � Rm there exists a unique el-lipsoid E(
) of minimal volume containing 
. Moreover, 
 contains theellipsoid obtained from E(
) by shrinking it from its center by a factor ofm.



2.2. MAX-POTENTIAL AND ANALYTIC CENTER 45Moreover, let ye be the center of an ellipsoid E � Rm. Through its cen-ters we place a hyperplane H and divide E into two bodies (half ellipsoids)E+ and E�. Let E(E+) and E(E�) be the new min-volume ellipsoids con-taining E+ and E�, respectively (Figure 2.3). Then, we have the followingcenter-section theorem:Theorem 2.5 The Volumes of the new ellipsoids satisfy the inequalityV (E(E�)) � exp(�:5=m)V (E); where � = + or � :
E

+

-

H

E
-

E

E

Figure 2.3: Illustration of the min-volume ellipsoid containing a half ellip-soidFurthermore, the new containing ellipsoid can be easily constructed andits center can be computed in O(m2) arithmetic operations. Since thevolumes of the ellipsoids are bounded from below by �mrm and the initialone is bounded from above by �mRm, a solution point must be found inO(m2 log(R=r)) center-section steps. We see that the ellipsoid method doesnot keep the \knowledge" of the cutting plane after the new containingellipsoid is updated.2.2 Max-Potential and Analytic CenterThe centers discussed in the preceding section are \universal," meaningthat they are invariant of the representation of a convex body. A drawbackof these centers is that they generally cannot be computed cost-e�ectively.For the ellipsoid method, its advantage in not keeping knowledge of the cut-ting planes is also a disadvantage to practical e�ciency for solving certain



46 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIESproblems, such as linear programs. Thus, another type of center, called theanalytic center for a convex polyhedron given by linear inequalities, wasintroduced.Let 
 be a bounded polytope in Rm de�ned by n (> m) linear inequal-ities, i.e., 
 = fy 2 Rm : c�AT y � 0g;where A 2 Rm�n and c 2 Rn are given and A has rank m. Denote theinterior of 
 by �
= fy 2 Rm : c�AT y > 0g:Given a point in 
, de�ne the distance function of y to the boundary of 
which satis�es1. d(y;
) = 0 if y is on the boundary of 
;2. d(y;
) > 0 if y is in �
;3. If c0 � c and let 
0 = fy 2 Rm : c0 � AT y � 0g (thereby, 
0 � 
),then d(y;
0) � d(y;
).This de�nition is very similar to Huard's generic distance function, withone exception, where property (3) was stated as \If 
0 � 
, then d(y;
0) �d(y;
)." The reason for the di�erence is that the distance function mayreturn di�erent values even if we have the same polytope but two di�erentrepresentations. In other words, the distance function is dependent on therepresentation of 
. We may have d(y;
0) � d(y;
) even when 
 � 
0geometrically. Thus, the distance function is really a function of point y,and the data A and c as well.One choice of the distance functions isd(y;
) = nYj=1(cj � aTj y); y 2 
;where aj is the jth column of A. Traditionally, we let s := c � AT y andcall it a slack vector. Thus, the distance function is the product of all slackvariables. Its logarithm is called the barrier or (dual) potential function,B(y;
) = log d(y;
) = nXj=1 log(cj � aTj y) = nXj=1 log sj :The interior point, denoted by ya, in 
 that maximizes the function iscalled the analytic center of 
, i.e.,B(
) := B(ya;
) = maxy2
 log d(y;
):



2.2. MAX-POTENTIAL AND ANALYTIC CENTER 47ya is uniquely de�ned, since the barrier function is strictly concave in �
. Itsatis�es the following optimality conditions. There exists an xa such thatXasa = e; Axa = 0; and sa = c�AT ya > 0: (2.1)Note that the scale of xa is immaterial in these conditions. Also, adding ordeleting a redundant inequality changes the location of the analytic center.Example 2.1 Consider 
 = fy 2 R : y � 0; �y � �1g which is interval[0; 1]. The analytic center is ya = 1=2 with xa = (2; 2)T .Example 2.2 Consider 
 = fy 2 R : y � 0; :::; y � 0; �y � �1g whichis again interval [0; 1] but \y � 0" is copied n times. The analytic center forthis system is ya = n=(n+1) with xa = ((n+1)=n; :::; (n+1)=n; (n+1))T .The analytic center can be de�ned when the interior is empty or equal-ities are presented, such as
 = fy 2 Rm : c�AT y � 0; By = bgThen the analytic center is chosen on the hyperplane fy : By = bg tomaximize the product of the slack variables s = c�ATy. Thus, the interiorof 
 is not used in the sense that the topological interior for a set is used.Rather, it refers to the interior of the positive orthant of slack variables:Rn+ := fs : s � 0g. When say 
 as an interior, we mean that�Rn+ \fs : s = c�AT y for some y where By = bg 6= ;:Again �Rn+ := fs 2 Rn+ : s > 0g, i.e., the interior of the orthant Rn+. Thus,if 
 has only a single point y with s = c � AT y > 0, we still say �
 is notempty.Example 2.3 Consider the system 
 = fx : Ax = 0; eTx = n; x � 0g,which is called Karmarkar's canonical set. If x = e is in 
, then e is theanalytic center of 
 (Figure 2.4).2.2.1 Dual potential functionWe may represent 
 = fy 2 Rm : c�AT y � 0g using the slack variable sonly: S
 := fs 2 Rn : AT y + s = c; s � 0g;
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Figure 2.4: Illustration of the Karmarkar (simplex) polytope and its ana-lytic centeror S
 := fs 2 Rn : s� c 2 R(AT ); s � 0g;which is the intersection of the a�ne setA
 = fs 2 Rn : s� c 2 R(AT )gand the positive cone (orthant) Rn+. The interior of S
 is denoted by�S
:= A
 \ �Rn+:Let s be an interior point in S
. Then consider the ellipsoidEs = ft 2 Rn : kS�1(t� s)k � 1g:This is a regular ellipsoid centered at s and inscribing the positive orthantRn+. The volume of the regular ellipsoid isV (Es) = �n nYj=1 sj :Moreover, we have (Es \ A
) � S
;
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AFigure 2.5: Regular (dual) ellipsoids centered at points s's on the intersec-tion of an a�ne set A and the positive orthant; they are also contained bythe positive orthant.that is, the intersection of Es and A
 is contained in S
 (Figure 2.5).Thus, the potential function at s 2 �S
 plus log�n is the logarithmicvolume of the regular ellipsoid centered at s and inscribing Rn+. Therefore,the inscribing regular ellipsoid centered at the analytic center of S
, amongall of these inscribing regular ellipsoids, has the maximal volume. We denotethis max-barrier or max-potential of S
 by B(
).We now argue that the exponential of B(
) is an \analytic" measure ofS
 or 
.1. exp(B(
)) = 0 if �
= ;;2. exp(B(
)) > 0 if �
6= ;, and if 
 contains a full dimensional ball withradius r or fy : AT y � c � reg 6= ; (here we assume that kajk = 1for j = 1; 2; :::; n), then B(
) � n log r;3. If c0 � c and let 
0 = fy 2 Rm : c0 � AT y � 0g (thereby, 
0 � 
),then B(
0) � B(
).Note that the max-barrier or max-potential B(
) is a function of data Aand c.



50 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIESLet sa (or ya) be the analytic center of S
 (or 
). We now consider theellipsoid nEsa = ft 2 Rn : k(Sa)�1(t� sa)k � ng;which is enlarged from Esa by a factor of n. The question is whether ornot this enlarged regular ellipsoid nEsa \ A
 contains S
. The answer is\yes" according to the following theorem.Theorem 2.6 The analytic center sa 2 S
 is the center of the uniquemaximal-volume regular ellipsoid Esa inscribing the orthant Rn+. Its inter-section with A
 is contained by polytope S
. Moreover, polytope S
 itselfis contained by the intersection of A
 and the ellipsoid obtained from Esaby enlarging it from its center by a factor n.Proof. The uniqueness of the analytic center is resulted from the fact thatthe potential function is strictly concave in the interior of the polytope andA has a full row-rank. Let ya be the analytic center and sa = c � AT ya,then there is xa such that Axa = 0 and Xasa = e: Thus, we have xa > 0and cTxa = n. For all s = c�AT y � 0 we havek(Sa)�1(s�sa)k2 = kXas�ek2 = kXask2�n � ((xa)T s)2�n = n2�n < n2:This completes the proof. 22.2.2 Analytic center sectionWe now develop two center-section inequalities for the analytic center. Theyresemble the results for the previously discussed centers. First, we studyhow translating a hyperplane in 
 = fy : c � AT y � 0g will a�ect themax-potential value. More speci�cally, we have the following problem: Ifone inequality in 
, say the �rst one, of c�AT y � 0 needs to be translated,change c1�aT1 y � 0 to aT1 ya�aT1 y � 0; i.e., the �rst inequality is parallellytranslated, and it cuts through the center ya and divides 
 into two bodies(Figure 2.6). Let
+ := fy : aT1 ya � aT1 y � 0; cj � aTj y � 0; j = 2; :::ngand let �ya be the analytic center of 
+. Then, the max-potential for thenew convex polytope 
+ isexp(B(
+)) = (aT1 ya � aT1 �ya) nYj=2(cj � aTj �ya):Regarding B(
) and B(
+), we prove the following theorem.
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ya-

ya ya

This hyperplane

is translated to

The initial polytope and
its analytic centerFigure 2.6: Translation of a hyperplaneTheorem 2.7 Let 
 and 
+ be de�ned as the above. ThenB(
+) � B(
)� 1;or exp(B(
+)) � exp(�1) exp(B(
));where exp(�1) = 1= exp(1).Proof. Since ya is the analytic center of 
, there exists xa > 0 such thatXa(c�AT ya) = e and Axa = 0: (2.2)Recall that e is the vector of all ones and Xa designates the diagonal matrixof xa. Thus, we havesa = (c� AT ya) = (Xa)�1e and cTxa = n:Let �cj = cj for j = 2; :::; n and �c1 = aT1 ya, and let �sa = �c � AT �ya. Then,we have eTXa�sa = eTXa(�c�AT �ya) = eTXa�c= cTxa � xa1(c1 � aT1 ya) = n� 1:Thus, exp(B(
+))exp(B(
)) = nYj=1 �sajsaj



52 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIES= nYj=1 xaj �saj� ( 1n nXj=1 xaj �saj )n= (n� 1n )n � exp(�1): 2Now suppose we translate the �rst hyperplane by a �, 0 � � � 1, thefractional distance to the analytic center, i.e.,
+ := fy : (1� �)c1 + �aT1 ya � aT1 y � 0; cj � aTj y � 0; j = 2; :::ng:If � = 0, then there is no translation; if � = 1, then the hyperplane istranslated through the analytic center as in the above theorem. RegardingB(
) and B(
+), we have the following inequality.Corollary 2.8 B(
+) � B(
)� �:Now suppose we translate k(< n) hyperplanes, say 1; 2; :::; k, cuttingthrough 
; i.e., use multiple cuts passing through 
, and let
+ := fy : (1� �j)cj + �jaTj ya � aTj y � 0; j = 1; :::; k;cj � aTj y � 0; j = k + 1; :::; n; gwhere 0 � �j � 1, j = 1; 2; :::; k. Then, we have the following corollary.Corollary 2.9 B(
+) � B(
)� kXj=1 �j :This corollary will play an important role in establishing the current bestcomplexity result for linear inequality and linear programming problems.These corollaries show the shrinking nature of the regular ellipsoids aftera cut is translated. They enable us to develop an algorithm that resemblesthe center-section method. Again, if a lower bound on the max-potential ofthe solution set is n log r and the max-potential of the initial containing setis n logR, then a solution must be found in O(n log(R=r)) center-section
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yaya

-ya

hyperplane
The new added

The initial polytope and
its analytic centerFigure 2.7: Addition of a new hyperplanesteps. Moreover, if we can translate multiple inequalities and the max-potential is reduced by �(pn) at each step, a solution must be found inO(pn log(R=r)) center-section steps.In the following, we study the problem when placing additional hyper-planes through the analytic center of 
 (Figure 2.7). When a hyperplaneis added, the new convex body is represented by
+ = fy : c�AT y � 0; aTn+1ya � aTn+1y � 0g:Again, the question is how the max-potential of the new polytope changescompared to that of 
. Letr(
)1 =qaTn+1(A(Xa)2AT )�1an+1 =qaTn+1(A(Sa)�2AT )�1an+1:Then, we have an inequality as follows.Theorem 2.10B(
+)) � B(
) + log(r(
)1) + 2 log 2� 1:5:Proof. Again, xa and (ya; sa) satisfy condition (2.2). Let�sa = c�AT �ya and �san+1 = cn+1 � aTn+1�ya: (2.3)Then,�san+1 = aTn+1(ya � �ya)= aTn+1(A(Xa)2AT )�1(A(Xa)2AT )(ya � �ya)



54 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIES= aTn+1(A(Xa)2AT )�1A(Xa)2(AT ya �AT �ya)= aTn+1(A(Xa)2AT )�1A(Xa)2(�c+AT ya + c�AT �ya)= aTn+1(A(Xa)2AT )�1A(Xa)2(�sa � (Xa)�1e)= aTn+1(A(Xa)2AT )�1AXa(Xa�sa � e): (2.4)Note that we haveeTXa�sa = eTXa(c�AT �ya) = eTXac = n: (2.5)Thus, from (2.4)exp(B(
+))exp(B(
))r(
)1 = �san+1r(
)1 nYj=1 �sajsaj= aTn+1(A(Xa)2AT )�1AXa(Xa�sa � e)r(
)1 nYj=1(xaj �saj )� kaTn+1(A(Xa)2AT )�1AXakkXa�sa � ekr(
)1 nYj=1(xaj �saj )= kXa�sa � ek nYj=1(xaj �saj ): (2.6)Let � = Xa�sa. Then, to evaluate (2.6) together with (2.5) we face amaximum problem maximize f(�) = k�� ekQnj=1 �jsubject to eT� = n; � > 0:This maximum is achieved, without loss of generality, at �1 = � > 1 and�2 = : : : = �n = (n� �)=(n� 1) > 0. Hence,f(�) � (� � 1)r nn� 1�(n� �n� 1 )n�1� 4r nn� 1 � � 12 �2 (n� �n� 1 )n�1� 4r nn� 1(n� :5n+ 1 )n+1� 4e1:5 :This completes the proof.



2.3. PRIMAL AND PRIMAL-DUAL POTENTIAL FUNCTIONS 552Note that r(
)1 =qaTn+1(A(Sa)�2AT )�1an+1 is the maximal value ofthe problem:max aTn+1(y � ya) s:t: y 2 fy : k(Sa)�1AT (y � ya)k � 1g � 
:Thus, if the initial ellipsoid is contained in a unit ball, then r(
)1 � 1.In general, if k additional hyperplanes cut through the analytic center,i.e.,
+ = fy : c�AT y � 0; aTn+1ya � aTn+1y � 0; :::; aTn+kya � aTn+ky � 0g;we haveCorollary 2.11B(
+) � B(
) + kXi=1 log(r(
)i) + (k + 1) log(k + 1)� (k + kk + 1);where r(
)i =qaTn+i(A(Sa)�2AT )�1an+i; i = 1; :::; k:2.3 Primal and Primal-Dual Potential Func-tionsFrom the duality theorem, we have a (homogeneous) linear programmingproblem related to 
 = fy : c�AT y � 0g asminimize cTxsubject to Ax = 0; x � 0;which we called the primal problem. If 
 is nonempty, then the minimalvalue of the problem is 0; if 
 is bounded and has an interior, then theinterior of X
 := fx 2 Rn : Ax = 0; x � 0g is nonempty and x = 0 is theunique (primal) minimal solution.2.3.1 Primal potential functionOne can de�ne a potential function for X
 asP(x;
) = n log(cTx)� nXj=1 logxj ; x 2 �X
 :



56 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIESThis is the so-called Karmarkar potential function. We now show thatthis quantity represents the logarithmic volume of a regular ellipsoid whoseintersection with A
 contains S
 = Rn+ \ A
.Recall that we are interested in �nding a point s 2 S
. Let x 2 �X
.Then, for all s 2 S
 we must havekXsk2 � (xT s)2 = (cTx)2: (2.7)Let �y = (AX2AT )�1AX2c and �s = c�AT �y. Then, we see for any s 2 S
,we have kXsk2 = kX(s� �s) +X�sk2 = kX(s� �s)k2 + kX�sk2;or kX(s� �s)k2 = kXsk2 � kX�sk2 � kXsk2 � (cTx)2:Thus, let Ex be the regular ellipsoid Ex = fs 2 Rn : kX(s� �s)k � cTxgthat is centered at �s (Figure 2.8). Then, we must haveS
 � (Ex \A
):Furthermore, the volume of Ex isV (Ex) = �n(cTx)ndet(X) = �n(cTx)nQnj=1 xj ; (2.8)where �n is the volume of the unit ball in Rn. Thus,P(x;
) = logV (Ex)� log�n:In the next chapter, we will show that Karmarkar's algorithm actuallygenerates sequences f0 < xk 2 Xg such thatP(xk+1;
) � P(xk ;
)� :3for k = 0; 1; 2; :::. In other wordsV (Exk+1)V (Exk ) � exp(�:3):That is, the volume of the containing ellipsoids shrinks at a constant rate.Note that Exk contains the solution set S
. Therefore, Karmarkar's algo-rithm conceptually resembles the ellipsoid method.Since the primal potential function represents the volume of a regularellipsoid containing S
, let us minimize it over all x 2 �X
. Note that the
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Figure 2.8: Regular (primal) ellipsoids centered at points �s's on an a�neset A; they also contain the intersection of A and the positive orthant.primal potential function is homogeneous degree 0 in x, so that we can �xcTx = n. Then the problem minimizes a strictly convex function and theoptimality conditions becomex 2 X
 and X(c�AT y) = e for some y 2 
: (2.9)One can see that y in (2.9) is in fact the analytic center ya of 
, sincethis condition is identical to condition (2.1) for de�ning the analytic centerof 
. Let xa, called the primal analytic center, satisfy these conditions.Recall that sa = c�AT ya is the analytic center of S
. Then, we haveTheorem 2.12 There is a unique minimal-volume regular ellipsoid Exa ,where xa 2 �X
, whose intersection with A
 contains polytope S
. More-over, polytope S
 contains the intersection of A
 and the ellipsoid obtainedfrom Exa by shrinking it from its center by a factor of n. In fact, the twoellipsoids Exa and Esa (in Theorem 2.6) are co-centered, and they can beobtained from each other by enlarging or shrinking with a factor n (Figures2.5 and 2.8).Proof. To prove they are co-centered, we only need to prove that the centerof Exa is the analytic center of S
. Recall that �s is the center of Exa with�s = c�AT �y, where �y = (A(Xa)2AT )�1A(Xa)2c:



58 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIESOn the other hand, from (2.9) we haveXa(c�AT ya) = e or Xac = e+XaAT ya;where ya is the analytic center of 
. ThusXa(c�AT �y) = e+XaAT ya �XaAT (A(Xa)2AT )�1AXa(e+XaAT ya)= e�XaAT (A(Xa)2AT )�1AXae = e:Thus, �y = ya and �s = sa since �y also satis�es the optimality condition of(2.1). 22.3.2 Primal-dual potential functionFor x 2 �X
 and s 2 �S
 consider a primal-dual potential function which hasthe form  n(x; s) := n log(xT s)�X log(xjsj)= n log(cTx)�X logxj �X log sj = P(x;
)�B(y;
):This is the logarithmic ratio of the volume of Ex over the volume of Es.We also have, from the arithmetic-geometric mean inequality, n(x; s) = n log(xT s)�X log(xjsj) � n logn;and  n(xa; sa) = n logn:This is the precise logarithmic ratio of the volumes of two co-centered el-lipsoids whose radii are di�erentiated by a factor n (Figures 2.5 and 2.8).2.4 Potential Functions for Linear Program-mingWe now consider a linear program in the standard form (LP) and (LD)with the optimal value z�. Denote the feasible sets of (LP) and (LD) byFp and Fd, respectively. Denote by F = Fp �Fd.



2.4. POTENTIAL FUNCTIONS FOR LINEAR PROGRAMMING 592.4.1 Primal potential functionConsider the level set
(z) = fy : c�AT y � 0;�z + bT y � 0gwhere z � z�. Let (x0; x00) satisfyAx0 � bx00 = 0; (x0; x00) > 0;and let x := x0=x00 2 �Fp, i.e., Ax = b; x > 0:Then, the primal potential function for 
(z) (Figure 2.9), as described inthe preceding section, isP(x0;
(z)) = (n+ 1) log(cTx0 � zx00)� nXj=0 logx0j= (n+ 1) log(cTx� z)� nXj=1 logxj =: Pn+1(x; z):The later, P(x; z)n+1, is the Karmarkar potential function in the standardLP form with a lower bound z for z�. We see that it represents the volumeof a regular ellipsoid whose intersection with A
(z) contains S
(z), as wediscussed earlier.As we illustrated before, one can represent 
(z) di�erently:
(z) = fy : c�AT y � 0;�z + bT y � 0; :::;�z + bT y � 0g; (2.10)where \�z+ bT y � 0" is copied � times. Geometrically, this representationdoes not change 
(z), but it changes the location of its analytic center. Let(x0; x00) satisfy Ax0 � b(�x00) = 0; (x0; x00) > 0;and let x = x0=(�x00) 2 �Fp. Then, the primal potential function for the new
(z) given by (2.10) isP(x;
(z)) = (n+ �) log(cTx0 � z�x00)� nXj=1 logx0j � � logx00= (n+ �) log(cTx� z)� nXj=1 log xj + � log �
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ya ya

b T y = z

b T y = b Ty = b y a

The objective hyperplane The updated objective hyperplaneFigure 2.9: Intersections of a dual feasible region and the objective hyper-plane; bT y � z on the left and bT y � bT ya on the right.:= Pn+�(x; z) + � log �:Pn+�(x; z) is an extension of the Karmarkar potential function in the stan-dard LP form with a lower bound z for z�. It represents the volume of aregular ellipsoid whose intersection with A
(z) contains S
(z).2.4.2 Primal-dual potential functionFinally, for x 2 �Fp and (y; s) 2 �Fd consider the primal-dual potential func-tion  n+�(x; s) := (n+ �) log(xT s)� nXj=1 log(xjsj)= (n+ �) log(cTx� bTy)� nXj=1 logxj � nXj=1 log sj ;= Pn+�(x; bT y)� nXj=1 log sj ;where � � 0. Since n+�(x; s) = � log(xT s) +  n(x; s) � � log(xT s) + n logn;



2.5. CENTRAL PATH OF LINEAR PROGRAMMING 61then, for � > 0,  n+�(x; s) ! �1 implies that xT s ! 0. More precisely,we have xT s � exp( n+�(x; s)� n logn� ):We have the following theorem.Theorem 2.13 De�ne the level set	(�) := f(x; y; s) 2 �F :  n+�(x; s) � �g:i) 	(�1) � 	(�2) if �1 � �2:ii) �	 (�) = f(x; y; s) 2 F :  n+�(x; s) < �g:iii) For every �, 	(�) is bounded and its closure 	̂(�) has non-empty in-tersection with the solution set.Later we will show that a potential reduction algorithm generates se-quences fxk; yk; skg 2 �F such that n+pn(xk+1; yk+1; sk+1) �  n+pn(xk ; yk; sk)� :05for k = 0; 1; 2; :::. This indicates that the level sets shrink at least a constantrate independently of m or n.2.5 Central Path of Linear ProgrammingAgain we consider a linear program in the standard form (LP) and (LD).Assume that �F6= ;, i.e., both �Fp 6= ; and �Fd 6= ;, and denote z� the optimalobjective value.A central path can be expressed asC = �(x; y; s) 2 �F : Xs = xT sn e�in the primal-dual form. We also seeC = n(x; y; s) 2 �F :  n(x; s) = n logno :



62 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIESThe central path theory is one of the most important foundations for thedevelopment of interior-point algorithms.For any � > 0 one can derive the central path simply by minimizing theprimal LP with a logarithmic barrier function:(P ) minimize cTx� �Pnj=1 logxjsubject to Ax = b; x � 0:Let x(�) be the unique minimizer of (P). Then, it satis�es the optimalityconditions x 2 �Fp; Xs = �e; and s = c�AT y:Consider minimizing the dual LP with the barrier function:(D) maximize bT y + �Pnj=1 log sjsubject to AT y + s = c; s � 0:Let (y(�); s(�)) be the unique minimizer of (D). Then, it satis�es the opti-mality conditions (y; s) 2 �Fd; Xs = �e; and Ax = b:Comparing these two conditions, we see that they are identical. Thus, bothminimizers (x(�); y(�); s(�)) are on the central path with x(�)T s(�) = n�.Another way to derive the central path is to consider the dual level set
(z) = fy : c�AT y � 0;�z + bT y � 0gfor any z < z� (Figure 2.10). Then, the analytic center (y(z); s(z)) of 
(z)and a point (x0(z); x00(z)) satis�esAx0(z)� bx00(z) = 0; X 0(z)s = e; s = c�AT y; and x00(z)(bT y � z) = 1:Let x(z) = x0(z)=x00(z), then we haveAx(z) = b; X(z)s(z) = e=x00(z) = (bT y(z)� z)e:Thus, the center pair (x(z); y(z); s(z)) is on the central path with � =bT y(z)� z and cTx(z)� bT y(z) = x(z)T s(z) = n(bT y(z)� z) = n�.Theorem 2.14 Let (x(�); y(�); s(�)) be on the central path.i) The central pair (x(�); s(�)) is bounded where 0 < � � �0 for any given�0 > 0.
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ya

The objective hyperplanesFigure 2.10: The central path of y(z) in a dual feasible regionii) For 0 < �0 < �,cTx(�0) < cTx(�) and bT y(�0) > bT y(�):iii) (x(�); s(�)) converges to an optimal solution pair for (LP) and (LD).Moreover, the limit point x(0)P� is the analytic center on the pri-mal optimal face, and the limit point s(0)Z� is the analytic center onthe dual optimal face, where (P �; Z�) is the strict complementaritypartition of the index set f1; 2; :::; ng.Proof. Note that (x(�0)� x(�))T (s(�0)� s(�)) = 0since (x(�0) � x(�)) 2 N (A) and (s(�0) � s(�)) 2 R(AT ). This can berewritten asnXj �s(�0)jx(�)j + x(�0)js(�)j� = n(�0 + �) � 2n�0;or nXj � x(�)jx(�0)j + s(�)js(�0)j� � 2n:Thus, x(�) and s(�) are bounded, which proves (i).



64 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIESWe leave the proof of (ii) as an exercise.Let x�P� (x�Z� = 0) and s�Z� (s�P� = 0), respectively, be the analyticcenters on the primal and dual optimal faces: fxP� : AP�xP� = b; xP� �0g and fsZ� : sZ� = cZ� �ATZ�y � 0; cP� �ATP�y = 0g. Again, we havenXj �s�jx(�)j + x�js(�)j� = n�;or Xj2P� � x�jx(�)j �+ Xj2Z� � s�js(�)j� = n:Thus, we have x(�)j � x�j=n > 0; j 2 P �and s(�)j � s�j=n > 0; j 2 Z�:This implies that x(�)j ! 0; j 2 Z�and s(�)j ! 0; j 2 P �:Furthermore, 0@ Yj2P� x�jx(�)j1A0@Yj2Z� s�js(�)j1A � 1or 0@ Yj2P� x�j1A0@Yj2Z� s�j1A � 0@ Yj2P� x(�)j1A0@Yj2Z� s(�)j1A :However, (Qj2P� x�j )(Qj2Z� s�j ) is the maximal value of the barrier functionover all interior point pairs on the optimal face, and x(0)P� and s(0)Z� isone interior point pair on the optimal face. Thus, we must have0@ Yj2P� x�j1A0@Yj2Z� s�j1A = 0@ Yj2P� x(0)j1A0@Yj2Z� s(0)j1A :Therefore, x(0)P� = x�P� and s(0)Z� = s�Z� ;since x�P� and s�Z� are the unique maximizer pair of the barrier function.



2.6. NOTES 652We usually de�ne a neighborhood of the central path asN (�) = �(x; y; s) 2 �F : kXs� �ek � �� and � = xT sn � ;where k:k can be any norm, or even a one-sided \norm" askxk�1 = jmin(0;min(x))j:We have the following theoremTheorem 2.15 Let (x; y; s) 2 N (�).i) The N (�) is bounded where 0 < � � �0 for any given �0 > 0.ii) Any limit point of N (�) is an optimal solution pair for (LP) and (LD).Moreover, for any j 2 P � xj � (1� �)x�jnwhere x� is any optimal primal solution; for any j 2 Z�sj � (1� �)s�jn ;where s� is any optimal dual solution.2.6 NotesGeneral convex problems, such as membership, separation, validity, andoptimization, can be solved by the center-section method, see Gr�otschel,Lov�asz and Schrijver [133].Levin [197] and Newman [255] considered the center of gravity of a con-vex body, Elzinga and Moore [87] considered the center of the max-volumesphere contained in a convex body, a number of Russian mathematicians(for example, Tarasov, Khachiyan and �Erlikh [319]) considered the centerof the max-volume ellipsoid inscribing the body, Huard and Liêu [152, 153]considered a generic center in the body that maximizes a distance func-tion, and Vaidya [349] considered the volumetric center, the maximizer ofthe determinant of the Hessian matrix of the logarithmic barrier function.See Kaiser, Morin and Trafalis [167] for a complete survey.



66 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIESGr�unbaum [135] �rst proved Theorem 2.1, with a more geometric proofgiven by Mityagin [227]. Dyer and Frieze [82] proved that computing thevolume of a convex polytope, either given as a list of facets or vertices, isitself #P -Hard. Furthermore, Elekes [86] has shown that no polynomialtime algorithm can compute the volume of a convex body with less thanexponential relative error. B�ar�any and F�urendi [34] further showed thatfor 
 2 Rm, any polynomial time algorithm that gives an upper and lowerbound on the volume of 
, represented as V (
) and V (
), respectively,necessarily has an exponential gap between them. They showedV (
)=V (
) � (cm= logm)m;where c is a constant independent of m. In other words, there is no poly-nomial time algorithm that would compute V (
) and V (
) such thatV (
)=V (
) < (cm= logm)m:Recently, Dyer, Frieze and Kannan [83] developed a random polynomialtime algorithm that can, with high probability, �nd a good estimate for thevolume of 
.Apparently, the result that every convex body contains a unique ellip-soid of maximal volume and is contained in a unique ellipsoid of minimalvolume, was discovered independently by several mathematicians|see forexample, Danzer, Gr�unbaum and Klee [74]. These authors attributed the�rst proof to K. L�owner. John [165] later proved Theorem 2.2.Tarasov, Khachiyan, and �Erlikh [319] proved the center-section Theorem2.3. Khachiyan and Todd [177] established a polynomial complexity boundfor computing an approximate point of the center of the maximal inscribingellipsoid if the convex body is represented by linear inequalities, Theorem2.5 was proved by Shor [303] and Nemirovskii and Yudin [258].The \analytic center" for a convex polyhedron given by linear inequal-ities was introduced by Huard [152], and later by Sonnevend [306]. Thelogarithmic distance function, called the barrier function, was introducedby Frisch [99]. Theorem 2.6 was �rst proved by Sonnevend [306], also seeKarmarkar [173] for a canonical form.Todd [321] and Ye [372] proved that Karmarkar's potential functionrepresents the logarithmic volume of a regular ellipsoid who contains thefeasible region. The Karmarkar potential function in the standard form(LP) with a lower bound z for z� was seen in Todd and Burrell [329],Anstreicher [19], Gay [103], and Ye and Kojima [384]. The primal potentialfunction with � > 1 was proposed by Gonzaga [124], Freund [96], and Ye[373, 375]. The primal-dual potential function was proposed by Tanabe[316], and Todd and Ye [330]. Noma [268] proved Theorem 2.13.



2.7. EXERCISES 67McLinden [212] earlier, then Bayer and Lagarias [37, 38], Megiddo [216],and Sonnevend [306] analyzed the central path for linear programming andconvex optimization. Megiddo [216] derived the central path simply min-imizing the primal with a logarithmic barrier function as in Fiacco andMcCormick [92]. McLinden [212] proved Theorem 2.14.2.7 Exercises2.1 Find the min-volume ellipsoid containing a half of the unit ball.2.2 Verify Examples 2.1 and 2.2.2.3 Prove Example 2.3.2.4 Let �
= fy 2 Rm : c�AT y > 0g 6= ;, �
0= fy 2 Rm : c0�AT y > 0g 6=;, and c0 � c. Then B(
0) � B(
).2.5 Prove Corollary 2.8.2.6 Prove Corollary 2.9.2.7 Prove Corollary 2.11.2.8 Consider the problemmaximize f(x) = kx� ekQnj=1 xjsubject to eTx = n; x � 0 2 Rn:Prove that x1 = � > 1 and x2 = : : : = xn = (n � �)=(n � 1) > 0 is amaximizer.2.9 If 
 = fy : c � AT y � 0g is nonempty, then the minimal value ofthe primal problem described at the beginning of Section s2:3 is 0; if 
 isbounded and has an interior, then the interior of X
 := fx 2 Rn : Ax =0; x � 0g is nonempty and x = 0 is the unique primal solution.2.10 Prove (ii) of Theorem 2.13.2.11 Prove (ii) of Theorem 2.14.2.12 Prove Theorem 2.15.



68 CHAPTER 2. GEOMETRY OF CONVEX INEQUALITIES



Chapter 3Computation of AnalyticCenterAs we mentioned in the preceding chapter, a favorable property of theanalytic center is that it is relatively easy to compute. In this chapter,we discuss how to compute the analytic center using the dual, primal, andprimal-dual algorithms in three situations: 1) from an approximate analyticcenter, 2) from an interior-point, and 3) from an exterior point.3.1 Proximity to Analytic CenterBefore we introduce numerical procedures to compute it, we need to discusshow to measure proximity to the analytic center. Recall that 
 is a boundedpolytope in Rm de�ned by n (> m) linear inequalities, i.e.,
 = fy 2 Rm : c�AT y � 0g:For a point y 2 �
, denote the barrier or potential function of 
B(y;
) = nXj=1 log sj ; s = c�AT y;simply by B(y) in this section. Ideally, a measure of closeness of y 2 
 tothe analytic center ya would beB(ya)�B(y) = �maxy2
 B(y)��B(y):69



70 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERThe problem is that we have no knowledge of ya or B(ya).Since ya is the maximizer of B(y), one measure would be the residualof the optimality condition at y. Note thatrB(y) = �AS�1e and r2B(y) = �AS�2AT ; where s = c�AT y > 0:Thus, the optimality condition isrB(y) = �AS�1e = 0:Consider a normalized gradient vector of B at y and s = c�AT y:p(s) := S�1AT (AS�2AT )�1rB(y)= �S�1AT (AS�2AT )�1AS�1e; (3.1)and �(s)2 := kp(s)k2= eTS�1AT (AS�2AT )�1AS�1e: (3.2)Note that �(s) = 0 implies rB(y) = 0. Letx(s) = S�1(I � S�1AT (AS�2AT )�1AS�1)e: (3.3)Then, we have Ax(s) = 0;p(s) = Sx(s)� e and �(s) = kSx(s)� ek:Thus, if �(s) = 0, then y = ya and s = sa, and also x(sa) = xa which is theminimizer of minimize P(x;
)subject to x 2 �X
= fx : Ax = 0; x > 0g;where the primal (homogeneous) potential functionP(x;
) = n log(cTx)� nXj=1 logxj :As we discussed earlier, this quantity represents the logarithmic volume ofa regular ellipsoid that contains S
, and the minimization of the potentialfunction results in the analytic center of 
. In other words, x and y are theanalytic center pair for 
. Denote P(x;
) simply by P(x) in this section.Another measure is to use the Newton direction of the primal potentialfunction. Note that P(x) is homogeneous so that we can �x cTx = n. ThenrP(x) = ncTxc�X�1e = c�X�1e:



3.1. PROXIMITY TO ANALYTIC CENTER 71Consider a scaled projection of c�X�1e:p(x) := (I �XAT (AX2AT )�1AX)X(c�X�1e)= (I �XAT (AX2AT )�1AX)(Xc� e); (3.4)and �(x)2 := kp(x)k2= (Xc� e)T (I �XAT (AX2AT )�1AX)(Xc� e): (3.5)Let y(x) = (AX2AT )�1AX(Xc� e) and s(x) = c�AT y(x): (3.6)Then, we havep(x) = Xs(x)� e and �(x) = kXs(x)� ek:Again, if �(x) = 0, x = xa and y(xa) = ya, which are the analytic centerpair for 
.The third measure is to use both the primal and dual. For an x 2 X
 =fx : Ax = 0; x � 0g and a y 2 
 or s = c � AT y 2 S
 = fs : s =c�AT y; s � 0g, the measure would be de�ned as�(x; s) := kX(c�AT y)� ek = kXs� ek: (3.7)Obviously, if �(x; s) = 0, x = xa, y = ya, and  n(x; s) = n logn, where theprimal-dual potential function is n(x; s) = n log(xT s)� nXj=1 log(xjsj):To �nd relations among these measures, we �rst present a lemma whoseproof is omitted.Lemma 3.1 If d 2 Rn such that kdk1 < 1 theneT d � nXi=1 log(1 + di) � eT d� kdk22(1� kdk1) :We have the following theorem to equalize these measures.Theorem 3.2 Let (y; s) be an interior point and (ya; sa) be the analyticcenter of 
 or S
, and let x be an interior point of X
 and xa be the primalpotential minimizer with cTxa = n.



72 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERi) If �(x; s) < 1 then �(s) � �(x; s)and �(x) � �(x; s):Conversely, if �(s) < 1 then there is an x(s) 2 �X
 such that�(x(s); s) � �(s);and there is a s(x) 2 �S
 such that�(x; s(x)) � �(x):ii) If �(x; s) < 1, then there is a x̂ � 0 with Ax̂ = 0 and cT x̂ = sT x̂ = nsuch that �(x̂; s) � �(x; s)p1� �(x; s)2=n:iii) If �(x; s) < 1 with cTx = sTx = n, then n(x; s)�  n(xa; sa) � �(x; s)22(1� �(x; s)) ;P(x)�P(xa) � �(x; s)22(1� �(x; s)) ;and B(ya)�B(y) � �(x; s)22(1� �(x; s)) :iv) Let the dual Newton procedure be:dy = �(AS�2AT )�1AS�1e; y+ = y + dy; and s+ = c�AT y+:(3.8)Then, if �(s) < 1, s+ > 0 and �(s+) � �(s)2:Let the primal Newton procedure be:dx = X(I�XAT (AX2AT )�1AX)(Xc�e) and x+ = x+dx: (3.9)Then, if �(x) < 1,x+ > 0; Ax+ = 0; and �(x+) � �(x)2:



3.1. PROXIMITY TO ANALYTIC CENTER 73Let the primal-dual Newton procedure be: Solve for dx, dy and ds fromthe system of linear equationsSdx +Xds = e�Xs;Adx = 0;AT dy + ds = 0; (3.10)and assign x+ = x+ dx; y+ = y + dy; s+ = s+ ds:Then, if �(x; s) < 1,x+ > 0; Ax+ = 0; s+ > 0and �(x+; s+) � p2�(x; s)24(1� �(x; s)) :v) If �(x; s) < 1, then kS�1sa � ek � �(x; s)1� �(x; s)and kX�1xa � ek � �(x; s)1� �(x; s) :Proof. i) Given s > 0 we can verify that �(s) is the minimal value andx(s) is the minimizer of the least squares problemminimize kSx� eksubject to Ax = 0:Since x in �(x; s) is a feasible point for this problem, we must have�(s) = �(x(s); s) � �(x; s):Conversely, x = x(s) will do it.Similarly, given x > 0 we can verify that �(x) is the minimal value and(y(x); s(x)) is the minimizer of the least squares problemminimize kXs� eksubject to s = c�AT y:



74 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERSince (y; s) in �(x; s) is any point for this problem, we must have�(x) = �(x; s(x)) � �(x; s):Conversely, y = y(x) and s = s(x) will do it.ii) Let x̂ = (n=x(s)T s)x(s) and �(x̂; s) = kSx̂� ek. ThenAx̂ = 0 and cT x̂ = sT x̂ = n:Furthermore,�(s)2 = kSx(s)� ek2= kSx(s)� (x(s)T s=n)e+ (x(s)T s=n)e� ek2= kSx(s)� (x(s)T s=n)ek2 + k(x(s)T s=n)e� ek2= kSx̂� ek2(x(s)T s=n)2 + (1� x(s)T s=n)2n= �(x̂; s)2(x(s)T s=n)2 + (1� x(s)T s=n)2n:Thus, we have(x(s)T s=n)2(�(x̂; s)2 + n)� 2(x(s)T s=n)n+ n� �(s)2 = 0:Consider this relation as a quadratic equation with variable x(s)T s=n. Sinceit has a real root, we have4n2 � 4(�(x̂; s)2 + n)(n� �(s)2) � 0or �(x̂; s)2 � n�(s)2n� �(s)2 ;which gives the desired result.iii) Let � = �(x; s) < 1. From Lemma 3.1 and cTx = sTx = n,nXj=1 ln(xjsj) � eTXs� n� �22(1� �) = � �22(1� �) :Denote by xa and ya (sa = c � AT ya) the center pair of 
. Noting thatXasa = e, we have n(x; s)�  n(xa; sa) = nXj=1 ln(xaj saj )� nXj=1 ln(xjsj) � �22(1� �) : (3.11)The left-hand side of (3.11) can be written asnXj=1 ln(xaj )� nXj=1 ln(xj)+ nXj=1 ln(saj )� nXj=1 ln(sj) = P(x)�P(xa)+B(ya)�B(y):



3.1. PROXIMITY TO ANALYTIC CENTER 75Since ya maximizes B(y) over the interior of 
 and xa minimizes P(x) overthe interior of X , we have B(ya)�B(y) � 0and P(x)�P(xa) � 0:Thus, we have the desired result.iv) Note that from the proof of (i)�(s+) = kS+x(s+)� ek � kS+x(s) � ek:But kS+x(s)� ek2 = k(2S � S2x(s))x(s) � ek2= nXj=1(sjx(s)j � 1)4� ( nXj=1(sjx(s)j � 1)2)2= kSx(s)� ek4= �(s)4:Similarly, we can prove the primal procedure result.To prove the primal-dual procedure result we �rst see thatkX+s+ � ek = kDxdsk:Multiplying the both sides of the �rst equation of (3.10) by (XS)�1=2, wesee Ddx +D�1ds = r := (XS)�1=2(e�Xs);where D = S1=2X�1=2. Let p = Ddx and q = D�1ds. Note that pT q =dTx ds � 0. Then,kDxdsk2 = kPqk2= nXj=1(pjqj)2� 0@ nXpjqj>0 pjqj1A2 +0@ Xpjqj<0 pjqj1A2



76 CHAPTER 3. COMPUTATION OF ANALYTIC CENTER� 20@ nXpjqj>0 pjqj1A2� 20@ nXpjqj>0(pj + qj)2=41A2� 2 �krk2=4�2 :Furthermore, krk2 � k(XS)�1=2k2ke�Xsk2 � �2(1� �) ;which gives the desired result.v) From (i), �(s) � �(x; s). Let y0 = y, s0 = s, and the sequencefyk; skg be generated by the Newton method. Then, we show by inductionthat k(S0)�1sk � ek � 2k�1Xj=1 �(s)j :Obviously, this relation is true for k = 1 by the de�nition of �(s0) = �(s).Now assuming it is true for k. Since we havesk+1 = sk � Sk(Skx(sk)� e);k(S0)�1(sk+1 � sk)k = k(S0)�1Sk(Skx(sk)� e)k� k(S0)�1Skkk(Skx(sk)� e)k� 0@1 + 2k�1Xj=1 �(s)j1A k(Skx(sk)� e)k� 0@1 + 2k�1Xj=1 �(s)j1A �(s)2k= 0@2k�1Xj=0 �(s)j1A �(s)2k :Thus, k(S0)�1sk+1 � ek � k(S0)�1sk � ek+ k(S0)�1(sk+1 � sk)k



3.2. DUAL ALGORITHMS 77� 0@2k�1Xj=1 �(s)j1A+0@2k�1Xj=0 �(s)j1A �(s)2k= 2k+1�1Xj=1 �(s)j :Similarly, we can prove the primal result. This proves (v). 23.2 Dual Algorithms3.2.1 Dual Newton procedureGiven y 2 
, we call it an (�-)approximate (analytic) center if �(s) � � < 1.The dual Newton procedure in (iv) of Theorem 3.2, once a y satis�es �(s) �� < 1, will generate a sequence fykg that converges to ya quadratically.The next question is how to generate an (�-)approximate center with� < 1.3.2.2 Dual potential algorithmLet y be any interior point in 
. Let us apply the Newton method with acontrolled step-size, which is equivalent to solving a ball-constrained linearproblem with radius � < 1:maximize rB(y)T dysubject to dTy (�r2B(y))dTy � �2:or maximize �eTS�1AT dysubject to dTyAS�2AT dTy � �2:Note that s+ = c�AT y+ = s�AT dy = S(e� S�1AT dy);thus we must have s+ > 0, i.e., y+ = y + dy remains in the interior of 
.Note that dy = �� (AS�2AT )�1AS�1epeTS�1AT (AS�2AT )�1AS�1e :Recall from (3.1) and (3.3)p(s) = �S�1AT (AS�2AT )�1AS�1e = Sx(s)� e:



78 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERThen, dy = �� (AS�2AT )�1AS�1ekp(s)k ;ds = �AT dy = ��Sp(s)=kp(s)k;and eTS�1ds = �kp(s)k:Furthermore, s+ = s+ ds = s��Sp(s)=kp(s)k = S(e��p(s)=kp(s)k), i.e.,kS�1s+ � ek = �. Thus, from Lemma 3.1 we haveB(y+)�B(y) � eTS�1(s+ � s)� kS�1(s+ � s)k22(1� kS�1(s+ � s)k1)� �kp(s)k � �22(1� �) : (3.12)Thus, if kp(s)k � �, we haveB(y+)�B(y) � �2 � �22(1� �) :Hence as long as � < 1=2 we haveB(y+)�B(y) � �;where constant � = �2 � �22(1� �) > 0:In other words, the potential function is increased by a constant. Note thatthe potential function is bounded above by the max-potential B(ya). Thus,in a �nite time we must have �(s) = kp(s)k < �, which implies that thequadratic-convergence condition is satis�ed or y is an approximate center.The total number of iterations to reach this condition must be bounded byO(B(ya)�B(y)).3.2.3 Center-section algorithmThe next question is how to compute the analytic center if an interior pointy is not known. This can be done with a center-section method. Considerthe following set 
(ĉ) = fy 2 Rm : AT y � ĉg:Obviously, 
(c) = 
, whose interior is assumed nonempty and bounded.Then, for any given ĉ � c, �
 (ĉ) is also nonempty and bounded. Moreover,
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AFigure 3.1: Illustration of the dual potential algorithm; it generates a se-quence of contained regular ellipsoids whose volumes increase.y = 0 is an interior point in 
(ĉ) if ĉ > 0. Let us choose c0 such that c0 � eand c0 � c. Then from the result in the preceding section we will generatean approximate center for 
0 := 
(c0) in O(B(
0) � B(0;
0)) iterations.Let y0 be an approximate center for 
0. From now on, we will generate asequence of fckg and fykg, where c � ck+1 � ck and yk is an approximatecenter for 
k := 
(ck). Moreover,B(
) � B(
k+1) � B(
k)� �;where � is a positive constant, until ck+1 = c. This process terminates withyk+1 as an approximate center for 
 = 
(c).We �rst describe a conceptual center-section algorithm.Algorithm 3.1 (Conceptual Algorithm) Let (y0; s0) be the analyticcenter of 
0 = 
(c0) and let � be a constant in (0; 1). Set k := 0.While ck 6= c do:1. Translating Inequality: Find i such that cki > ci and updateck+1i = maxfci; �(cki � aTi yk) + aTi ykg = maxfci; �ski + aTi ykg;ck+1j = ckj for j 6= i:



80 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERThen, from the center-section theorem in the preceding chapter, wehave either B(
k+1) � B(
k)� (1� �) if ck+1i > ci; (3.13)or B(
k+1) < B(
k) if ck+1i = ci: (3.14)Note that the later case can happen only n times.2. Updating Center: Compute the center yk+1 of 
k+1, using Newton'smethod from yk which is an approximate center of 
k+1.3. Set k := k + 1 and return to Step 1.Clearly, the center-section algorithm will stop after O(B(
0)�B(
))+niterations. If B(
0) � n logR and B(
) � n log r;then, O(n log(R=r)) + n iterations su�ce.Numerically, we will never be able to compute the exact analytic center.We must use approximate centers instead of perfect centers in the center-section algorithm. We discuss this issue now.Algorithm 3.2 (Using Approximate Centers) Let (y0; s0) be an ap-proximate analytic center of 
0 = 
(c0), with �(s0) � � < 1, and let � bea constant in (0; 1) such that � + (1� �)(1 + �) < 1. Set k := 0.While ck 6= c do:1. Translating Inequality: Find i such that cki > ci and updateck+1i = maxfci; �ski + aTi ykg;ck+1j = ckj for j 6= i:2. Updating Approximate Center: Compute an approximate analytic cen-ter yk+1 of 
k+1 so that �(sk+1) � �, using one of the Newton pro-cedures in Theorem 3.2 starting from yk, which is an approximatecenter of 
k+1.3. Set k := k + 1 and return to Step 1.To show that yk is an approximate center of 
k+1, we prove the followingLemma.



3.2. DUAL ALGORITHMS 81Lemma 3.3 There exists a point x+ > 0 such thatAx+ = 0 and kX+s+ � ek � � + (1� �)(1 + �) < 1;where s+ = ck+1 �AT yk.Proof. Let x+ = x(sk) > 0 with sk = ck �AT yk. Then,Ax+ = Ax(sk) = 0and kx+sk � ek = �(sk) � �:Note that s+j = skj for j 6= i and ski � s+i � �ski . Thus,kX+s+ � ek = kX+sk � e+X+s+ �X+skk� kX+sk � ek+ kX+s+ �X+skk� kX+sk � ek+ jx+i ski (� � 1)j� � + (1� �)(1 + �): 2Lemma 3.3 shows that, after an inequality is translated, yk is still in the\quadratic convergence" region of the center of 
k+1, because we choose� + (1 � �)(1 + �) < 1. Thus, a closer approximate center, yk+1 with�(sk+1) � � for 
k+1, can be updated from yk in a constant number ofNewton's steps. We now verify that the potential function is still reducedby a constant for a small � after a translation.Lemma 3.4 Let (yk; sk) be an approximate center for 
k with �(sk) � �and let 
k+1 be de�ned above. Then, if ck+1i > ci in the updateB(
k+1) � B(
k)� � for a constant � > 0;otherwise ck+1i = ci and B(
k+1) � B(
k):The later case can happen only n times.Proof. The proof of the �rst case is similar to Theorem 2.7 of Chapter 2.Let (ya; sa) and (ya+; sa+) be the centers of 
k and 
k+1, respectively. Notethat A(Sa)�1e = 0, (ck)T (Sa)�1e = (sa)T (Sa)�1e = n, andsa+ = ck+1 �AT ya+



82 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERwhere ck+1j = ckj ; j 6= i and ck+1i = cki � (1� �)ski :Note that we still haveeT (Sa)�1sa+ = eT (Sa)�1ck+1 = n� (1� �)(ski =sai ) � n� (1� �)(1� �):The last inequality is due to (v) of Theorem 3.2. Therefore,exp(B(
k+1))exp(B(
k)) = nYj=1 (sa+)jsaj� (n� (1� �)(1� �)n )n� exp(�(1� �)(1� �)):The proof of the later case is straightforward. 2From the lemma, we can conclude thatTheorem 3.5 In O(B(
0)�B(
))+n center-section steps, the algorithmwill generate an approximate analytic center for 
.3.3 Primal Algorithms3.3.1 Primal Newton procedureGiven x 2 X
, we call it an (�-)approximate (analytic) center if �(x) �� < 1. The primal Newton procedure in (iv) of Theorem 3.2, once a xsatis�es �(x) � � < 1, will generate a sequence fxkg that converges to xaquadratically.The next question is how to generate an (�-)approximate center with� < 1.3.3.2 Primal potential algorithmConsider the primal potential functionP(x) = P(x;
) := n log(cTx)� nXj=1 logxj ;where x 2 �X
= fx : Ax = 0; x > 0g. Again, this quantity represents thelogarithmic volume of a regular ellipsoid that contains S
. We now establish



3.3. PRIMAL ALGORITHMS 83a simple fact about P . Given x 2 �Rn+ and dx 2 Rn, let x+ = x + dx andkX�1dxk < 1. Then, from the concavity of log function we haven log(cTx+)� n log(cTx) � ncTxcT (x+ � x) = ncTxcT dx;and from Lemma 3.1 we have�X logx+j +X logxj � �eTX�1dx + kX�1dxk22(1� kX�1dxk1) :Thus,P(x+)�P(x) � ncTxcT dx � eTX�1dx + kX�1dxk22(1� kX�1dxk1)= rP(x)T dx + kX�1dxk22(1� kX�1dxk1) : (3.15)Karmarkar's algorithmWe now describe Karmarkar's algorithm to reduce the potential function.Since the primal potential function is degree-0 homogeneous, we can nor-malize eTx = n and work in the regionKp = fx : Ax = 0; eTx = n; x � 0g:This is the so-called Karmarkar canonical form. Its related LP canonicalproblem is given as minimize cTxsubject to x 2 Kp:Starting from any x0 in �Kx we generate a sequence fxkg such thatP(xk+1) � P(xk)� 1=8for k = 0; 1; 2; ::: until an approximate center of 
 is generated.One observation regarding Kp is that if Ae = 0, e is the analytic centerof Kp. Unfortunately, in general we may not have Ae = 0. However, witha given xk > 0 and Axk = 0, we may transform the LP problem into(LP 0) minimize (ck)Tx0subject to x0 2 Kp0 := fx0 : Akx0 = 0; eTx0 = n; x0 � 0g:where ck = Xkc and Ak = AXk:



84 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERNote that if a pure a�ne scaling transformation,x0 = (Xk)�1x;had been used, the last inequality constraint would become eTXkx0 = n.But as we discussed before, the potential function is homogeneous, so thatwe can use a projective transformation,x0 = T (x) = n(Xk)�1xeT (Xk)�1x for x 2 Kp;whose inverse transformation isx = T�1(x0) = nXkx0eTXkx0 for x0 2 Kp0 :Obviously, T (xk) = e is the analytic center for Kp0 . In other words, Kar-markar transforms xk into the analytic center of Kp0 in (LP 0).Note that the potential function for (LP 0) isP 0(x0) = n log((ck)Tx0)� nXj=1 logx0j :The di�erence of the potential function values at two points of �Kp is invari-ant under this projective transformation, i.e.,P 0(T (x2))�P 0(T (x1)) = P(x2)�P(x1):To reduce P 0(x0), one may reduce its linearized functionrP 0(e)Tx0 = ( n(ck)T eck � e)Tx0 = ( ncTxk ck � e)Tx0 = ncTxk (ck)Tx0 � n:Since cTxk and n are �xed, we simply solve the following ball-constrainedproblem minimize (ck)T (x0 � e)subject to Ak(x0 � e) = 0; eT (x0 � e) = 0; kx0 � ek � �:According to the discussion in Chapter 1, the solution of the problem isx0 � e = �� pkkpkk ;



3.3. PRIMAL ALGORITHMS 85where pk =  I �� Ake �T � Ak(Ak)T 00 n ��1� Ake �! ck= ck � (Ak)T yk � �ke;where �k = (ck)T e=n = cTxk=n. Thuspk = Xk(c�AT yk)� (cTxk=n)e:Using relation (3.15) we consider the di�erence of the potential valuesP 0(x0)�P 0(e) � rP 0(e)(x0 � e) + �22(1� �) = ��nkpkkcTxk + �22(1� �) :Thus, as long as kpkk � � cTxkn > 0, we may choose an appropriate � suchthat P 0(x0)�P 0(e) � ��;for a positive constant � = �� � �2=2(1 � �). Note we have � = 1=8 if� = 1=2 and � = 3=4. Let xk+1 = T�1(x0):Then, P(xk+1)�P(xk) � ��:Thus, in O(P(x0)�P(xa)) iterations, we shall generate a pair (xk ; yk) suchthat kXk(c�AT yk)� (cTxk=n)ek � � cTxkn ;or k ncTxkXk(c�AT yk)� ek � � < 1;which indicates that yk is an approximate analytic center for 
.A�ne potential algorithmIn this section, we show that we can use the simple a�ne scaling trans-formation to achieve the same reduction for P . Given xk > 0 such thatAxk = 0, the gradient vector of the potential function at xk isrP(xk) = ncTxk c� (Xk)�1e:



86 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERThus, we directly solve the problemminimize rP(xk)T (x� xk)subject to A(x� xk) = 0; k(Xk)�1(x� xk)k � �:Let the solution be xk+1. Thenxk+1 � xk = ��Xkpkkpkk ;and P(xk+1)�P(xk) � ��kpkk+ �22(1� �)wherepk = (I �XkAT (A(Xk)2AT )�1AXk)XkrP(xk) = XkrP(xk)�XkAT ykor pk = Xk( ncTxk c� AT yk)� e;and yk = (A(Xk)2AT )�1A(Xk)2rP(xk):If xk is normalized such that cTxk = n, then we havepk = Xk(c�AT yk)� e:Thus, as long as kpkk � � > 0, we may choose an appropriate � and use(3.15) to guarantee P(xk+1)�P(xk) � ��for some positive constant �.Thus, in O(P(x0)�P(xa)) iterations, we shall generate a pair (xk; yk)such that kXk(c�AT yk)� ek � �;which again indicates that yk is an approximate analytic center for 
.3.4 Primal-Dual (Symmetric) Algorithms3.4.1 Primal-dual Newton procedureClearly, the primal-dual Newton procedure in (iv) of Theorem 3.2, oncean approximate center pair pair x 2 X
 and s 2 S
 satis�es �(x; s) �� < 1, will generate a sequence fxk; yk; skg that converges to (xa; ya; sa)quadratically.The next question is how to generate such a pair with�(x; s) = kXs� ek � � < 1; (3.16)
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Figure 3.2: Illustration of the primal potential algorithm; it generates asequence of containing regular ellipsoids whose volumes decrease.3.4.2 Primal-dual potential algorithmGiven any x 2 �X
 and s 2 �S
 with sTx = n, we show how to use the primal-dual algorithm to generate an approximate analytic center pair using theprimal-dual potential function.Lemma 3.6 Let the directions (dx; dy; ds) be generated by equation (3.10),and let � = �pmin(Xs)k(XS)�1=2(e�Xs)k ; (3.17)where � is a positive constant less than 1 and min(v 2 Rn) = minjfvj j j =1; :::; ng. Then, we have n(x+ �dx; s+ �ds)�  n(x; s)� ��pmin(Xs)k(XS)�1=2(e�Xs)k+ �22(1� �) :Proof. It can be veri�ed from the proof of the primal-dual procedure ((iv)of Theorem 3.2) that� := max(k�S�1dsk1; k�X�1dxk1) < 1:



88 CHAPTER 3. COMPUTATION OF ANALYTIC CENTERThis implies thatx+ := x+ �dx > 0 and s+ := s+ �ds > 0:Then, from Lemma 3.1 and (3.15) we derive n(x+; s+)�  n(x; s)� �eT (Xds + Sdx)� �eT (S�1ds +X�1dx)+k�S�1dsk2 + k�X�1dxk22(1� �) :The choice of � in (3.17) implies thatk�S�1dsk2 + k�X�1dxk2 � �2:Hence, we have � � � andk�S�1dsk2 + k�X�1dxk22(1� �) � �22(1� �) : (3.18)Moreover, �eT (Xds + Sdx)� �eT (S�1ds +X�1dx)= � �eT (Xds + Sdx)� eT (S�1ds +X�1dx)�= � �eT (Xds + Sdx)� eT (XS)�1(Xds + Sdx)�= �(e� (XS)�1e)T (Xds + Sdx)= �(e� (XS)�1e)T (e�Xs) (from (3.10))= ��(e�XS)T (XS)�1(e�XS)= ��k(XS)�1=2(e�Xs)k2= ��pmin(Xs)k(XS)�1=2(e�Xs)k: (3.19)Therefore, we have the desired result combining (3.18) and (3.19). 2Theorem 3.7 Let x+ and s+ be de�ned in Lemma 3.6. Then, if �(x; s) �� for a positive constant � < 1, we can choose � such that n(x+ �dx; s+ �ds)�  n(x; s) � ��for a positive constant �.



3.4. PRIMAL-DUAL (SYMMETRIC) ALGORITHMS 89Proof. Consider�pmin(Xs)k(XS)�1=2(e�Xs)k = �pmin(Xs)k(XS)�1=2e� (XS)1=2ek:Let z = Xs and min(z) = z1 � 1, since eT z = n. If z1 � 1=2, then�pmin(z)kZ�1=2e� Z1=2ek � �j1� z1j � �=2:Thus, we can select an � such that n(x+; s+)�  n(x; s) � ��2 + �22(1� �) = ��for a constant �.Now let min(z) � 1=2, that is,�pmin(z)kZ�1=2e� Z1=2ek � (�=p2)kZ�1=2e� Z1=2ek:Let zn = max(z) � 1. If zn � 2, then(�=p2)kZ�1=2e� Z1=2ek � (�=p2)jpzn � 1=pznj � �=2:Again, we have n(x+; s+)�  n(x; s) � ��2 + �22(1� �) = ��for a constant �.Now let min(z) � 1=2 and max(z) � 2. Then�pmin(z)kZ�1=2e� Z1=2ek = �pmin(z)kZ�1=2(e� z)k � (�=2)ke� zk:Thus, if ke� zk = ke�Xsk � �, we will have n(x+; s+)�  n(x; s) � ��for a constant �. 2Thus, until kXs � ek < � < 1, the primal-dual potential function at(x+; s+) will be reduced by a constant for some �. Therefore, inO( n(x0; s0)�n logn) iterations, we shall generate a pair (x; y) such that�(x; s) = kXs� ek = kX(c�AT y)� ek < �;which indicates that x and y are an approximate analytic center pair for 
.Note that this complexity bound depends only on the initial point (x0; s0).
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Figure 3.3: Illustration of the primal-dual potential algorithm; it generatesa sequence of containing and contained regular ellipsoids whose logarithmicvolume-ratio reduces to n logn.3.5 NotesThe proof of Lemma 3.1 is due to Karmarkar [173] and that of Theorem3.2 is mostly due to Gonzaga [125, 126], Renegar and Shub [286, 288], Roosand Vial [293], Tseng [337], Vaidya [347], and Go�n et al. [110].The dual algorithm with a starting interior point, described in thischapter, is similar to the one of Vaidya [347]. The primal or dual a�nepotential algorithm was proposed by Gonzaga [124], Freund [96], and Ye[373, 375]. The primal-dual algorithm described in this chapter is adaptedfrom the one in Kojima, Mizuno and Yoshise [184, 183, 185] and Monteiroand Adler [239, 240]. The primal-dual procedure result in (iv) of Theorem3.2 was proved by Mizuno [229].Finally, we remark the relation among potential reduction algorithms.We provide a simple argument that the primal-dual potential function isalso reduced in either the primal or the dual potential reduction algorithmdescribed earlier.Given x and (y; s) in the interior of X
 and S
, respectively. We haveshown in the preceding chapter that n(x; s) = n log(sTx)� nXj=1 log(xjsj) = P(x)�B(y):



3.6. EXERCISES 91Thus, if we update the dual (y; s) to (y+; s+) such thatB(y+) � B(y) + �;then we must also have  n(x; s+) �  n(x; s)� �;or if we update the primal x to x+ such thatP(x+) � P(x)� �;then we must also have  n(x+; s) �  n(x; s)� �:Thus, to make either the primal or dual potential reduction leads to thesame reduction in the primal-dual potential function. Therefore, all thesealgorithms must stop in O( n(x0; s0)�n logn) iterations. Again, this com-plexity bound depends only on the initial point (x0; s0). Moreover, the pri-mal algorithm does not need knowledge of s0 and the dual algorithm doesnot need knowledge of x0, while the primal-dual algorithm uses both x0and s0.3.6 Exercises3.1 Prove Lemma 3.1.3.2 Given s > 0 verify that x(s) is the minimizer of the least squaresproblem minimize kSx� eksubject to Ax = 0:Given x > 0 verify that y(x) is the minimizer of the least squares problemminimize kXs� eksubject to s = c�AT y:3.3 Prove the primal procedure result in (iv) of Theorem 3.2.3.4 Prove the primal inequality in (v) of Theorem 3.2.3.5 Let e 2 Kp. Then, prove thatKp � fx : kx� ek �pn(n� 1)g:3.6 Consider the projective transformation and Karmarkar's potential func-tion. Prove P 0(T (x2))�P 0(T (x1)) = P(x2)�P(x1):
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Chapter 4Linear ProgrammingAlgorithmsIn the preceding chapter we have used several interior algorithms to com-pute an approximate analytic center of a polytope speci�ed by inequalities.The goal of this chapter is to extend these algorithms to solving the stan-dard linear programming problem described in Section 1.3.6.We assume that both �Fp and �Fd are nonempty. Thus, the optimal facesfor both (LP ) and (LD) are bounded. Furthermore, we assume b 6= 0, sinceotherwise (LD) reduces to �nding a feasible point in Fd.Let z� denote the optimal value and F = Fp �Fd. In this chapter, weare interested in �nding an � approximate solution for the LP problem:cTx� z� � � and z� � bT y � �:For simplicity, we assume that a central path pair (x0; y0; s0) with �0 =(x0)T s0=n is known. We will use it as our initial point throughout thischapter. We �rst prove the following proposition.Proposition 4.1 Consider the dual level set:
(z) = fy : c�AT y � 0; �z + bT y � 0g;where z0 := bT y0 � �0 � z < z�. There exists an x(z) 2 Fp such that themax-potential of 
(z)B(
(z)) � B(
(z0)) + (n+ 1) log cTx(z)� zcTx0 � z0 � n log 2; (4.1)93



94 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSand for all x 2 �Fp the primal potentialPn+1(x; z) � Pn+1(x0; z0) + (n+ 1) log cTx(z)� zcTx0 � z0 � n log 2: (4.2)Proof. First, recall that the primal potential function associated withpolytope 
(z) isPn+1(x; z) = P(x;
(z)) = (n+ 1) log(cTx� z)� nXj=1 log xj ; x 2 �Fp;and the max-potential of 
(z) isB(
(z)) = maxy 8<: nXj=1 log(cj � aTj y) + log(bT y � z)9=; ;and we havePn+1(x; z)�B(
(z)) � (n+ 1) log(n+ 1); 8 x 2 �Fp 8 z < z�: (4.3)Pn+1(x; z) represents the logarithmic volume of a regular ellipsoid contain-ing 
(z), and B(
(z)) represents the logarithmic volume of the max-volumeregular ellipsoid contained in 
(z); see discussion in Chapter 2.Let y(z) be the analytic center of 
(z) and let s(z) = c � AT y(z)).Then, from the central path theory in Section 2.5, there is an x0 2 Rn+1such thatAx0[n]� bx0n+1 = 0 and X 0[n]s(z) = e; x0n+1(bT y(z)� z) = 1or x(z) = x0[n]=x0n+1 2 Rn such thatAx(z) = b and X(z)s(z) = �(z)e;where �(z) = x(z)T s(z)n = cTx(z)� bT y(z)n = bT y(z)� z = 1=x0n+1:Here x0[n] denotes the vector of the �rst n components of x0 2 Rn+1. Thus,B(
(z)) = � n+1Xj=1 logx0j



95= (n+ 1) log�(z)� nXj=1 logx(z)j= (n+ 1) log(n+ 1)�(z)� nXj=1 logx(z)j � (n+ 1) log(n+ 1)= (n+ 1) log(cTx(z)� z)� nXj=1 logx(z)j � (n+ 1) log(n+ 1)= (n+ 1) log cTx(z)� zcTx0 � z0 � nXj=1 log x(z)jx0j+Pn+1(x0; z0)� (n+ 1) log(n+ 1): (4.4)Note that x(z) is on the central path with �(z) and �(z) � �0 (see Exercise).Furthermore, we have(x(z)� x0)T (s(z)� s0) = 0 or x(z)T s0 + s(z)Tx0 = n(�0 + �(z));which implies thatnXj=1 x(z)jx0j �0 + x0jx(z)j �(z)! = n(�0 + �(z));and, therefore, nXj=1 x(z)jx0j ! � n�1 + �(z)�0 � � 2n: (4.5)Combining inequalities (4.3), (4.4) and (4.5), we haveB(
(z)) � Pn+1(x0; z0)� (n+ 1) log(n+ 1)+(n+ 1) log cTx(z)� zcTx0 � z0 � n log 2� B(
(z0)) + (n+ 1) log cTx(z)� zcTx0 � z0 � n log 2:Also, for all x 2 �Fp we have from (4.3)Pn+1(x; z) � B(
(z)) + (n+ 1) log(n+ 1)� Pn+1(x0; z0) + (n+ 1) log cTx(z)� zcTx0 � z0 � n log 2:These inequalities lead to the desired result.



96 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMS2The proposition indicates that if the net reduction of max-potential orthe primal potential of 
(z), where z = bT y for some y 2 Fd, is greaterthan (n+ 1) log(cTx0 � z0)=�+ n log 2, then we have(n+ 1) log cTx(z)� zcTx0 � z0 � n log 2 � (n+ 1) log �cTx0 � z0 � n log 2;which implies that z� � bT y = z� � z � cTx(z)� z � �and cTx(z)� z� � cTx(z)� z � �;i.e., x(z) and y are � approximate solutions for (LP ) and (LD).In the proposition, x(z) is chosen as the minimizer of the primal po-tential for 
(z). This need not be the case. The proposition holds for anyx(z) 2 �Fp that is an approximate minimizer, that is, it satis�es



� X(z)(c�AT y)bT y � z �� cTx(z)� zn+ 1 e



 � � cTx(z)� zn+ 1 (4.6)for a constant 0 � � < 1. More speci�cally, we haveCorollary 4.2 Consider the dual level set where z0 < z < z�:
(z) = fy : c�AT y � 0; �z + bT y � 0g:Let x(z) 2 �Fp satisfy condition (4.6). ThenB(
(z)) � B(
(z0)) + (n+ 1) log cTx(z)� zcTx0 � z0 �O(n);and for all x 2 �Fp the primal potentialPn+1(x; z) � Pn+1(x0; z0) + (n+ 1) log cTx(z)� zcTx0 � z0 �O(n):Several algorithms presented in this chapter will generate a sequence ofxk 2 �Fp and zk � bT yk, where yk 2 Fd, and either the primal potentialPn+1(xk ; zk) or the max-potential of 
(zk) tends to �1, so that z��zk !0. Moreover, there is a subsequence of f(xk; yk)g which satis�es condition(4.6) with z = zk. Thus, along this subsequence cTxk � bT yk ! 0 as well.



4.1. KARMARKAR'S ALGORITHM 97The basic idea is the following. Given zk�1, we reduce Pn+1(x; zk�1)until an approximate center pair (xk ; yk; sk) of 
(zk) is generated, which isguaranteed by the discussions of the preceding chapter. Then, we must havebT yk > zk�1. Thus, we update zk = bT yk > zk�1, that is, translate thehyperplane bT y � zk�1 to bT y � zk through yk. This results in reductionof both the primal potential and max-potential of the containing set 
(zk).4.1 Karmarkar's AlgorithmWe �rst show how Karmarkar's algorithm may be adapted to solve (LP )and (LD). Starting from (x0; y0; s0), the algorithm, which will be describednext, generates sequences fxk 2 �Fpg, fyk 2 Fdg, and fzk � bT ykg such thatPn+1(xk+1; zk+1) � Pn+1(xk ; zk)� � for k = 0; 1; : : : :where constant � � :2. In particular, ifPn+1(xk ; zk)�Pn+1(x0; z0) � (n+ 1) log �cTx0 � z0 � n log 2;then from Proposition 4.1, we must havez� � bT yk � z� � zk � �:That is, we have an � approximation solution for (LD). Moreover, wegenerate a subsequence of f(xk; yk)g which satis�es condition (4.6) withz = zk. Thus, along this subsequence cTxk � bT yk ! 0.Here is how we do it. Given xk 2 �Fp and zk � bT yk where yk 2 Fd, weagain transform the (LP ) problem into Karmarkar's canonical form:(LP 0) minimize (ck)Tx0subject to x0 2 Kp0 :where Kp0 := fx0 2 Rn+1 : Akx0 = 0; eTx0 = n+ 1; x0 � 0g;ck = � Xkc�zk � ; and Ak = � AXk; �b � :This is accomplished via an extended Karmarkar's projective transfor-mation x0 = T (x) =  (n+1)(Xk)�1x1+eT (Xk)�1x(n+1)1+eT (Xk)�1x ! from x 2 Fp:



98 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSObviously, T (xk) = e is the analytic center for Kp0 . In other words, theprojective transformation maps xk to the analytic center of Kp0 in (LP 0).Each feasible point x 2 Fp is also mapped to a feasible point x0 2 Kp0 .Conversely, each feasible point x0 2 Kp0 can be transformed back to anx 2 Fp via the inverse transformation, T�1, given byx = T�1(x0) = Xkx0[n]x0n+1 from x0 2 Kp0 ;where x0[n] denotes the vector of the �rst n components of x0 2 Rn+1.The projective transformation T also induces the potential functionP 0n+1 associated with (LP 0):P 0n+1(x0; zk) = (n+ 1) log((ck)Tx0)� n+1Xi=1 log(x0i); x0 2 �Kp0 :Again, the di�erence of the potential values at two points x1; x2 2 �Fp isinvariant under the projective transformation, i.e.,P 0n+1(T (x2); zk)�P 0n+1(T (x1); zk) = Pn+1(x2; zk)�Pn+1(x1; zk):Therefore, a reduction of the potential P 0n+1 for the transformed probleminduces the same amount of reduction of the potential Pn+1 for the originalproblem.To reduce P 0n+1(x0; zk), we again solve the following ball-constrainedproblem minimize (ck)T (x0 � e)subject to Ak(x0 � e) = 0; eT (x0 � e) = 0; kx0 � ek � �:According to the discussion in Chapter 3, the solution of the problem isx0 � e = �� pkkpkk ;where pk =  I �� Ake �T � Ak(Ak)T 00 n ��1� Ake �! ck= ck � (Ak)T yk � cTxk � zkn+ 1 e;



4.1. KARMARKAR'S ALGORITHM 99and yk = y(zk) := y2 + zky1;y1 = (Ak(Ak)T )�1AXkb;y2 = (Ak(Ak)T )�1A(Xk)2c: (4.7)Consider the di�erence of the potential valuesP 0n+1(x0; zk)�P 0n+1(e; zk) � �� (n+ 1)kpkkcTxk � zk + �22(1� �) :Thus, as long as kpkk � � cTxk�zkn+1 for a constant 0 < � < 1 we can choosean appropriate � such thatP 0n+1(x0; zk)�P 0n+1(e; zk) � ��;for a positive constant � = �� � �2=2(1� �). Letxk+1 = T�1(x0):Then, Pn+1(xk+1; zk)�Pn+1(xk; zk) � ��:In this case, we simply let zk+1 = zk.What is happening whenkpkk < �cTxk � zkn+ 1 ?Note that pk can be decomposed aspk = p(zk) := � Xkc�zk ��� XkAT�bT � y(zk)� cTxk � zkn+ 1 e= � Xk(c�AT y(zk))bT y(zk)� zk �� cTxk � zkn+ 1 e: (4.8)Thus, kpkk < � cTxk�zkn+1 implies that (xk ; y(zk); zk) satis�es condition(4.6), which means that (xk ; y(zk)) is an approximate center pair for 
(zk).Consequently, � Xk(c�AT y(zk))bT y(zk)� zk � > 0;that is AT y(zk) < c and zk < bT y(zk):By the duality theorem, zk+1 = bT y(zk) > zk is a new lower bound forz�. We may update 
(zk) to 
(zk+1), that is, we translate the inequalitybT y � zk through y(zk) to cut 
(zk).



100 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSHowever, we can place a deeper cut. We can do a simple ratio test toobtain �z = argmaxz fbT y(z) : AT y(z) � cg: (4.9)This leads us to a new dual feasible point and a new lower bound bT y(�z) �bT y(zk) > zk, and kp(bTy(�z))k � cTxk � zkn+ 1 :We describe the algorithm as follows.Algorithm 4.1 Given x0 2 �Fp and z0 = bT y0 where y0 2 �Fd. Set k := 0.While (cTxk � zk) > � do:1. Compute y1 and y2 from (4.7).2. Compute �z from (4.9) and let zk+1 = bT y(�z) and yk+1 = y2 + �zy1.3. Let x0 = e� �kp(zk+1)kp(zk+1)and xk+1 = T�1(x0):4. Set k := k + 1 and return to Step 1.We haveLemma 4.3 For k = 0; 1; 2; :::Pn+1(xk+1; zk+1) � Pn+1(xk ; zk)� �;where � � :2.This lemma leads to the following theorem:Theorem 4.4 In at most O(n log(cTx0 � z0)=�+ n) iterations, Algorithm4.1 will generate xk 2 �Fp and yk 2 Fd with zk � bT yk < z� such thatz� � zk � �:Moreover, there is a subsequence fxk; ykg which is a sequence of approxi-mate center pairs for 
(zk) withcTxk � bT yk � �:



4.2. PATH-FOLLOWING ALGORITHM 1014.2 Path-Following AlgorithmWhile Karmarkar's algorithm reduces the primal potential function, whichrepresents the logarithmic volume of a regular ellipsoid containing 
(zk),the path-following algorithm directly down-sizes 
(zk). Let (yk; sk) be anapproximate analytic center of 
(zk) with �(sk) � � < 1, wheresk = � c�AT ykbT yk � zk � > 0:Let � be a constant in (0; 1). Then, similar to what has been done in thecenter-section algorithm of Chapter 3, we update zk+1 from zk at the kthiteration zk+1 = bT yk � �skn+1:Accordingly, B(
(zk+1)) � B(
(zk))� �;where � is a positive constant. This process stops with yk as an approximatecenter for 
(zk), where zk � z� � �. The total number of iterations isbounded by O(n log(cTx0 � z0)=�+ n log 2) from Proposition 4.1, which isthe same bound as in Karmarkar's algorithm.In an additional e�ort, Renegar developed a new method to improvethe iteration bound by a factor pn. A similar algorithm can be describedas the following. Consider
(z) = fy : c�AT y � 0;�z + bTy � 0; :::;�z + bT y � 0g;where \�z+bTy � 0" is copied n times. Note that the slack vector s 2 R2nand s = 0BB@ c�AT ybT y � z:::bT y � z 1CCA > 0:Thus, sn+1 = ::: = s2n. The primal potential function for this 
(z) isP2n(x; z) = 2n log(cTx� z)� nXj=1 logxj ; x 2 �Fp :Following the proof of Proposition 4.1, we haveB(
(z))�B(
(z0)) � 2n log cTx(z)� zcTx0 � z0 �O(n):



102 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSAlgorithm 4.2 Given an approximate analytic center y0 of 
(z0) with�(s0) � � < 1, set k := 0.While (cTx(zk)� bT yk) > � do:1. Update zk+1 = bT yk � �sk2n.2. Via the Newton procedure compute an approximate analytic centeryk+1 with �(sk+1) � � for 
(zk+1). Let x0 = x(sk+1) be givenby (3.3) for 
(zk+1) (note here that the matrix A is augmented to(A;�b; :::;�b)) and x(zk+1) = x0[n]=(nx02n).3. Set k := k + 1 and return to Step 1.We now prove the following Lemma.Lemma 4.5 Let � = 1 � �=pn. Then, there exists a point x+ > 0 suchthat (A;�b; :::;�b)x+ = 0 and kX+s+ � ek � � < 1;where s+ = 0BB@ c�AT ykbT yk � zk+1:::bT yk � zk+1 1CCA > 0:Proof. Let x+ = x(sk) > 0 of (3.3) for 
(zk), where matrix A is augmentedto (A;�b; :::;�b). Then, x+n+1 = :::;= x+2n,(A;�b; :::;�b)x+ = Ax(sk) = 0;and kX+sk � ek = �(sk) � �:Note that s+j = skj for j � n and s+j = �skj for j � n+ 1. Thus,kX+s+ � ek = kX+sk � e+X+s+ �X+skk� kX+sk � ek+ kX+s+ �X+skk� kX+sk � ek+pnjx+2nsk2n(� � 1)j� � +pn(1� �)(1 + �)� � + �(1 + �): 2



4.2. PATH-FOLLOWING ALGORITHM 103Lemma 4.5 shows that, even though it is not perfectly centered, yk is inthe \quadratic convergence" region of the center of 
(zk+1), if we choose� + �(1 + �) < 1. Thus, an approximate center yk+1 with �(sk+1) � � for
(zk+1) can be updated from yk in a constant number of Newton's steps.We now verify that the max-potential of 
(zk+1) is reduced by pn� for aconstant �.Lemma 4.6 Let (yk; sk) be an approximate center for 
k with �(sk) � �and let 
(zk+1) be given as in Step 1 of Algorithm 4.2. Then,B(
(zk+1)) � B(
(zk))�pn� for a constant � > 0:Proof. The proof is very similar to Theorem 2.7 in Chapter 2. Let (ya; sa)and (ya+; sa+) be the centers of 
(zk) and 
(zk+1), respectively. Note wehave san+1 = ::: = sa2n = bT ya � zk:Also (A;�b; :::;�b)(Sa)�1e = 0;(c;�zk; :::;�zk)T (Sa)�1e = (sa)T (Sa)�1e = 2n;and sa+ = 0BB@ c�AT ya+bTya+ � zk+1:::bTya+ � zk+1 1CCA > 0;where zk+1n+1 = ::: = zk+12n = zk + (1� �)sk2n:Then we haveeT (Sa)�1sa+ = eT (Sa)�1(c;�zk+1; :::;�zk+1)= eT (Sa)�1(c;�zk; :::;�zk)� n(1� �)(sk2n=sa2n)= 2n� n(1� �)(sk2n=sa2n)� 2n� n(1� �)(1� �):The last inequality is due to (v) of Theorem 3.2. Therefore,expB(
(zk+1))expB(
(zk)) = 2nYj=1 (sa+)jsaj� (2n� n(1� �)(1� �)2n )2n� exp(�n(1� �)(1� �))= exp(�pn�(1� �)):



104 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSThis completes the proof. 2From the lemma, we can conclude thatTheorem 4.7 In at most O(pn log(cTx0 � z0)=� +pn) iterations, Algo-rithm 4.2 will generate a (x(zk); yk) 2 �F such that it is an approximatecenter for 
(zk) wherecTx(zk)� bT yk � cTx(zk)� zk � �:4.3 Potential Reduction AlgorithmAt this point, we can see the di�erence between Karmarkar's and the path-following algorithms. The former, called potential reduction algorithms,are equipped with a primal potential functions, which are solely used tomeasure the solution's progress. There is no restriction on either step-size or z-update during the iterative process; the greater the reduction ofthe potential function, the faster the convergence of the algorithm. Thepath-following algorithms are equipped with the max-potential, so that thez-update needs to be carefully chosen and each step needs to stay closeto the analytic center. Thus, from a practical point of view, Karmarkar'salgorithm has an advantage.The next question is whether or not we can improve the complexitybound by the same factor for potential reduction algorithms. Let x 2 �Fpand (y; s) 2 �Fd. Then consider the primal-dual potential function n+�(x; s) = (n+ �) log(xT s)� nXj=1 log(xjsj);where � = pn. Let z = bT y, then sTx = cTx� z and we have n+�(x; s) = Pn+�(x; z)� nXj=1 log sj ;where the primal potential functionPn+�(x; z) = (n+ �) log(cTx� z)� nXj=1 logxj :



4.3. POTENTIAL REDUCTION ALGORITHM 105Consider a pair of (xk; yk; sk) 2 �F . Fix zk = bT yk, then the gradientvector of the primal potential function at xk isrPn+�(xk ; zk) = (n+ �)(sk)Txk c� (Xk)�1e:Now we directly solve the problemminimize rPn+�(xk ; zk)T (x� xk)subject to A(x� xk) = 0; k(Xk)�1(x� xk)k � �:Let the minimizer be xk+1. Thenxk+1 � xk = ��Xkpkkpkk ; (4.10)and, in view of Section 3.3.2,Pn+�(xk+1; zk)�Pn+�(xk ; zk) � ��kpkk+ �22(1� �) ;where pk = (I �XkAT (A(Xk)2AT )�1AXk)XkrPn+�(xk ; zk)= XkrPn+�(xk; zk)�XkAT ykor pk = Xk( (n+ �)(sk)Txk c�AT yk)� e;and yk = (A(Xk)2)AT )�1A(Xk)2rPn+�(xk ; zk):Thus, as long as kpkk � � > 0, we may choose an appropriate � such thatPn+�(xk+1; zk)�Pn+�(xk ; zk) � ��for some positive constant �.Now, we focus on the expression of pk, which can be rewritten aspk = p(zk) = (I �XkAT (A(Xk)2AT )�1AXk)( (n+ �)(sk)TxkXkc� e)= (n+ �)(sk)TxkXks(zk)� e; (4.11)with s(zk) = c�AT y(zk) (4.12)



106 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSand y(zk) = y2 � (sk)Txk(n+ �) y1; (4.13)where y1 and y2 are given in equation (4.7).Regarding kpkk = kp(zk)k, we have the following lemma.Lemma 4.8 Let�k = (xk)T skn = cTxk � zkn and � = (xk)T s(zk)n :If kp(zk)k < min(�r nn+ �2 ; 1� �); (4.14)then the following three inequalities hold:s(zk) > 0; kXks(zk)� �ek < ��; and � < (1� :5�=pn)�k: (4.15)Proof. The proof is by contradiction.i) If the �rst inequality of (4.15) is not true, then 9 j such that sj(zk) � 0and kp(zk)k � 1� (n+ �)n�k xjsj(zk) � 1:ii) If the second inequality of (4.15) does not hold, thenkp(zk)k2 = k (n+ �)n�k Xks(zk)� (n+ �)�n�k e+ (n+ �)�n�k e� ek2= ((n+ �)n�k )2kXks(zk)� �ek2 + k (n+ �)�n�k e� ek2� ( (n+ �)�n�k )2�2 + ((n+ �)�n�k � 1)2n (4.16)� �2 nn+ �2 ;where the last relation prevails since the quadratic term yields theminimum at (n+ �)�n�k = nn+ �2 :iii) If the third inequality of (4.15) is violated, then(n+ �)�n�k � (1 + 1pn )(1� :5�pn ) � 1;



4.3. POTENTIAL REDUCTION ALGORITHM 107which in view of (4.16) leads tokp(zk)k2 � ( (n+ �)�n�k � 1)2n� ((1 + 1pn )(1� :5�pn )� 1)2n� (1� �2 � �2pn)2� (1� �)2: 2Based on this lemma, we have the following potential reduction theorem.Theorem 4.9 Given xk 2 �Fp and (yk; sk) 2 �Fd. Let � = pn, zk = bT yk,xk+1 be given by (4.10), and yk+1 = y(zk) in (4.13) and sk+1 = s(zk) in(4.12). Then, either n+�(xk+1; sk) �  n+�(xk ; sk)� �or  n+�(xk ; sk+1) �  n+�(xk ; sk)� �where � > 1=20.Proof. If (4.14) does not hold, i.e.,kp(zk)k � min(�r nn+ �2 ; 1� �);thenPn+�(xk+1; zk)�Pn+�(xk ; zk) � ��min(�r nn+ �2 ; 1� �) + �22(1� �) ;hence from the relation between Pn+� and  n+�, n+�(xk+1; sk)�  n+�(xk ; sk) � ��min(�r nn+ �2 ; 1� �) + �22(1� �) :Otherwise, from Lemma 4.8 the inequalities of (4.15) hold:i) The �rst of (4.15) indicates that yk+1 and sk+1 are in �Fd.



108 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSii) Using the second of (4.15) and applying Lemma 3.1 to vectorXksk+1=�,we have n ln(xk)T sk+1 � nXj=1 ln(xkj sk+1j )= n lnn� nXj=1 ln(xkj sk+1j =�)� n lnn+ kXksk+1=�� ek22(1� kXksk+1=�� ek1)� n lnn+ �22(1� �)� n ln(xk)T sk � nXj=1 ln(xkj skj ) + �22(1� �) :iii) According to the third of (4.15), we havepn(ln(xk)T sk+1 � ln(xk)T sk) = pn ln ��k � ��2 :Adding the two inequalities in ii) and iii), we have n+�(xk ; sk+1) �  n+�(xk ; sk)� �2 + �22(1� �) :Thus, by choosing � = :43 and � = :3 we have the desired result. 2Theorem 4.9 establishes an important fact: the primal-dual potentialfunction can be reduced by a constant no matter where xk and yk are. Inpractice, one can perform the line search to minimize the primal-dual poten-tial function. This results in the following primal-dual potential reductionalgorithm.Algorithm 4.3 Given x0 2 �Fp and (y0; s0) 2 �Fd. Let z0 = bT y0. Setk := 0.While (sk)Txk � � do1. Compute y1 and y2 from (4.7).2. Set yk+1 = y(�z), sk+1 = s(�z), zk+1 = bT yk+1 with�z = arg minz�zk  n+�(xk; s(z)):



4.4. PRIMAL-DUAL (SYMMETRIC) ALGORITHM 1093. Let xk+1 = xk � ��Xkp(zk+1) with�� = argmin��0  n+�(xk � �Xkp(zk+1); sk+1):4. Set k := k + 1 and return to Step 1.The performance of the algorithm results from the following corollary.Corollary 4.10 Let � = pn. Then, Algorithm 4.3 terminates in at mostO(pn log(cTx0 � bT y0)=�) iterations withcTxk � bT yk � �:Proof. In O(pn log((x0)T s0=�)) iterations�pn log((x0)T s0=�) =  n+�(xk ; sk)�  n+�(x0; s0)� pn log(xk)T sk + n logn�  n+�(x0; s0)= pn log((xk)T sk=(x0)T s0):Thus, pn log(cTxk � bT yk) = pn log(xk)T sk � pn log �;i.e., cTxk � bT yk = (xk)T sk � �: 24.4 Primal-Dual (Symmetric) AlgorithmOnce we have a pair (x; y; s) 2 �F with � = xT s=n, we can apply the primal-dual Newton method to generate a new iterate x+ and (y+; s+) as follows:Solve for dx, dy and ds from the system of linear equations:Sdx +Xds = 
�e�Xs;Adx = 0;AT dy + ds = 0: (4.17)It is well-known that this is the Newton step starting from (x; s) whichhelps to �nd the point on the central path with duality gap n
�. Notethat dTx ds = �dTxAT dy = 0. We present the following lemma whose proofis very similar to Lemma 3.6 and will be omitted.



110 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSLemma 4.11 Let the direction dx, dy and ds be generated by equation(4.17) with 
 = n=(n+ �), and let� = �pmin(Xs)k(XS)�1=2( xT s(n+�)e�Xs)k ; (4.18)where � is a positive constant less than 1. Letx+ = x+ �dx; y+ = y + �dy; and s+ = s+ �ds:Then, we have (x+; y+; s+) 2 �F and n+�(x+; s+)�  n+�(x; s)� ��pmin(Xs)k(XS)�1=2(e� (n+ �)xT s Xs)k+ �22(1� �) :Let v = Xs. Then consider(n+ �)pmin(v)eT v kV �1=2( eT v(n+ �)e� v)k:We now prove the following lemmaLemma 4.12 Let v be a n-dimensional positive vector and � � pn. Then,pmin(v)kV �1=2(e� (n+ �)eT v v)k �p3=4:From these two lemmas we have n+�(x+; s+)�  n+�(x; s)� ��p3=4 + �22(1� �) = ��for a constant �. This leads toAlgorithm 4.4 Given (x0; y0; s0) 2 �F . Set � = pn and k := 0.While (sk)Txk � � do1. Set (x; s) = (xk; sk) and 
 = n=(n+ �) and compute (dx; dy; ds) from(4.17).2. Let xk+1 = xk + ��dx, yk+1 = yk + ��dy, and sk+1 = sk + ��dx where�� = argmin��0  n+�(xk + �dx; sk + �ds):



4.5. ADAPTIVE PATH-FOLLOWING ALGORITHMS 1113. Set k := k + 1 and return to Step 1.Theorem 4.13 Let � = pn. Then, Algorithm 4.4 terminates in at mostO(pn log((x0)T s0=�)) iterations withcTxk � bT yk � �:4.5 Adaptive Path-Following AlgorithmsHere we describe and analyze several additional primal-dual interior-pointalgorithms for linear programming. In some sense these methods follow thecentral path C = �(x; s) 2 �F : Xs = �e where � = xT sn �in primal-dual form, but certain algorithms allow a very loose approxima-tion to the path.Suppose we have a pair (x; s) 2 N , a neighborhood of C, where C �N � �F . Consider the neighborhoodN2(�) = �(x; s) 2 �F : kXs� �ek � �� where � = xT sn �for some � 2 (0; 1). We will �rst analyze an adaptive-step path-followingalgorithm that generates a sequence of iterates in N2(1=4). Actually, thealgorithm has a predictor-corrector form, so that it also generates interme-diate iterates in N2(1=2).Next we consider adaptive-step algorithms generating sequences of iter-ates in eitherN1(�) = �(x; s) 2 �F : kXs� �ek1 � �� where � = xT sn �or N�1(�) = �(x; s) 2 �F : kXs� �ek�1 � �� where � = xT sn � ;for any � 2 (0; 1). Here, for any z 2 Rn,kzk�1 := kz�k1and kzk+1 := kz+k1;



112 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSwhere (z�)j := minfzj ; 0g and (z+)j := maxfzj ; 0g and k � k1 is the usual`1 norm. Note that kzk1 = maxfkzk+1; kzk�1g and that neither k �k�1 nork � k+1 is a norm, although they obey the triangle inequality.We easily see thatC � N2(�) � N1(�) � N�1(�) � �F for each � 2 (0; 1):Our results indicate that when we use a wider neighborhood of the cen-tral path, the worst-case number of iterations grows, while the practicalbehavior might be expected to improve.Given (x; s) 2 N , we again generate a search direction d = (dx; ds) usingthe primal-dual scaling method by solving (4.17). To show the dependenceof d on the current pair and the parameter 
, we write d = d(x; s; 
).Having obtained the search direction d, we letx(�) := x+ �dx;y(�) := y + �dy;s(�) := s+ �ds: (4.19)We will frequently let the next iterate be (x+; s+) = (x(��); s(��)), where ��is as large as possible so that (x(�); s(�)) remains in the neighborhood Nfor � 2 [0; ��].Let �(�) = x(�)T s(�)=n and X(�) = diag(x(�)). In order to get boundson ��, we �rst note that �(�) = (1� �)�+ �
�; (4.20)X(�)s(�)� �(�)e = (1� �)(Xs� �e) + �2Dxds; (4.21)where Dx = diag(dx). Thus Dxds is the second-order term in Newton'smethod to compute a new point of C. Hence we can usually choose a larger�� (and get a larger decrease in the duality gap) if Dxds is smaller. In thissection we obtain several bounds on the size of Dxds.First, it is helpful to re-express Dxds. Letp := X�:5S:5dx;q := X :5S�:5ds;r := (XS)�:5(
�e�Xs); (4.22)Lemma 4.14 With the notations above,i) kPqk � p24 krk2;



4.5. ADAPTIVE PATH-FOLLOWING ALGORITHMS 113ii) �krk24 � pjqj � r2j4 for each j;iii) kPqk�1 � krk24 � nkrk214 ;kPqk+1 � krk214 ; andkPqk1 � krk24 � nkrk214 :The bounds in lemma 4.14 cannot improved by much in the worst case:consider the case wherer = e = (1; 1; � � � ; 1)T ;p = (1=2; 1=2; � � � ; 1=2; (1 +pn)=2)T ; andq = (1=2; 1=2; � � � ; 1=2; (1�pn)=2)T :To use lemma 4.14 we also need to bound r. The following result isuseful:Lemma 4.15 Let r be as above.i) If 
 = 0, then krk2 = n�.ii) If � 2 (0; 1), 
 = 1 and (x; s) 2 N2(�), then krk2 � �2�=(1� �).iii) If � 2 (0; 1), 
 2 (0; 1), 
 � 2(1� �) and (x; s) 2 N�1(�), then krk2 �n�. Moreover, if (x; s) 2 N1(�) thenp1� � � rj=p� � �p1 + �;so krk21 � (1 + �)�.Proof. i) If 
 = 0, r = �(XS)�:5Xs, so krk2 = xT s = n�.ii) Now r = (XS)�:5(�e �Xs), so krk � 1p(1��)���, which yields thedesired result.iii) In this casekrk2 = nXj=1 (
�� xjsj)2xjsj



114 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMS= nXj=1� (
�)2xjsj � 2
�+ xjsj�� n(
�)2(1� �)� � 2n
�+ n� (since xjsj � (1� �)�)� n� (since 
 � 2(1� �)):Now suppose (x; s) 2 N1(�), so that xjsj 2 [(1��)�; (1+�)�] for eachj. Thus, for each j,
�p1� �p��p1� �p� � rj = 
�pxjsj �pxjsj � 
�p1 + �p��p1 + �p�;which yields the �nal result since 0 � 
 � 2(1� �). 24.5.1 Predictor-corrector algorithmIn this section we describe and analyze an algorithm that takes a single\corrector" step to the central path after each \predictor" step to decrease�. Although it is possible to use more general values of �, we will workwith nearly-centered pairs in N2(�) with � = 1=4 (iterates after the cor-rector step), and intermediate pairs in N2(�) with � = 2� (iterates after apredictor step).Algorithm 4.5 Given (x0; s0) 2 N2(�) with � = 1=4. Set k := 0.While (xk)T sk > � do:1. Predictor step: set (x; s) = (xk ; sk) and compute d = d(x; s; 0) from(4.17); compute the largest �� so that(x(�); s(�)) 2 N2(2�) for � 2 [0; ��]:2. Corrector step: set (x0; s0) = (x(��); s(��)) and compute d0 = d(x0; s0; 1)from (4.17); set (xk+1; sk+1) = (x0 + d0x; s0 + d0s).3. Set k := k + 1 and return to Step 1.To analyze this method, we start by showingLemma 4.16 For each k, (xk ; sk) 2 N2(�).
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Figure 4.1: Illustration of the predictor-corrector algorithm; the predictorstep moves y0 in a narrower neighborhood of the central path to y0 on theboundary of a wider neighborhood and the corrector step then moves y0 toy1 back in the narrower neighborhood.Proof. The claim holds for k = 0 by hypothesis. For k > 0, let (x0; s0) bethe result of the predictor step at the kth iteration and let d0 = d(x0; s0; 1),as in the description of the algorithm. Let x0(�) and s0(�) be de�ned asin (4.19) and p0, q0 and r0 as in (4.22) using x0, s0 and d0. Let �0(�) :=x0(�)T s0(�)=n for all � 2 [0; 1] with �0 := �0(0) = (x0)T s0=n and �k+1 :=�0(1) = (xk+1)T sk+1=n.From (4.20), �0(�) = �0 for all �; (4.23)and in particular �k+1 = �0. From (4.21),X 0(�)s0(�)� �0(�)e = (1� �)(X 0s0 � �0e) + �2D0xd0s= (1� �)(X 0s0 � �0e) + �2P 0q0; (4.24)where X 0(�) = diag(x0(�)), etc. But by lemma 4.14(i), lemma 4.15(ii) and(x0; s0) 2 N (2�) with � = 1=4,kP 0q0k � p24 kr0k2 � p24 (2�)21� 2��0 < 14�0:It follows thatkX 0(�)s0(�) � �0ek � (1� �)�02 + �2�04 � 12�0: (4.25)



116 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSThus X 0(�)s0(�) � �02 e > 0 for all � 2 [0; 1], and this implies that x0(�) > 0,s0(�) > 0 for all such � by continuity. In particular, xk+1 > 0, sk+1 > 0,and (4.25) gives (xk+1; sk+1) 2 N2(1=4) as desired when we set � = 1. 2Now let (x; s) = (xk ; sk), d = d(x; s; 0), � = �k = xT s=n, and p, q andr be as in (4.22); these quantities all refer to the predictor step at iterationk. By (4.20), �0 = (1� ��)�; or�k+1 = (1� ��)�k: (4.26)Hence the improvement in the duality gap at the kth iteration depends onthe size of ��.Lemma 4.17 With the notation above, the step-size in the predictor stepsatis�es �� � 21 +p1 + 4kPq=�k=� :Proof. By (4.21) applied to the predictor step,kX(�)s(�)� �(�)ek = k(1� �)(Xs� �e) + �2Pqk� (1� �)kXs� �ek+ �2kPqk� (1� �)��+ �2kPqk;after using lemma 4.16. We see that for0 � � � 21 +p1 + 4kPq=�k=�kX(�)s(�)� �(�)ek=� � (1� �)� + �2kPq=�k� 2�(1� �):This is because the quadratic term in �:kPq=�k�2 + �� � � � 0for � between zero and the root�� +p�2 + 4kPq=�k�2kPq=�k = 21 +p1 + 4kPq=�k=� :



4.5. ADAPTIVE PATH-FOLLOWING ALGORITHMS 117Thus, kX(�)s(�)� �(�)ek � 2�(1� �)� = 2��(�)or (x(�); s(�)) 2 N2(2�) for0 � � � 21 +p1 + 4kPq=�k=� : 2We can now showTheorem 4.18 Let � = 1=4. Then Algorithm 4.5 will terminate in at mostO(pn log((x0)T s0=�)) iterations withcTxk � bT yk � �:Proof. Using lemma 4.14(i) and lemma 4.15(i), we havekPqk � p24 krk2 = p24 n�;so that �� � 21 +q1 +p2n=� = 21 +p1 + 4p2nat each iteration. Then (4.26) and lemma 4.17 imply that�k+1 �  1� 21 +p1 + 4p2n!�kfor each k. This yields the desired result. 24.5.2 Wide-neighborhood algorithmIn this section we consider algorithms of the following form based on 
 2(0; 1) and N , where N is a wide neighborhood of either N1 or N�1.Algorithm 4.6 Let � 2 (0; 1) and 
 2 (0; 1) with 
 � 2(1 � �). Given(x0; s0) 2 N (�). Set k := 0.While (xk)T sk > � do:1. Set (x; s) = (xk ; sk) and compute d = d(x; s; 
) from (4.17).



118 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMS2. Compute the largest �� so that(x(�); s(�)) 2 N for � 2 [0; ��];set (xk+1; sk+1) = (x(��); s(��)).3. Set k := k + 1 and return to Step 1.Again the selection of �� makes this an adaptive-step method. We willanalyze this algorithm for N = N1(�) and N�1(�), where � 2 (0; 1). Ineither case, computing �� involves the solution of at most 2n single-variablequadratic equations.Note that, if �k := (xk)T sk=n, (4.20) implies�k+1 = (1� ��(1� 
))�k; (4.27)so we wish to bound �� from below.Lemma 4.19 Let � 2 (0; 1), 
 2 (0; 1), and N = N1(�) or N�1(�). Letx, s, d and �� be as in the kth iteration of Algorithm 4.6, and de�ne p, qand r by (4.22). Then�� � �2 := min�1; �
�kkPqk1� if N = N1(�);�� � ��2 := min�1; �
�kkPqk�1� if N = N�1(�):Proof. Suppose �rst N = N�1(�). Then, for each � 2 [0; ��2 ], (4.20) and(4.21) imply X(�)s(�)� �(�)e= (1� �)(Xs� �e) + �2Pq;� � �(1� �)kXs� �ek�1 + �2kPqk�1� e� � �(1� �)��k + ��
�k� e= ���(�)e:Hence, as in the proof of lemma 4.16, (x(�); s(�)) 2 N�1(�) for � 2 [0; ��2 ],when �� � ��2 . If N = N1(�), a similar proof gives��(�)e � X(�)s(�)� �(�)e � ���(�)efor � 2 [0; �2], which again implies �� � �2.



4.6. NOTES 1192We can now proveTheorem 4.20 Let � 2 (0; 1) and 
 2 (0; 1) be constants with 
 � 2(1��). Then Algorithm 4.6, with N = N1(�) or N�1(�), will terminate inO(n log((x0)T s0=�)) iterations.Proof. In either case, each iterate lies in N�1(�), whencekPqk�1 � kPqk1 � krk2=4 � n�k=4;using lemma 4.14(iii) and lemma 4.15(iii). Hence��2 � �2 � 4�
=n:Then lemma 4.19 and (4.27) give�k+1 � �1� 4�
(1� 
)n ��k; (4.28)which yields the result. 2The algorithms for the neighborhoods N1(�) and N�1(�) generate se-quences of points lying in the boundaries of these sets. Since the resultshold for arbitrary � 2 (0; 1), the algorithms can generate sequences of pointsin a wide area of the feasible region. In particular,N�1(1) = �F ;so when � is close to 1, the neighborhood N�1(�) spreads over almost all ofthe feasible region F , and the points generated by the algorithm based onN�1(�) are close to the boundary rather than the central path.4.6 NotesA similar result to Proposition 4.1 has been proved by Todd [328]. Thisproposition plays an important role in analyzing several interior-point al-gorithms.The Karmarkar projective algorithm in the LP standard form with alower bound z for z� was �rst developed and analyzed by Todd and Burrell[329], Anstreicher [19], Gay [103], and Ye and Kojima [384]. de Ghellinckand Vial [104] developed a projective algorithm that has a unique feature: it



120 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSdoes not need to start from a feasible interior point. All of these algorithmshave an iteration complexity O(nL). Other extensions and analyses ofKarmarkar's algorithm can be found in Akg�ul [7], Anstreicher [17], Asic,Kovacevic-Vujcic and Radosavljevic-Nikolic [29], Betke and Gritzmann [47],Blair [52], Blum [54], Dennis, Morshedi and Turner [75], Diao [77], Gonzaga[123], Kalantari [168], Kovacevic{Vujcic [191], Lagarias [195], McDiarmid[211], Nemirovskii [256], Nesterov [260], Padberg [270], Sherali [301], Shub[304], Tseng [336], Wei [365], Wu and Wu [368], Zimmermann [395], etc.The path-following algorithm, described in Section 4.2, is a variant ofRenegar [286]. The di�erence is the analysis used in proving the complexitybound. Renegar measured the duality-gap, while we used the max-potentialof the level set. A primal path-following algorithm is independently ana-lyzed by Gonzaga [122]. Both Gonzaga [122] and Vaidya [348] developeda rank-one updating technique in solving the Newton equation of each it-eration, and proved that each iteration uses O(n2:5) arithmetic operationson average. Kojima, Mizuno and Yoshise [183] and Monteiro and Adler[239] developed a symmetric primal-dual path-following algorithm with thesame iteration and arithmetic operation bounds. The algorithm was pro-posed earlier by Tanabe [316]. Other variants of path-following or homo-topy algorithms can be found in Blum [55], Boggs, Domich, Donaldson andWitzgall [57], Nazareth [253, 254], etc.Recently, Vaidya [349] developed a new center, the volumetric center, forlinear inequalities and a path-following algorithm for convex programming.The arithmetic operations complexity bound is identical to that of theellipsoid method, but its iteration complexity bound is less than that of theellipsoid method. Also see Anstreicher [21].The primal potential function with � > 1 and the a�ne potential re-duction algorithm were developed by Gonzaga [124]. His algorithm hasiteration complexity O(nL). The primal-dual potential function and algo-rithm were analyzed by Anstreicher and Bosch [23], Freund [96], Gonzaga[124], Todd and Ye [330], and Ye [373]. These algorithms possess O(pnL)iteration complexity. Using this function, Ye [375] further developed a pro-jective algorithm with O(pnL) iteration complexity, also see Goldfarb andXiao [117].The primal-dual potential reduction algorithm described in Section 4.3is in the primal form. One can develop a potential reduction algorithm indual form, where z, an upper bound for the optimal objective value z�,is updated down in each iteration, see Ye [373]. The symmetric primal-dual potential algorithm of Section 4.4 was proposed by Kojima, Mizunoand Yoshise [185]. Other potential reduction algorithms are by Gonzagaand Todd [130], Huang and Kortanek [151], and Tuncel [345]. Todd [324]proposed an extremely simple and elegant O(pnL) algorithm.



4.6. NOTES 121The adaptive primal-dual algorithms were developed by Mizuno, Toddand Ye [233], also see Barnes, Chopra and Jensen [36]. A more practicalpredictor-corrector algorithm was proposed by Mehrotra [221], based onthe power series algorithm of Bayer and Lagarias [39] and the primal-dualversion of Monteiro, Adler and Resende [242], also see Carpenter, Lustig,Mulvey and Shanno [63] and Zhang and Zhang [393]. His technique hasbeen used in almost all of the LP interior-point implementations. Further-more, Hung [155] developed a O(nn+12n L)-iteration variant that uses widerneighborhoods. As n becomes large, this bound approaches the best boundfor linear programming algorithms that use the small neighborhood (whichare not practical). Other polynomial wide-neighborhood algorithms can befound in Jansen [158] and Sturm and Zhang [311].There was another polynomial interior-point algorithm, a multiplicativebarrier function method, which was developed by Iri and Imai [156], alsosee Sturm and Zhang [310].Another popular interior-point algorithm, called the a�ne scaling algo-rithm, was developed by Dikin [78, 79] and was rediscovered by Barnes [35],Cavalier and Soyster [64], Kortanek and Shi [188], Sherali, Skarpness andKim [302], Vanderbei and Lagarias [357], Vanderbei, Meketon and Freed-man [358], Andersen [15], and Monteiro, Adler and Resende [242]. The al-gorithm also has three forms as the potential algorithm has; the di�erenceis that � is chosen as 1 in the direction of the a�ne scaling algorithm.The primal or dual algorithm has no polynomial complexity bound yet,but has been proved convergent under very weak conditions, see Tsuchiya[339, 340], Tsuchiya and Muramatsu [342], Monteiro, Tsuchiya and Wang[246], Saigal [295], Sun [312], and Tseng and Luo [338]. Mascarenhas [210]provided a divergence example for the a�ne scaling algorithm. Polynomiala�ne-scaling-type algorithms can be found in Monteiro, Adler and Resende[242] and Jansen, Roos and Terlaky [159].A modi�ed (shifted) barrier function theory and methods were devel-oped by Polyak [277], also see Pan [271], and Polak, Higgins and Mayne[276].Interior-point algorithm computational results can be found in Adler,Karmarkar, Resende and Veiga [4], Altman and Gondzio [12], Bixby, Gre-gory, Lustig, Marsten and Shanno [50], Choi, Monma and Shanno [66, 67],Christiansen and Kortanek [68], Domich, Boggs, Rogers and Witzgall [81],Fourer and Mehrotra [93], Gondzio [120, 121], Lustig, Marsten and Shanno[203, 206, 204, 205], McShane, Monma and Shanno [214], Mehrotra [221],Monma [235], Ponnambalam, Vannelli and Woo [279], Vanderbei [355], andXu, Hung and Ye [369].There are several comprehensive books which cover interior-point linear



122 CHAPTER 4. LINEAR PROGRAMMING ALGORITHMSprogramming algorithms. They are Bazaraa, Jarvis and Sherali [40], Fangand Puthenpura [88], den Hertog [145], Saigal [296], Murty [250], etc.Many researchers have applied interior-point algorithms to solving con-vex QP and monotone LCP problems. The algorithms can be divided intothree groups: the primal scaling algorithm, see Anstreicher, den Hertog,Roos and Terlaky [24], Ben{Daya and Shetty [42], Goldfarb and Liu [114],Ponceleon [278], and Ye [387, 374]; the dual scaling algorithm, see Jarre[160], Mehrotra and Sun [222], Nesterov and Nemirovskii [262], and Rene-gar and Shub [288]; and the primal-dual scaling algorithm, see Kojima,Mizuno and Yoshise [184, 185, 183], Mizuno [229], Monteiro and Adler[240], Monteiro, Adler and Resende [242], and Vanderbei [354].Relations among these algorithms can be seen in den Hertog and Roos[147]. Given an interior point (x; y; s), the following is a summary of direc-tions generated by the three potential algorithms. They all satisfyAdx = 0; ds = �AT dy for LP;Adx = 0; ds = Qdx �AT dy for QP;and ds =Mdx for LCP:Furthermore, they satisfy, respectively,Primal: ds + xT s(n+ �)X�2dx = �s+ xT s(n+ �)X�1e;Dual: dx + xT s(n+ �)S�2ds = �x+ xT s(n+ �)S�1e;andPrimal-dual: Xds + Sdx = �Xs+ xT s(n+ �)e;where � � pn. These algorithms will reduce the primal-dual potentialfunction by a constant, leading to O(�L) iteration complexity.



4.7. EXERCISES 1234.7 Exercises4.1 Prove inequality (4.3).4.2 Let x(z) 2 Fp be on the central path associated with 
(z) in Proposi-tion 4.1. Then, z� > z � z0 implies �(z) � �(z0).4.3 Prove Corollary 4.2.4.4 Let �z be chosen by (4.9) in Karmarkar's algorithm. Then showkp(bTy(�z))k � cTxk � zkn+ 1 :4.5 Develop a potential reduction algorithm in dual form, with z as a upperbound for the optimal objective value z�.4.6 Prove Lemma 4.12.4.7 Prove Lemma 4.14.4.8 Describe the primal a�ne scaling algorithm mentioned at the end ofSection 4.6. Starting from x = e, use it to complete the �rst three iterationsfor solving minimize x1 + 3x2subject to x1 + x2 + x3 = 3;x1; x2; x3 � 0:
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Chapter 5Worst-Case AnalysisThere are several remaining key issues concerning interior-point algorithmsfor LP. The �rst is the arithmetic operation complexity. In the previouschapters, we have analyzed the total number of iterations needed to solve aLP problem approximately. Since it solves a system of linear equations withdimension m+n and n � m, each iteration of all interior-point algorithmsuses O(n3) arithmetic operations. Thus, their best operation complexitybound is O(n3:5 log(R=�)), when the initial gap (x0)T s0 � R. (We assume(x0)T s0 � R throughout this section.) The question is whether or not thearithmetic operations can be reduced in each iteration.The second issue involves termination. Unlike the simplex method forlinear programming which terminates with an exact solution, interior-pointalgorithms are continuous optimization algorithms that generate an in�nitesolution sequence converging to the optimal solution set. If the data of anLP instance are integral or rational, an argument is made that, after theworst-case time bound, an exact solution can be \rounded" from the latestapproximate solution. Thus, several questions arise. First, under the realnumber computation model (i.e., the LP data consists of real numbers) howdo we argue termination to an exact solution? Second, regardless of thedata's status, can we utilize a practical test, one which can be computedcost-e�ectively during the iterative process, to identify an exact solution sothat the algorithm can be terminated before the worse-case time bound?Here, the exact solution means a mathematical solution form using exactarithmetic, such as the solution of a system of linear equations or the so-lution of a least-squares problem, which can be computed in a number ofarithmetic operations bounded by a polynomial in n.The third issue involves initialization. Almost all interior-point algo-125



126 CHAPTER 5. WORST-CASE ANALYSISrithms solve the LP problem under the regularity assumption that �F6= ;.A related issue is that interior-point algorithms have to start at a strictlyfeasible point. Since no prior knowledge is usually available, one way is toexplicitly bound the feasible region of the LP problem by a big M number.If the LP problem has integral data, this number can be set to 2L in theworst case, where L is the length of the LP data in binary form. This set-ting is impossible in solving large problems. Moreover, if the LP problemhas real data, no computable bound is known to set up the big M .5.1 Arithmetic operationThe primary computation cost of each iteration of interior-point algorithmsis to inverse a normal matrix AX2AT in the primal form, AS�2AT in thedual form, or AXS�1AT in the primal-dual form. In this section, we showhow to use a rank-one technique to update the inverse of the matrix duringthe iterative progress. This can be described as follows.Consider the primal potential reduction algorithm in Section 4.3. Re-placing Xk in the normal matrix by a positive diagonal matrix D such that11:1 � djxkj � 1:1 for j = 1; : : : ; n;we now have xk+1 � xk = ��Dp̂(zk)kp̂(zk)k ;where p̂(zk) = (I �DAT (AD2AT )�1AD)DrPn+�(xk; zk):Then rPn+�(xk; zk)T (xk+1 � xk) = ��kp̂(zk)k;and the reduction of the potential function isPn+�(xk+1; zk)�Pn+�(xk ; zk) � ��kp̂(zk)k+ (1:1�)22(1� 1:1�) ;since k(Xk)�1(xk+1 � xk)k = k(Xk)�1DD�1(xk+1 � xk)k� k(Xk)�1DkkD�1(xk+1 � xk)k� 1:1kD�1(xk+1 � xk)k = 1:1�:



5.1. ARITHMETIC OPERATION 127Note that p̂(zk) can be written asp̂(zk) = n+ �cTxk � zkDs(zk)�D(Xk)�1e = D(Xk)�1p(zk); (5.1)where the expressions of p(zk) and s(zk) are again given by (4.11) and(4.12) with y(zk) = (AD2AT )�1AD(Dc� (sk)Txkn+ � D(Xk)�1e): (5.2)Thus, we havekp̂(zk)k = kD(Xk)�1p(zk)k � kp(zk)k=kD�1Xkk � kp(zk)k=1:1:Noting that Lemma 4.8 still holds for p(zk), we only need to modify thepotential reduction inequality in the proof of Theorem 4.9 byPn+�(xk+1; zk)�Pn+�(xk; zk) � �1:1 min(�r nn+ �2 ; 1��)+ (1:1�)22(1� 1:1�) :Therefore, upon choosing � = 0:43 and � = 0:25, Theorem 4.9 is still validfor � > 0:04. As a result, the following modi�ed primal algorithm can bedeveloped.Algorithm 5.1 Given x0 2 �Fp and (y0; s0) 2 �Fd. Let z0 = bT y0 and D0 =X0. Set � = 0:25 and k := 0;while (sk)Txk � � do1. For j = 1; : : : ; n, if dkj =xkj 62 [1=1:1; 1:1] then dkj = xkj . Let D := Dk.Then, compute y(zk) of (5.2), s(zk) of (4.12), p(zk) of (4.11) andp̂(zk) of (5.1).2. Set yk+1 = y(�z), sk+1 = s(�z), zk+1 = bT yk+1 where�z = arg minz�zk  n+�(xk; s(z)):3. Let xk+1 = xk � �Dp̂(zk+1)=kp̂(zk+1)k.4. Set Dk+1 = Dk and k := k + 1, and return to Step 1.The inverse of the normal matrix AD2AT in (5.2) can be calculatedusing a rank-one updating technique whenever dj is changed, and each up-date uses O(n2) arithmetic operations. Now we estimate the total numberof updates needed before the algorithm terminates. LetIt = (i : dtjxtj 62 [1=1:1; 1:1]) :



128 CHAPTER 5. WORST-CASE ANALYSISThen, the computation work in the tth iteration is O(n2jItj) operations,where jI j denotes the number of elements in set I . Thus, the total op-erations up to the kth iteration is O(n3 + n2Pkt=1 jItj), where n3 in theestimate is the amount of work at the initial iteration t = 0. We have thefollowing lemma to bound this estimate.Lemma 5.1 In Algorithm 5.1,k(Dt)�1(xt � dt)k1 � 0:1 for any t = 0; 1; ::::and kXt=1 jItj � 11 kXt=1 k(Dt�1)�1(xt � xt�1)k1:Proof. The proof of the �rst inequality is straightforward. Let�t = k(Dt)�1(xt � dt)k1 for t = 0; 1; ::::Then, for t = 1; 2; :::�t = Xi2It jxti � dtijdti +Xi62It jxti � dti jdti= Xi62It jxti � dt�1i jdt�1i� Xi2It( jxti � dt�1i jdt�1i � 111) +Xi62It jxti � dt�1i jdt�1i= k(Dt�1)�1(xt � dt�1)k1 � jItj=11= k(Dt�1)�1(xt � xt�1 + xt�1 � dt�1)k1 � jItj=11� k(Dt�1)�1(xt � xt�1)k+ k(Dt�1)�1(xt�1 � dt�1)k1 � jItj=11= k(Dt�1)�1(xt � xt�1)k1 + �t�1 � jItj=11:Thus, we havekXt=1 jItj=11 � kXt=1 �k(Dt�1)�1(xt � xt�1)k1 + �t�1 � �t�= �0 � �k + kXt=1 k(Dt�1)�1(xt � xt�1)k1:Since �0 = 0 and �k � 0, we have the desired result.



5.2. TERMINATION 1292From the update in Step 3 of Algorithm 5.1 we havek(Dt�1)�1(xt � xt�1)k � �;for t = 1; 2; :::, which implies thatk(Dt�1)�1(xt � xt�1)k1 � �pn:Hence kXt=1 jItj � 11k�pn:If k is about O(pn log(R=�)), then the total number of rank-one updates isbounded byO(n log(R=�)) and the total number of operations by O(n3 log(R=�)).To summarize, we haveTheorem 5.2 Let � = pn and  n+�(x0; s0) � O(pn logR). Then, Algo-rithm 5.1 terminates in O(pn log(R=�)) iterations and uses O(n3 log(R=�))total arithmetic operations.5.2 TerminationWe now turn our attention to the termination of interior-point algorithms,the object of a great deal of research e�orts. These e�orts resulted in fourbasic approaches.� The �rst is the standard puri�cation procedure to �nd a feasible ver-tex whose objective value is at least as good as the current interiorpoint. This approach can be done in strongly polynomial time whenusing the simplex method, and it works for LP with real number data.One di�culty which arises with this method is that many non-optimalvertices may be close to the optimal face, and the simplex method stillrequires many pivot steps for some \bad" problems. Moreover, the(simplex) puri�cation procedure is sequential in nature.� The second is a theoretical e�ort to identify an optimal basis. Atest procedure was also developed to show that, if the LP problemis nondegenerate, the unique optimal basis can be identi�ed beforethe worst-case time bound. The procedure seemed to work �ne forsome LP problems but it has di�culty with degenerate LP problems.Unfortunately, most real LP problems are degenerate. The di�cultyarises simply because any degenerate LP problem has multiple opti-mal bases.



130 CHAPTER 5. WORST-CASE ANALYSIS� The third approach is to slightly randomly perturb the data such thatthe new LP problem is nondegenerate and its optimal basis remainsone of the optimal bases of the original LP problem. Questions remainon how and when to randomize the data during the iterative process,decisions which signi�cantly a�ect the success of the e�ort.� The fourth approach is to guess the optimal face and to �nd a feasiblesolution on the face. It consists of two phases: the �rst phase usesinterior point algorithms to identify the complementarity partition(P �; Z�), and the second phase solves two linear feasibility problemsto �nd the optimal primal and dual solutions. One can use the solu-tion resulting from the �rst phase as a starting point for the secondphase.In this section we develop a termination procedure to obtain an exactsolution on the interior of the optimal face. We shall see that (i) the ter-mination criterion is guaranteed to work in �nite time, (ii) the projectionprocedure (solving a least-squares problem) is strongly polynomial and canbe e�ciently performed in parallel, and (iii) the approach identi�es theoptimal face, which is useful in sensitivity analysis.It has been noticed in practice that many interior-point algorithms gen-erate a sequence of solutions converging to a strictly complementary solu-tion for linear programming. It was subsequently proved that numerousinterior-point algorithms for linear programming indeed generate solutionsequences that converge to strictly complementary solutions, or interiorsolutions on the optimal face. Recall that the primal optimal face is
p = fxP� : AP�xP� = b; xP� � 0g;and the one for the dual is
d = f(y; sZ�) : ATP�y = cP� ; sZ� = cZ� �ATZ�y � 0g;where (P �; Z�) is the strict complementarity partition of the LP problem.Note that these faces have strictly feasible solutions. De�ne�p(A; b; c) := minj2P�fmaxxP�2
p xjg > 0;�d(A; b; c) := minj2Z�fmax(y;sZ� )2
d sjg > 0;�(A; b; c) := minf�p(A; b; c); �d(A; b; c)g > 0: (5.3)5.2.1 Project an interior point onto the optimal faceTo measure the magnitude of positivity of a point x 2 Rn+, we let �(x) bethe support, i.e., index set of positive components in x, that is,�(x) = fi : xi > 0g :



5.2. TERMINATION 131We �rst prove the following theorem.Theorem 5.3 Given an interior solution xk and sk in the solution se-quence generated by any of interior-point algorithms possessing property(5.7) below, de�ne �k = fj : xkj � skj g:Then, for K = O(pn(log(R=�2(A; b; c)) + logn)) we have�k = P � for all k � K:Proof. For simplicity, we use � = �(A; b; c). For a given j 2 P �, let (x�; s�)be a complementarity solution such that x�j is maximized on the primaloptimal face 
p, i.e, x�j � �p(A; b; c) � �. Since(xk � x�)T (sk � s�) = 0;Xi2P� x�i ski + Xi2Z� s�i xki = (xk)T sk: (5.4)Thus, if (xk)T sk < �, then skj � (xk)T skx�j < �=�: (5.5)On the other hand, inequality (5.4) can be written asXi2P� x�ixki (xki ski ) + Xi2Z� s�iski (xki ski ) = (xk)T sk: (5.6)Almost all interior-point algorithms generate a solution sequence (or sub-sequence) (xk ; sk) such thatmin(Xksk)(xk)T sk > n��; (5.7)where � is a positive constant. Thus, from (5.6) and (5.7) we havex�jxkj (xkj skj ) < (xk)T sk;or xkjx�j > xkj skj(xk)T sk � n��;



132 CHAPTER 5. WORST-CASE ANALYSISor xkj > n��x�j � n���: (5.8)Thus, if � � n���2, recalling (5.5) we must haveskj < �=� � n��� < xkj :Similarly, we can prove this result for each j 2 P �. Moreover, for eachj 2 Z�, xkj < �=� � n��� < skj :Due to the polynomial bound of these interior-point algorithms, inO(pn(log(R=�2) + logn)) iterations we shall have(xk)T sk � � = n���2:This concludes the proof of the theorem. 2In practice, we don't wait to see if �k = P �. In the following we developa projection procedure to test if �k = P � and if an exactly optimal solutioncan be reached. For simplicity, let P = �k and the rest be Z. Then wesolve (PP ) minimize k(XkP )�1(xP � xkP )ksubject to APxP = b;and (DP ) minimize k(SkZ)�1ATZ(y � yk)ksubject to ATP y = cP :Without loss of generality we assume that AP has full row rank. Thesetwo problems can be solved as two least-squares problems. The amountof work is equivalent to the computation in one iteration of interior-pointalgorithms. Furthermore, if the resulting solutions x�P and y� satisfyx�P > 0 and s�Z = cZ �ATZy� > 0;then obviously x� = (x�P ; 0) and y� are (exact) optimal solutions for theoriginal LP problems, and �k = P � (Figure 5.1).Let dx = (XkP )�1(xP �xkP ) and dy = y�yk and ds = (SkZ)�1ATZ(y�yk).Then, the two problems can be rewritten as(PP ) minimize kdxksubject to APXkP dx = b�APxkP = AZxkZ ;
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Figure 5.1: Illustration of the projection of yk onto the dual optimal faceand (DP ) minimize k(SkZ)�1ATZdyksubject to ATP dy = cP �ATP yk = skP :Thus, if both kdxk1 and kdsk1 are less than 1, we must have xP > 0 andsZ = cZ � ATZy > 0. Since �k ! P � from the proof of Theorem 5.3 andthe right-hand sides of the constraints of both problems converge to zeroas (xk)T sk ! 0, kdxk and kdsk must converge to zero. After �k = P = P �,both (PP) and (PD) are feasible. Note that the solutions of (PP) and (PD)ared�x = XkPATP (AP (XkP )2ATP )�1AZxkZ and d�s = (SkZ)�1ATZ(APATP )�1AP skP :Thus,kd�xk1= kXkPATP (AP (XkP )2ATP )�1APXkP (XkP )�1ATP (APATP )�1AZxkZk1� kXkPATP (AP (XkP )2ATP )�1APXkP kk(XkP )�1ATP (APATP )�1AZxkZk1� k(XkP )�1ATP (APATP )�1AZxkZk1� k(XkP )�1kkATP (APATP )�1AZkkxkZk1:Let �(A; b; c) = max(1; kATP�(AP�ATP�)�1AZ�k):Then, if �k = P = P � and min(xkP ) > �(A; b; c)max(xkZ),kd�xk1 < 1 which implies that x�P > 0:



134 CHAPTER 5. WORST-CASE ANALYSISSimilarly, when min(skZ) > �(A; b; c)max(skP ) thenkd�sk1 � 1 which implies that s�P > 0:Recall (5.5) that each component of xkZ and skP is less than �=�(A; b; c)and (5.8) that each component of xkP and skZ is greater than �(A; b; c)n��.This essentially shows that inO�pn�log(R�(A; b; c)�2(A; b; c) ) + logn��iterations the above projection procedure will succeed in generating thecomplementarity partition and an exact optimal solution pair. To summa-rize, we have a condition-based complexity bound.Theorem 5.4 All O(pn log(R=�))-iteration polynomial-time interior-pointalgorithms discussed earlier, coupled with the termination procedure, willgenerate an optimal solution in O(pn(log(R�(A; b; c)=�2(A; b; c)) + logn))iterations and O(n3(log(R�(A; b; c)=�2(A; b; c)) + logn)) arithmetic opera-tions. If the LP problem has integral or rational data, thenR � 2L; �(A; b; c) � 2L; and �(A; b; c) � 2�L;where L is the size of the LP data. Thus, �k = P � and an exact solutionwill be generated in O(pnL) iterations and O(n3L) operations.When an interior solution x�P , P = P �, on the primal optimal face isobtained, it can be cornered to a basic solution in no more than n � mpivot operations. For example, if j�(x�P )j � m, then x� is a basic solution;otherwise, we do the following. Find any nonzero direction dP in the nullspace of P , i.e., AP dP = 0:(If the secondary objective exists, we may set dP as the projection to the nullspace of AP from the secondary objective vector.) Note that the null spacewas already available when the test procedure was performed. Assumemax(dP ) > 0 (otherwise, let dP = �dP ). Then assignx�P := x�P � �dP ;where � is chosen such that x�P � 0 but at least one of its componentsbecomes zero. Delete the corresponding column from AP . This process canbe continued until j�(x�P )j � m, i.e., a basic solution is obtained. Also notethat the next null space can be updated from the previous one in O(m2)arithmetic operations. The total number of required pivots in the processis at most j�(x�P� )j �m � n�m.



5.3. INITIALIZATION 1355.3 InitializationMost interior-point algorithms have to start at a strictly feasible point. Thecomplexity of obtaining such an initial point is the same as that of solvingthe LP problem itself. More importantly, a complete LP algorithm shouldaccomplish two tasks: 1) a�rmatively detect the infeasibility or unbound-edness status of the LP problem, then 2) generate an optimal solution ifthe problem is neither infeasible nor unbounded.Several approaches have been proposed to resolve these issues:� Combining the primal and dual into a single linear feasibility problem.Theoretically, this approach can retain the currently best complexityresult. Practically, the disadvantage of this approach is the doubleddimension of the system of equations which must be solved at eachiteration.� The big M method, i.e., add one or more arti�cial column(s) and/orrow(s) and a huge penalty parameterM to force solutions to becomefeasible during the algorithm. Theoretically, this approach holds thebest complexity. The major disadvantage of this approach is the nu-merical problems caused by the addition of coe�cients of magnitude.It also makes the algorithms slow to converge. This disadvantagealso occurs in the primal-dual \exterior" or \infeasible" algorithm. Apolynomial complexity can be established for this approach if the LPproblem possesses an optimal solution and if the initial point is setto Me. Thus, the big M di�culty even remains in these polynomialinfeasible interior-point algorithms.� Phase I-then-Phase II method, i.e., �rst try to �nd a feasible point(and possibly one for the dual problem), and then start to look for anoptimal solution if the problem is feasible and bounded. Theoretically,this approach can maintain the polynomial complexity result. Themajor disadvantage of this approach is that the two (or three) relatedLP problems are solved sequentially.� Combined Phase I-Phase II method, i.e., approach feasibility andoptimality simultaneously. To our knowledge, the currently \best"complexity of this approach is O(n log(R=�)). Other disadvantages ofthe method include the assumption of non-empty interior and/or theuse of the big M lower bound. Also, the method works exclusively ineither the primal or the dual form.In this section, we present a homogeneous and self-dual (HSD) LP al-



136 CHAPTER 5. WORST-CASE ANALYSISgorithm to overcome the di�culties mentioned above. The algorithm pos-sesses the following features:� It solves the linear programming problem without any regularity as-sumption concerning the existence of optimal, feasible, or interiorfeasible solutions, while it retains the currently best complexity re-sult� It can start at any positive primal-dual pair, feasible or infeasible,near the central ray of the positive orthant (cone), and it does notuse any big M penalty parameter or lower bound.� Each iteration solves a system of linear equations whose dimension isalmost the same as that solved in the standard (primal-dual) interior-point algorithms.� If the LP problem has a solution, the algorithm generates a sequencethat approaches feasibility and optimality simultaneously; if the prob-lem is infeasible or unbounded, the algorithm will produce an infea-sibility certi�cate for at least one of the primal and dual problems.5.3.1 A HSD linear programOur algorithm is based on the construction of a homogeneous and self-duallinear program related to (LP) and (LD). We now brie
y explain the twomajor concepts, homogeneity and self-duality, used in our construction.In the context of interior-point algorithms, the idea of attacking astandard-form LP by solving a related homogeneous arti�cial linear pro-gram can be traced to many earlier works. (By a homogeneous linearprogram, we do not mean that all constraints must be homogeneous, orequivalently all right-hand sides zero. We allow a single inhomogeneousconstraint, often called a normalizing constraint.) Karmarkar's originalcanonical form is a homogeneous linear program. One advantage of work-ing in the homogeneous form is that we don't need to be concerned aboutthe magnitude of solutions, since a solution is represented by a ray whosequality is scale-invariant. A disadvantage is that these related homogeneousproblems, especially if they do not use any big M parameters, usually in-volve combining the primal and dual constraints and thus usually lead toalgorithms requiring the solution of linear systems roughly twice as largeas other methods.Self-dual linear programs, meaning that the dual of the problem is equiv-alent to the primal, were introduced many years ago. We state the form



5.3. INITIALIZATION 137of such problems, with inequality constraints, and their properties in thefollowing result, whose proof is omitted.Proposition 5.5 Let ~A 2 Rp�p be skew-symmetric, and let ~b = �~c 2 Rp.Then the problem (SDP ) minimize ~cT ~usubject to ~A~u � ~b; ~u � 0;is equivalent to its dual. Suppose that (SDP) has a feasible solution ~u. Then~u is also feasible in the dual problem, and the two objective values sum tozero. Moreover, in this case (SDP) has an optimal solution, and its optimalvalue is zero.The advantage of self-duality is that we can apply a primal-dual interior-point algorithm to solve the self-dual problem without doubling the dimen-sion of the linear system solved at each iteration.We now present a homogeneous and self-dual (arti�cial) linear program(HSDP) relating (LP) and (LD). Given any x0 > 0, s0 > 0, and y0, we letn0 = (x0)T s0 + 1 and formulate(HSDP ) min n0�s.t. Ax �b� +�b� = 0;�AT y +c� ��c� � 0;bT y �cTx +�z� � 0;��bT y +�cTx ��z� = �n0;y free; x � 0; � � 0; � free;where�b = b�Ax0; �c = c�AT y0 � s0; �z = cTx0 + 1� bTy0: (5.9)Here �b, �c, and �z represent the \infeasibility" of the initial primal point, dualpoint, and primal-dual \gap," respectively.Note that the top three constraints in (HSDP), with � = 1 and � =0, represent primal and dual feasibility (with x � 0) and reversed weakduality, so that they de�ne primal and dual optimal solutions. Making� a homogenizing variable adds the required dual variable to the thirdconstraint. Then, to achieve feasibility for x = x0; (y; s) = (y0; s0), we addthe arti�cial variable � with appropriate coe�cients, and then the fourthconstraint is added to achieve self-duality.Denote by s the slack vector for the second constraint and by � theslack scalar for the third constraint. Denote by Fh the set of all points(y; x; �; �; s; �) that are feasible for (HSDP). Denote by F0h the set of strictly



138 CHAPTER 5. WORST-CASE ANALYSISfeasible points with (x; �; s; �) > 0 in Fh. Note that by combining theconstraints, we can write the last (equality) constraint as(s0)Tx+ (x0)T s+ � + �� n0� = n0; (5.10)which serves as a normalizing constraint for (HSDP). Also note that theconstraints of (HSDP) form a skew-symmetric system, which is basicallywhy it is a self-dual linear program.With regard to the selection of (x0; y0; s0), note that if x0 (respectively,(y0; s0)) is feasible in (LP) ((LD)), then �b (�c) is zero, and then every feasiblesolution to (HSDP) with � > 0 has x=� feasible in (LP) ((y; s)=� feasiblein (LD)). Conversely, if �z < 0, then every feasible solution to (HSDP) with� > 0 and � > 0 has cTx� bT y � �z� < 0, so either x=� or (y; s)=� must beinfeasible.Now let us denote by (HSDD) the dual of (HSDP). Denote by y0 the dualmultiplier vector for the �rst constraint, by x0 the dual multiplier vectorfor the second constraint, by � 0 the dual multiplier scalar for the thirdconstraint, and by �0 the dual multiplier scalar for the fourth constraint.Then, we have the following result.Theorem 5.6 Consider problems (HSDP) and (HSDD).i) (HSDD) has the same form as (HSDP), i.e., (HSDD) is simply (HSDP)with (y; x; �; �) being replaced by (y0; x0; � 0; �0).ii) (HSDP) has a strictly feasible pointy = y0; x = x0 > 0; � = 1; � = 1; s = s0 > 0; � = 1:iii) (HSDP) has an optimal solution and its optimal solution set is bounded.iv) The optimal value of (HSDP) is zero, and(y; x; �; �; s; �) 2 Fh implies that n0� = xT s+ ��:v) There is an optimal solution (y�; x�; ��; �� = 0; s�; ��) 2 Fh such that� x� + s��� + �� � > 0;which we call a strictly self complementary solution. (Similarly, wesometimes call an optimal solution to (HSDP) a self-complementarysolution; the strict inequalities above need not hold.)



5.3. INITIALIZATION 139Proof. In what follows, denote the slack vector and scalar in (HSDD) by s0and �0, respectively. The proof of (i) is based on the skew-symmetry of thelinear constraint system of (HSDP). We omit the details. Result (ii) can beeasily veri�ed. Then (iii) is due to the self-dual property: (HSDD) is alsofeasible and it has non-empty interior. The proof of (iv) can be constructedas follows. Let (y; x; �; �; s; �) and (y0; x0; � 0; �0; s0; �0) be feasible points for(HSDP) and (HSDD), respectively. Then the primal-dual gap isn0(� + �0) = xT s0 + sTx0 + ��0 + �� 0:Let (y0; x0; � 0; �0; s0; �0) = (y; x; �; �; s; �), which is possible since any feasiblepoint (y0; x0; � 0; �0; s0; �0) of (HSDD) is a feasible point of (HSDP) and viceversa. Thus, we have (iv). Note that (HSDP) and (HSDD) possess astrictly complementary solution pair: the primal solution is the solution for(HSDP) in which the number of positive components is maximized, and thedual solution is the solution for (HSDD) in which the number of positivecomponents is maximized. Since the supporting set of positive componentsof a strictly complementary solution is invariant and since (HSDP) and(HSDD) are identical, the strictly complementary solution (y�; x�; ��; �� =0; s�; ��) for (HSDP) is also a strictly complementary solution for (HSDD)and vice versa. Thus, we establish (v). 2Henceforth, we simply choosey0 = 0; x0 = e; and s0 = e: (5.11)Then, n0 = n+ 1 and (HSDP) becomes(HSDP ) min (n+ 1)�s.t. Ax �b� +�b� = 0;�AT y +c� ��c� � 0;bT y �cTx +�z� � 0;��bT y +�cTx ��z� = �(n+ 1);y free; x � 0; � � 0; � free;where �b = b�Ae; �c = c� e; and �z = cT e+ 1: (5.12)Again, combining the constraints we can write the last (equality) constraintas eTx+ eT s+ � + �� (n+ 1)� = n+ 1: (5.13)



140 CHAPTER 5. WORST-CASE ANALYSISSince �� = 0 at every optimal solution for (HSDP), we can see the normal-izing e�ect of equation (5.13) for (HSDP).We now relate optimal solutions to (HSDP) to those for (LP) and (LD).Theorem 5.7 Let (y�; x�; ��; �� = 0; s�; ��) be a strictly self complemen-tary solution for (HSDP).i) (LP) has a solution (feasible and bounded) if and only if �� > 0. In thiscase, x�=�� is an optimal solution for (LP) and (y�=��; s�=��) is anoptimal solution for (LD).ii) (LP) has no solution if and only if �� > 0. In this case, x�=�� ors�=�� or both are certi�cates for proving infeasibility: if cTx� < 0then (LD) is infeasible; if �bT y� < 0 then (LP) is infeasible; and ifboth cTx� < 0 and �bT y� < 0 then both (LP) and (LD) are infeasible.Proof. If (LP) and (LD) are both feasible, then they have a complementarysolution pair �x and (�y; �s) for (LP) and (LD), such that(�x)T �s = 0:Let � = n+ 1eT �x+ eT �s+ 1 > 0:Then one can verify (see (5.13)) that~y� = ��y; ~x� = ��x; ~�� = �; ~�� = 0; ~s� = ��s; ~�� = 0is a self-complementary solution for (HSDP). Since the supporting set ofa strictly complementary solution for (HSDP) is unique, �� > 0 at anystrictly complementary solution for (HSDP).Conversely, if �� > 0, then �� = 0, which implies thatAx� = b��; AT y� + s� = c��; and (x�)T s� = 0:Thus, x�=�� is an optimal solution for (LP) and (y�=��; s�=��) is an optimalsolution for (LD). This concludes the proof of the �rst statement in thetheorem.Now we prove the second statement. If one of (LP) and (LD) is infeasible, say (LD) is infeasible, then we have a certi�cate �x � 0 such thatA�x = 0 and cT �x = �1. Let (�y = 0; �s = 0) and� = n+ 1eT �x+ eT �s+ 1 > 0:



5.3. INITIALIZATION 141Then one can verify (see (5.13)) that~y� = ��y; ~x� = ��x; ~�� = 0; ~�� = 0; ~s� = ��s; ~�� = �is a self-complementary solution for (HSDP). Since the supporting set ofa strictly complementary solution for (HSDP) is unique, �� > 0 at anystrictly complementary solution for (HSDP).Conversely, if �� = 0, then �� > 0, which implies that cTx� � bT y� < 0,i.e., at least one of cTx� and �bTy� is strictly less than zero. Let us saycTx� < 0. In addition, we haveAx� = 0; AT y� + s� = 0; (x�)T s� = 0 and x� + s� > 0:From Farkas' lemma, x�=�� is a certi�cate for proving dual infeasibility.The other cases hold similarly. 2From the proof of the theorem, we deduce the followingCorollary 5.8 Let (�y; �x; �� ; �� = 0; �s; ��) be any optimal solution for (HSDP).Then if �� > 0, either (LP) or (LD) is infeasible.5.3.2 Solving (HSD)The following theorem resembles the central path analyzed for (LP) and(LD).Theorem 5.9 Consider problem (HSDP).i) For any � > 0, there is a unique (y; x; �; �; s; �) in F0h such that� Xs�� � = �e:ii) Let (dy; dx; d� ; d�; ds; d�) be in the null space of the constraint matrix of(HSDP) after adding surplus variables s and �, i.e.,Adx �bd� +�bd� = 0;�AT dy +cd� ��cd� �ds = 0;bT dy �cT dx +�zd� �d� = 0;��bTdy +�cT dx ��zd� = 0: (5.14)Then (dx)T ds + d�d� = 0:



142 CHAPTER 5. WORST-CASE ANALYSISProof. For any � > 0, there is a unique feasible point (y; x; �; �; s; �) for(HSDP) and a unique feasible point (y0; x0; � 0; �0; s0; �0) for (HSDD) suchthat Xs0 = �e; Sx0 = �e; ��0 = �; �� 0 = �:However, if we switch the positions of (y; x; �; �; s; �) and (y0; x0; � 0; �0; s0; �0)we satisfy the same equations. Thus, we must have(y0; x0; � 0; �0; s0; �0) = (y; x; �; �; s; �);since (HSDP) and (HSDD) have the identical form. This concludes theproof of (i) in the theorem.The proof of (ii) is simply due to the skew-symmetry of the constraintmatrix. Multiply the �rst set of equations by dTy , the second set by dTx , thethird equation by d� and the last by d� and add. This leads to the desiredresult. 2We see that Theorem 5.9 de�nes an endogenous path within (HSDP):C = �(y; x; �; �; s; �) 2 F0h : � Xs�� � = xT s+ ��n+ 1 e;�which we may call the (self-)central path for (HSDP). Obviously, if X0s0 =e, then the initial interior feasible point proposed in Theorem 5.6 is on thepath with � = 1. Our choice (5.11) for x0 and s0 satis�es this requirement.We can de�ne a neighborhood of the path asN (�) = �(y; x; �; �; s; �) 2 F0h : k� Xs�� �� �ek � ��;where � = xT s+ ��n+ 1 �for some � 2 (0; 1). Note that from statement (iv) of Theorem 5.6 we have� = � for any feasible point in Fh.Since the (HSDP) model constructed and analyzed does not rely on anyparticular algorithm for solving it, we may use any interior-point algorithm,as long as it generates a strictly complementary solution. Given an interiorfeasible point (yk; xk; �k; �k; sk; �k) 2 F0h, consider solving the followingsystem of linear equations for (dy; dx; d� ; d�; ds; d�):(dy; dx; d� ; d�; ds; d�) satis�es (5.14);� Xkds + Skdx�kd� + �kd� � = 
�ke�� Xksk�k�k � : (5.15)



5.3. INITIALIZATION 143In what follows we apply the predictor-corrector algorithm in Chapter 4 tosolving (HSDP):Predictor Step. For any even number k, we have (yk; xk ; �k; �k; sk; �k) 2N (�) with � = 1=4. We solve the linear system (5.14,5.15) with 
 = 0.Then let y(�) := yk + �dy ; x(�) := xk + �dx;�(�) := �k + �d� ; �(�) := �k + �d�;s(�) := sk + �ds; �(�) := �k + �d�:We determine the step size using�� := max f� : (y(�); x(�); �(�); �(�); s(�); �(�)) 2 N (2�)g : (5.16)Then compute the next points by yk+1 = y(��), xk+1 = x(��), �k+1 = �(��),�k+1 = �(��), sk+1 = s(��), and �k+1 = �(��).Corrector Step. For any odd number k, we solve the linear system(5.14,5.15) with 
 = 1. Then let yk+1 = yk + dy, xk+1 = xk + dx,�k+1 = �k + d� , �k+1 = �k + d�, sk+1 = sk + ds, and �k+1 = �k + d�.We have (yk+1; xk+1; �k+1; �k+1; sk+1; �k+1) 2 N (�):Termination. We use the termination technique described earlier to ter-minate the algorithm. De�ne �k be the index set fj : xkj � skj ; j =1; 2; :::; ng, and let P = �k and the rest be Z. Then, we again use aleast-squares projection to create an optimal solution that is strictly self-complementary for (HSDP).Case 1: If �k � �k, we solve for y, xP , and � frommin k(SkZ)�1ATZ(yk � y)k2 +k(XkP )�1(xkP � xP )k2s.t. APxP = b�k;�ATP y = �cP �k ;otherwise,Case 2: �k < �k, and we solve for y and xP frommin k(SkZ)�1ATZ(yk � y)k2 +k(XkP )�1(xkP � xP )k2s.t. APxP = 0;�ATP y = 0;bT y �cTPxP = �k:This projection guarantees that the resulting x�P and s�Z (s�Z = cZ�k �ATZy� in Case 1 or s�Z = �ATZy� in Case 2) are positive, as long as (xk)T sk+�k�k is reduced to be su�ciently small by the algorithm according to ourdiscussion in the preceding section on termination.



144 CHAPTER 5. WORST-CASE ANALYSISTheorem 5.10 The O(pn log(R=�)) interior-point algorithm, coupled withthe termination technique described above, generates a strictly self comple-mentary solution for (HSDP) in O(pn(log(c(A; b; c)) + logn)) iterationsand O(n3(log(c(A; b; c)) + logn)) operations, where c(A; b; c) is a positivenumber depending on the data (A; b; c). If (LP) and (LD) have integerdata with bit length L, then by the construction, the data of (HSDP) re-mains integral and its length is O(L). Moreover, c(A; b; c) � 2L. Thus, thealgorithm terminates in O(pnL) iterations and O(n3L) operations.Now using Theorem 5.7 we obtainCorollary 5.11 Within O(pn(log(c(A; b; c)) + logn)) iterations andO(n3(log(c(A; b; c)) + logn)) operations, where c(A; b; c) is a positive num-ber depending on the data (A; b; c), the O(pn log(R=�)) interior-point al-gorithm, coupled with the termination technique described above, generateseither optimal solutions to (LP) and (LD) or a certi�cate that (LP) or (LD)is infeasible. If (LP) and (LD) have integer data with bit length L, thenc(A; b; c) � 2L.Again, c(A; b; c) plays the condition number for the data set (A; b; c).Note that the algorithm may not detect the infeasibility status of both(LP) and (LD). Consider the example whereA = � �1 0 0 � ; b = 1; and c = � 0 1 �1 � :Then,y� = 2; x� = (0; 2; 1)T ; �� = 0; �� = 0; s� = (2; 0; 0)T ; �� = 1could be a strictly self-complementary solution generated for (HSDP) withcTx� = 1 > 0; bT y� = 2 > 0:Thus (y�; s�) demonstrates the infeasibility of (LP), but x� doesn't showthe infeasibility of (LD). Of course, if the algorithm generates instead x� =(0; 1; 2)T , then we get demonstrated infeasibility of both.5.3.3 Further analysisIn practice, we may wish to stop the algorithm at an approximate solution.Thus, we wish to analyze the asymptotic behavior of �k vs. �k.Theorem 5.12 . If (LP) possesses an optimal solution, then�k � 1� 2�(eT �x+ eT �s+ 1) for all k



5.3. INITIALIZATION 145where �x and (�y; �s) are any optimal solution pair for (LP) and (LD); other-wise, �k � 1� 2�(eT �x+ eT �s+ 1) for all kwhere �x and (�y; �s) are any certi�cate for proving the infeasibility of (LP)or (LD), and moreover,1� 2�2(n+ 1) � 1� 2��k � �k�k � 1 + 2��k � (eT �x+ eT �s+ 1)(1 + 2�)(1� 2�) for all kwhere � is a �xed positive number independent of k.Proof. Note that the sequence generated by the predictor-corrector algo-rithm is in N (2�). Note thaty� = ��y; x� = ��x; �� = �; �� = 0; s� = ��s; �� = 0;where � = n+ 1eT �x+ eT �s+ 1 > 0;is a self-complementary solution for (HSDP). Now we use(xk � x�)T (sk � s�) + (�k � ��)(�k � ��) = 0;which follows by subtracting the constraints of (HSDP) for (y�; : : : ; ��) fromthose for (yk; : : : ; �k) and then multiplying by ((yk � y�)T ; : : : ; �k � �k).This can be rewritten as(xk)T s� + (sk)Tx� + �k�� = (n+ 1)�k = (n+ 1)�k:Thus, �k � �k�k(n+ 1)�k �� � 1� 2�n+ 1 �� = 1� 2�(eT �x+ eT �s+ 1) :The second statement follows from a similar argument. We know thatthere is an optimal solution for (HSDP) with�� � n+ 1(eT �x+ eT �s+ 1) > 0:Thus �k � 1� 2�(eT �x+ eT �s+ 1)for all k. In addition, from relation (5.13) we have �k � (n+1)+(n+1)�k �2(n+ 1) for all k.



146 CHAPTER 5. WORST-CASE ANALYSIS2Theorem 5.12 indicates that either �k stays bounded away from zerofor all k, which implies that (LP) has an optimal solution, or �k and �kconverge to zero at the same rate, which implies that (LP) does not havean optimal solution. In practice, for example, we can adopt the followingtwo convergence criteria:� (xk=�k)T (sk=�k) � �1, and (�k=�k)k(�b; �c)k � �2,� �k � �3.Here �1, �2, and �3 are small positive constants. Since both (xk)T sk +�k�k and �k decrease by at least (1 � 1=pn+ 1) in every two iterations,one of the above convergence criteria holds in O(pnt) iterations for t =maxfln((x0)T s0=(�1�23)); ln(k�b; �ck=(�2�3)g. If the algorithm terminates bythe �rst criterion then we get approximate optimal solutions of (LP) and(LD); otherwise we detect that (LP) and (LD) have no optimal solutionssuch that k(�x; �s)k1 � (1� 2�)=�3 � 1 from Theorem 5.12.5.3.4 ImplementationFrom the implementation point of view, each iteration of our algorithmsolves the linear system (5.14,5.15). It can be shown thatd� = 
 � 1:Then eliminating ds and d�, we face the KKT system of linear equations:0@ XkSk �XkAT Xkc�kAXk 0 ��kb��kcTXk �kbT �k�k 1A0@ (Xk)�1dxdy(�k)�1d� 1A= 0BB@ 
�ke�Xksk0
�k � �k�k0 1CCA+ (1� 
)0@ �Xk�c�b�k�z 1A :Thus, the dimension of the system is increased only by 1 over the casewhen strictly feasible points for both (LP) and (LD) are known and usedfor starting primal-dual interior-point algorithms. It seems that the bene�tof knowing a starting interior point is not great.



5.4. NOTES 1475.4 NotesUsing the rank-one updating technique to improve the arithmetic operationcomplexity of interior-point algorithms by a factor of pn was �rst due toKarmarkar [173]. Gonzaga [122] and Vaidya [348] used this technique toobtain the current-best LP arithmetic complexity bound O(n3L), see alsoMizuno [228] for a general treatment. Parallel worst-case complexity resultson interior-point algorithms can be seen in Goldberg, Plotkin, Shmoys andTardos [112, 113] and and Nesterov and Nemirovskii [262].The convergence behavior of various interior-point trajectories was stud-ied by Adler and Monteiro [5], G�uler [136], Lagarias [194], McLinden [212],Megiddo and Shub [219], Monteiro [236] [237], and Monteiro and Tsuchiya[245]. The analysis of identifying the optimal partition of variables at astrictly complementary solution was due to G�uler and Ye [140]. Adler andMonteiro [6], Jansen, Roos and Terlaky [158], Greenberg [131], and Mon-teiro and Mehrotra [243] provided a post-optimality analysis based on theoptimal partition of variables.The termination procedure described here was developed by Mehrotraand Ye [224]. They also reported e�ective computational results for solv-ing Netlib problems. A more recent termination or cross-over procedurefor obtaining a basic optimal solution is developed by Andersen and Ye[13], Bixby and Saltzman [51], Kortanek and Zhu [189], and Megiddo [217].Andersen and Ye proved a polynomial bound and showed its practical e�ec-tiveness. For a comprehensive survey on identifying an optimal basis andthe optimal partition, see El{Bakry, Tapia and Zhang [85].The homogeneous and self-dual algorithm is due to Mizuno, Todd andYe [386], which is based on the homogeneous model of Goldman and Tucker[118, 344]. The algorithm is simpli�ed and implemented by Xu, Hungand Ye [369] (also see Tutuncu [346]). A combined phase I and phase IIalgorithm was proposed by Anstreicher [20], also see Freund [97]. Otherinfeasible-starting algorithms, which are very popular and e�ective, weredeveloped and analyzed by Lustig [202], Kojima, Megiddo and Mizuno[180], Mizuno [230], Mizuno, Kojima and Todd [232], Potra [280], Tanabe[317], Wright [367], and Zhang [389]. These algorithms start from somex0 > 0, s0 > 0 and y0, then each iteration generates directions fromAdx = b�Axk ;�AT dy �ds = sk � c+AT yk;and Xkds + Skdx = 
�ke�Xksk:



148 CHAPTER 5. WORST-CASE ANALYSISUnder certain conditions for choosing the initial point, these algorithmshave polynomial iteration bounds (e.g. Zhang [389] and Mizuno [230]).A surface theory of all infeasible interior-point algorithms can be seen inMizuno, Todd and Ye [234].There have also been e�orts to look for lower bounds on the number ofiterations required; see Anstreicher [22], Bertsimas and Luo [46], Ji and Ye[164], Powell [283], Sonnevend, Stoer and Zhao [307, 308], and Zhao andStoer [394]. One important recent result is due to Todd [327], who obtainsa bound of at least n1=3 iterations to achieve a constant factor decrease inthe duality gap. The algorithm he studies is the primal-dual a�ne-scalingalgorithm, which is close to methods used in practical implementations. Heallows almost any reasonable step size rule, such as going 99.5% of the wayto the boundary of the feasible region, again as used in practical codes; suchstep size rules de�nitely do not lead to iterates lying close to the centralpath. The weakness of the primal-dual a�ne-scaling algorithm is that nopolynomiality or even global convergence has been established for it, exceptfor the case of very small step sizes, and practical experiments indicate thatthe algorithm alone may not perform well.Todd also showed that his lower bound extends to other polynomialprimal-dual interior-point methods that use directions, including some cen-tering component if the iterates are restricted to a certain neighborhood ofthe central path. Todd and Ye [331] further extended his result to long-step primal-dual variants that restrict the iterates to a wider neighborhood.This neighborhood seems the least restrictive while also guaranteeing poly-nomiality for primal-dual path-following methods, and the variants are evencloser to what is implemented in practice.Recently, Atkinson and Vaidya [350] used a combined logarithmic andvolumetric potential function to derive an algorithm for LP in O(n1=4m1=4L)iterations. Their algorithm is simpli�ed and improved by Anstreicher [21]and Ramaswamy and Mitchell [284].Condition-based complexity analyses could be found in Renegar [287],who developed a general condition number and ill-posedness theory for thegeneralized linear programming. See also Filipowski [91], Freund and Vera[98], and Todd and Ye [332] for a related discussion. More recently, Vavasisand Ye [362] proposed a primal-dual \layered-step" interior point (LIP)algorithm for linear programming. This algorithm follows the central path,either with short steps or with a new type of step called a \layered leastsquares" (LLS) step. The algorithm returns an exact optimum after a �nitenumber of steps; in particular, after O(n3:5c(A)) iterations, where c(A) isa function of the coe�cient matrix, which is independent of b and c. Oneconsequence of the new method is a new characterization of the centralpath: we show that it composed of at most n2 alternating straight and



5.5. EXERCISES 149curved segments. If the LIP algorithm is applied to integer data, we get asanother corollary a new proof of a well-known theorem of Tardos that linearprogramming can be solved in strongly polynomial time provided that Acontains small-integer entries. Megiddo, Mizuno and Tsuchiya [218] furtherproposed an enhanced version of the LIP algorithm.5.5 Exercises5.1 Verify inequalityPn+�(xk+1; zk)�Pn+�(xk ; zk) � �1:1 min(�r nn+ �2 ; 1� �) + (1:1�)22(1� 1:1�)in Section 5.15.2 In the termination section, prove if both kdxk1 and kdsk1 are lessthan 1, then one must have xP > 0 and sZ = cZ � ATZy > 0, which implythat �k = P �.5.3 Analyze the complexity bound if AP has no full row rank in the ter-mination procedure.5.4 Prove that if the LP problem has integral data, then�(A; b; c) � 2L and �(A; b; c) � 2�L;where L is the size of the binary LP data.5.5 Prove that the total number of required pivots in the process describedat the end of Section 5.2.1 is at most j�(x�P�)j �m � n�m.5.6 Prove Proposition 5.5.5.7 Prove Theorem 5.10 for the predictor-corrector algorithm described inSection 5.3.2.5.8 Similar to �(A; b; c) and �(A; b; c), derive an expression for the condi-tion number c(A; b; c) in Theorem 5.10. Prove that if the LP problem hasintegral data, then c(A; b; c) � 2L;where L is the size of the binary LP data.5.9 If every feasible solution of an LP problem is large, i.e., kxk is large,then the problem is near infeasible. Prove this statement using Theorem1.11.



150 CHAPTER 5. WORST-CASE ANALYSIS



Chapter 6Average-Case AnalysisThe idea of average-case analysis is to obtain rigorous probabilistic boundson the number of iterations required by an iterative algorithm to reach sometermination criterion. Although many interior point algorithms devisedin the last several years are polynomial time methods, in practice theygenerally perform much better than worst-case bounds would indicate. A\gap" between theory and practice exists that average-case analysis might(at least partially) close.There are two main viewpoints in the probabilistic analysis of algo-rithms. First one can develop randomized algorithms, and show that, on aworst-case instance of a problem, the average running time of the algorithmhas a certain bound, or the running time satis�es a certain bound with highprobability, or the running time always satis�es a certain bound and thealgorithm gives a correct answer with high probability, meaning convergingto 1 as the dimension of the problem goes to 1.Second one can consider the expected running time of a deterministicalgorithm when applied to problem instances generated according to someprobability distribution (or class of such distributions). For linear pro-gramming, researchers have provided some theoretical justi�cation for theobserved practical e�ciency of the simplex method, despite its exponentialworst-case bound. Of course, this viewpoint might be less compelling, sinceone can always argue that the distribution chosen for problem instances isinappropriate.Another minor viewpoint is the so called \one-step analysis:" at aniteration we make an nonrigorous but plausible assumption concerning thecurrent data generated by the algorithm, and then address the expectedbehavior or behavior which occurs with high probability at that iteration.The anticipated number of iterations is then de�ned to be the number of151



152 CHAPTER 6. AVERAGE-CASE ANALYSISiterations required if this behavior actually occurs at every iteration (orat least once every, say, ten iterations). This analysis is distinct from thetwo just described. As the reader will see, the assumptions we make ateach iteration can be inconsistent with one another. Nevertheless, suchan approach might add insight in the case where a more rigorous analysisseems intractable.In this chapter, we �rst develop a one-step analysis for several adaptiveinterior-point algorithms described in Section 4.5, which all have complex-ities of O(n1=2 log(1=�)) or O(n log(1=�)) iterations to attain precision �.(Here we assume, without loss of generality, that (x0)T s0 = R = 1.) Basedon the one-step analysis, we anticipate that these algorithms would onlyrequire O(n1=4 log(1=�)) or O((logn) log(1=�)) iterations, where n is thenumber of variables in (LP).We then develop a rigorous analysis, based on the second main view-point of probabilistic analysis, of interior-point algorithms coupled with thetermination procedure described in Chapter 5. We will �rst show that arandom linear feasibility problem can be solved in O(pn logn) iterationswith high probability. Using the homogeneous and self-dual algorithm de-scribed in Chapter 5, we then show that the expected number of iterationsrequired to solve a random LP problem is bounded above by O(pn logn).Let us formally de�ne high probability: an event in n-dimensional spaceis true with probability approaching one as n!1. Such an event is calleda high probability event. Note that a result based on high probabilitymay be stronger than the one based on the standard expected or averageanalysis. We �rst derive some Observations:1) Let events E1 and E2 be true with high probability. Then the eventE1 \E2 is also true with high probability.2) Let the event E1 be true with high probability, and let E1 imply E2.Then the event E2 is also true with high probability.Observation (1) can not be induced to n events. However, we haveLemma 6.1 Let n events be E1, E2,..., En and their complements be �E1,�E2,..., �En, respectively. Then, if the probabilitylimn!1 nXj=1 P ( �Ej) = 0;then E1 \E2 \ ::: \ En is true with high probability.



6.1. ONE-STEP ANALYSIS 153Proof. The proof simply followsP (E1 \E2 \ ::: \ En) � 1� nXj=1 P ( �Ej): 26.1 One-Step AnalysisConsider two adaptive interior-point algorithms in Section 4.5: the predictor-corrector and wide-neighborhood algorithms, with worst-case complexitiesO(n1=2 log(1=�)) and O(n log(1=�)) iterations to attain precision �, respec-tively. The progress will be far greater in the predictor-corrector algorithmif kPqk are typically much smaller than the bound given by Lemma 4.14.From (4.23) and (4.24), the corrector step will be much better centeredthan is guaranteed by Lemma 4.16, and the predictor step will be muchlarger than O(n�1=2) by Lemma 4.17.On the other hand, Lemma 4.14 shows that, for the wide-neighborhoodalgorithm, kPqk1 and kPqk�1 can only be bounded by a multiple of krk2,not krk21, unless an extra factor of n is introduced. But krk may be largecompared to krk1, which is related to � with (x; s) 2 N1(�). Again, ifkPqk1 and kPqk�1 are typically much smaller than the bound given byLemma 4.14, then the duality gap reduction will be far greater.For now, we noteCorollary 6.2 Consider the predictor-corrector and wide-neighborhood al-gorithms in Section 4.5.i) If at a particular iteration we have kPqk � n1=2� in the predictor step ofthe predictor-corrector algorithm, then the duality gap at that iterationwill decrease at least by a factor of (1� 21+p1+8pn ).ii) Let � and 
 be as in Theorem 4.20. If at a particular iteration ofthe wide-neighborhood algorithm we have kPqk1 � �k logn for N =N1(�) and kPqk�1 � �k logn for N = N�1(�), then the duality gapat that iteration will decrease at least by a factor (1 � �
(1�
)log n ) witheither N1(�) or N�1(�).Proof. These follow immediately from Lemmas 4.17 and 4.19, and inequal-ities (4.26) and (4.27). 2



154 CHAPTER 6. AVERAGE-CASE ANALYSIS6.1.1 High probability behaviorIn this section we provide heuristic arguments as to why we might expectkPqk, kPqk1, and kPqk�1 to be of the sizes stated in the above corollary.Recall that p and q are the projections of r 2 Rn onto the subspaces U andU? respectively. In this section we suppose r is �xed, but assume thatAssumption 6.1 U is a random subspace of Rn of dimension d := n�m,drawn from the unique distribution on such subspaces that is invariant underorthogonal transformations.Given that U is the null space of AX1=2S�1=2 =: ~A, this assumptionwould hold, for example, if each entry of the matrix ~A were independentlydrawn from a standard normal distribution. Note that such assumptions,made at di�erent iterations and hence values of X and S, are not consistentwith one another. Further, for several interior-point algorithms the asymp-totic behavior of (xk ; sk) is known, and this behavior is also inconsistentwith our assumption, see the next chapter. We will comment further on ourapproach at the end of the section. For now, we examine the consequenceson Pq of our assumption. Note that to compensate for the de�ciencies ofour assumption, the results we obtain hold with probability approachingone as n!1.We now establish the following theorem.Theorem 6.3 Let � = krk1=krk. Then, with the assumption above,i) Pr kPqk � krk24 �2�2 + 6:5n �1=2!! 1 as n!1;ii) Pr �kPqk�1 � (log(n)=n)krk2�! 1 as n!1:Before we show how these results are proved, we indicate how theyrelate to the bounds on kPqk that form the hypotheses of Corollary 6.2.In Corollary 6.2(i), we are analyzing the predictor step, so r = �(XS)1=2eand (x; s) 2 N2(1=4). Hence krk2 = xT s = n� and krk21 = kXsk1 �� + kXs � �ek � 5�=4. Thus �2 � 5=(4n) and by Theorem 6.3(i), withprobability approaching 1kPqk � krk24 �2 54n + 6:5n �1=2 = 3krk24n1=2 < n1=2�;



6.1. ONE-STEP ANALYSIS 155which is the hypothesis of Corollary 6.2(i).For Corollary 6.2(ii), we consider �rst the case whereN = N�1(�). Thenby Theorem 6.3(ii) and Lemma 4.15(iii), with probability approaching 1kPqk�1 � (log(n)=n)krk2 � log(n)�k;which gives the hypothesis of Corollary 6.2(ii) in this case. Now supposeN = N1(�). Then with high probabilitykPqk�1 � log(n)�kas above. Also, by Lemma 4.14(iii) and Lemma 4.15(iii),kPqk+1 � krk214 � (1 + �)�k4 � �k2 :Hence kPqk1 � log(n)�k with probability approaching 1, which gives thehypothesis for Corollary 6.2(ii) with N = N1(�).6.1.2 Proof of the theoremNow we indicate the proof of Theorem 6.3. The proof of (i) is long andtechnical and hence we omit it here. However, we will prove a slightlyweaker version of (i) at the end of this section.
g

r

Up

q

oFigure 6.1: Illustration of the projection of r onto a random subspace UBecause p and q are homogeneous of degree 1 in krk, we assume hence-forth without loss of generality that r is scaled so thatg = r=2 satis�es kgk = 1:



156 CHAPTER 6. AVERAGE-CASE ANALYSISLet F = (g;H) be an orthogonal n � n matrix. If we express the vector pin terms of the basis consisting of the columns of F , we getLemma 6.4 We can writep = (1 + �)g + �Hv; (6.1)where 1+�2 has a beta distribution with parameters d2 and m2 ; � =p1� �2;and v is uniformly distributed on the unit sphere in Rn�1.Proof. Since p and q are orthogonal with p + q = r, p lies on the sphereof center r=2 = g and radius kgk = 1. Thus p can be written in the form(6.1), with � = p1� �2 and kvk = 1. We need to establish that � and vhave the given distributions.Note that kpk2 = (1 + �)2 + �2 = 2(1+ �). However, we can obtain thedistribution of kpk2 directly. The invariance under orthogonal transforma-tions implies that we can alternatively take U as a �xed d-subspace, sayfx 2 Rn : xd+1 = � � � = xn = 0g, and r uniformly distributed on a sphereof radius 2. Then r can be generated as�2�1k�k ; 2�2k�k ; � � � ; 2�nk�k�T ;where � � N(0; I) in Rn (i.e., the components of � are independent normalrandom variables with mean 0 and variance 1, denoted by N(0; 1)). Butthen p = �2�1k�k ; 2�2k�k ; � � � ; 2�dk�k ; 0; � � � ; 0�T ;and kpk2 = 4(�21 + � � � + �2d)=(�21 + � � � + �2n). This has the distribution offour times a beta random variable with parameter d2 and m2 , which con�rmsthe distribution of �.Now letW be an orthogonal matrix with Wg = g. W can be thought ofas rotating the sphere with center g around its diameter from 0 to 2g = r.We can view the random d-subspace U as the null space of anm�n randommatrix �A with independent standard normal entries. The fact that p is theprojection of r onto U is then equivalent to �Ap = 0, r�p = �AT v for some v.But then ( �AW T )Wp = 0 and r�Wp =Wr�Wp = ( �AW T )T v, so thatWpis the projection of r onto U 0 = fx : ( �AW T )x = 0g. If �A has independentstandard normal entries, so does �AW T , so U 0 is also a random d-subspace.ThusWp has the same distribution as p. But writingW as HW 0HT +ggT ,where W 0 is an arbitrary orthogonal matrix of order n � 1, we see that vhas the same distribution asW 0v. Since kvk = 1, v is uniformly distributedon the unit sphere Rn�1.



6.1. ONE-STEP ANALYSIS 1572Since p+ q = r = 2g, relation (6.1) impliesq = (1� �)g � �Hv; so thatPq = �2g2 � 2��GHv � �2(Hv)2 (6.2)= �(Hv)2 + (�g � �Hv)2� �kHvk21e; (6.3)where G := diag(g), and g2, (Hv)2, and (�g � �Hv)2 denote the vectorswhose components are the squares of those of g, Hv, and �g� �Hv respec-tively.The proof of Theorem 6.3(i) proceeds by using (6.2) to evaluate kPqk2,and then analyzing all the terms in the resulting expression. The proof ofTheorem 6.3(ii) follows from (6.3) (which gives kPqk�1 � kHvk21) and thefollowing result:Lemma 6.5 Let F = [g;H ] be an orthogonal matrix. If v is uniformlydistributed on the unit sphere in Rn�1,Pr kHvk1 �r3 lognn !! 1 as n!1:Proof. Since v is uniformly distributed on the unit sphere inRn�1, it can begenerated as follows: v = �=k�k, where � � N(0; I) (the standard normaldistribution in Rn�1). Hence we wish to obtain an upper bound on kH�k1and a lower bound on k�k, both of which hold with high probability. Nowk�k2 is a �2 random variable with n� 1 degrees freedom, soE(k�k2) = n� 1;Var(k�k2) = 2(n� 1):From Chebychev's inequality, we havePr(k�k � (1� �)pn� 1)! 1 as n!1 (6.4)for any � > 0.Let �0 be a standard normal variable, and let �0 = (�0; �), also N(0; I)but in Rn. Then k�0k1 = maxf�j : j = 0; 1; 2; � � � ; n� 1g where �j = j�j jhas the positive normal distribution. Then 1�N+(x) = 2(1�N(x)) whereN+ is the distribution function of �, and N is the normal distributionfunction. It now follows from results in extreme value theory 1 thatPr�k�0k1 �p2 log(2n)�! 1 as n!1:1S. I. Resnick, Extreme Values, Regular Variation, and Point Processes, Springer-Verlag (1987), pp. 42 and 71.



158 CHAPTER 6. AVERAGE-CASE ANALYSISSince F�0 is also N(0; I),Pr�kF�0k1 �p2 log(2n)�! 1 as n!1:Now we have kH�k1 � kF�0k1 + k�0gk1:Since kgk = 1, Pr�k�0gk1 � �plogn�! 1 as n!1for any � > 0. From the above relations and (6.4), we get the result of thelemma. 2We conclude this section by showing how (6.2) and Lemma 6.5 imply aslightly weaker form of Theorem 6.3(i). Indeed, (6.2) yieldskPqk � �2kg2k+ 2j��jkgk1kHvk+ �2k(Hv)2k� kgk1kgk+ 2kgk1 + kHvk1kHvk= 3�+ kHvk1:By lemma 6.5, this is at most 3� + p3 log(n)=n with probability ap-proaching 1 as n ! 1. This bound would lead one to hope that kPqkwould be at most (n log(n))1=2� at a typical predictor step. The predictor-corrector algorithm, with the worst-case bound O(pn log(1=�)), would re-quire at most O((n log(n))1=4 log(1=�)) iterations of this type, while thewide-neighborhood algorithm, with the worst-case bound O(n log(1=�)),would require at most O((logn) log(1=�)) iterations of this type.6.2 Random-Problem Analysis IWe now develop a rigorous analysis, based on the second main viewpointintroduced at the beginning of the chapter, of interior-point algorithmscoupled with the termination procedure described in Chapter 5. We use asimple problem, the homogeneous linear feasibility problem, to illustrate theanalysis and show that a random such problem can be solved in O(pn logn)iterations with high probability.Consider �nding a feasible point for the homogeneous linear systemF = fx : Ax = 0; x � 0; x 6= 0g: (6.5)



6.2. RANDOM-PROBLEM ANALYSIS I 159We assume that A 2 Rm�n has full row-rank. Let us reformulate theproblem as a Phase I LP problemminimize zsubject to Ax + (�Ae)z = 0; eTx = 1; (x; z) � 0; (6.6)and its dualmaximize �subject to s = �AT y � e� � 0; sz = 1 + eTAT y � 0: (6.7)Obviously, LP problem (6.6) has nonempty interior, its optimal solutionset is bounded, and its optimal objective value is 0 if and only if F is non-empty. In fact, we can select an initial feasible point as x0 = e=n, z0 = 1=nfor the primal, and y0 = 0, �0 = �1, s0 = e and s0z = 1 for the dual.Thus, (x0; z0) and (y0; �0) are \centered," and the initial primal-dual gapis (1 + 1=n).We now specialize the termination procedure proposed in Chapter 5 forsolving problem (6.6). Suppose A = (AP ; AZ), whereP = fj : xkj � skj g and Z = fj : xkj < skj g:We solve the least-squares problem(PP ) minimize k(XkP )�1(xP � xkP )ksubject to AP (xP � xkP ) = AZxkZ + (�Ae)zk:and (DD) minimize k(SkZ)�1ATZ(y � yk)ksubject to ATP (y � yk) = skP :Here, we have ignored variable z and the last (normalization) equality con-straint eTx = 1 in the problem when we apply the termination projection.In particular, if A = AP , then the minimizer x� = x�P of (PP ) satis�es(Xk)�1(x� � xk) = XkAT (A(Xk)2AT )(�Ae)zk:Thus, k(Xk)�1(x� � xk)k= kXkAT (A(Xk)2AT )(�Ae)zkk= kXkAT (A(Xk)2AT )AXk(Xk)�1AT (AAT )�1(�Ae)zkk� kXkAT (A(Xk)2AT )AXkk(Xk)�1AT (AAT )�1(�Ae)zkk� k(Xk)�1AT (AAT )�1Ae(�zk)k� k(Xk)�1kkAT (AAT )�1Aekjzkj� pnzkk(Xk)�1k:



160 CHAPTER 6. AVERAGE-CASE ANALYSIS(Note that �(A; b; c) de�ned in Section 5.2.1 is less than or equal to pnhere.) This implies that if min(xk) > pnzk, then the projection x� satis�esk(Xk)�1x� � ek � pnzkk(Xk)�1k < 1; (6.8)and x� must be a point in �F .Let the optimal partition of problem (6.6) be (P �; Z�). If system (6.5)has an interior feasible point, then A = AP� and z� = 0. Using Theorem5.4 with � = 1 in (5.7), we have, when the duality gap zk � �k � �2=n2,skj < �=n2 < �=n < xkj ; j 2 P � and skj > �=n > �=n2 > xkj ; j 2 Z�;or nskj < xkj ; j 2 P � and skj > nxkj ; j 2 Z�;where recall from (5.3) that for the standard LP problem� := �(A; b; c) = minf�p; �dg:Thus, in O(pn(j log �j+logn)) iterations we have AP = A�P = A and (6.8),and therefore we generate an interior-point in �F .Consider the case that system (6.5) is empty, then the optimal valuez� = �� of problem (6.6) is positive and we can choose y = yk in (DD) andhave s = �AT yk = sk + e�k:Thus, if �k � 0, then we must have s > 0 which proves that F is emptyfrom the Farkas lemma. Note that in O(pn(j log z�j+ logn)) iterations wehave the duality gap zk � �k � z� or �k � zk � z� � 0.Let us estimate � for problem (6.6) if system (6.5) has an interior feasiblepoint �x such thatp(1=n) � �xj � p(n) for j = 1; 2; :::; n+ 1; (6.9)where p(�) is a polynomial �d for a constant d � 1. Then, for problem(6.6) we must have �p � p(1=n)=(np(n)) and �d = 1;since (�x=eT �x; 0) is a primal optimal solution and �y = 0 is a dual optimalsolution with �s = (0; 1)T . Thus, � � p(1=n)=(np(n)).On the other hand, if system (6.5) is empty then fs : s = �AT y � 0ghas an interior feasible point (�y; �s). Let (�y; �s) satisfyp(1=n) � �sj � p(n) for j = 1; 2; :::; n+ 1: (6.10)



6.2. RANDOM-PROBLEM ANALYSIS I 161Then, the dual LP problem (6.7) has a feasible point y = �y=eT �s, s = �s=eT �s,� = min(s), and sz = 0. Thus, z� � � � p(1=n)=(np(n)).To summarize, we haveTheorem 6.6 Let p(�) = �d for a constant d � 1 and let the homogeneoussystem (6.5) either have a feasible point �x satisfying (6.9) or be empty withan �s = �AT �y satisfying (6.10). Then, �nding a feasible point for system(6.5) or proving it empty can be completed in O(pn logn) iterations byan O(pn log(1=�)) interior-point algorithm, where each iteration solves asystem of linear equations.We emphasize that � or z� is a non-combinatorial measure of the fea-sible region F or its dual. For an LP problem (as opposed to a feasibilityproblem), � or z� is determined by the geometry of the optimal face.6.2.1 High probability behaviorFrom Lemma 6.1 we can derive several propositions.Proposition 6.7 Let x̂j , j = 1; 2; :::; n, have the identical standard Gaussdistribution N(0; 1) and condition on the event that x̂j � 0 for j = 1; :::; n.Then, with high probabilityp(1=n) � x̂j � p(n) for j = 1; 2; :::; n:Proposition 6.8 Let x̂j , j = 1; 2; :::; n, have the identical Cauchy distri-bution, i.e., the quotient of two independent N(0; 1) random variables, andcondition on the event that x̂j � 0 for j = 1; :::; n. Then, with high proba-bility p(1=n) � x̂j � p(n) for j = 1; 2; :::; n:Proposition 6.9 Let �0, �1,..., �m be independent N(0; 1) random vari-ables and condition on the event that �i � j�0j=pd for i = 1; : : : ;m (d =n�m � 1). Then, the non-negative random variables, x̂i := 1�pd�i=j�0jfor i = 1; : : : ;m, satisfyp(1=n) � x̂i � p(n) for i = 1; : : : ;m;with high probability, where p(n) = nd for some constant d.The �rst two propositions are relatively easy to prove. To prove thethird, we �rst prove a similar proposition:



162 CHAPTER 6. AVERAGE-CASE ANALYSISProposition 6.10 Let �0, �1,..., �m be independent N(0; 1) random vari-ables and condition on the event that �i � j�0j=pd for i = 1; : : : ;m (d =n�m � 1). Then, the non-negative random variables, xi := j�0j=pd� �ifor i = 1; : : : ;m, satisfyp(1=n) � xi � p(n) for i = 1; : : : ;m;with high probability.Proof. In proving Proposition 6.10, we �x p(n) = n4. Let f(�) be theprobability density function of N(0; 1),P (m) := P (x1 � 0; x2 � 0; : : : ; xm � 0)and P (m� 1) := P (x2 � 0; : : : ; xm � 0):Also note that jN(0; 1)j has the probability density function 2f(�) in [0;1).Then, we haveP (m)= P (x1 � 0; x2 � 0; : : : ; xm � 0)= Z 10 2f(�0) Z �0pd�1 f(�1) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i� Z 10 2f(�0) Z 0�1 f(�1) Z 0�1 f(�2) � � � Z 0�1 f(�m) mYi=0 d�i= (1=2)m:We also haveP (m)= P (x1 � 0; x2 � 0; : : : ; xm � 0)= Z 10 2f(�0) Z �0pd�1 f(�1) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i� Z 10 2f(�0) Z 0�1 f(�1) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i= (1=2) Z 10 2f(�0) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0;i6=1 d�i= P (m� 1)=2:



6.2. RANDOM-PROBLEM ANALYSIS I 163Consider the probabilityP�1 := P (x1 � p(1=n)jx1 � 0; :::; xm � 0):We haveP�1= 1P (m) Z 10 2f(�0) Z �0pd�0pd�n�4 f(�1) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i� 1P (m) Z 10 2f(�0) Z �0pd�0pd�n�4( 1p2� ) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i= n�4p2� P (m� 1)P (m)� 2n�4p2� = O(n�2):Now consider the probabilityP+1 := P (x1 � p(n)jx1 � 0; :::; xm � 0):We haveP+1= 1P (m) Z 10 2f(�0) Z �0pd�n4�1 f(�1) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i= 1P (m) Z n20 2f(�0) Z �0pd�n4�1 f(�1) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i+ 1P (m) Z 1n2 2f(�0) Z �0pd�n4�1 f(�1) Z �0pd�1 f(�2) � � �Z �0pd�1 f(�m) mYi=0 d�i:= P 0+1 + P 00+1 :For P 00+1 , we haveP 00+1= 1P (m) Z 1n2 2f(�0) Z �0pd�n4�1 f(�1) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i� 1P (m) Z 1n2 2f(�0)d�0



164 CHAPTER 6. AVERAGE-CASE ANALYSIS= 1P (m) Z 1n2 2p2� exp(�x2=2)dx= 1P (m) Z 1n2 2n2p2� [exp(�x2=2n4)]n4d(x=n2)� 1P (m) Z 1n2 2n2p2� exp(�(n4 � 1)=2) exp(�x2=2n4)d(x=n2)= n2 exp(�(n4 � 1)=2)P (m) Z 11 2p2� exp(�x2=2)d(x)� 2mn2 exp(�(n4 � 1)=2)= O(n�2)for n large enough. For P 0+1 , we haveP 0+1= 1P (m) Z n20 2f(�0) Z �0pd�n4�1 f(�1) Z �0pd�1 f(�2) � � � Z �0pd�1 f(�m) mYi=0 d�i� 1P (m) Z n20 2f(�0) Z n2=pd�n4�1 f(�1) Z �0pd�1 f(�2) � � �Z �0pd�1 f(�m) mYi=0 d�i� P (m� 1)P (m) Z n2=pd�n4�1 f(�1)d�1� 2 Z n2=pd�n4�1 f(�1)d�1= 2 Z 1n4�n2=pd f(�1)d�1= O(n�2):Thus, the probability, P1, that either 0 < x1 � p(1=n) or x1 � p(n)satis�es P1 := P�1 + P+1 = P�1 + P 0+1 + P 00+1 � O(n�2):The same result holds for Pi, i = 2; :::;m, the probability that either 0 <xi � p(1=n) or xi � p(n). Thus, we shall havemXi=1 Pi � O(n�1);which approaches zero as n!1. Using Lemma 6.1 we prove Proposition6.10.



6.2. RANDOM-PROBLEM ANALYSIS I 1652In a similar manner, we can prove that P (n�2 � j�0j � n2jx1 �0; :::; xm � 0) approaches 1 as n ! 1. This leads to the �nal proof ofProposition 6.9 for d = 7.In the next section, we prove that the conditions in Theorem 6.6 aresatis�ed with high probability for some random LP problems.6.2.2 Random linear problemsLet A 2 Rm�n of the homogeneous linear system (6.5) be standard Gaus-sian: Each entry of A is independently distributed as a standard Gaussrandom variable.Since each column, aj , of A is also standard Gaussian, aj=kajk is uni-formly distributed on the unit sphere in Rm. This is a special case of arotationally-symmetric distribution. Denote by d = n�m. Todd has shownthat the null space of A is an d� n standard Gaussian matrix.Corollary 6.11 The probability that system (6.5) has a feasible point ispnd = �n� 10 �+ :::+�n� 1d� 1�2n�1 :Corollary 6.12 The probability that system (6.5) has an interior feasiblepoint is pnd = �n� 10 �+ :::+�n� 1d� 1�2n�1 :Proof. From the strictly complementary property of linear systems, thisprobability is the probability that the duals = AT y � 0; s 6= 0 (6.11)is infeasible. However, the latter probability is exact1� pnm = pnd: 2Theorem 6.13 With probability one, exactly one of systems (6.5) and(6.11) is empty and the other has an interior feasible point.Proof. The probability that (6.11) has an interior feasible solution is pnm.Note that these two events are exclusive, and pnd + pnm = 1.



166 CHAPTER 6. AVERAGE-CASE ANALYSIS2We now prove another lemma.Lemma 6.14 System (6.5) is feasible if and only if there is a partitionA = (AB ; AN ), where AB is m by m, such thatABxB + (ANe)xm+1 = 0; x 6= 0 and x � 0 (6.12)is feasible.Proof. It is obvious that system (6.12) being feasible implies that (6.5)is feasible. Conversely, if (6.5) is feasible, then it implies that 0 belongsto the polytope P de�ned as the convex hull of the columns of A. Let(a1; a2; :::; ad) be a minimal a�nely independent set of columns of A suchthat 0 belongs to the convex hull of (a1; a2; :::; ad). By Carath�eodory'stheorem d � m+ 1, if d < m+ 1, take as columns of AB as (a1; a2; :::; ad)plus m� d any other columns of A. If d = m+1, then there is an (m+1)-vector �u such that (a1; a2; :::; am+1)�u = 0 and �u > 0:Let b be the sum of the rest of the columns in A, and let (�v; 1) be a vectorin the null space of the matrix (a1; a2; :::; am+1; b) (since b can be expressedas a linear combination of (a1; a2; :::; am+1)). Then, for scalars � and �,x(�; �) = �� �u0�+ �� �v1�is also in the null space of (a1; a2; :::; am+1; b). Letk = argminf �vj�uj : j = 1; 2; :::; (m+ 1)g:If �vk = 1, then select �� = 0 and �� = 1; if �vk < 1, then select �� = 1 and�� = �uk=(1� �vk); else select �� = �1 and �� = �uk=(�vk � 1). In all of thethree cases, x� = x(��; ��) > 0 and x�k = x�m+2. In other words, the lemmais true by selecting AB = (a1; :::; ak�1; ak+1; :::; am+1). 2Let us call the partition satisfying the condition in Lemma 6.14 a basicfeasible partition. We now analyze a feasible solution of (6.5) or (6.11). Wedevelop the following result.



6.2. RANDOM-PROBLEM ANALYSIS I 167Theorem 6.15 With high probability, a feasible point of system (6.5) or(6.11) satis�es condition (6.9) or (6.10), respectively.Proof. Let (AB ; AN ) be any partition of A and b = ANe=pn�m. Con-sider the system (AB ; b)x = 0; x 6= 0 and x � 0: (6.13)Since (AB ; b) is standard Gaussian, the vector x̂ in the null space of (AB ; b)is the line generated by a standard Gauss random vector (�1; �2; :::; �m+1),that is, x̂i = ��i for i = 1; 2; :::;m+ 1;where � is a scalar. Without loss of generality, we can let � > 0. Hence,(AB ; AN ) is a basic feasible partition or x̂ is feasible for system (6.13) ifand only if x̂i = �i � 0 for i = 1; 2; :::;m + 1. Thus, each component ofa feasible solution of (6.13) has the identical distribution jN(0; 1)j. Thus,due to Proposition 6.7, with high probabilityp(1=n) � x̂i � p(n) for i = 1; 2; :::;m+ 1:Note that x̂ induces a feasible solution for system (6.5) by assigningxB = (x̂1; :::; x̂m)T and xN = (x̂m+1=pn�m)e:This completes the proof for (6.5).The same result applies to the dual slack vector s of system (6.11) whenit is feasible, where m is replaced by n�m. 2Based on Theorems 6.13 and 6.15, we have the �nal resultTheorem 6.16 With high probability the homogeneous random linear fea-sibility problem (6.5) can be solved in O(pn logn) iterations.Proof. From Theorem 6.13, with probability one either A = A�P or z� > 0for problem (6.6) associated with (6.5). Then from Theorem 6.15, with highprobability, there exists positive primal variables or positive dual slacks (notboth) satisfying condition (6.9) or (6.10). Thus, the theorem follows fromTheorem 6.6. 2



168 CHAPTER 6. AVERAGE-CASE ANALYSISNote that the non-homogeneous linear systemAx = b; x � 0; (6.14)where (A; b) is standard Gaussian, can be solved by solving the system(6.5) with A := (A; b), which remains standard Gaussian. Note that system(6.14) is feasible if and only if b 2 P � where (P �; Z�) is the optimal partitionof problem (6.6). Thus,Corollary 6.17 With high probability the random linear feasibility problem(6.14) can be solved in O(pn logn) iterations.6.3 Random-Problem Analysis IIThis section analyzes the average complexity of interior-point algorithmsfor solving the probabilistic LP model of Todd. This model allows for de-generate optimal solutions, and does not provide a feasible starting point.We refer to this model as \Todd's degenerate model." The lack of an initialsolution in the degenerate model is problematic for many interior point al-gorithms, which require an interior solution to start. We obtain a bound ofO(pn lnn) iterations for the expected number of iterations before termina-tion with an exact optimal solution, using the homogeneous and self{dualalgorithm of Chapter 5 as applied to this model.Denote by Fh the set of all points that are feasible for (HSDP). Denoteby F0h the set of strictly feasible (interior) points in Fh, with (x; �; s; �) > 0.It is easily seen that (HSDP) has a strictly feasible point: y = 0; x = e >0; � = 1; � = 1; s = e > 0; � = 1.From Theorem 5.7, it is clear that the key to solving a LP problem,or alternatively detecting its infeasibility or unboundedness, is to �nd astrictly self-complementary solution to (HSDP). Many interior point algo-rithms might be used to solve (HSDP), as long as they generate a sequenceor subsequence of feasible pairs which converge to a strictly complemen-tary solution of the problem being solved, such as the predictor-correctoror wide-neighborhood algorithm described in Chapter 4. By using theanalysis employed in Section 5.3, with � = 1=4, we generate a sequence(yk; xk; �k; �k; sk; �k) 2 N (�), and�k+1�k = �k+1�k � 21 +q1 + 4p2(n+ 1) : (6.15)



6.3. RANDOM-PROBLEM ANALYSIS II 1696.3.1 Termination schemeIn this section we consider the problem of generating an exact optimalsolution to (HSDP). For simplicity, we denoteu = � x� � 2 Rn+1; v = � s� � 2 Rn+1:To begin, let (u�; y�; v�; �� = 0) be any strictly self-complementary solution,i.e., u� + v� > 0. Note thateTu� + eT v� = eTx� + �� + eT s� + �� = n+ 1:De�ne ��h = fi : 0 � i � n+ 1; u�i > 0g ; and ��h = mini (u�i + v�i ):We refer to ��h as the self-complementary partition of (HSDP), and clearly0 < ��h � 1. Our goal here is to use the iterates (uk; vk) of the algorithm toeventually identify the complementary partition, and to generate an exactoptimal solution of (HSDP). Using the techniques developed in Chapter 5,we can prove the following result.Lemma 6.18 Let � = (1 � �)��h=(n + 1). Then in order to obtain vkj <� � ukj ; j 2 ��h; and ukj < � � vkj ; j =2 ��h, it su�ces to have�k < 1� �(n+ 1)2 (��h)2: (6.16)Given an iterate (xk; �k ; yk; sk; �k), let AP denote the columns of Ahaving xkj > skj , and let xP denote the corresponding components of x.Similarly let AZ and sZ denote the remaining columns of A, and the corre-sponding components of s. Note that (6.15) implies that �k ! 0, so Lemma6.18 implies that eventually we always have P = ��h n fn+1g. In what fol-lows, we assume that k is in fact large enough so that P = ��h n fn + 1g.We employ the following projections to generate an exact optimal solution.We distinguish two cases:Case 1. (�k > �k). Find the solution x̂kP of(PP1) min 

xP � xkP 

s:t: APxP = b�k:



170 CHAPTER 6. AVERAGE-CASE ANALYSISIf x̂kP � 0, then compute the solution ŷk of(DP1) min 

sZ � skZ

s:t: ATP y = cP �k; cZ�k �ATZy = sZ ;and set ŝkZ = cZ�k �ATZ ŷk = skZ �ATZ(ŷk � yk):Case 2. (�k � �k). Find the solution x̂kP of(PP2) min 

xP � xkP 

s:t: APxP = 0:If x̂kP � 0, then compute the solution ŷk of(DP2) min 

sZ � SkZ

s:t: ATP y = 0; �ATZy = sZ ;and set ŝkZ = �ATZ ŷk, and �̂k = bT ŷk � cTP x̂kP .According to Lemma 6.18, exactly one of the above cases occurs forall su�ciently large k. Also, Case 1 eventually occurs exactly when (LP)has an optimal solution, in which case (PP1) and (DP1) are both clearlyfeasible. In what follows, we consider Case 1 only, since our random modelalways has a solution.It is easily seen from the de�nition of (HSDP) that:(PP1) is equivalent tomin 

xP � xkP

s:t: AP (xP � xkP ) = AZxkZ +�b�k; (6.17)(DP1) is equivalent tomin 

�cZ�k �ATZ(y � yk)

s:t: ATP (y � yk) = �cP �k + skP ; (6.18)because skZ � skZ = ATZ(yk � yk) + �cZ�k: (6.19)From (5.4) and �k ! 0, we conclude that (xkZ ; skP )! 0 as k !1, andalso �k ! 0 if fn + 1g 2 ��h. Using these facts and (6.17){(6.18) we caneasily deduce that(x̂kP � xkP )! 0 and (ŝkZ � skZ)! 0 as k !1:



6.3. RANDOM-PROBLEM ANALYSIS II 171From this relation and Lemma 6.18 it follows that (x̂kP ; �k > 0; ŝkZ) > 0 (ifk is large enough) is a strictly complementary solution to (HSDP).The above discussion shows that our projection scheme works providedk is large enough. Below we give a more precise characterization of thisfact. Again, for our probabilistic model, to be described below, only Case1 occurs provided k is large enough. Therefore in what follows we assumethat k is large enough and that we are always in Case 1.A matrix AP satis�es the Haar condition if every square submatrix ofAP is invertible. It is well known that the standard Gaussian matrix APis a Haar matrix with probability one. Thus, for the purposes of studyingprobabilistic behavior, we only have to deal with matrices that satisfy theHaar condition. Let ÂB denote any square submatrix of AP with its fullrow or column dimension. Also, if AP has more rows than columns, let Â,ÂZ , and b̂ denote the ÂB-corresponding rows of A, AZ , and b, respectively;Otherwise, Â = A, ÂZ = AZ , and b̂ = b. Then we haveLemma 6.19 Let (x�P > 0; �� > 0; y�; s�Z > 0) be any strictly (self) com-plementary solution for (HSDP). Then Case 1 occurs and (PP1) generatesx̂kP > 0 and ŝkZ > 0 whenever�k � (1� �)(��h)2(n+ 1)2(1 +pn


Â�1B ÂZ


) : (6.20)Proof. Assume that (6.20) holds. Since (6.20) implies (6.16), we have�k > �k and P must be the self-complementary partition ��h n fn+ 1g, byLemma 6.18. From (6.17), the constraint in (PP1) is clearly equivalent toAP (xP � xkP ) = AZxkZ + (b�Ae)�k;and it is consistent. Note that b = APx�P . We haveAP (xP � xkP + e�k � x�P �k) = AZ(xkZ � e�k): (6.21)One solution to (6.21) isxP � xkP + e�k � x�P �k = Â�1B ÂZ(xkZ � e�k)if AP has more rows than columns, orxP � xkP + e�k � x�P �k = � Â�1B AZ(xkZ � e�k)0 �otherwise. Thus, the solution x̂kP of (PP1) must satisfy

x̂kP � xkP

 � 


Â�1B ÂZ(xkZ � e�k)


+ �k ke� x�P k : (6.22)



172 CHAPTER 6. AVERAGE-CASE ANALYSISFor the �rst term in (6.22), we have


Â�1B ÂZ(xkZ � e�k)


 � 


Â�1B ÂZ


 

xkZ � e�k

� maxfmax(xkZ); �kg kek


Â�1B ÂZ


� (n+ 1)�k��h pjZj


Â�1B ÂZ


 ;where the last inequality is from (5.5). For the second term of (6.22), wehave �k ke� x�P k � �kqjP j � 2eTx�P + kx�P k2� �kqjP j � 2eTx�P + (eTx�P )2� �k(n+ 1);since eTx�P � n + 1. Substituting the above two inequalities into (6.22)results in 

x̂kP � xkP 

 � (n+ 1)�k��h pjZj


Â�1B ÂZ


+ (n+ 1)�k� (1 +pn


Â�1B ÂZ


)(n+ 1)�k��h ; (6.23)so (6.20), (6.23) and (5.7) imply that x̂kP > 0.Now consider (DP1). From (6.18), the constraint in (DP1) is clearlyequivalent to ATP (y � yk) = (cP � e)�k + skP ;and it is consistent. Note that cP = P T y�. We haveATP (y � yk � y��k) = skP � e�k: (6.24)Similarly, the solution ŷkP of (DP1) must satisfy

ŝkZ � skZ

 � 


ÂTZ(ÂTB)�1(skP � e�k)


+ �k ke� s�Zk : (6.25)For the �rst term in (6.25), we have


ÂTZ(ÂTB)�1(skP � e�k)


 � 


Â�1B ÂZ


 

skP � e�k

� maxfmax(skP ); �kg kek


Â�1B ÂZ


� (n+ 1)�k��h pjP j


Â�1B ÂZ


 ;



6.3. RANDOM-PROBLEM ANALYSIS II 173where the last inequality is from (5.5). For the second term of (6.25), wehave �k ke� s�Zk � �kqjZj � 2eTx�P + ks�Zk2� �kqjZj � 2eTx�P + (eT s�Z)2� �k(n+ 1):Substituting the above two inequalities into (6.25) results in

ŝkZ � skZ

 � (n+ 1)�k��h pjP j 


Â�1B ÂZ


+ (n+ 1)�k� (1 +pn 


Â�1B ÂZ


)(n+ 1)�k��h ; (6.26)so (6.20), (6.26) and (5.7) imply that ŝkZ > 0. 26.3.2 Random model and analysisIn this section we describe a random LP model proposed by Todd, andperform a probabilistic analysis of the behavior of the homogeneous and self-dual algorithm, using the �nite termination scheme described above. Wewill refer to the model under consideration as \Todd's degenerate model."Todd's Degenerate Model. Let A = (A1; A2), where Ai is m�ni; ni �1; n1 + n2 = n, and each component of A is i.i.d. from the N(0; 1) distri-bution. Let x̂ = � x̂10 � ; ŝ = � 0̂s2 � ;where the components of x̂1 and ŝ2 are i.i.d. from the jN(0; 1)j distribu-tion. Finally let b = Ax̂; c = ŝ + AT �̂. We assume that either �̂ = 0, orthe components of �̂ are i.i.d. from any distribution with O(1) mean andvariance.Clearly this model allows for degenerate solutions, and produces in-stances of (LP) having no easy feasible starting point. This presents anobstacle for most interior point methods, which require interior feasiblepoints for initialization. Since an instance of Todd's degenerate model al-ways has an optimal solution, it follows from Theorem 5.7 that n+1 2 ��h.Therefore, if the homogeneous and self{dual algorithm described in Chapter



174 CHAPTER 6. AVERAGE-CASE ANALYSIS5 is applied to an instance of Todd's degenerate model, we are eventuallyalways in Case 1.Now, we begin a probabilistic analysis of the self{dual algorithm equippedwith the termination scheme described in the preceding section. Since our�nite termination criterion in Lemma 6.19 depends on ��h, from a strictlycomplementary solution (x�; ��; s�) to (HSDP), we must �rst infer a validvalue of ��h from the given strictly complementary solution (x̂; ŝ) for (LP)and (LD).Let �̂ = min(x̂+ ŝ) = min� x̂1ŝ2 � ; �̂ = 1 + eT x̂+ eT ŝ: (6.27)Note that x� = (n + 1)x̂=�̂, �� = (n + 1)=�̂, y� = (n + 1)�̂=�̂, �� = 0, ands� = (n+1)ŝ=�̂ is a strictly self-complementary solution to (HSDP). Thus,we have the following proposition.Proposition 6.20 Consider Todd's degenerate model with optimal solu-tion (x̂; ŝ). Then there is a strictly self-complementary solution (x�; ��; y�; s�; ��)to (HSDP) such that ��h � �̂=�̂.This proposition and Lemma 6.19 lead toLemma 6.21 Consider an instance of Todd's degenerate model, and let �̂and �̂ be as in (6.27). Suppose that k is large enough so that the followinginequality is satis�ed:�k � (1� �)�̂2(n+ 1)2�̂2(1 +pnkÂ�1B ÂZk) ; (6.28)where AP = A1 and AZ = A2:Then (PP1) and (DP1) generate solutions x̂kP > 0 and ŷk; ŝkZ > 0, so thatx̂ = (x̂P ; 0) and ŷ; ŝ = (0; ŝZ) solve (LP) and (LD), where x̂P = x̂kP =�k,ŷ = ŷk=�k, and ŝZ = ŝkZ=�k.Using the criterion in the previous lemma, we can terminate the algo-rithm once (6.28) holds. From �0 = 1, (6.15), and (6.28), this de�nitelyhappens if�k � 0@1� 21 +q1 + 4p2(n+ 1)1Ak � (1� �)�̂2(n+ 1)2�̂2(1 +pnkÂ�1B ÂZk) ;



6.3. RANDOM-PROBLEM ANALYSIS II 175which requiresk = O(pn)�lnn+ ln �̂+ ln(1 +pnkÂ�1B ÂZk)� ln �̂� :We now introduce a lemma which is frequently used later and whosestraightforward proof is omitted.Lemma 6.22 Let � and � be two continuous random variables, with samplespace (0;1). De�ne the new variables � = min(�; �) and � = max(�; �).Then, for any x � 0,f�(x) � f�(x) + f�(x) and f�(x) � f�(x) + f�(x)where f�(�) is the probability density function (p.d.f.) of a random variable�. Let � have distribution jN(0; 1)j with the p.d.f.f�(x) =p2=� exp(�x2=2):Then, E(ln �̂) = Z 1=n0 lnxf�̂(x)dx + Z 11=n lnxf�̂(x)dx� � lnn+ Z 1=n0 lnxf�̂(x)dx� � lnn� Z 1=n0 j lnxjf�̂(x)dx:Using Lemma 6.22, we haveZ 1=n0 j lnxjf�̂(x)dx � n Z 1=n0 j lnxjf�(x)dx� np2=� Z 1=n0 j lnxj exp(�x2=2)dx� np2=� Z 1=n0 j lnxjdx= �np2=� Z 1=n0 lnxdx= np2=�(1 + lnn)=n< 1 + lnn:



176 CHAPTER 6. AVERAGE-CASE ANALYSISAlso, we haveE[ln �̂] = E[ln(1 + eT x̂1 + eT ŝ2)] � ln(1 +E[eT x̂1 + eT s2]) = O(lnn):Moreover, considerE[ln(1 +pnkÂ�1B ÂZk)] � E 264ln0B@1 +pn0@Xj2Z kÂ�1B âjk21A1=21CA375� E 264ln0B@(1 +pn)0@jZj+Xj2Z kÂ�1B âjk21A1=21CA375= ln(1 +pn) + (1=2)E 24lnXj2Z(1 + kÂ�1B âjk2)35 ;where âj is the jth column of Â. Note that (ÂB ;�âj) is a Gaussian matrix,Â�1B âj has the distribution of the Cauchy random variables �i=�0 where�i, i = 0; 1; :::; jÂBj, are independent N(0; 1) random variables. Note thatjÂB j, the dimension of ÂB , is less than or equal to m. Without losinggenerality, we assume jÂB j = m. Hence1 + kÂ�1B âjk2 � �20 + �21 + :::+ �2m�20 � �2j�2j ;where �2j has a chi-square distribution withm+1 degrees of freedom, �2(m+1), and �j is a jN(0; 1)j random variable. Thus,E[lnXj2Z(1 + kÂ�1B âjk2)] � E[ln maxj2Zf�2j gminj2Zf�2j g ]= E[lnmaxj2Z f�2j g]�E[ln(minj2Zf�jg)2]:= E[ln �̂2]�E[ln(�̂)2]:Using Lemma 6.22 again, we haveE[ln �̂2] = Z 10 lnxf�̂2(x)dx� ln(Z 10 xf�̂2(x)dx)



6.3. RANDOM-PROBLEM ANALYSIS II 177� ln(Z 10 xjZjf�2j (x)dx)� ln(jZj Z 10 xf�2(x)dx)= ln(jZj(m+ 1));where �2 is a �2(m+ 1) random variable, whose expected value is m+ 1.Finally,E[ln(�̂)2] = 2E[ln �̂]= 2 Z 10 lnxf�̂(x)dx= 2 Z 1=n0 lnxf�̂(x)dx + 2 Z 11=n lnxf�̂(x)dx� �2 lnn+ 2 Z 1=n0 lnxf�̂(x)dx� �2 lnn� 2 Z 1=n0 j lnxjf�̂(x)dxand Z 1=n0 j lnxjf�̂(x)dx � Z 1=n0 j lnxjjZjf�(x)dx� jZjp2=� Z 1=n0 j lnxj exp(�x2=2)dx� jZjp2=� Z 1=n0 j lnxjdx� jZjp2=�(1 + lnn)=n< 1 + lnn:Therefore, termination occurs on an iteration k, whose expected valueis bounded as E[k] � O(pn lnn):Thus we have proved the main result:Theorem 6.23 Assume that the homogeneous and self{dual algorithm, us-ing the termination scheme described in the preceding section, is applied toan instance of Todd's degenerate model. Then the expected number of iter-ations before termination with an exact optimal solution of (LP) is boundedabove by O(pn lnn).



178 CHAPTER 6. AVERAGE-CASE ANALYSIS6.4 NotesFor examples in linear programming randomized algorithms, we cite therecent paper of Seidel [299], who gives a simple randomized algorithm whoseexpected running time for (LP) is O(m!n), and the references therein.For the expected running time of the simplex method, a determinis-tic algorithm, when applied to LP instances generated according to someprobability distribution (or class of such distributions), see Adler, Karp andShamir [2], Adler and Megiddo [3], Borgwardt [60], Megiddo [215], Smale[305], Todd [325], and the references cited there.\One-step analysis" of a variant of Karmarkar's method can be seen inNemirovsky [256]. Similar analysis of a primal-dual method can be seenin Gonzaga and Todd [130]. The analysis described in Section 6.1 is dueto Mizuno et al. [233]. Let us describe a possible program to make one-step analysis rigorous. Suppose we assume that our original problem (LP)is generated probabilistically as follows: the entries of A are independentstandard normal random variables, b = Ae and c = AT y + e for some y.Then (x; s) = (e; e) is an initial point on the central path C. Moreover, forall of our algorithms, r is a multiple of e and U is a random subspace withthe orthogonal transformation-invariant distribution. Hence our analysisholds at the initial iteration. We now apply an algorithm which requiresthat each iterate lies in C and hence r = e at each iteration. However,the null space U of AX1=2S�1=2 will have a di�erent induced distributionat later iterations. We could hope that before (x; s) gets too close to anoptimal pair, this induced distribution is somewhat close to what we haveassumed in Section 6.1.2, so that its Radon-Nikodym derivative with respectto our distribution is suitably bounded. In this case, the probability thatkPqk exceeds n1=2�, which is small under the distribution we have assumed,will also be small under the distribution induced by the initial probabilisticgeneration of (LP). Hence, for most iterations, the improvement in theduality gap would be as in Corollary 6.2. A great number of di�culties needto be resolved before such an approach could succeed. We would probablyneed bounds on how fast the probabilities in Theorem 6.3 approach 1, andclearly as (x; s) approaches the optimum the induced distribution di�ersdrastically from what we have assumed.In the meantime, we hope that the one-step nonrigorous analysis haslent some insight into the practical behavior of primal-dual algorithms.Our algorithms using N = N�1(�) for � close to 1 are quite close to imple-mented primal-dual methods, and the result of our nonrigorous analysis,that O((logn) log(1=�)) iterations typically su�ce, is borne out by severallarge-scale tests.The properties of the Gaussian matrix in Section 6.2 and the rotationally-



6.5. EXERCISES 179symmetric distribution LP model can be found in Borgwardt [60]. In par-ticular, system (6.5) was discussed in Girko [107], Schmidt and Mattheiss[297], and Todd [326]. Our probabilistic analysis is essentially focused onthe initialization and termination of interior-point algorithms. In otherwords, we have focused on the factor �(A; b; c) and �(A) in the worst com-plexity result of Section 5.2. Essentially, we have proved that, for the aboverandom problem, �(A) = 1 with probability 1 and �(A; b; c) � p(1=n) withhigh probability. Possible new topics for further research in this area in-clude whether our analysis will hold for other probability distributions andthe expected behavior.Most of results in Section 6.3 are due to Anstreicher et al. [26, 25],where they proved that Theorem 6.23 holds for a more general degeneratemodel:Todd's Degenerate Model. Let A = (A1; A2; A3), where Ai is m �ni; ni � 1; n1 < m; n1 + n2 + n3 = n, and each component of A is i.i.d.from the N(0; 1) distribution. Letx̂ = 0@ x̂100 1A ; ŝ = 0@ 00̂s3 1A ;where the components of x̂1 and ŝ3 are i.i.d. from the jN(0; 1)j distribu-tion. Finally let b = Ax̂; c = ŝ + AT �̂. We assume that either �̂ = 0, orthe components of �̂ are i.i.d. from any distribution with O(1) mean andvariance.6.5 Exercises6.1 Prove Proposition 6.7.6.2 Prove Proposition 6.8.6.3 Prove Corollary 6.11.6.4 Let �0, �1,..., �m be independent N(0; 1) random variables and con-dition on the event that �i � j�0j=pd for i = 1; : : : ;m (d = n �m � 1).Prove that P (n�2 � j�0j � n2jx1 � 0; :::; xm � 0) approaches 1 as n!1,where xi := j�0j=pd� �i for i = 1; : : : ;m.6.5 Prove Proposition 6.20.6.6 Prove Lemma 6.22.
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Chapter 7Asymptotic-Case AnalysisInterior-point algorithms generate a sequence of ever-improving points x0; x1;:::; xk; ::: approaching the solution set. For many optimization problems, thesequence never exactly reaches the solution set. One theory of iterative al-gorithms is referred to as local or asymptotic convergence analysis and isconcerned with the rate at which the optimality error, frkg, of the gener-ated sequence converges to zero. Obviously, if each iteration of competingalgorithms requires the same amount of work, the speed of the convergencere
ects the e�ectiveness of the algorithm. This convergence rate, althoughit holds locally or asymptotically, allows quantitative evaluation and com-parison among di�erent algorithms. It has been widely used in classicaloptimization and numerical analyses as an e�ciency criterion. Generally,this criterion does explain the practical behavior of many iterative algo-rithms.In this chapter we analyze the asymptotic convergence rate of iterationsequences generated by some interior-point algorithms. The asymptoticcomplexity presented in this chapter has several surprising but pleasing as-pects. First, the theory is simple in nature. Second, it partially explainsthe excellent behavior of interior-point algorithms in practice. Third, itprovides a tool to identify the strict complementarity partition for the ter-mination method discussed in Chapter 5.7.1 Rate of ConvergenceThe asymptotic convergence rate is a rich and yet elementary theory topredict the relative e�ciency of a wide class of algorithms. It consists oftwo measures: the order and ratio of convergence.181



182 CHAPTER 7. ASYMPTOTIC-CASE ANALYSIS7.1.1 Order of convergenceIn Section 1.4.4 we have introduced, p, the order of convergence. To ensurethat those de�nitions are applicable to any sequence, they are usually statedin terms of limit superior rather than just limit and 0=0 is regarded as a�nite number. In optimization, these technicalities are rarely necessarysince frk � 0g represents a measure towards optimality, and rk = 0 impliesthat optimality is exactly reached.We might say that the order of convergence is a measure of how goodthe tail of frkg is in the worst case. Large values of p imply the fasterconvergence of the tail. The convergence of order equal two is called (sub)quadratic convergence. Indeed, if the sequence has order p > 1 and thelimit limk!1 rk+1(rk)p = � <1exists, then there exists a �nite K, such thatrk+1(rk)p � 2�or (2�)1=(p�1)rk+1 � [(2�)1=(p�1)rk ]pand (2�)1=(p�1)rK < 1for all k � K. Thus, if we wish to reduce(2�)1=(p�1)rk � �;we need onlyk �K = log log(1=�) + log log �(2�)1=(p�1)rK��1log piterations, since (2�)1=(p�1)rk � h(2�)1=(p�1)rKipk�K :We also have the following proposition.Proposition 7.1 Let the positive sequence frkg converge to zero. Then,the order of convergence equalslim infk!1 log rk+1log rk :



7.1. RATE OF CONVERGENCE 183Example 7.1 The sequence with rk = (�)k where 0 < � < 1 converges tozero with order unity.Example 7.2 The sequence with rk = (�)2k where 0 < � < 1 converges tozero with order two, and therefore the sequence is quadratically convergent.7.1.2 Linear convergenceMost of iterative algorithms have an order of convergence equal to unity,i.e., p = 1. It is therefore appropriate to consider this class in greater detailand develop another measure of speed for this class: the ratio of linearconvergence, which was introduced in Section 1.4.4.Linear convergence is the most important type of convergence behavior.A linearly convergence sequence, with convergence ratio �, can be said tohave a tail that converges to zero at least as fast as the geometric sequenceM(�)k for some �xed positive number M independent of k. Thus, we alsocall linear convergence geometric convergence.As a rule, when comparing the relative e�ectiveness of two competingalgorithms both of which produce linearly convergent sequences, the com-parison is based on their corresponding convergence ratio|the smaller theratio the faster the convergence. The ultimate case where � = 0 is referredto as superlinear convergence. We note immediately that convergence ofany order greater than unity is superlinear. It is possible for superlinearconvergence to have unity convergence order.Example 7.3 The sequence with rk = 1=k converges to zero. The conver-gence is of order one but it is not linear, since lim(rk+1=rk) = 1, that is, �is not strictly less than one.Example 7.4 The sequence with rk = (1=k)k is of order unity, and it issuperlinearly convergent.7.1.3 Average orderIn practical optimization, the convergence order at each iteration may notbe the same during the iterative process. We now de�ne the average orderrelated to the speed of convergence of such a sequence.De�nition 7.1 Let the positive sequence frkg converge to zero. The aver-age order of convergence of frkg between k and k +K is de�ned as�p = ( KYi=1 pi)1=K ;



184 CHAPTER 7. ASYMPTOTIC-CASE ANALYSISwhere pi is the convergence order from k + i� 1 to k + i.In other words, the average convergence order during this period is thegeometric mean of the orders of each iteration. Using the average order,from k to k +K we should haverk+K = (rk)�pK = (rk)QKi=1 pi :The right hand side is precisely the accumulated convergence orders be-tween k and K + k.Example 7.5 The sequence with r0 = �, 0 < � < 1, rk+1 = (rk)2 if k iseven and rk+1 = rk if k is odd. Then, the average converge order betweenk to k + 2 is p2.7.1.4 Error functionIn optimization, the decision variables form a vector in Rn, and iterativealgorithms generate a sequence fxkg in Rn space. Thus, if fxkg convergesto the optimal solution set, the convergence properties of such a sequenceare de�ned with respect to some particular error or residual function, r(x),that converts the vector sequence into a real number sequence. Such anerror function satis�es the property that r(x) > 0 for all non-optimal solu-tions and r(x) = 0 for every optimal solution. Hence, the convergence rateof fxkg is represented by the convergence rate of frk := r(xk)g.It is common to choose the error function by which to measure conver-gence as the same function that de�nes the objective function of the originaloptimization problem. This means that we measure convergence by howfast the objective converges to its optimum. Alternatively, we sometimesuse the function minx2X� kxk � xk which represents the distance from xkto the optimal solution set X�.In the analysis of interior-point algorithms the error function is chosenas the primal-dual or complementary gap xT s, which should be zero at anoptimal solution pair. For an optimization problem that possesses a strictcomplementarity solution, the above two error functions will have the sameconvergence rate.7.2 Superlinear Convergence: LPConsider the predictor-corrector algorithm described in Section 4.5. We willshow that this O(pn log(R=�))-iteration algorithm actually forces quadraticconvergence of the duality gap rk := (xk)T sk > 0 to zero. In the context



7.2. SUPERLINEAR CONVERGENCE: LP 185of the present work it is important to emphasize that the notions of con-vergence, superlinear convergence, or quadratic convergence of the dualitygap sequence in no way require the convergence of the iteration sequencef(xk; sk)g.We follow the same notations in Section 4.5. At the kth predictor step,let �k = (xk)T sk=n, (dx; ds) := d(xk ; sk; 0), and�k = Dxds�k : (7.1)If �k = �� is the largest step-size chosen in Algorithm 4.5, then from Lemma4.17 (note �k = Pq=�k),1� �k � 1� 21 +p1 + 4k�kk=�= p1 + 4k�kk=� � 11 +p1 + 4k�kk=�= 4k�kk=�(1 +p1 + 4k�kk=�)2� k�kk=� (7.2)and (xk+1)T sk+1 � (1� �k)(xk)T sk � k�kk� (xk)T sk: (7.3)Our goal is to prove that k�kk = O((xk)T sk). Then, inequality (7.3) guar-antees quadratic convergence of (xk)T sk to zero. (In this section, the big\O" notation represents a positive quantity that may depend on n and/orthe original problem data, but which is independent of the iteration k.).7.2.1 Technical resultsWe �rst introduce several technical lemmas. For simplicity, we drop theindex k and recall the linear system during the predictor stepXds + Sdx = �XsAdx = 0AT dy + ds = 0: (7.4)Let � = xT s=n and z = Xs. Then from (x; s) 2 N2(�) we must have(1� �)� � zj � (1 + �)� for j = 1; 2; :::; n: (7.5)



186 CHAPTER 7. ASYMPTOTIC-CASE ANALYSISWe shall estimate kdxk and kdsk. Our present objective is to demon-strate that kdxk = O(�) and kdsk = O(�). We start by characterizing thesolution to (7.4).Lemma 7.2 If dx and ds satisfy the equationXds + Sdx = �Xsand the inequality (dx)T ds � 0;then, kD�1dxk2 + kDdsk2 � xT s;where D = X1=2S�1=2.Proof. Multiplying the diagonal matrix (XS)�1=2 on both sides of theequation, we have D�1dx +Dds = �(XS)1=2e:Take the norms of both sides.kD�1dx +Ddsk2 = xT sor kD�1dxk2 + kDdsk2 + (dx)T ds = xT s:Using the linear inequality, we have the lemma. 2Let (P;Z) = (P �; Z�) be the strict complementarity partition of the LPproblem. For all k, Theorem 2.15 and relation (5.8) imply that� � xkj � 1=� for j 2 P� � skj � 1=� for j 2 Z; (7.6)where � < 1 is a �xed positive quantity independent of k.Lemma 7.3 If dx and ds are obtained from the linear system (7.4) and� = xT s=n, thenk(dx)Zk = O(�) and k(ds)P k = O(�):



7.2. SUPERLINEAR CONVERGENCE: LP 187Proof. From Lemma 7.2 and relation (7.6), we obtaink(dx)Zk = kDZD�1Z (dx)Zk� kDZkkD�1Z (dx)Zk� kDZkO(p�)= k(XZSZ)1=2S�1Z kO(p�)= O(p�)O(p�) = O(�):This proves that k(dx)Zk = O(�). The proof that k(ds)P k = O(�) issimilar. 2The proofs of k(dx)P k = O(�) and k(ds)Zk = O(�) are more involved.Towards this end, we �rst notex+ dx 2 R(D2AT );s+ ds 2 N (AD2): (7.7)This is because from the �rst equation of (7.4) we haveS(x+ dx) = �XdsX(s+ ds) = �Sdx:Thus, x+ dx = �(XS�1)ds = D2AT dys+ ds = �(SX�1)dx = �D�2dx;which gives relation (7.7).Lemma 7.4 If dx and ds are obtained from the linear system (7.4), then(dx)P is the solution to the (weighted) least-squares problemminu (1=2)kD�1P uk2subject to APu = �AZ(dx)Zand (ds)Z = ATZv and v is the solution to the (weighted) least-squares prob-lem minv (1=2)jjDZvjj2subject to ATP v = �(ds)P :



188 CHAPTER 7. ASYMPTOTIC-CASE ANALYSISProof. From (7.7), we see thatxP + (dx)P 2 R(D2PATP ): (7.8)Since s�P = 0 for all optimal s�, we must have cP 2 R(ATP ). Thus,sP = cP �ATP y 2 R(ATP );which implies that xP = D2P sP 2 R(D2PATP ): (7.9)From (7.8) and (7.9) we have(dx)P 2 R(D2PATP ):Moreover, (dx)P satis�es the equationAP (dx)P = �AZ(dx)Z :Thus, (dx)P satis�es the KKT conditions for the �rst least squares problem.Since AD2(s+ ds) = �Adx = 0 and AD2s = Ax = b, it follows that�b = AD2ds = APD2P (ds)P +AZD2Z(ds)Z : (7.10)Also, since x�Z = 0 for all optimal x�, we have APx�P = b implying b 2R(AP ). Therefore, relation (7.10) impliesAZD2Z(ds)Z 2 R(AP ):Moreover, dy satis�es the equationATP dy = �(ds)P :Thus, dy satis�es the KKT conditions for the second least squares problem.27.2.2 Quadratic convergenceTheorem 7.5 If dx and ds are obtained from the linear system (7.4) and� = xT s=n, thenk(dx)P k = O(�) and k(ds)Zk = O(�):



7.2. SUPERLINEAR CONVERGENCE: LP 189Proof. Since the �rst least-squares problem is always feasible, there mustbe a feasible �u such that k�uk = O(k(dx)Zk);which together with Lemma 7.3 impliesk�uk = O(�):Furthermore, from Lemma 7.4 and relations (7.5) and (7.6)k(dx)P k = kDPD�1P (dx)P k� kDP kkD�1P (dx)P k� kDP kkD�1P �uk� kDP kkD�1P kk�uk= k(XPSP )�1=2XP kk(XPSP )1=2X�1P kk�uk� k(XPSP )�1=2kkXPkk(XPSP )1=2kkX�1P kk�uk= O(k�uk) = O(�):Similarly, we can prove the second statement of the theorem. 2Theorem 7.5 indicates that at the kth predictor step, dkx and dks satisfyk(dkx)P k = O(�k) and k(dks )Zk = O(�k); (7.11)where �k = (xk)T sk=n. We are now in a position to state our main result.Theorem 7.6 Let f(xk; sk)g be the sequence generated by Algorithm 4.5.Then, with constants 0 < � � 1=4 and � = 2�:i) the Algorithm has iteration complexity O(pn log(R=�));ii) 1� �k = O((xk)T sk);iii) (xk)T sk ! 0 quadratically.Proof. The proof of (i) is in Theorem 4.18, which also establisheslimk!1 �k = 0:From relation (7.1), Lemma 7.3 and Theorem 7.5 we havek�kk = kDxds=�kk � O((xk)T sk);which together with inequality (7.2) establishes (ii).From inequality (7.3) we see that (ii) implies (iii). This proves thetheorem. 2



190 CHAPTER 7. ASYMPTOTIC-CASE ANALYSIS7.3 Superlinear Convergence: LCPGivenM 2 Rn�n and q 2 Rn, recall that the LCP is to �nd a pair x; s 2 Rnsuch that s =Mx+ q; xT s = 0; and x; s � 0:In this section, we consider the monotone LCP extension of the predictor-corrector LP algorithm. We show that this O(pn log(R=�))-iteration al-gorithm for the monotone LCP actually possesses quadratic convergenceassumingAssumption 7.1 The monotone LCP possesses a strict complementaritysolution.This assumption is restrictive since in general it does not hold for themonotone LCP. We will actually show by example, however, that assump-tion 7.1 appears to be necessary in order to achieve superlinear convergencefor the algorithm.Again, the LCP being monotone means that the iterate directionds =Mdx implies dTx ds � 0:Note that for LP, we have dTx ds = 0. This is the only di�erence betweenLP and LCP analyses. Almost all technical results on iterate directionsdeveloped for LP (dTx ds = 0) hold for the monotone MCP (dTx ds � 0).7.3.1 Predictor-corrector algorithm for LCPIn this section, we brie
y describe the predictor-corrector LCP algorithm.We let �F denote the collection of all strictly feasible points (x; s). Considerthe neighborhoodN2(�) = f(x; s) 2 �F : kXs=�� ek � �g;where � = xT s=n and � is a constant between 0 and 1.To begin with choose 0 < � � 1=4 (a typical choice would be 1=4).All search directions dx, ds, and dy will be de�ned as the solutions of thefollowing system of linear equationsXds + Sdx = 
�e�Xsds = Mdx; (7.12)where 0 � 
 � 1. To show the dependence of d = (dx; ds) on the pair (x; s)and parameter 
, we write d = d(x; s; 
).



7.3. SUPERLINEAR CONVERGENCE: LCP 191A typical iteration of the algorithm proceeds as follows. Given (xk ; sk) 2N2(�), we solve system (7.12) with (x; s) = (xk ; sk) and 
 = 0, i.e.,(dx; ds) = d(xk ; sk; 0). For some step length � � 0 letx(�) = xk + �dx; s(�) = sk + �ds;and �(�) = x(�)T s(�)=n. This is the predictor step.Again, we can choose the largest step length � = �� � 1 such that(x(�); s(�)) 2 N2(�) for � = � + � and some 0 < � � �, and letx0 = x(��) and s0 = s(��):We can compute �� by �nding the roots of a quartic equation.Next we solve system (7.12) with (x; s) = (x0; s0) 2 N (� + �), �0 =(x0)T s0=n, and 
 = 1, i.e., (d0x; d0s) = d(x0; s0; 1). Let xk+1 = x0 + d0x andsk+1 = s0 + d0s. This is the corrector (or centering) step.Similar to Lemma 4.16, for all k we can show that(xk; sk) 2 N2(�) (7.13)as long as 0 < � � 1=4 and 0 < � � �, and(x0)T s0 = (1� �k)(xk)T sk + (�k)2(dx)T ds(xk+1)T sk+1 = (x0)T s0 + (d0x)T d0s: (7.14)One can also show that(dx)T ds � (xk)T sk=4(d0x)T d0s � (x0)T s0=(8n): (7.15)Let �k = Dxds=�k in the predictor step. Then, we can show thatk�kk � p2n=4; (7.16)and the following lemma, which resembles Lemma 4.17.Lemma 7.7 If �k := �� is the largest � such that (x(�); s(�)) 2 N2(�) with� = � + � and 0 < � � �, then�k � 21 +p1 + 4k�kk=� :Clearly, this lemma together with (7.14), (7.15) and (7.16) implies thatthe iteration complexity of the algorithm is O(pn log(R=�)) for a constant0 < � � �. Note again that 1� �k � k�kk� : (7.17)



192 CHAPTER 7. ASYMPTOTIC-CASE ANALYSISRelations (7.14), (7.15), (7.16), and (7.17), and Lemma 7.7, imply�k+1 � (1+1=8n)(k�kk� �k+(dx)T ds=n) = (1+1=8n)(kDxdsk� + kDxdskpn ):(7.18)From (7.18), we see that ifkdxk = O(�k) and kdsk = O(�k);then the complementary gap converges to zero quadratically.7.3.2 Technical resultsFor a LCP possessing a strict complementarity solution, a unique partitionP and Z, where P \ Z = f1; 2; :::; ng and P [ Z = ;, exists such thatx�Z = 0 and s�P = 0 in every complementarity solution and at least onecomplementarity solution has x�P > 0 and s�Z > 0. We can also prove thatrelation (7.6) holds for the sequence generated by the predictor-correctorMCP algorithm. Let � = xT s=n and z = Xs. We must also have relation(7.5) if (x; s) 2 N2(�).We now introduce several technical lemmas. For simplicity, we drop theindex k and recall the linear system during the predictor stepXds + Sdx = �Xsds = Mdx: (7.19)De�ne D = X1=2S�1=2. We now estimate kdxk and kdsk. Since Mis monotone, i.e., (dx)T ds � 0, both Lemma 7.2 and the following lemmahold.Lemma 7.8 If dx and ds are obtained from the linear system (7.19), and� = xT s=n, thenk(dx)Zk = O(�) and k(ds)P k = O(�):The proofs of k(dx)P k = O(�) and k(ds)Zk = O(�) are again moreinvolved. We �rst note S(x+ dx) = �Xds;X(s+ ds) = �Sdx;and therefore x+ dx = �(XS�1)ds = �D2dss+ ds = �(X�1S)dx = �D�2dx: (7.20)



7.3. SUPERLINEAR CONVERGENCE: LCP 193Before proceeding, we need some results regarding (non-symmetric) positivesemi-de�nite (PSD) matrices that may be of independent interest. In whatfollows, we will consider M to be partitioned (following a re-ordering ofrows and columns) as M = � MPP MPZMZP MZZ � : (7.21)Lemma 7.9 Let M be a PSD matrix, partitioned as in (7.21). ThenMPPxP = 0 if and only if MTPPxP = 0. Furthermore, MPPxP = 0 impliesthat (MZP +MTPZ)xP = 0.Proof. Let x = (xTP ; 0T )T . If either MPPxP = 0 or MTPPxP = 0, thenxTMx = 0, so x is a global minimizer of the quadratic form yTMy. Con-sequently (M +MT )x = 0, which is exactly(MPP +MTPP )xP = 0(MZP +MTPZ)xP = 0: 2Lemma 7.10 Let M be a PSD matrix, partitioned as in (7.21). ThenR� MPP MPZ0 I � = R� MTPP MTZP0 �I � :Proof. From the fundamental theorem of linear algebra, it is equivalent toprove that N � MTPP 0MTPZ I � = N � MPP 0MZP �I � ;where N (�) denotes the null space of a matrix. To begin, assume that� MTPP 0MTPZ I �� xPxZ � = 0: (7.22)From Lemma 7.9, MPPxP = 0. Also xZ = �MTPZxP , so showing thatMZPxP � xZ = 0 is equivalent to showing that (MZP +MTPZ)xP = 0,which also holds by Lemma 7.9. Thus� MPP 0MZP �I �� xPxZ � = 0 : (7.23)The argument that (7.23) implies (7.22) is similar. 2



194 CHAPTER 7. ASYMPTOTIC-CASE ANALYSIS7.3.3 Quadratic convergenceNow we can establishLemma 7.11 If dx and ds are obtained from the linear system (7.19),and � = xT s=n, then u = (dx)P and v = (ds)Z are the solutions to the(weighted) least-squares problemminu;v (1=2)kD�1P uk2 + (1=2)kD1Zvk2s:t: MPPu = �MPZ(dx)Z + (ds)PMZPu� v = �MZZ(dx)Z : (7.24)Proof. Note that from (7.19), u = (dx)P , v = (ds)Z is certainly feasible inthe problem (7.24). Next, from (7.19) and (7.20), we see thatxP + (dx)P = �D2PMB�dxsZ + (ds)Z = �D�2Z (dx)Z : (7.25)Since s�P = 0 for all optimal s�, with x�Z = 0, we must have qP =�MPPx�P 2 R(MPP ). Therefore,D�2P xP = sP =MB�x+ qP =MPP (xP � x�P ) +MPZxZ :Substituting this into the �rst equation of (7.25) obtainsD�2P (dx)P = �MPP (xP � x�P + (dx)P )�MPZ(xZ + (dx)Z): (7.26)Also sZ = D�2Z xZ , which substituted into the second equation of (7.25)yields D2Z(ds)Z = �xZ � (dx)Z : (7.27)Then (7.26) and (7.27) together imply that� D�2P (dx)PD2Z(ds)Z � 2 R� MPP MPZ0 I � :Applying Lemma 7.10, we conclude that� D�2P (dx)PD2Z(ds)Z � 2 R� MTPP MTZP0 �I � ;which shows exactly that u = (dx)P , v = (ds)Z satis�es the KKT conditionsfor optimality in the least squares problem (7.24). 2



7.3. SUPERLINEAR CONVERGENCE: LCP 195Theorem 7.12 If dx and ds are obtained from the linear system (7.19),and � = xT s=n, then kdxk = O(�) and kdsk = O(�).Proof. Due to Lemma 7.8, we only need to provek(dx)P k = O(�) and k(ds)Zk = O(�):Since the least-squares problem (7.24) is always feasible, there must befeasible �u and �v such thatk�uk = O(k(dx)Zk+ k(ds)P k) and k�vk = O(k(dx)Zk+ k(ds)P k);which together with Lemma 7.8 implies k�uk = O(�) and k�vk = O(�).Furthermore, from Lemma 7.11 and relations (7.5) and (7.6),k(dx)P k2 + k(ds)Zk2= kDPD�1P (dx)P k2 + kD�1Z DZ(ds)Zk2� kD2P k kD�2P (dx)P k2 + kD�2Z k kDZ(ds)Zk2= k(XPSP )�1X2P k kD�1P (dx)P k2 ++k(XZSZ)�1S2Zk kDZ(ds)Zk2� �k(XPSP )�1X2P k+ k(XZSZ)�1S2Zk� �kD�1P (dx)P k2 + kDZ(ds)Zk2�� �k(XPSP )�1X2P k+ k(XZSZ)�1S2Zk� �kD�1P �uk2 + kDZ�vk2�� �k(XPSP )�1X2P k+ k(XZSZ)�1S2Zk� �kD�2P k k�uk2 + kD2Zk k�vk2�� O(1=�) �kD�2P k k�uk2 + kD2Zk k�vk2�= O(�) �kD�2P k+ kD2Zk�= O(�) �k(XPSP )X�2P k+ k(XZSZ)S�2Z k�= O(�2): 2The above theorem leads to the result described in Theorem 7.6 forthe predictor-corrector LCP algorithm. The following proposition concernsassumption 7.1.Proposition 7.13 There is a monotone LCP problem, where a strict com-plementarity solution does not exist, for which the predictor-corrector algo-rithm or a�ne scaling algorithm possesses no superlinear convergence.Proof. Consider the simple monotone LCP with n = 1, M = 1 and q = 0.The unique complementarity solution is s = x = 0, which is not strictlycomplementary. Note that the feasible solution s = x = � is a perfectly



196 CHAPTER 7. ASYMPTOTIC-CASE ANALYSIScentered pair for any � > 0. The direction in the predictor step (or a�nescaling algorithm) is dx = �x=2 and ds = �s=2:Thus, even taking the step size � = 1, the new solution will be s = x = �=2.Thus, the complementarity slackness sequence is reduced at most linearly,with constant 1=4, which proves the proposition. 27.4 Quadratically Convergent AlgorithmsThe predictor-corrector algorithm described in previous sections needs tosolve two systems of linear equations or two least squares problems|one inthe predictor step and one in the corrector step. If one counts each iterationas solving one system of linear equations, as is usually done in the classicalanalysis of interior-point algorithms, the average order of convergence ofthis algorithm is only p2. In this section we further show how to constructan algorithm whose order of convergence exactly equals 2. We also showthat the solution sequence generated by the algorithm is a Cauchy, andtherefore convergent, sequence.7.4.1 Variant 1An iteration of the variant proceeds as follows. Given (xk; sk) 2 N2(�), weperform T (� 1) successive predictor steps followed by one corrector step,where in tth predictor step of these T steps we choose � = �t > 0 whereTXt=1 �t = �: (7.28)In other words, at the tth predictor step of these T steps, we solve system(7.12) with �0 = (x0)T s0=n and (x; s) = (x0; s0) 2 N (�+ �1+ :::+ �t�1) (theinitial (x0; s0) = (xk ; sk) 2 N (�)) and 
 = 0, i.e., (dx; ds) = d(x0; s0; 0). Forsome � > 0 letx(�) = x0 + �dx; s(�) = s0 + �ds and �(�) = (x(�))T s(�)=n:Our speci�c choice, ��, for � is similar as before: the largest � such that(x(�); s(�)) 2 N2(�) for� = � + �1 + :::+ �t�1 + �t:



7.4. QUADRATICALLY CONVERGENT ALGORITHMS 197From the �rst inequality in (7.14), the fact �� � 1, (7.17), and Theorem 7.12we have �(��) � kDxdsk�t + kDxdskpn� M(�0)2�t (7.29)for some �xed positive quantity M independent of k and t. Now updatex0 := x(��) and s0 := s(��).After T predictor steps we have (x0; s0) 2 N2(2�). Now we perform onecorrector step as before to generate(xk+1; sk+1) 2 N2(�):Based on the previous lemmas and results, each predictor step within aniteration achieves quadratic convergence order for any positive constantsequence f�tg satisfying (7.28). For example, one natural choice would be�t = �=T for t = 1; 2; :::; T . Since each iteration solves T + 1 systems oflinear equations, the average order of the convergence of the complementarygap to zero in Variant 1 is 2T=(T+1) per linear system solver for any constantT � 1.Theorem 7.14 Variant 1 generates a sequence fxk; skg such that the aver-age convergence order is 2T=(T+1) per linear system solver for any constantT � 1.7.4.2 Variant 2Now we develop a new variant where we let T = 1, that is, no correc-tor step is needed anymore in the rest of the iterations of the algorithm.The algorithm becomes the pure Newton method or the primal-dual a�nescaling algorithm.After (xK ; sK) 2 N (�) for some �nite K, we perform only the predictorstep, where we choose � = �t > 0 satisfying (7.28). One natural choice willbe �t = �(1=2)t for t = 1; 2; ::::For simplicity, let us reset K := 1. Then, in the kth iteration we solvesystem (7.12) with(x; s) = (xk ; sk) 2 N (� + k�1Xt=1 �t)  where 0Xt=1 �t := 0!



198 CHAPTER 7. ASYMPTOTIC-CASE ANALYSISand 
 = 0, i.e., (dx; ds) = d(xk; sk; 0). For some � > 0 letx(�) = xk + �dx; s(�) = sk + �ds: (7.30)Our speci�c choice for � is ��, the largest � such that (x(�); s(�)) 2 N2(�)for � = � + kXt=1 �t:Now directly updatexk+1 := x(��) and sk+1 := s(��): (7.31)Theorem 7.15 Let (xK)T sK be small enough. Then, Variant 2 generatesa sequence fxk; skg with k � K such thati) the order of the convergence of the complementary gap to zero equals atleast 2,ii) fxk; skg is a Cauchy, and therefore convergent, sequence.Proof. At the kth iteration (k � K := 1) we have from (7.29)(xk+1)T sk+1 � M [(xk)T sk]2�k =M [(xk)T sk]22k=�;or log2[(xk+1)T sk+1] � 2 log2[(xk)T sk] + log2(M=�) + k: (7.32)For (xK)T sK small enough, the inequality (7.32) implies that flog2[(xk)T sk]gis a geometric sequence (with base close to 2, say 1:5) tending to �1. Sincek is just an arithmetic sequence and log2(M=�) is �xed, we should havelimk!1 k + log2(M=�)log2[(xk)T sk] ! 0; (7.33)geometrically. This implies thatlim infk!1 log[(xk+1)T sk+1]log[(xk)T sk] � 2;which from Proposition 7.1 proves (i).Now from Theorem 7.12, (7.30) and (7.31)kxk+1 � xkk = ��kdkxk < kdkxk = O(�k) = O((xk)T sk=n)and ksk+1 � skk = ��kdksk < kdksk = O(�k) = O((xk)T sk=n):Hence, fxk; skg must be a Cauchy sequence, since f(xk)T skg converges tozero superlinearly from (i). This proves (ii).



7.5. NOTES 1992To actually achieve the order 2 of convergence of the primal-dual gap,we need to decide when to start the primal-dual a�ne scaling proceduredescribed in Variant 2. Note from (7.32) that as long as flog2[(xk)T sk]g isa geometric sequence with base close to 1:5 tending to �1, we shall havethe order 2 of convergence of f(xk)T sk=(x0)T s0g to zero. Thus, we canstart the procedure at any time when (xK)T sK < 1. Again for simplicity,let K := 1. Then we add a safety check to see if for k = 1; 2; :::j log[(xk+1)T sk+1]j=j log[(xk)T sk]j � 1:5(xk+1)T sk+1=(xk)T sk � 1�
(1=pn): (7.34)If both inequalities in (7.34) are satis�ed, we continue the predictor step.Otherwise we conclude that (xK)T sK was not \small enough," and we doone corrector step and then restart the predictor procedure. This safetycheck will guarantee that the algorithm maintains the polynomial com-plexity O(pn log(R=�)) and achieves the order 2 of the convergence of thecomplementary gap to zero, since eventually no corrector (or centering) stepis needed anymore in the rest of the iterations, according to the theorem.Thus, we have shown that after the complementary gap becomes smallerthan a �xed positive number, the pure primal-dual Newton method withthe step-size choice in Variant 2 generates an iteration sequence which notonly polynomially converges to an optimal solution pair, but one whoseconvergence is actually quadratic.In practice, the step size, �k , in the predictor step can be simply chosenas the bound given in Lemma 7.7. Thus, no quartic equation solver isneeded to guarantee our theoretical results. Also we see that the stepsize in Variant 2 converges to 1 superlinearly while the solution sequenceremains \centered," i.e., (xk ; sk) 2 N2(2�), without any explicit centering.This may partially explain why the large step strategy does not hurt theconvergence of the algorithm in practice.7.5 NotesThe issue of the asymptotic convergence of interior-point algorithms was�rst raised in Iri and Imai [156]. They showed that their (product) barrierfunction method with an exact line search procedure possesses quadraticconvergence for nondegenerate LP. Then, Yamashita [371] showed that avariant of this method possesses both polynomial O(nL) complexity andquadratic convergence for nondegenerate LP, and Tsuchiya and Tanabe[343] showed that Iri and Imai's method possesses quadratic convergenceunder a weaker nondegeneracy assumption.



200 CHAPTER 7. ASYMPTOTIC-CASE ANALYSISZhang, Tapia and Dennis [391, 390] �rst showed that a primal-dualalgorithm exhibits O(nL) complexity, with superlinear convergence underthe assumption of the convergence of the iteration sequence, and quadraticconvergence under the assumption of nondegeneracy. Kojima, Megiddoand Mizuno [179], Ji, Potra and Huang [163], and Zhang, Tapia and Po-tra [392] also showed quadratic convergence of a path-following algorithmfor linear complementarity problems under the nondegeneracy assumption.McShane [213] showed that a primal-dual algorithm exhibits O(pnL) com-plexity, with superlinear convergence under the assumption of the conver-gence of the iteration sequence. Other algorithms, interior or exterior, withquadratic convergence for nondegenerate LP include Coleman and Li's [70].Some negative results on the asymptotic convergence of Karmarkar's origi-nal algorithm and a potential reduction method (with separate primal anddual updates) were given by Bayer and Lagarias [39], and Gonzaga andTodd [130], respectively.Quadratic convergence for general LP, assuming neither the convergenceof the iteration sequence nor nondegeneracy, was �rst established by Ye,G�uler, Tapia and Zhang [383], and independently by Mehrotra [220] andTsuchiya [341]. The algorithm of Mehrotra, and Ye et al., is based on thepredictor-corrector algorithm of Mizuno et al. (also see Barnes). As wementioned before, if one counts each iteration as solving one system of lin-ear equations, as is usually done in the analysis of interior-point algorithms,the (average) order of convergence of the algorithm is only p2. Tsuchiya'sresult is based on Iri and Imai's O(nL) method which requires knowledgeof the exact optimal objective value in advance. A standard way of dealingwith this di�culty is to integrate the primal and dual problems into a singleLP problem, whose size is twice that of the original problem. Thus, the(average) order of convergence would actually be below p2. The conver-gence order 2 algorithm for general LP, counting each iteration as solvingone system of linear equations of the size of the original problem, was �rstgiven in Ye [378].Quadratic convergence for the monotone LCP, described in section 7.3,is based on Ye and Anstreicher [382]. They also give an example to showthat the predictor step cannot achieve superlinear convergence if the LCPhas no a strictly complementary solution. Monteiro and Wright [247] fur-ther shows that any algorithm that behaves like Newton's method near thesolution set cannot converge superlinearly when applied to an LCP whichdoes not have a strictly complementary solution.Recently, Mizuno [231] proposed a superlinearly convergent infeasible-interior-point algorithm for geometrical LCPs without the strictly comple-mentary condition.Most recently, Gonzaga and Tapia [129, 128] proved that the itera-



7.6. EXERCISES 201tion sequence (xk ; yk; sk) generated by the predictor-corrector algorithmconverges to an optimal solution on the interior of the optimal face. Con-sequently, Luo et al. [201] announced a genuine quadratically convergentalgorithm. Bonnans and Gonzaga [59] developed a simpli�ed predictor-corrector where the same Jacobian matrix is used in both the predictorand corrector steps within one iteration. The convergence order of thecomplementary gap to zero is T + 1 where T is the number of predictorsteps in each iteration. Luo, Sturm and Zhang [199] analyzed the superlin-ear convergence behavior of the predictor-corrector algorithm for positivesemi-de�nite programming.In the analysis of interior-point algorithms, the error function is chosenas the primal-dual gap or complementary xT s which should be zero atan optimal solution pair. For an optimization problem that possesses astrict complementarity solution, this error bound will lead to the sameconvergence rate for distances from iterates to the solution set, see Ho�man[149], Mangasarian [207, 208], and Luo and Tseng [200], and referencestherein.7.6 Exercises7.1 Prove Proposition 7.1.7.2 Prove that the sequence with rk = (1=k)k is of order unity, and it issuperlinearly convergent.7.3 Prove relation (7.6).7.4 Prove Lemma (7.7).7.5 Prove that the safety check described at the end of Section 7.4 works.
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Chapter 8Nonlinear ConvexOptimizationIn this chapter, we discuss interior-point algorithms for solving nonlinearconvex optimization problems. These algorithms illustrate how widely ap-plicable potential functions and interior-point algorithms could be in solvingbroader optimization problems.8.1 von Neumann Economic Growth Prob-lemConsider the von Neumann economic growth (NEG) problem:
� := maxf
 j 9 y 6= 0 : y � 0; (B � 
A)y � 0g;where A = faij � 0g and B = fbij � 0g are two given nonnegative matricesin Rm�n, andAssumption 8.1 A has no all-zero columns.Note that 
� is bounded above based on this assumption. In fact,
� � maxj Pmi=1 bijPmi=1 aij :(The NEG problem is a fractional program, and the results developed inthis section are applicable to other fractional programs.)203



204 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONThe NEG problem has an economic interpretation. Each row-index istands for a \good," while each column index j stands for a \process."Process j can convert aij units of good i, in one time period, into bij unitsof good i. So a process uses goods as materials or inputs, and gives goodsas products or outputs. Matrix B is referred as output matrix, and A isthe input matrix. Component yj of y denotes the \intensity" by which welet process j work. Vector By gives the amounts of outputs produced, andAy gives the amounts of inputs consumed, during one time period. Then,
 represents the growth factor at intensity y. So By � 
Ay requires that,for each good i, the amount of good i produced in period t is at least theamount of good i required in period (t+ 1) with the growth factor 
. TheNEG problem is to �nd the largest growth factor using an optimal intensityvector.There is a related dual NEG problem,�� := minf� j 9 x 6= 0 : x � 0; (�A�B)Tx � 0g:We further assume thatAssumption 8.2 B has no all-zero rows.Then, �� is also bounded below. But a duality overlap may exist, i.e., it ispossible �� < 
�. However, under the following irreducibility assumptionthe model is well behaved: �� = 
�.Assumption 8.3 There is no (proper) subset S of the rows and no subsetT of the columns such that Aij = 0 for all i 2 S and all j 2 T , and suchthat for all i 2 f1; 2; :::;mg n S, Bij > 0 for some j 2 T ,Moreover, the 
-level set,�(
) := fy 2 Rn : eT y = 1; y � 0; (B � 
A)y � 0g; (8.1)has a nonempty interior for 
 < 
�, meaning in this paper that�� (
) = fy 2 Rn : eT y = 1; y > 0; (B � 
A)y > 0gis nonempty for 
 < 
�. Note that we have replaced y 6= 0 with eT y = 1 inthe NEG problem, where e is the vector of all ones. This is without loss ofgenerality since the system is homogeneous in y.Obviously, the underlying decision problem related to the NEG problemcan be solved in polynomial time: Given matrices A and B, and a number
, does the linear systemfeTy = 1; y � 0; (B � 
A)y � 0g



8.1. VON NEUMANN ECONOMIC GROWTH PROBLEM 205has a feasible point? Let 0 � 
� � R for some positive R. Then, one canuse the bisection method to generate a �
 such that 
� � � � �
 � 
� inO(log(R=�)) bisection steps where each step solves a linear feasibility prob-lem with data A, B and 
. Therefore, the NEG problem is polynomiallysolvable.In this section, we develop an interior-point algorithm to directly solvethe NEG problem. The algorithm is in the same spirit of the earlier center-section algorithm for linear programming, that is, it reduces the max-potential of the 
-level set �(
) by increasing 
. We show that the algorithmgenerates an � approximate solution in O((m + n)(log(R=�) + log(m+ n))iterations where each iteration solves a system of (m+n) linear equations.8.1.1 Max-potential of �(
)We apply the analytic center and the max-potential theory to the inequalitysystem �(
) of (8.1) for a �xed 
 < 
�. Recall that the max-potential of�(
), if it has a nonempty interior, is de�ned asB(
) := B(�(
)) = maxy2�(
)0@ mXi=1 log(By � 
Ay)i + nXj=1 log yj1A :In the following, we frequently use the slack vector s := By � 
Ay.Clearly, since B is a nonnegative matrix, we must have 
� � 0. Withoutloss of generality, we further assume that �(0) of (8.1) has a nonemptyinterior. This fact automatically holds if Assumption 8.2 holds. We alsoneed the system �(
) to have a bounded and nonempty interior for all 
 <
�, so that the analytic center and the max-potential are well de�ned forall 
 < 
�. As we discussed earlier, this is true under Assumptions 8.1 and8.3. In what follows, we replace Assumption 8.3 by a weaker assumption:Assumption 8.4 There exists an optimal intensity vector y� 2 �(
�) suchthat �� := (B +A)y� > 0:Then, we prove the following lemma.Lemma 8.1 Let 0 � 
 < 
�. Then, the system �(
) under Assumptions8.1, 8.2 and 8.4 has a bounded and nonempty interior. Moreover, the max-potentialB(
) � (m+ n) log(
� � 

� + 1 ) + mXi=1 log(��i=2) + n log(��=n);



206 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONwhere �� = max�z : ( 1
� + 1�� +Ae=n)z � 12(
� + 1) ��� > 0:Proof. �(
) being bounded is obvious since eT y = 1 and y � 0. Let y� bethe one in �(
�) such thateT y� = 1; y� � 0; (B � 
�A)y� � 0; (8.2)and it satis�es (B +A)y� = �� > 0:Let � = 
(1 + 
�)1 + 
 :Then, for 0 � 
 < 
� we must have
 < � < 
�:The left inequality follows from 1 + 
� > 1 + 
, and the right inequalityfollows from 
 < 
� which implies 
(1 + 
�) < 
�(1 + 
), which furtherimplies 
� > 
(1 + 
�)1 + 
 = �:Thus, we have (
� � �)(B +A)y� = (
� � �)�� > 0: (8.3)Adding two inequalities (8.2) and (8.3), we have((1 + 
� � �)B � �A)y� � (
� � �)�� > 0;or (B � �1 + 
� � �A)y� � 
� � �1 + 
� � � �� > 0;which implies (B � 
A)y� � 
� � 
1 + 
� �� > 0;since 
 = �1 + 
� � � :Therefore, there is an 0 < ! < 1 such that�y = (1� !)y� + !e=n > 0
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A)�y > 0:That is, �y is in the interior of �(
).Speci�cally, let ! = ��(
� � 
)=
�. Then, we have(B � 
A)�y= (B � 
A)((1� !)y� + !e=n)= (B � 
A)�(1� ��(
� � 
)
� )y� + ��(
� � 
)
� e=n�= (1� ��(
� � 
)
� )(B � 
A)y� + ��(
� � 
)
� (B � 
A)e=n� (1� ��(
� � 
)
� )(B � 
A)y� � ��(
� � 
)
� 
Ae=n� (1� ��(
� � 
)
� )(B � 
A)y� � ��(
� � 
)Ae=n� (1� ��(
� � 
)
� )
� � 
1 + 
� �� � ��(
� � 
)Ae=n� (1� ��)
� � 
1 + 
� �� � ��(
� � 
)Ae=n= 
� � 
2(1 + 
�) �� + 
� � 
2(1 + 
�) �� � �� 
� � 
1 + 
� �� � ��(
� � 
)Ae=n= 
� � 
2(1 + 
�) �� + (
� � 
)� 12(1 + 
�) �� � ��( 11 + 
� �� +Ae=n)�� 
� � 
2(1 + 
�) ��:Furthermore, we have�y � !e=n = ��(
� � 
)
� e=n > ��(
� � 
)1 + 
� e=n:Note that the max-potentialB(
) � mXi=1 log(B�y � 
A�y)i + nXj=1 log �yj ;which together with the above two bounds give the desired result. 2



208 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONNote that the above lemma may not hold in general.Example 8.1 LetB = � 2 10 1 � and A = � 1 00 1 � :Then, for this problem 
� = 2. However, for any 1 < 
 < 2, it must betrue that (y1 = 1; y2 = 0) is on the boundary of �(0).It can be shown that Assumption 8.3 implies Assumption 8.4. However,Assumption (8.4) is weaker than Assumption 8.3. ConsiderB = � 1 00 1 � and A = � 1 00 1 � :This system is reducible but �(
) has a nonempty interior for all 
 < 
� = 1,and it satis�es Assumption 8.4.There is also an economic interpretation for Assumption 8.4: if �(
) hasan empty interior for some 
 < 
�, then at every optimal intensity vectory� (B +A)y� 6> 0;which implies that for some good ibiy� = aiy� = 0at every optimal intensity vector y�, where bi and ai are the ith row ofthe matrices B and A, respectively. Thus, the ith good is irrelevant, asit is neither produced nor consumed, and so can be removed from furtherconsideration. Therefore, we can set up a reduced NEG problem (both rowand column dimensions may be reduced) such asmaxf
 j 9 y 6= 0 : y � 0; (B2 � 
A2)y � 0; (bi + ai)y = 0gwhere B2 and A2 are the remaining matrices of B and A after deletingbi and ai, respectively. Now the reduced 
-level set will have a nonemptyinterior for any 
 < 
�.We now prove two more lemmas to indicate that the max-potential of�(
) is an e�ective measure for the 
-level set of the NEG problem.Lemma 8.2 Let 
0 < 
1 < 
�. Then,B(
0) > B(
1):



8.1. VON NEUMANN ECONOMIC GROWTH PROBLEM 209Proof. Let y1 be the analytic center of �(
1). Then, since(B � 
0A)y1 = (B � 
1A)y1 + (
1 � 
0)Ay1and (
1 � 
0)Ay1 � 0, we must have(B � 
0A)y1 � (B � 
1A)y1 > 0:This shows that y1 is in the interior of �(
0). Moreover, (
1� 
0)Ay1 6= 0,since A has no all-zero columns and y1 > 0. Thus,B(
0) � mXi=1 log(By1 � 
0Ay1)i + nXj=1 log y1j= mXi=1 log(By1 � 
1Ay1 + (
1 � 
0)Ay1)i + nXj=1 log y1j> mXi=1 log(By1 � 
1Ay1)i + nXj=1 log y1j= B(
1): 2
1

2

3y

y

y

(1,0,0)

(0,0,1)

(0,1,0)Figure 8.1: Illustration of the level set �(
) on the simplex polytope; thesize of �(
) decreases as 
 increases.



210 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONLemma 8.3 Let min(��) � 1=R and �� � 1=R for some positive R, and let
 satisfy (
� � 
)=(
� + 1) � �. Then, the max-potentialB(
) � (m+ n) log(�=R)�m log 2� n logn:Proof. This is directly from Lemma 8.1. 2Lemma 8.3 indicates that if we reduceB(
) � �O((m+ n)(log(R=�) + logn));then it must be true that (
� � 
)=(1 + 
�) < � and any y 2 �(
) is an� approximate solution. The algorithm actually returns an approximate(analytic) center of �(
).8.1.2 Some technical resultsMost of technical results presented in this section are related to those dis-cussed earlier in Section 2.2. Let 0 � 
0 < 
�. Then, the analytic centery0 of �(
0), or simply �0, satis�es the following conditions.� X0s0Z0y0 � = � ee � ; (8.4)where (s0; y0) is feasible with 
 = 
0 for the systems� (B � 
A)y = 0; eT y = 1; (s; y) � 0; (8.5)and (x0; z0) is feasible with 
 = 
0 for the system(B � 
A)Tx+ z = (m+ n)e; (x; z) � 0: (8.6)Now let y1 be the analytic center of �1 = �(
1) with 
1 = 
0+�
. Fora suitable choice of �
, we can show that 
0 < 
1 < 
� andP (
1) � P (
0)�
(1):We prove a lemma on how to select �
.Lemma 8.4 Let�
 = �minf 1kX0AY 0ek ; 1kY 0ATX0ekg;



8.1. VON NEUMANN ECONOMIC GROWTH PROBLEM 211for some constant 0 < � < 1 and let 
1 = 
0 +�
. Furthermore, let�s = s0 ��
Ay0 and �y = y0;and �x = x0 and �z = z0 +�
ATx0:Then, (�s; �y) and (�x; �z) are feasible for systems (8.5) and (8.6) with 
 = 
1,respectively. Moreover, 



� �X�s� e�Z�y � e �



 � p2�;and (�s; �y) > 0 and (�x; �z) > 0:Proof. The two equations in systems (8.5) and (8.6) for 
 = 
1 can easilybe veri�ed. The inequality for the norm can be proved from relation (8.4)and the choice of �
.k �X�s� ek2 = kX0(s0 ��
Ay0)� ek2= k�
X0AY 0ek2� �2:Similarly, k �Z�y � ek2 = kY 0(z0 +�
ATx0)� ek2= k�
Y 0ATX0ek2� �2:These relations also imply that�s > 0 and �z > 0;since �x = x0 > 0 and �y = y0 > 0: 2The above lemma establishes a fact that (�s; �y) and (�x; �z) are approxi-mate centers for systems (8.5) and (8.6) with 
 = 
1, respectively. Thus,(�x; �z) or (�s; �y) can be used as an initial pair of Newton's method to generatethe new center pair (x1; z1) and (s1; y1).We now state another technical result.Proposition 8.5 Let H = fhijg be a nonnegative m� n-matrix. ThenkHek � eTHe;and kHT ek � eTHT e = eTHe:



212 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATION8.1.3 Center-section algorithmWe now present a conceptual algorithm, which uses the perfect center, toillustrate the basic idea of our approach:1. Let 
0 = 0. Then generate the analytic center y0 of �0 = �(
0). Setk := 0.2. Let �
k = �minf 1kXkAY kek ; 1kY kATXkekgfor some constant 0 < � < 1 and let 
k+1 = 
k + �
k. Then useNewton's method, which is described below, to generate the analyticcenter yk+1 of �k+1 = �(
k+1).3. If B(
k+1) > �O((m + n)(log(R=�) + logn), then set k := k + 1 andreturn to Step 2.We can use the primal-dual Newton procedure to accomplish Step 1 ofthe algorithm: Let (�x; �z; �s; �y) be de�ned in Lemma 8.4 and repeatedly solvefor (ds; dy) and (dx; dz): �Sdx + �Xds = e� �x�s;�Y dz + �Zdy = e� �y�z;(B � 
1A)T dx + dz = 0;ds � (B � 
1A)dy = 0: (8.7)Then, let �x := �x+ dx and �z := �z + dz ;and �s := �s+ ds and �y := �y + dy:We now analyze the algorithm using approximate center pairs (s0; y0)and (x0; z0) that are feasible for systems (8.5) and (8.6) with 
 = 
0,respectively, and 



� X0s0 � eZ0y0 � e �



 � �: (8.8)As we proved in Theorem 3.2(iii),B(
0) � B(s0; y0) := mXi=1 log s0i + nXj=1 log y0j � B(
0)� �22(1� �) :Thus, B(s; y) is close to B(
) when (s; y) is an approximate center of �(
),and it can be used to terminate the algorithm.The following lemma is an analogue to Lemma 8.4.



8.1. VON NEUMANN ECONOMIC GROWTH PROBLEM 213Lemma 8.6 Let positive constants � and � satisfy � + p2� < 1. Let(x0; z0) and (s0; y0) be an approximate center pair for �(
0). Let �
, 
1,(�s; �y) and (�x; �z) be selected as in Lemma 8.4. Then, (�s; �y) and (�x; �z) arefeasible for systems (8.5) and (8.6) with 
 = 
1, respectively. Moreover,



� �X�s� e�Z�y � e �



 � � +p2� < 1;and (�s; �y) > 0 and (�x; �z) > 0:Now, using (�x; �z) and (�s; �y) as the initial pair, we apply the Newtonprocedure described by (8.7) to generate a new approximate center pair(s1; y1) and (x1; z1) for �(
1). Note that we terminate the procedure inone step, then assign(s1; y1) = (�s+ ds; �y + dy) and (x1; z1) = (�x+ dx; �z + dz):Note that (iv) of Theorem 3.2 and (8.6) indicate that



� X1s1 � eZ1y1 � e �



 � p24 (� +p2�)21� � �p2� ; (8.9)and k(Y 0)�1(Y 1 � Y 0)k � � +p2�1� � �p2� : (8.10)Next, for suitable constants � and �, for example,� = 1=12 and � = 1=4p2; (8.11)we prove that the potential value at (s1; y1) in �1 = �(
1) is reduced by aconstant from the value at (s0; y0) in �0 = �(
0).Theorem 8.7 Let � and � be chosen as in (8.11), and (x0; y0; s0; z0) sat-isfy (8.8). Let �
 = �min� 1kX0AY 0ek ; 1kY 0ATX0ek�and 
1 = 
0+�
. Let (s1; y1) and (x1; y1) be generated in one step of theNewton procedure. Then, 
0 < 
1 < 
�;



� X1s1 � eZ1y1 � e �



 � �;and B(s1; y1) � B(s0; y0)�
(1):



214 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONProof. 
1 > 
0 because �
 > 0 and 
1 < 
� because �1 = �(
1) has anonempty interior. From inequality (8.9) we have



� X1s1 � eZ1y1 � e �



 � p24 16 < �:Now we prove the potential reduction inequality. We have(x0)T s1 + (z0)T y1 = (x0)T (B � 
1A)y1 + (z0)T y1= (y1)T ((B � 
0A)Tx0 + z0)��
(x0)TAy1= (m+ n)eT y1 ��
(x0)TAy1= (m+ n)��
(x0)TAy1:Thus, mYi=1(x0i s1i ) nYi=1(z0i y1i ) � � (x0)T s1 + (z0)T y1m+ n �m+n= �1� �
(x0)TAy1m+ n �m+n� exp(��
(x0)TAy1):Moreover, using (x0)TAy1 > 0, Lemma 8.5 and relation (8.10), we have�
(x0)TAy1 = �
eTX0AY 1e= �minf 1kX0Ay0k ; 1kY 0ATx0kgeTX0AY 1e� � eTX0AY 1eeTX0AY 0e� �(1� � +p2�1� � �p2� )= � 1� 2(� +p2�)1� � �p2� :Finally, we haveB(s1; y1)�B(s0; y0)= mXi=1 log s1is0i + nXi=1 log y1iy0i= mXi=1 log(x0i s1i ) + nXi=1 log(z0i y1i )� mXi=1 log(x0i s0i )� nXi=1 log(z0i y0i )



8.1. VON NEUMANN ECONOMIC GROWTH PROBLEM 215� �� 1� 2(� +p2�)1� � �p2� � mXi=1 log(x0i s0i )� nXi=1 log(z0i y0i )� �� 1� 2(� +p2�)1� � �p2� + �22(1� �) (from Lemma 3.1 and (8.8)).One can verify� 1� 2(� +p2�)1� � �p2� � �22(1� �) = 18p2 � 1264 > 0:This gives the desired result. 2We now formally state the algorithm.Algorithm 8.1 Let 
0 = 0. Then generate a �-approximate center y0 of�0 = �(
0). Set k := 0.While B(sk+1; yk+1) > �O((m + n)(log(R=�) + logn)) do1. Let �
k = �min� 1kXkAY kek ; 1kY kATXkek�for some constant 0 < � < 1 and let 
k+1 = 
k +�
k. Let�s = sk ��
Ayk and �y = yk;and �x = xk and �z = zk +�
ATxk :2. Solve for (ds; dy) and (dx; dz) from (8.7) and letxk+1 = �x+ dx and zk+1 = �z + dz ;and sk+1 = �s+ ds and yk+1 = �y + dy:3. Set k := k + 1 and return to Step 1.It is well known that an initial �-approximate center pair, (z0; y0) and(x0; z0), can be generated in no more than O((m + n)(log(R=�) + logn))interior-point algorithm iterations. Thus, we conclude the following.



216 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONTheorem 8.8 Algorithm 8.1, with a suitable choice of � and �, terminatesin k = O((m + n)(log(R=�) + logn)) iterations and each iteration solves asystem of (m+n) linear equations. The resulting yk 2 �(
k) and 
k satisfy0 < 
� � 
1 + 
� < �:The algorithm also generates the optimal dual vector. More precisely,we prove the following result.Proposition 8.9 Any limit point oflimk!1 xkeTxk ;where xk is generated by Algorithm 8.1, is a solution for the dual NEGproblem with � = �� under Assumptions 8.1, 8.2 and 8.4.Proof. For simplicity, we assume that (xk ; yk; sk; zk) is exactly centered,i.e., it satis�es relations (8.4), (8.5) and (8.6). Since at least one componentof sk converges to zero, eTxk = eT (Sk)�1e tends to +1. Moreover, from(8.6) we have (B � 
kA)T xkeTxk + zkeTxk = (m+ n) eeTxk :Thus, the right-hand vector of the above equation converges to zero. Sincezk=eTxk > 0 for all k,limk!1(B � 
kA)T xkeTxk = � limk!1 zkeTxk � 0:Furthermore, under Assumptions 8.1, 8.2 and 8.4 we have 
k ! 
� = ��.Therefore, any limit point of the sequence of positive xk=eTxk is a solutionfor the dual. 2Finally we turn our attention to the question raised earlier, that is,what happens if �(
) has an empty interior for some 
 < 
�. It turnsout that there exists a nice duality theorem for the NEG problem, thatis, under Assumptions 8.1 and 8.2, �(
) has a nonempty interior for all
 < �� � 
� (see Kemeny et al. and Gale [175]). Thus, the algorithmdiscussed in this paper will precisely generate �� under only Assumptions8.1 and 8.2. Similarly, the �-level set of the dual has an nonempty interiorfor all � > 
� � ��. Thus, one can apply the algorithm for solving the dualto generate 
� in the same manner. Thus, we can solve the NEG problemunder only Assumptions 8.1 and 8.2, which are basic assumptions for ameaningful economic growth model.



8.2. CONVEX OPTIMIZATION 2178.2 Convex OptimizationThe problem studied is that of �nding an interior point in a convex set�, where we assume � � Rm has a nonempty interior and is contained inthe cube 
0 = fy 2 Rm : 0 � y � eg = [0; 1]m. The set � is de�nedimplicitly by a separating oracle which for every �y 2 
0 either answersthat �y belongs to �� or generates a separating hyperplane fy 2 Rm : aT y �aT �yg � �. Without loss of generality, we assume that a is normalized sothat kak = 1.The problem of �nding an interior point in a convex set de�ned by asystem (�nite or in�nite) of convex inequalities� = fy 2 Rm : fi(y) � 0; i = 1; 2; :::g;where each fi : Rm 7! R is convex, can be cast in this manner. Inparticular, the separating oracle just needs to select a to be gi=kgik, wheregi is an arbitrary subgradient of any of the functions fi satisfying fi(�y) � 0,i.e. gi 2 @fi(�y) (the subdi�erential of fi). Note that for any gi 2 @fi(�y),fi(y) � fi(�y) implies gTi (y � �y) � 0. Thus, if fi(�y) � 0, fi(y) � 0 thengTi (y � �y) � 0. (In fact, the requirement that fi(�y) be computed exactlyand gi 2 @fi(�y) can be signi�cantly relaxed.) All that is required fromthe oracle is that the following query be answered: Find any i such thatfi(�y) � 0, and a such that aT (y � �y) � 0 for all y 2 fy 2 Rm : fi(y) � 0g.The problem under investigation may also be cast as that of �ndingthe solution to an in�nite system of linear inequalities, which is de�nedimplicitly by the oracle � = fy 2 Rm : GT y � gg for some G 2 Rm�dand g 2 Rd and d is in�nite. The classical centering methods that havebeen suggested for the above convex feasibility problem include the centerof gravity method, the max-volume sphere method, the ellipsoid method,the max-volume ellipsoid method, and the volumetric center method.The column generation or cutting plane method computes �y as the an-alytic center of the system of inequalities generated so far. In this section,we show that for any given convex feasibility problem with a nonemptyinterior, the algorithm is a fully polynomial-time approximation schemethat uses only linear inequalities to approximate the solution set. A fullypolynomial-time approximation scheme means that for every �, the accu-racy at termination, the running time is a polynomial in the dimension mand �.8.2.1 Max-potential reductionNow, we use an approximate center yk to generate a cut, where (yk; sk) isan interior point in 
 = fy 2 Rm : AT y � cg and there is xk > 0 with



218 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONAxk = 0 such that kXksk � ek � � (8.12)for some 0 < � < 1. Let us place a cut exactly at yk, that is, we add a newinequality aT y � aT yk to 
, and consider the new set
+ = fy : AT y � c; aT y � aT ykg:We now prove a lemma resembling Theorem 2.10.Lemma 8.10 Denote by (�y; �s) the analytic center of 
 and let�r =qaT (A �S�2AT )�1a:Then the max-potential of 
+B(
+) � B(
) + log(�r)� �for some constant � depending only on �. Moreover, if 0 < � < 1=100,then we have � > 0.Proof. Denote by �y+ the analytic center for 
+. Let �s+ = c� AT �y+ > 0and �s+n+1 = aT yk � aT �y+. Then we have�s+n+1 = aT (yk � �y+)= aT (A �S�2AT )�1(A �S�2AT )(yk � �y+)= aT (A �S�2AT )�1A �S�2(AT yk �AT �y+)= aT (A �S�2AT )�1A �S�2(�c+AT yk + c�AT �y+)= aT (A �S�2AT )�1A �S�2(�s+ � sk)= aT (A �S�2AT )�1A �S�1( �S�1�s+ � �S�1sk)� kaT (A �S�2AT )�1A �S�1kk �S�1�s+ � �S�1skk= �rk �S�1�s+ � e+ e� �S�1skk� �r(k �S�1�s+ � ek+ ke� �S�1skk)� �r(k �S�1�s+ � ek+ �(1� �)2 ) (from Theorem 3.2):Thus, expB(
+)�r expB(
) = �s+n+1�r nYj=1 �s+j�sj� (k �S�1�s+ � ek+ �(1� �)2 ) nYj=1 �s+j�sj :



8.2. CONVEX OPTIMIZATION 219Note that we still have eT �S�1�s+ = n:This can be seen as follows:eT �S�1�s+ = eT �X�s+ = eT �X(c�AT �y+) = eT �Xc = eT �X�s = n;where the �rst and �fth equalities are due to �X�s = e, and the second andfourth equalities follow from A�x = 0.Thus, from the proof of Theorem 2.10(k �S�1�s+ � ek+ �(1� �)2 ) nYj=1 �s+j�sj � 4 exp( 8� � 32(1� �)2 ):Thus, B(
+)�B(
) � log(�r) + log(4) + 8� � 32(1� �)2 :Let � = � log(4)� 8� � 32(1� �)2 :Let � = 1=100. Then we have � > 0 and the desired result. 28.2.2 Compute a new approximate centerIn this section, we show how to construct a pair (x; y; s) from (xk ; yk; sk)such that (A; a)x = 0 with x > 0, (y; s) is in the interior of 
+, andkXs� ek < � < 1:Suppose a pair (xk ; yk; sk) is given which satis�es (8.12), we use the dualscaling for the construction of (x; y; s). Letrk = qaT (A(Sk)�2AT )�1a;�y = �(�=rk)(A(Sk)�2AT )�1a;�s = (�=rk)AT (A(Sk)�2AT )�1a;�x = �(�=rk)(Sk)�2AT (A(Sk)�2AT )�1a:Then we set y = yk +�y



220 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONand x = � xk +�x�=rk � = � xk � (�=rk)(Sk)�2AT (A(Sk)�2AT )�1a�=rk � :It can be readily veri�ed thats = � c�AT (yk +�y)aT yk � aT (yk +�y) � = � sk +�s�rk �= � sk + (�=rk)AT (A(Sk)�2AT )�1a�rk � :First, we have (A; a)x = Axk � (�=rk)a+ (�=rk)a = 0:Second, we havesk + (�=rk)AT (A(Sk)�2AT )�1a = (Sk)(e+ pk)and xk � (�=rk)(Sk)�2AT (A(Sk)�2AT )�1a = (Sk)�1(XkSke� pk);where pk = (�=rk)(Sk)�1AT (A(Sk)�2AT )�1a:Note that we have kpkk = �: (8.13)On the other hand, we have xkj skj � 1� �:Thus, if we select � and � such that1� � � � > 0; (8.14)then both s = � (Sk)(e+ pk)�rk � > 0and x = � (Sk)�1(XkSke� pk)�=rk � > 0:



8.2. CONVEX OPTIMIZATION 221A simple calculation yieldsXs� e = � Xksk � e0 �� � (pk)21� �2 �+ � (XkSk � I)pk0 �where the vector (pk)2 = ((pk1)2; (pk2)2; :::(pkn)2)T :Therefore, we havekXs� ek � kXksk � ek+qk(pk)2k2 + (1� �2)2 + kXksk � ekkpkk� � +p�4 + (1� �2)2 + ��where the last step follows from (8.12) and (8.13). Let � = 1=p2 and� = 0:15, then kXs� ek � 
 = 0:15 + 1=p2 + 0:15=p2 < 1:Or, we can let� = 1=100; and have 
 := 1=100+ 1:01=p2 < 1:Furthermore, it can also be easily veri�ed that (8.14) holds.Hence, using this (y; s) as a starting pair, we can apply the dual Newtonprocedure of Chapter 3 to generate a pair (yk+1; sk+1) and xk+1 = x(yk+1)such that (A; a)xk+1 = 0; xk+1 > 0;sk+1 = (cT ; aT yk)T � (A; a)T yk+1 > 0;and kXk+1sk+1 � ek � �:By Theorem 3.2(iv) and the above given values of 
 and �, this canbe accomplished in 4 dual Newton steps due to the fact 
16 � �. Thiscolumn generation process can be repeated, and from Lemma 8.10 thenested sequence of polyhedral sets 
k generated by the algorithm satis�esB(
k+1) � B(
k) + log(�rk)� � (8.15)where � is some constant,�rk =qaTk+1(A( �Sk)�2AT )�1ak+1;(�yk; �sk) is the analytic center of 
k, and ak+1 is the cut generated at the kthiteration. Note that (�yk; �sk) is solely used for analysis, and the algorithmdoes not need any knowledge of (�yk; �sk).



222 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATION8.2.3 Convergence and complexityLet the solution set � be contained in 
0 = fy 2 Rm : 0 � y � eg, and ��contain a full dimensional closed ball with � < 12 radius. We also assumethat there exists an oracle which for every �y 2 
0 either returns that �y 2��or generates a separating hyperplane fy : aT y � aT �yg � �, with kak = 1being assumed.The column-generation, or cutting plane, algorithm from approximateanalytic centers is as follows:Algorithm 8.2 LetA0 = (I;�I) 2 Rm�2m; c0 = � e0 � 2 R2m; (8.16)y0 = 12e 2 Rm; s0 = c0 � (A0)T y0 = 12e 2 R2m; x0 = 2e 2 R2m:Set k := 0:While yk 62�� do1. Query the oracle to generate a hyperplane fy : aTk+1y � aTk+1ykg � �with kak+1k = 1; and let
k+1 = fy 2 Rm : ck+1 � (Ak+1)T y � 0gwhere Ak+1 = (Ak ; ak+1) and ck+1 = � ckaTk+1yk �2. Compute (yk+1; sk+1; xk+1) such that yk+1 is an �-approximate an-alytic center of 
k+1, using the Newton method with the updatingscheme of section 8.2.2 and starting from (yk; sk; xk), an �-approximateof 
k.3. Set k := k + 1 and return to Step 1.Let the potential function computed at the exact analytic center �yk be:B(
k) = 2m+kXj=1 log(ck � (Ak)T �yk)j :Clearly the following relations hold, provided that termination has not oc-curred:



8.2. CONVEX OPTIMIZATION 223� � 
k 8k; (8.17)and B(
k+1) � B(
k) + 12 log(�rk)2 � � (by Lemma 8:10) (8.18)where(�rk)2 = aTk+1(Ak( �Sk)�2(Ak)T )�1ak+1 and �sk = ck � (Ak)T �yk:Lemma 8.11 For all k � 0,B(
k) � (2m+ k) log �:Proof. From (8.17), � � 
k. Thus 
k contains a full dimensional ballwith � radius. Let the center of this ball be �y. Then ck� (Ak)T �y � �e; thusB(
k) = 2m+kXj=1 log(ck � (Ak)T �yk)j � 2m+kXj=1 log(ck � (Ak)T �y)j � 2m+kXj=1 log �where �yk denotes the analytic center of 
k. 2Lemma 8.12 Let s = ck � (Ak)T y for any y 2 
k. Theni) 0 � sj � 1; j = 1; : : : ; 2mii) 0 � sj � pm; j = 2m+ 1; : : : ; 2m+ k:Proof. For j = 1; : : : ;m, sj = 1� yj ; since 0 � yj � 1, 0 � sj � 1.For j = m+ 1; : : : ; 2m, sj = yj�m; since 0 � yj�m � 1, 0 � sj � 1.For j = 2m+ 1; : : : ; 2m+ k,sj = aTj�2myj�2m � aTj�2my � kaj�2mk kyj�2m � yk = kyj�2m � yk � pmThe last inequality is due to the fact that 0 � yj�2m � e and 0 � y � e oryj�2m 2 
0 and y 2 
0. 2Lemma 8.11 indicates that in order to prove �nite convergence, oneneeds to show that B(
k) grows more slowly than 2m + k. By Lemma8.10, this means �nding upper bounds on �rk . In the following Lemma thisis achieved by using a construction which bounds Ak( �Sk)�2(Ak)T frombelow by using a certain matrix Bk which is simple enough to handle.



224 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONLemma 8.13 Let s = ck � (Ak)T y for any y 2 
k and B0 = 8I, Bk+1 =Bk + 1mak+1aTk+1. Then AkS�2(Ak)T � Bk;that is, AkS�2(Ak)T �Bkis positive semi-de�nite.Proof. Let Y = diag(y). ThenAkS�2(Ak)T = Y �2 + (I � Y )�2 + kXj=1 ajaTj(s2m+j)2� Y �2 + (I � Y )�2 + 1m kXj=1 ajaTj (by Lemma 8:12)� 8I + 1m kXj=1 ajaTj (as 0 � y � e)= Bk 2Lemma 8.14 Let �sk = ck � (Ak)T �yk be the slack vector at the analyticcenter �yk of 
k and (!k)2 = aTk+1(Bk)�1ak+1, then(!k)2 � aTk+1(Ak( �Sk)�2(Ak)T )�1ak+1 = (�rk)2:This lemma implies that upper bounds on the series of (!k)2 will leadto upper bounds on the series (�rk)2.Lemma 8.15 kXj=0(!j)2 � 2m2 log(1 + k + 18m2 ):Proof. Note thatdetBk+1 = det(Bk + 1mak+1aTk+1) = (1 + (!k)2m ) detBk:Thus log detBk+1 = log detBk + log(1 + (!k)2m ):



8.2. CONVEX OPTIMIZATION 225But (!k)2m � 18aTk+1ak+1 = 18;hence log(1 + (!k)2m ) � (!k)2m � ( (!k)2m )22(1� (!k)2m )= (!k)2m (1� (!k)2m2(1� (!k)2m ) )� (!k)22m :Thus we havelog detBk+1 � log detB0 + kXj=0 (!j)22m = m log 8 + kXj=0 (!j)22m :But 1m log detBk+1 � log trace Bk+1m = log(8 + k + 1m2 ):Thus kXj=0 (!j)22m � m log(8 + k + 1m2 )�m log 8or kXj=0(!j)2 � 2m2 log(1 + k + 18m2 ): 2Theorem 8.16 The cutting plane algorithm stops with a feasible solutionas soon as k satis�es:�2m � 12 + 2m log(1 + k+18m2 )2m+ k + 1 exp(�2� k + 1k + 1 + 2m ):Proof. From relation (8.18) and Lemma 8.11,(2m+ k + 1) log � � B(
k+1)� B(
0) + 12 kXj=0 log(�rj)2 � (k + 1)�= 2m log 12 + 12 kXj=0 log(�rj)2 � (k + 1)�:



226 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONThus log �+ k + 12m+ k + 1�� 12(2m+ k + 1) 242m log 14 + kXj=0 log(�rj)235� 12 log 2m 14 +Pkj=0(�rj)22m+ k + 1 (from the concavity of log)� 12 log m2 +Pkj=0(!j)22m+ k + 1 (from Lemma 8:14)� 12 log m2 + 2m2 log(1 + k+18m2 )2m+ k + 1 (from Lemma 8:15)or �2m � 12 + 2m log(1 + k+18m2 )2m+ k + 1 exp(�2� k + 1k + 1 + 2m ): 2Theorem 8.16 implies that the complexity of the column generationscheme, counted by the calls to the oracle, is O�(m2�2 ); the notation O�means that lower order terms are ignored. The largest value of � thatguarantees 
16 � � (so that 4 dual Newton steps are enough to recenter) isabout � = :09 with � = :691. In this case � may be negative; nonethelessthe algorithm will still terminate after O�(m2�2 ) iterations.Theorem 8.17 The approximate analytic center algorithm, which uses theupdating scheme of Section 8.2.2 and the Newton method, is, for appropri-ate values of � and � which depend on the exact mix of recentering andupdating steps, a fully polynomial-time approximation scheme.8.3 Positive Semi-De�nite ProgrammingRecall that Mn denotes the set of symmetric matrices in Rn�n. Let Mn+denote the set of positive semi-de�nite matrices and �Mn+ the set of positivede�nite matrices inMn. The goal of this section is to extend interior-pointalgorithms to solving the positive semi-de�nite programming problem:(PSP ) inf C �Xsubject to Ai �X = bi; i = 1; 2; :::;m; X � 0;



8.3. POSITIVE SEMI-DEFINITE PROGRAMMING 227where C 2 Mn, Ai 2 Mn, i = 1; 2; :::;m, and b 2 Rm. The dual problemcan be written as(PSD) sup bT ysubject to Pmi yiAi + S = C; S � 0;which is analogous to the dual of LP.Denote the primal feasible set by Fp and the dual by Fd. We assumethat both �Fp and �Fd are nonempty. Thus, the optimal solution sets forboth (PSP ) and (PSD) are bounded. Let z� denote the optimal value andF = Fp�Fd. In this section, we are interested in �nding an � approximatesolution for the PSP problem:C �X � bT y = S �X � �:For simplicity, we assume that a central path pair (X0; y0; S0), which sat-is�es (X0):5S0(X0):5 = �0I and �0 = X0 � S0=n;is known. We will use it as our initial point throughout this section.De�ne the \1-norm" of Mn bykXk1 = maxj2f1;:::;ngfj�j(X)jg;where �j(X) is the jth eigenvalue of X , and the \Euclidean" norm bykXk = pX �X =vuut nXj=1(�j(X))2:Furthermore, note that for X 2 Mntr(X) = nXj=1 �j(X) and det(I +X) = nYj=1(1 + �j(X)):Then, we have the following lemma which resembles Lemma 3.1.Lemma 8.18 Let X 2 Mn and kXk1 < 1. Then,tr(X) � log det(I +X) � tr(X)� kXk22(1� kXk1) :



228 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATION8.3.1 Potential reduction algorithmLet X 2 �Fp, (y; S) 2 �Fd, and z � z�. Then consider the primal potentialfunction P(X; z) = (n+ �) log(C �X � z)� log detX;and the primal-dual potential function (X;S) = (n+ �) log(S �X)� log detXS;where � = pn. Let z = bT y. Then S �X = C �X � z, and we have (x; s) = P(x; z)� log detS:Consider a pair of (Xk; yk; Sk) 2 �F . Fix zk = bT yk, then the gradientvector of the primal potential function at Xk isrP(Xk; zk) = n+ �Sk �XkC � (Xk)�1:The following corollary is an analog to inequality (3.15).Corollary 8.19 Let Xk 2 �Mn+ and k(Xk)�:5(X � Xk)(Xk)�:5k1 < 1.Then, X 2 �Mn+ andP(X; zk)�P(Xk; zk) � rP(Xk; zk) � (X �Xk)+ k(Xk)�:5(X �Xk)(Xk)�:5k22(1� k(Xk)�:5(X �Xk)(Xk)�:5k1) :Let A = 0BB@ A1A2:::Am 1CCA :Then, de�ne AX = 0BB@ A1 �XA2 �X:::Am �X 1CCA = b;and AT y = mXi=1 yiAi:



8.3. POSITIVE SEMI-DEFINITE PROGRAMMING 229Then, we directly solve the following problemminimize rP(Xk; zk) � (X �Xk)subject to A(X �Xk) = 0;k(Xk)�:5(X �Xk)(Xk)�:5k � � < 1:Let X 0 = (Xk)�:5X(Xk)�:5. Note that for any symmetric matrices Q;T 2Mn and X 2 �Mn+,Q �X :5TX :5 = X :5QX :5 � T and kXQk� = kQXk� = kX :5QX :5k�:Then we transform the above problem intominimize (Xk):5rP(Xk; zk)(Xk):5 � (X 0 � I)subject to A0(X 0 � I) = 0; i = 1; 2; :::; i;kX 0 � Ik � �;where A0 = 0BB@ A01A02:::A0m 1CCA := 0BB@ (Xk):5A1(Xk):5(Xk):5A2(Xk):5:::(Xk):5Am(Xk):5 1CCA :Let the minimizer be X 0 and let Xk+1 = (Xk):5X 0(Xk):5. ThenX 0 � I = �� P kkP kk ;Xk+1 �Xk = �� (Xk):5P k(Xk):5kP kk ; (8.19)where P k = PA0(Xk):5rP(Xk; zk)(Xk):5= (Xk):5rP(Xk; zk)(Xk):5 �A0T ykor P k = n+ �Sk �Xk (Xk):5(C �AT yk)(Xk):5 � I;and yk = Sk �Xkn+ � (A0A0T )�1A0(Xk):5rP(Xk; zk)(Xk):5:



230 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONHere, PA0 is the projection operator onto the null space of A0, andA0A0T := 0BB@ A01 �A01 A01 �A02 ::: A01 �A0mA02 �A01 A02 �A02 ::: A02 �A0m::: ::: ::: :::A0m �A01 A0m �A02 ::: A0m �A0m 1CCA 2 Mm:In view of Corollary 8.19 andrP(Xk; zk) � (Xk+1 �Xk) = ��rP(Xk; zk) � (Xk):5P k(Xk):5kP kk= �� (Xk):5rP(Xk; zk)(Xk):5 � P kkP kk= ��kP kk2kP kk = ��kP kk;we have P(Xk+1; zk)�P(Xk; zk) � ��kP kk+ �22(1� �) :Thus, as long as kP kk � � > 0, we may choose an appropriate � such thatP(Xk+1; zk)�P(Xk; zk) � ��for some positive constant �.Now, we focus on the expression of P k, which can be rewritten asP (zk) := P k = n+ �Sk �Xk (Xk):5S(zk)(Xk):5 � I (8.20)with S(zk) = C �AT y(zk) (8.21)and y(zk) := yk = y2 � Sk �Xkn+ � y1 = y2 � C �Xk � zkn+ � y1 (8.22)where y1 and y2 are given byy1 = (A0A0T )�1A0I = (A0A0T )�1b;y2 = (A0A0T )�1A0(Xk):5C(Xk):5: (8.23)Regarding kP kk = kP (zk)k, we have the following lemma resemblingLemma 4.8.



8.3. POSITIVE SEMI-DEFINITE PROGRAMMING 231Lemma 8.20 Let�k = Sk �Xkn = C �Xk � zkn and � = S(zk) �Xkn :If kP (zk)k < min(�r nn+ �2 ; 1� �) (8.24)then the following three inequalities hold:S(zk) � 0; k(Xk):5S(zk)(Xk):5��ek < ��; and � < (1� :5�=pn)�k:(8.25)Proof. The proof is by contradiction. For example, if the �rst inequalityof (8.25) is not true, then (Xk):5S(zk)(Xk):5 has at least one eigenvalueless than or equal to zero, and kP (zk)k � 1:The proof of the second and third inequalities are similar to that of Lemma4.8. 2Based on this lemma, we have the following potential reduction theorem.Theorem 8.21 Given Xk 2 �Fp and (yk; Sk) 2 �Fd, let � = pn, zk = bT yk,Xk+1 be given by (8.19), and yk+1 = y(zk) in (8.22) and Sk+1 = S(zk) in(8.21). Then, either  (Xk+1; Sk) �  (Xk; Sk)� �or  (Xk; Sk+1) �  (Xk; Sk)� �where � > 1=20.Proof. If (8.24) does not hold, i.e.,kP (zk)k � min(�r nn+ �2 ; 1� �);thenP(Xk+1; zk)�P(Xk; zk) � ��min(�r nn+ �2 ; 1� �) + �22(1� �) ;



232 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONhence from the relation between P and  , (Xk+1; Sk)�  (Xk; Sk) � ��min(�r nn+ �2 ; 1� �) + �22(1� �) :Otherwise, from Lemma 8.20 the inequalities of (8.25) hold:i) The �rst of (8.25) indicates that yk+1 and Sk+1 are in �Fd.ii) Using the second of (8.25) and applying Lemma 8.18 to matrix(Xk):5Sk+1(Xk):5=�, we haven logSk+1 �Xk � log detSk+1Xk= n logSk+1 �Xk=�� log det(Xk):5Sk+1(Xk):5=�= n logn� log det(Xk):5Sk+1(Xk):5=�� n logn+ k(Xk):5Sk+1(Xk):5=�� Ik22(1� k(Xk):5Sk+1(Xk):5=�� Ik1)� n logn+ �22(1� �)� n logSk �Xk � log detSkXk + �22(1� �) :iii) According to the third of (8.25), we havepn(logSk+1 �Xk � logSk �Xk) = pn log ��k � ��2 :Adding the two inequalities in ii) and iii), we have (Xk; Sk+1) �  (Xk; Sk)� �2 + �22(1� �) :Thus, by choosing � = :43 and � = :3 we have the desired result. 2Theorem 8.21 establishes an important fact: the primal-dual potentialfunction can be reduced by a constant no matter where Xk and yk are. Inpractice, one can perform the line search to minimize the primal-dual po-tential function. This results in the following potential reduction algorithm.



8.3. POSITIVE SEMI-DEFINITE PROGRAMMING 233Algorithm 8.3 Given x0 2 �Fp and (y0; s0) 2 �Fd. Let z0 = bT y0. Setk := 0.While Sk �Xk � � do1. Compute y1 and y2 from (8.23).2. Set yk+1 = y(�z), Sk+1 = S(�z), zk+1 = bTyk+1 with�z = arg minz�zk  (Xk; S(z)):If  (Xk; Sk+1) >  (Xk; Sk) then yk+1 = yk, Sk+1 = Sk, zk+1 = zk.3. Let Xk+1 = Xk � ��(Xk):5P (zk+1)(Xk):5 with�� = argmin��0  (Xk � �(Xk):5P (zk+1)(Xk):5; Sk+1):4. Set k := k + 1 and return to Step 1.The performance of the algorithm results from the following corollary.Corollary 8.22 Let � = pn. Then, Algorithm 8.3 terminates in at mostO(pn log(C �X0 � bT y0)=�) iterations withC �Xk � bT yk � �:Proof. In O(pn log(S0 �X0=�)) iterations�pn log(S0 �X0=�) =  (Xk; Sk)�  (X0; S0)� pn logSk �Xk + n logn�  (X0; S0)= pn log(Sk �Xk=S0 �X0):Thus, pn log(C �Xk � bT yk) = pn logSk �Xk � pn log �;i.e., C �Xk � bT yk = Sk �Xk � �: 2



234 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATION8.3.2 Primal-dual algorithmOnce we have a pair (X; y; S) 2 �F with � = S � X=n, we can apply theprimal-dual Newton method to generate a new iterate X+ and (y+; S+) asfollows: Solve for dX , dy and dS from the system of linear equations:D�1dXD�1 + dS = R := 
�X�1 � S;AdX = 0;AT dy + dS = 0; (8.26)where D = X :5(X :5SX :5)�:5X :5:Note that dS � dX = 0.This system can be written asdX0 + dS0 = R0;A0dX0 = 0;A0T dy + dS0 = 0; (8.27)wheredX0 = D�:5dXD�:5; dS0 = D:5dSD:5; R0 = D:5(
�X�1 � S)D:5;and A0 = 0BB@ A01A02:::A0m 1CCA := 0BB@ D:5A1D:5D:5A2D:5:::D:5AmD:5 1CCA :Again, we have dS0 � dX0 = 0, anddy = (A0A0T )�1A0R0; dS0 = �A0T dy; and dX0 = R0 � dS0 :Then, assign dS = AT dy and dX = D(R � dS)D:Let V 1=2 = D�:5XD�:5 = D:5SD:5 2 �Mn+ :Then, we can verify that S � X = I � V . We now present the followinglemma whose proof is very similar to that for Lemmas 3.6 and 4.11 andwill be omitted.



8.3. POSITIVE SEMI-DEFINITE PROGRAMMING 235Lemma 8.23 Let the direction dX , dy and dS be generated by equation(8.26) with 
 = n=(n+ �), and let� = �kV �1=2k1k I�Vn+�V �1=2 � V 1=2k ; (8.28)where � is a positive constant less than 1. LetX+ = X + �dX ; y+ = y + �dy; and S+ = S + �dS :Then, we have (X+; y+; S+) 2 �F and (X+; S+)�  (X;S)� ��kV �1=2 � n+�I�V V 1=2kkV �1=2k1 + �22(1� �) :Applying Lemma 4.12 to v 2 Rn as the vector of the n eigenvalues ofV , we can prove the following lemmaLemma 8.24 Let V 2 �Mn+ and � � pn. Then,kV �1=2 � n+�I�V V 1=2kkV �1=2k1 �p3=4:From these two lemmas we have (X+; S+)�  (X;S)� ��p3=4 + �22(1� �) = ��for a constant �. This leads toAlgorithm 8.4 Given (X0; y0; S0) 2 �F . Set � = pn and k := 0.While Sk �Xk � � do1. Set (X;S) = (Xk; Sk) and 
 = n=(n + �) and compute (dX ; dy ; dS)from (8.26).2. Let Xk+1 = Xk+��dX , yk+1 = yk+ ��dy, and Sk+1 = Sk+ ��dS where�� = argmin��0  (Xk + �dX ; Sk + �dS):3. Set k := k + 1 and return to Step 1.



236 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONTheorem 8.25 Let � = pn. Then, Algorithm 8.4 terminates in at mostO(pn log(S0 �X0=�)) iterations withC �Xk � bT yk � �:Primal-dual adaptive path-following algorithms, the predictor-correctoralgorithms and the wide-neighborhood algorithms similar to those in Sec-tion 4.5 can also be developed for solving (PSP).8.4 Monotone Complementarity ProblemWe present a generalization of the homogeneous self-dual linear program-ming (LP) algorithm to solving the monotone complementarity problem(MCP) in the form:(MCP ) minimize xT ssubject to s = f(x); (x; s) � 0;where (x; s) 2 R2n and f(x) is a continuous monotone mapping from Rn+to Rn. In other words, for every x1; x2 2 Rn+, we have(x1 � x2)T (f(x1)� f(x2)) � 0:Denote by rf the Jacobian matrix of f , which is positive semi-de�nite inRn+.(MCP ) is said to be (asymptotically) feasible if and only if there is abounded sequence (xt > 0; st > 0), t = 1; 2; :::, such thatlimt!1 st � f(xt)! 0;where any limit point (x̂; ŝ) of the sequence is called an (asymptotically)feasible point for (MCP ). (MCP ) has an interior feasible point if it hasan (asymptotically) feasible point (x̂ > 0; ŝ > 0). (MCP ) is said to be(asymptotically) solvable if there is an (asymptotically) feasible (x̂; ŝ) suchthat x̂T ŝ = 0, where (x̂; ŝ) is called the \optimal" or \complementary"solution for (MCP ). (MCP ) is (strongly) infeasible if and only if there isno sequence (xt > 0; st > 0), t = 1; 2; :::, such thatlimt!1 st � f(xt)! 0:Denote the feasible set of (MCP ) by F and the solution set by S. Notethat (MCP ) being feasible does not imply that (MCP ) has a solution. If(MCP ) has a solution, then the solution set is convex and it contains a



8.4. MONOTONE COMPLEMENTARITY PROBLEM 237maximal solution (x�; s�) (the number positive components in (x�; s�) ismaximal).Consider a class of (MCP ) where f satis�es the following condition.Let � : (0; 1)! (1;1)be a monotone increasing function such thatkX(f(x+ dx)� f(x)�rf(x)dx)k1 � �(�)dTxrf(x)dx (8.29)whenever dx 2 Rn; x 2 Rn++; 

X�1dx

1 � � < 1:Then, f is said to be scaled Lipschitz in �Rn+.Given x0 > 0 and s0 = f(x0) > 0 one can develop an interior-pointalgorithm that generates a maximal complementary solution of the scaledLipschitz (MCP ) in O(pn log(1=�)) interior-point iterations, where � is thecomplementarity error.However, the initial point x0 is generally unknown. In fact, we don'teven know whether such a point exists or not, that is, (MCP ) might beinfeasible or feasible but have no positive feasible point. To overcome thisdi�culty, in Section 5.3 we developed a homogeneous linear programming(LP) algorithm based on the construction of a homogeneous and self-dualLP model. In this section, we present a homogeneous model for solving themonotone complementarity problem. The algorithm again possesses thefollowing desired features:� It achievesO(pn log(1=�))-iteration complexity if f satis�es the scaledLipschitz condition.� If (MCP ) has a solution, the algorithm generates a sequence thatapproaches feasibility and optimality simultaneously; if the problemis (strongly) infeasible, the algorithm generates a sequence that con-verges to a certi�cate proving infeasibility.8.4.1 A convex propertyLet f(x) be a continuous monotone mapping from �Rn+ to Rn. Consider theset of residuals R++ = fs� f(x) 2 Rn : (x; s) > 0g;and for a r 2 Rn letS++(r) = f(x; s) 2 R2n++ : s = f(x) + rg:



238 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONSince f is continuous in �Rn+, we can easily verify that R++ is an openset. Furthermore, we haveTheorem 8.26 Consider the mapping F = (Xy; s � f(x)) 2 R2n from(x; s) 2 R2n. Then F maps R2n++ onto �Rn+ �R++ homeomorphically, thatis, F is one-to-one on R2n++, F maps R2n++ onto �Rn+ �R++, and the inversemapping F�1 is continuous on �Rn+ �R++.Simply using the monotone of f , we also have the following lemmaLemma 8.27 Let r 2 Rn. Assume that (x1; s1) 2 S++(�1r) and (x2; s2) 2S++(�2r) where �1 and �2 are two real numbers. Then(�2 � �1)rT (x2 � x1) � (x2 � x1)T (s2 � s1):This lemma leads to the next lemma:Lemma 8.28 Let r 2 Rn and �0 � �1. Assume S++(�0r) 6= ; andS++(�1r) 6= ;. Then, for every � > 0, the union ofC++(�r; �) = f(x; y) 2 S++(�r) : xT y � �g; � 2 [�0; �1]is bounded.Proof. Let (x0; s0) 2 S++(�0r) and (x1; s1) 2 S++(�1r), andmax((s0)Tx0; (s1)Tx1) � �:Let � 2 [�0; �1] and (x; s) 2 C++(�r; �). Then we have by Lemma 8.27 that(s1)Tx+ (x1)T s � (�1 � �)rTx+ c1and (s0)Tx+ (x0)T s � (�0 � �)rT x+ c0;where c1 = (�1 � �0)jrTx1j+ 2� and c0 = (�1 � �0)jrTx0j+ 2�:Thus, if �0 < �1 then we have(� � �0)((s1)Tx+ (x1)T s) + (�1 � �)((s0)Tx+ (x0)T s)� (� � �0)c1 + (�1 � �)c0:Thus, we have eTx+ eT s � maxfc1; c0gminf(x0; s0; x1; s1)g ;which implies that (x; s) is bounded. The lemma is obviously true if �0 = �1.



8.4. MONOTONE COMPLEMENTARITY PROBLEM 2392To prove the convexity of R++, it su�ces to prove that if the systems = f(x) + r0 + �r; (x; s) > 0has a solution at � = 0 and � = 1, then it has a solution for every � 2 [0; 1].Without loss of generality, we may assume r0 = 0. Let (x0; s0) 2 S++(0),(x1; s1) 2 S++(r), and max((s0)Tx0; (s1)Tx1) � ��. Now consider thesystemXs = (1� �)X0s0 + �X1s1 and s� f(x) = �r; (x; s) > 0: (8.30)Let � = f� 2 R : system (8.30) has a solutiong:Then, from the openness of R++ and Theorem 8.26 we can deriveLemma 8.29 � is an open set and system (8.30) has a unique solution(x(�); s(�)) for every � 2 �. Moreover, (x(�); s(�)) is continuous in � 2 �.We now ready to prove the following theorem.Theorem 8.30 R++ is an open convex subset of Rn.Proof. The openness has been discussed earlier. Let�� = inff� : [�; 1] � �g:Since 1 2 �, we know by Lemma 8.29 that �� < 1 and �� 62 �. If �� < 0,�r 2 R++ for every � 2 [0; 1]; hence the theorem follows. Suppose on thecontrary that �� > 0. Let f�k 2 (��; 1]g be a sequence converging to ��.Then, for k = 1; 2; :::, we haveX(�k)s(�k) = (1� �k)X0s0 + �kX1s1;s(�k)� f(x(�k)) = �kr; and (x(�k); s(�k)) > 0;which implies that(x(�k))T s(�k) = (1� �k)(x0)T s0 + �k(x1)T s1 � ��:Thus, (x(�k); s(�k)) is in the union of C++(�r; ��), � 2 [0; 1]. Since theunion is a bounded subset by Lemma 8.28, we may assume without lossof generality that the sequence f(x(�k); s(�k))g converges to some (�x; �s) 2



240 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONR2n+ . By the continuity of the mapping Xy : R2n+ ! Rn+, the point (�x; �s)satis�es �X�s = (1� ��)X0s0 + ��X1s1 2 Rn++:By the continuity of f : Rn++ ! Rn, we then see that�s� f(�x) = (1� ��)0 + ��r = ��r:This implies that (�x; �s) 2 S++(��r) and �� 2 �, the contradiction of whichis �� 62 �. Thus we have shown that R++ is a convex set. 28.4.2 A homogeneous MCP modelConsider an augmented homogeneous model related to (MCP ):(HMCP ) minimize xT s+ ��subject to � s� � = � �f(x=�)�xT f(x=�) � ; (x; �; s; �) � 0:Let  (x; �) = � �f(x=�)�xT f(x=�) � : �Rn+1+ ! Rn+1: (8.31)Then, it is easy to verify that r is positive semi-de�nite as shown in thefollowing lemma.Lemma 8.31 Let rf be positive semi-de�nite in Rn+. Then r is positivesemi-de�nite in �Rn+1+ , i.e. given (x; �) > 0,(dx; d� )Tr (x; �)(dx; d� ) � 0for any (dx; d� ) 2 Rn+1, wherer (x; �) = � rf(x=�) f(x=�)�rf(x=�)(x=�)�f(x=�)T � (x=�)Trf(x=�)T (x=�)Trf(x=�)(x=�) � :(8.32)Proof. (dx; d� )Tr (x; �)(dx ; d� )= dTxrf(x=�)dx � dTxrf(x=�)x(d� =�)�(d�=tau)xTrf(x=�)T dx + d2�xTrf(x=�)x=�2= (dx � d�x=�)Trf(x=�)(dx � d�x=�) (8.33)



8.4. MONOTONE COMPLEMENTARITY PROBLEM 2412Furthermore, we have the following theorem.Theorem 8.32 Let  be given by (8.31). Then,i.  is a continuous homogeneous function in �Rn+1+ with degree 1 and forany (x; �) 2 �Rn+1+ (x; �)T (x; �) = 0and (x; �)Tr (x; �) = � (x; �)T :ii. If f is a continuous monotone mapping from Rn+ to Rn, then  is acontinuous monotone mapping from �Rn+1+ to Rn+1.iii. If f is scaled Lipschitz with � = �f , then  is scaled Lipschitz, that is,it satis�es condition (8.29) with� = � (�) = �1 + 2�f (2�=(1 + �))1� � �� 11� �� :iv. (HMCP ) is (asymptotically) feasible and every (asymptotically) feasi-ble point is an (asymptotically) complementary solution.Now, let (x�; ��; s�; ��) be a maximal complementary solution for(HMCP ). Thenv. (MCP ) has a solution if and only if �� > 0. In this case, (x�=��; s�=��)is a complementary solution for (MCP ).vi. (MCP ) is (strongly) infeasible if and only if �� > 0. In this case,(x�=��; s�=��) is a certi�cate to prove (strong) infeasibility.Proof. The proof of (i) is straightforward.We leave the proof of (ii) as an exercise.We now prove (iii). Assume (x; �) 2 Rn+1++ and let (dx; d� ) be given suchthat k(X�1dx; ��1d� )k1 � � < 1: To prove  is scaled Lipschitz we mustbound



� X 00 � �� (x+ dx; � + d� )�  (x; �) �r (x; �)� dxd� ��



1 :(8.34)



242 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONFrom (8.31) and (8.32), the upper part in (8.34) is identical toX (f(y + dy)(� + d� )� f(y)� � (rf(y)dx + f(y)d� �rf(y)xd�=�))= (� + d� )X (f(y + dy)� f(y)�rf(y)dy)= �(� + d� )Y (f(y + dy)� f(y)�rf(y)dy) (8.35)where y = x=� and y + dy = x+ dx� + d� ; (8.36)that is, dy = �dx � xd��(� + d� ) = dx � (d�=�)x� + d� : (8.37)Note 

Y �1dy

1 = 

�X�1(�dx � d�x)=(�(� + d� ))

1= 

(�X�1dx � d�e)=(� + d� )

1� (

X�1dx

1 + �)=(1� �)� 2�=(1� �): (8.38)Per the assumption that f is scaled Lipschitz with � = �f , it follows for� 2 [0; 1) thatk�(� + d� )Y (f(y + dy)� f(y)�rf(y)dy)k1� �(� + d� )�f (2�=(1� �))dTyrf(y)dy= ��f (2�=(1��))�+d� (dx � xd�=�)Trf(y)(dx � xd�=�)= �f (2�=(1��))1+d�=� (dx; d� )Tr (x; �)(dx; d� )� �f (2�=(1��))1�� (dx; d� )Tr (x; �)(dx; d� ): (8.39)Next we bound the lower part of (8.34). This part is equal to� ��f(y + dy)T (x + dx)� (�f(y)Tx)�[�f(y)Tdx � xTrf(y)T dx=� + xT f(y)xd�=�2]�= � �(x+ dx)T (�f(y + dy) + f(y) +rf(y)dy)�(x+ dx)Trf(y)dy + (x=�)Trf(y)dy(� + d� )�= � �(x+ dx)T (�f(y + dy) + f(y) +rf(y)dy)� (dx � d�x=�)Trf(y)dy�= �2(e+X�1dx)TY (�f(y + dy) + f(y) +rf(y)dy)��(� + d� )dTyrf(y)dy:



8.4. MONOTONE COMPLEMENTARITY PROBLEM 243Thus, using (8.33) and (8.38)j� ��f(y + dy)T (x+ dx)� (�f(y)Tx)�[�f(y)Tdx � xTrf(y)T dx=� + xT f(y)xd�=�2]� j� �2 

e+X�1dx

1 kY (�f(y + dy) + (�f(y)�rf(y)dy))k1+j�(� + d� )jdTyrf(y)dy� ��2(1 + �)�f (2�=(1� �)) + �(� + d� )� dTyrf(y)dy= �2(1+�)�f (2�=(1��))+�(�+d�)(�+d� )2 (dTx � d�x=�)Trf(y)(dx � d�x=�)= (1+�)�f (2�=(1��))+(1+d�=�)(1+d�=�)2 (dx; d� )Tr (x; �)(dx; d� )� � (1+�)�f (2�=(1��))(1��)2 + 11��� (dx; d� )Tr (x; �)(dx; d� ): (8.40)The sum of (8.39) and (8.40) is equal to� (�)(dx; d� )Tr (x; �)(dx; d� )and it bounds the term in (8.34) leading to the desired result.We leave the proof of (iv) as an exercise too.We now prove (v). If (x�; ��; s�; ��) is a solution for (HMCP ) and�� > 0, then we haves�=�� = f(x�=��) and (x�)T s�=(��)2 = 0;that is, (x�=��; s�=��) is a solution for (MCP ). Let (x̂; ŝ) be a solution to(MCP ). Then � = 1, x = x̂, s = ŝ, and � = 0 is a solution for (HMCP ).Thus, every maximal solution of (HMCP ) must have �� > 0.Finally, we prove (vi). Consider the setR++ = fs� f(x) 2 Rn : (x; s) > 0g:As proved in Theorem 8.30, R++ is an open convex set. If (MCP ) isstrongly infeasible, then we must have 0 62 �R++ where �R++ represents theclosure of R++. Thus, there is a hyperplane that separates 0 and �R++,that is, there is a vector a 2 Rn with kak = 1 and a positive number � suchthat aT (s� f(x)) � � > 0 8 x � 0; s � 0: (8.41)For j = 1; 2; :::; n, set sj su�ciently large, but �x x and the rest of s, aj � 0must be true. Thus, a � 0; or a 2 Rn+:On the other hand, for any �xed x, we set s = 0 and see that�aTf(x) � � > 0 8 x � 0: (8.42)



244 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONIn particular, �aT f(ta) � � > 0 8 t � 0: (8.43)From the monotone of f , for every x 2 Rn+ and any t � 0 we have(tx� x)T (f(tx) � f(x)) � 0:Thus, xT f(tx) � xT f(x) (8.44)and limt!1 xT f(tx)=t � 0: (8.45)Thus, from (8.43) and (8.45)limt!1 aT f(ta)=t = 0:For an x 2 Rn+, denote f1(x) := limt!1 f(tx)=t;where f1(x) represents the limit of any subsequence and its values mayinclude 1 or �1.We now prove f1(a) � 0. Suppose that f1(a)j < ��. Then considerthe vector x = a+ �ej where ej is the vector with the jth component being1 and zeros everywhere else. Then, for � su�ciently small and t su�cientlylarge we havexT f(tx)=t = (a+ �ej)T f(t(a+ �ej))=t= aT f(t(a+ �ej))=t+ �eTj f(t(a+ �ej))=t< �eTj f(t(a+ �ej))=t (from (8.42))= �f(t(a+ �ej))j � f(ta)jt + �f(ta)jt� ��O(�) + f(ta)jt � (from continuity of f)= �(O(�)� �=2)� ���=4:But this contradicts relation (8.45). Thus, we must havef1(a) � 0:



8.4. MONOTONE COMPLEMENTARITY PROBLEM 245We now further prove that f1(a) is bounded. Consider0 � (ta� e)T (f(ta)� f(e))=t= aT f(ta)� eT f(ta)=t� aT f(e) + eT f(e)=t< �eT f(ta)=t� aT f(e) + eT f(e)=t:Taking as a limit t!1 from both sides, we haveeT f1(a) � �aTf(e):Thus, f1(a) � 0 is bounded. Again, we have aT f(ta) � �� from (8.43)and aT f(ta) � aT f(a) from (8.44). Thus, lim aT f(ta) is bounded. Tosummarize, (HMCP ) has an asymptotical solution (x� = a; �� = 0; s� =f1(a); �� = lim�aT f(ta) � �).Conversely, if there is a bounded sequence (xk > 0; �k > 0; sk > 0; �k >0), thenlim sk = lim �kf(xk=�k) � 0; lim�k = lim�(xk)T f(xk=�k) � � > 0:Then, we claim that there is no feasible point (x � 0; s � 0) such thats� f(x) = 0. We prove this fact by contradiction. If there is one, then0 � ((xk ; �k)� (x; 1))T ( (xk ; �k)�  (x; 1))= (xk � x)T (�kf(xk=�k)� f(x)) + (�k � 1)T (xf(x) � (xk)T f(xk=�k)):Therefore,(xk)T f(xk=�k) � (xk)T f(x) + �kxT f(xk=�k)� �kxT f(x):Since the �rst two terms at the right-hand side are positive and lim �k = 0,we must have lim(xk)T f(xk=�k) � 0;which is a contradiction to �k = �(xk)T f(xk=�k) � � > 0. Also, any limitof xk is a separating hyperplane, i.e., a certi�cate proving infeasibility. 28.4.3 The central pathDue to Theorem 8.32, we can solve (MCP ) by �nding a maximal comple-mentary solution of (HMCP ). Select x0 > 0, s0 > 0, �0 > 0 and �0 > 0and let the residual vectorsr0 = s0 � �0f(x0=�0); z0 = �0 + (x0)T f(x0=�0):



246 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONAlso let �n = (r0)Tx0 + z0�0 = (x0)T s0 + �0�0:For simplicity, we setx0 = e; �0 = 1; s0 = e; �0 = 1; �0 = 1;with X0s0 = e and �0�0 = 1:Note that �n = n+ 1 in this setting.We present the next theorem.Theorem 8.33 . Consider (HMCP ).i. For any 0 < � � 1, there exists a strictly positive point (x > 0; � > 0; s >0; � > 0) such that� s� ��  (x; �) = � s� �f(x=�)�+ xT f(x=�) � = �� r0z0 � : (8.46)ii. Starting from (x0 = e; �0 = 1; s0 = e; �0 = 1), for any 0 < � � 1 thereis a unique strictly positive point (x(�); �(�); s(�); �(�)) that satis�esequation (8.46) and � Xz�� � = �e: (8.47)iii. For any 0 < � � 1, the solution (x(�); �(�); s(�); �(�)) in [ii] is bounded.Thus,C(�) := �(x; �; s; �) : � s� ��  (x; �) = �� r0z0 � ; � Xz�� � = �e�(8.48)for 0 < � � 1 is a continuous bounded trajectory.iv. The limit point (x(0); �(0); s(0); �(0)) is a maximal complementary so-lution for (HMCP ).Proof. We prove [i]. Again, the setH++ := �� s� ��  (x; �) : (x; �; s; �) > 0:�is open and convex. We have (r0; z0) 2 H++ by construction. On the otherhand, 0 2 �H++ from Theorem 8.32. Thus,�� r0z0 � 2 H++:



8.4. MONOTONE COMPLEMENTARITY PROBLEM 247The proof of [ii] is due to Theorem 8.26.We now prove [iii]. Again, the existence is due to Theorem 8.26. Weprove the boundedness. Assume (x; �; s; �) 2 C(�) then(x; �)T (r0; z0)= (x; �)T (s0;�0)� (x; �)T (x0; �0)= (x; �)T (s0;�0) + (s;�)T (x0; �0)� (s;�)T (x0; �0)� (x; �)T (x0; �0)= (x; �)T (s0;�0) + (s;�)T (x0; �0)�(x0; �0)T (�(r0; z0) +  (x; �)) � (x; �)T (x0; �0)= (x; �)T (s0;�0) + (s;�)T (x0; �0)��(x0; �0)T (r0; z0)� (x0; �0)T (x; �) � (x; �)T (x0; �0)� (x; �)T (s0;�0) + (s;�)T (x0; �0)��(x0; �0)T (r0; z0)� (x; �)T (x; �) � (x0; �0)T (x0; �0)= (x; �)T (s0;�0) + (s;�)T (x0; �0)� �(x0; �0)T (r0; z0)= (x; �)T (s0;�0) + (s;�)T (x0; �0)� �(x0; �0)T ((s0;�0)�  (x0; �0))= (x; �)T (s0;�0) + (s;�)T (x0; �0)� �(x0; �0)T (s0;�0):Also for 0 < � � 1,�(x; �)T (r0; z0) = (x; �)T ((s;�)�  (x; �)) = (x; �)T (s;�)= �(n+ 1) = �(x0; �0)T (s0;�0):From the above two relations, we have(x; �)T (s0;�0) + (s;�)T (x0; �0) � (1 + �)(x0; �0)T (s0;�0):Thus, (x; � ; s;�) is bounded.Finally, we prove (iv). Let (x�; ��; s�; ��) be any maximal complemen-tarity solution for (HMCP ) such that(s�;��) =  (x�; ��) and (x�)T s� + ���� = 0;and it is normalized by(r0; z0)T (x�; ��) = (r0; z0)T (x0; �0) = (s0;�0)T (x0; �0) = (n+ 1):For any 0 < � � 1, let (x; �; s; �) be the solution on the path. Then, wehave((x; �) � (x�; ��))T ((s;�)� (s�;��))= ((x; �) � (x�; ��))T ( (x; �) �  (x�; ��)) + �(r0; z0)T ((x; �) � (x�; ��))� �(r0; z0)T ((x; �) � (x�; ��)):



248 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONTherefore, (x; �)T (s�;��) + (s;�)T (x�; ��)� (x; �)T (s;�)� �(r0; z0)T ((x; �) � (x�; ��))= (x; �)T (s;�)� (x; �)T (s;�) + �(r0; z0)T (x�; ��)= �(r0; z0)T (x�; ��)= �(n+ 1):Using xjsj = � we obtain,(x; �)T (s�;��) + (s;�)T (x�; ��)= �X s�jsj + ��� +X x�jxj + ���� �(n+ 1):Thus, we have s�jsj � (n+ 1); and ��� � (n+ 1)and x�jxj � (n+ 1); and ��� � (n+ 1):Thus, the limit point, (x(0); �(0); s(0); �(0)), is a maximal complementaritysolution for (HMCP ). 2We now present an interior-point algorithm that generates iterates withina neighborhood of C(�). For simplicity, in what follows we let x := (x; �) 2Rn+1, s := (s;�) 2 Rn+1, and r0 := (r0; z0). Recall that, for any x; s > 0xT (x) = 0 and xTr (x) = � (x)T : (8.49)Furthermore,  is monotone and satis�es the scaled Lipschitz. We will usethese facts frequently in our analyses.8.4.4 An interior-point algorithmAt iteration k with iterate (xk; sk) > 0, the algorithm solves a system oflinear equations for direction (dx; ds) fromds �r (xk)dx = ��rk (8.50)



8.4. MONOTONE COMPLEMENTARITY PROBLEM 249and Xkds + Skdx = 
�ke�Xksk; (8.51)where � and 
 are proper given parameters between 0 and 1, andrk = sk �  (xk) and �k = (xk)T skn+ 1 :First we prove the following lemma.Lemma 8.34 . The direction (dx; ds) satis�esdTx ds = dTxr (xk)dx + �(1� � � 
)(n+ 1)�k:Proof. Premultiplying each side of (8.50) by dTx givesdTx ds � dTxr (xk)dx = ��dTx (sk �  (xk)): (8.52)Multiplying each side of (8.50) by xk and using (8.49) give(xk)T ds +  (xk)dx = ��(xk)T rk= ��(xk)T (sk �  (xk))= ��(xk)T sk= ��(n+ 1)�k: (8.53)These two equalities in combination with (8.51) implydTx ds = dTxr (xk)dx � �(dTx sk + dTs xk + �(n+ 1)�k)= dTxr (xk)dx � �(�(n+ 1)�k + 
(n+ 1)�k + �(n+ 1)�k)= dTxr (xk)dx + �(1� 
 � �)(n+ 1)�k: 2For a step-size � > 0, let the new iteratex+ := xk + �dx > 0; (8.54)and s+ := sk + �ds +  (x+)�  (xk)� �r (xk)dx=  (x+) + (sk �  (xk)) + �(ds �r (xk)dx)=  (x+) + (sk �  (xk))� ��(sk �  (xk))=  (x+) + (1� ��)rk : (8.55)The last two equalities come from (8.50) and the de�nition of rk . Also letr+ = s+ �  (x+):Then, we have



250 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONLemma 8.35 . Consider the new iterate (x+; s+) given by (8.54) and(8.55).a). r+ = (1� ��)rkb). (x+)s+ = (xk)T sk(1� �(1� 
)) + �2�(1� � � 
)(n+ 1)�kProof. From (8.55) r+ = s+ �  (x+)= (1� ��)rk :Next we prove b). Using (8.49), (8.51), and Lemma 8.34, we have(x+)T s+= (x+)T (sk + �ds +  (x+)�  (xk)� �r (xk)dx)= (x+)T (sk + �ds)� (x+)T ( (xk) + �r (xk)dx)= (x+)T (sk + �ds)� (xk + �dx)T ( (xk) + �r (xk)dx)= (x+)T (sk + �ds)� �(xk)Tr (xk)dx � �dTx (xk)� �2dTxr (xk)dx= (x+)T (sk + �ds)� �2dTxr (xk)dx= (xk + �dx)T (sk + �ds)� �2dTxr (xk)dx= (xk)T sk + �(dTx sk + dTs xk) + �2(dTx ds � dTxr (xk)dx)= (xk)T sk + �(dTx sk + dTs xk) + �2�(1� � � 
)(n+ 1)�k= (1� �(1� 
))(xk)T sk + �2�(1� � � 
)(n+ 1)�k: 2This lemma shows that, for setting � = 1� 
, the infeasibility residual andthe complementarity gap are reduced at exactly the same rate, as in thehomogeneous linear programming algorithm. Now we prove the following.Theorem 8.36 . Assume that  is scaled Lipschitz with � = � and atiteration k 

Xksk � �ke

 � ��k; �k = (xk)T skn+ 1where � = 13 + 4� (p2=2) � 1=3:Furthermore, let � = �=pn+ 1, 
 = 1 � �, and � = 1 in the algorithm.Then, the new iteratex+ > 0; s+ =  (x+) + (1� �)rk > 0;and 

X+s+ � �+e

 � ��+; �+ = (x+)T s+n+ 1 :



8.4. MONOTONE COMPLEMENTARITY PROBLEM 251Proof. It follows from Lemma 8.35 that �+ = 
�k. From (8.51) we furtherhave Skdx +Xkds = �Xksk + �+e:Hence, D�1dx +Dds = �(XkSk)�1=2(Xksk � �+e)where D = (Xk)1=2(Sk)�1=2. NotedTx ds = dTxr (xk)dx � 0from Lemma 8.34 and 
 = 1� �. This together with the assumption of thetheorem implykD�1dxk2 + kDdsk2 � k(XkSk)�1=2(Xksk � �+e)k2 � 

Xksk � �+e

2(1� �)�k :Also note

Xksk � �+e

2 = 

Xksk � �ke+ (1� 
)�ke

2= 

Xks� �ke

2 + ((1� 
)�k)2 kek2� (�2 + �2(n+ 1))(�k)2= 2�2(�k)2:Thus, 

(Xk)�1dx

 = 


(XkSk)�1=2D�1dx


 � 

D�1dx

p(1� �)�k� p2��k(1� �)�k = p2�1� � � p22 ;since � � 1=3. This implies that x+ = xk + dx > 0. Furthermore, we havekDxdsk = 

D�1DxDds

� 

D�1dx

 kDdsk� (

D�1dx

2 + kDdsk2)=2� 


(XkSk)�1=2(Xksk � �+)


2 =2� 

Xksk � �+e

22(1� �)�k� 2�2(�k)22(1� �)�k= �2�k1� � ;



252 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONand dTx ds = dTxD�1Dds � 

D�1dx

 kDdsk � �2�k1� � :ConsiderX+s+ � �+e= X+(sk + ds +  (x+)�  (xk)�r (xk)dx)� �+e= (Xk +Dx)(sk + ds)� �+e+X+( (x+)�  (xk)�r (xk)dx)= Dxds +X+( (x+)�  (xk)�r (xk)dx):Using that  is the scaled Lipschitz, dTxr (xk)dx = dTx ds and the abovefour relations we obtain

X+s+ � �+e

= 

Dxds +X+( (x+)�  (xk)�r (xk)dx)

= 

Dxds + (Xk)�1X+Xk( (x+)�  (xk)�r (xk)dx)

� kDxdsk+ 

(Xk)�1X+

1 

Xk( (x+)�  (xk)�r (xk)dx)

1� kDxdsk+ 2 

Xk( (x+)�  (xk)�r (xk)dx)

1� kDxdsk+ 2� (p2=2)dTxr (xk)dx= kDxdsk+ 2� (p2=2)dTx ds� �2�k1� � + 2� (p2=2) �2�k1� �� (1 + 2� (p2=2))�2�k1� � :Finally, � = 1=(3 + 4� (p2=2)) implies that(1 + 2� (p2=2))�2�k1� � � �2and 

X+s+ � �+e

 � ��k=2 < �
�k = ��+:It is easy to verify that x+ > 0 and kX+s+ � �+ek < ��+ implies s+ > 0.2The above theorem shows that the homogeneous algorithm will gen-erate a sequence (xk; sk) > 0 with (xk+1; sk+1) := (x+; s+) such thatsk =  (xk) + rk and kXksk � �kk � ��k, where both 

rk

 and (xk)T sk



8.5. NOTES 253converge to zero at a global rate 
 = 1��=pn+ 1. We see that if � (p2=2)is a constant, or �f (2=(1+p2)) is a constant in (MCP ) due to (iii) of The-orem 8.32, then it results in an O(pn log(1=�)) iteration algorithm witherror �. It generates a maximal solution for (HMCP ), which is either asolution or a certi�cate proving infeasibility for (MCP ), due to (v) and (vi)of Theorem 8.32.One more comment is that our results should hold for the case wheref(x) is a continuous monotone mapping from �Rn+ to Rn. In other words,f(x) may not exist at the boundary of Rn+. In general, many convex op-timization problems can be solved, either obtaining a solution, or provinginfeasibility or unboundedness, by solving their KKT system which is amonotone complementarity problem.8.5 NotesFor the NEG problem, see Gale [100], Kemeny, Morgenstern and Thompson[175], and Robinson [290]. A recent description of the problem can befound in Schrijver [298], and Tan and Freund [315]. It is easy to show thatAssumption 8.3 implies Assumption 8.4, see Theorem 2 of Robinson [290].The method described here is based on the paper of Ye [381]. Similarmethods for the fractional programming over polyhedral and nonpolyhedralcones were developed by Boyd and Ghaoui [61], Freund and Jarre [95, 94],Nesterov and Nemirovskii [264], and Nemirovskii [257].Various centers were considered for the center-section method as wementioned earlier. Go�n, Haurie and Vial [109], Sonnevend [306], and Ye[377] were among the �rst to propose the analytic center-section or cuttingplane method. Its complexity issues were addressed by Atkinson and Vaidya[31], Go�n, Luo and Ye [110, 111], and Nesterov [261]. In particular,Atkinson and Vaidya developed a scheme to delete unnecessary inequalitiesand managed to prove a polynomial analytic center-section algorithm. Theanalytic center-section method was used and tested for a variety of largescale problems, where they performed quite well, see, for example, Bahn,Go�n, Vial and Merle [32], Bahn, Merle, Go�n and Vial [33], and Mitchell[225, 226].The primal potential reduction algorithm for positive semi-de�nite pro-gramming is due to Alizadeh [9, 8], in which Ye has \suggested studyingthe primal-dual potential function for this problem" and \looking at sym-metric preserving scalings of the form X�1=20 XX�1=20 ," and to Nesterovand Nemirovskii [263], and the primal-dual algorithm described here is dueto Nesterov and Todd [265, 266]. One can also develop a dual potential



254 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONreduction algorithm. In general, consider(PSP ) inf C �Xsubject to A �X = b; X 2 K;and its dual (PSD) sup bT ysubject to A� � Y + S = C; S 2 K;where K is a convex homogeneous cone.Interior-point algorithms compute a search direction (dX ; dY ; dS) and anew strictly feasible primal-dual pair X+ and (Y +;S+) is generated fromX+ = X + �dX ; Y + = Y + �dY ; S+ = S + �dS ;for some step-sizes � and �.The search direction (dX ; dY ; dS) is determined by the following equa-tions. A � dX = 0; dS = �A� � dY (feasibility) (8.56)and dX + F 00(S)dS = � n+ �X � SX � F 0(S) (dual scaling); (8.57)or dS + F 00(X)dX = � n+ �X � SS � F 0(X) (primal scaling); (8.58)or dS + F 00(Z)dX = � n+ �X � SS � F 0(X) (joint scaling); (8.59)where Z is chosen to satisfy S = F 00(Z)X: (8.60)The di�erences among the three algorithms are the computation of thesearch direction and their theoretical close-form step-sizes. All three gen-erate an �-optimal solution (X;Y; S), i.e.,X � S � �in a guaranteed polynomial time.Other primal-dual algorithms for positive semi-de�nite programmingare in Alizadeh, Haeberly and Overton [10, 11], Boyd, Ghaoui, Feron andBalakrishnan [62], Helmberg, Rendl, Vanderbei and Wolkowicz [144], Jarre



8.5. NOTES 255[161], Kojima, Shindoh and Hara [186], Vandenberghe and Boyd [351, 352],and references therein. E�cient interior-point algorithms are also developedfor optimization over the second-order cone, see Andersen and Christiansen[16] and Xue and Ye [370]. These algorithms have established the bestapproximation complexity results for some combinatorial problems.The scaled Lipschitz condition used in Section 8.4 was proposed by Ko-rtanek and Zhu [190] for linearly constrained convex minimization, relatedto the work of Monteiro and Adler [241], and later extended by Potra andYe [282] for the monotone complementary problem. This condition is in-cluded in a more general condition analyzed by Nesterov and Nemirovskii[263], den Hertog [145], den Hertog, Jarre, Roos and Terlaky [146], andJarre [162].Results in Section 8.4.1 are based on Kojima, Megiddo and Mizuno[179]. A similar augmented transformation in Section 8.4.2 has been dis-cussed in Ye and Tse [387] and it is closely related to the recession functionin convex analyses of Rockafellar [291]. All other results in Section 8.4 arebased on Andersen and Ye [14]. Interior-point algorithms for convex pro-gramming include: Abhyankar, Morin and Trafalis [1] for multiple objectiveoptimization, Anstreicher, den Hertog, Roos and Terlaky [24], Ben{Dayaand Shetty [42], Bonnans and Bouhtou [58], Carpenter, Lustig, Mulvey andShanno [63], Goldfarb and Liu [114], Jarre [160], Kapoor and Vaidya [172],Mehrotra and Sun [222], Pardalos, Ye and Han [275], Ponceleon [278], Ye[374], Ye and Tse [387], etc. for quadratic programming; Ding and Li [80],G�uler [137], Harker and Xiao [142] Ji, Potra and Huang [163], Polak, Hig-gins and Mayne [276], Shanno and Simantiraki [300], Sun and Zhao [314],Tseng [337], etc. for the monotone complementarity problem; Ben{Tal andNemirovskii [43], Faybusovich [89], Goldfarb and Scheinberg [115], G�uler[138], G�uler and Tuncel [139], Luo, Sturm and Zhang [199], Monteiro andPang [244], Nesterov, Todd and Ye [267], Ramana, Tuncel and Wolkowicz[292], Vandenberghe, Boyd, and Wu [353], etc. for nonpolyhedral opti-mization; Anstreicher and Vial [27], Coleman and Li [70] G�uler [138], denHertog, Roos and Terlaky [148], Kortanek, Potra and Ye [187], Mehrotraand Sun [223], Monteiro [238], Nash and Sofer [252], Potra and Ye [281],Sun and Qi [313], Tanabe [154], Wang, Monteiro, and Pang [364], Zhang[388], etc. for nonlinear programming; Asic and Kovacevic-Vujcic [28], Fer-ris and Philpott [90], Todd [323], etc. for semi-in�nite programming; Birgeand Holmes [48], Birge and Qi [49], etc. for stochastic programming.Applications, decompositions, inexact iteration, and special data struc-tures of interior-point algorithms were described in Bixby, Gregory, Lustig,Marsten and Shanno [50], Choi and Goldfarb [65], Christiansen and Ko-rtanek [68], Gondzio [120], Han, Pardalos and Ye [141], Ito, Kelley andSachs [157], Kaliski [169], Pardalos, Ye and Han [275], Ponnambalam, Van-



256 CHAPTER 8. NONLINEAR CONVEX OPTIMIZATIONnelli and Woo [279], Resende and Veiga [289], Tone [333], Wallacher andZimmermann [363], etc.8.6 Exercises8.1 Show that Assumption 8.3 implies Assumption 8.4.8.2 Prove Lemma 8.6.8.3 Prove Proposition 8.5.8.4 Prove Lemma 8.148.5 Prove Corollary 8.19.8.6 Prove Lemma 8.23.8.7 Describe and analyze a dual potential algorithm for positive semi-de�nite programming in the standard form.8.8 If (MCP ) has a solution, then the solution set is convex and it con-tains a maximal solution (x�; s�) where the number positive components in(x�; s�) is maximal. Moreover, the indices of those positive components areinvariant among all maximal solutions for (MCP ).8.9 Prove Theorem 8.26.8.10 Prove Lemma 8.27.8.11 Prove Lemma 8.29.8.12 Prove (ii) and (iv) of Theorem 8.32.



Chapter 9Nonconvex OptimizationThe aim of this chapter is to describe some results in interior-point algo-rithms for solving \hard" problems, such as the nonmonotone linear comple-mentarity problem (LCP) and the quadratic programming (QP) problem,and to suggest some directions in which future progress might be made.These problems play important roles in optimization theory. In one sensethey are continuous optimization and fundamental sub-problems for generalnonlinear programming, but they are also considered the most challengingcombinatorial optimization problems.9.1 Linear Complementarity ProblemIn this section, we are concerned with the LCP described in Section 1.3.8,where we assume, without loss of generality, that�F= f(x; s) : s =Mx+ q; x > 0 and s > 0gis nonempty. We also use F to denote the \feasible region," i.e.,F = f(x; s) : s =Mx+ q; x � 0 and s � 0g:Thus, the LCP can be viewed as an optimization problem(LCP ) minimize xT ssubject to (x; s) 2 F :Similar to solving the LP problem, we will describe a \condition-based"iteration complexity bound for solving the LCP. This condition numbercharacterizes the degree of di�culty of the LCP solution when a potentialreduction algorithm is used. We show how the condition number dependson the data (M; q). 257



258 CHAPTER 9. NONCONVEX OPTIMIZATION9.1.1 Potential reduction algorithmWe again use the same potential function (x; s) =  �(x; s) := � ln(xT s)� nXj=1 log(xjsj);with � � n as described in Chapter 4 (� here corresponds to n+ � there),for an interior feasible point (x; s). Starting from an interior point (x0; s0)with  (x0; s0) =:  0;((x0; s0) can be chosen as an approximate analytic center of F , see Chap-ter 4), the potential reduction algorithm generates a sequence of interiorfeasible points fxk; skg terminating at a point such that (xk ; sk) � (�� n) log �+ n logn:From the arithmetic-geometric mean inequality,n ln((xk)T sk)� nXj=1 log(xkj skj ) � n ln(n) � 0:Thus, we must have (xk)T sk � �:To achieve a potential reduction, we again use the scaled gradient pro-jection method. The gradient vector of the potential function with respectto x is r x = ��s�X�1eand the one to s is r s = ��x� S�1e;where � = xT s. Now, we solve, at the kth iteration, the following linearprogram subject to an ellipsoid constraint:(EP ) minimize rT xkdx +rT skdssubject to ds =Mdxk(Xk)�1dxk2 + k(Sk)�1dsk2 � �2 < 1:Denote by �dx and �ds the minimal solution for (EP). Then, we have� (Xk)�1 �dx(Sk)�1 �ds � = �� pkkpkk ; (9.1)



9.1. LINEAR COMPLEMENTARITY PROBLEM 259where pk = � pkxpks � = � ��kXk(sk +MT�)� e��kSk(xk � �)� e � ; (9.2)and � = ((Sk)2 +M(Xk)2MT )�1(Sk �MXk)(Xksk � �k� e): (9.3)From the concavity of log function and Lemma 3.1, (xk + �dx; sk + �ds)�  (xk ; sk) � ��kpkk+ �22 (�+ 11� � ): (9.4)Let � = min( kpkk�+ 2 ; 1�+ 2) � 1=2: (9.5)Then we have (xk + �dx; sk + �ds)�  (xk; sk) � �min( kpkk22(�+ 2) ; 12(�+ 2)): (9.6)The algorithm can be described as follows:Algorithm 9.1 Given x0; s0 > 0 and s0 =Mx0 + q and k := 0.While (xk)T sk � � do1. Compute � of (9.3) and pk of (9.2), and select � of (9.5); construct�dx and �ds of (9.1).2. Let xk+1 = xk +��x and sk+1 = sk +��s.3. Set k := k + 1 and return to Step 1.Clearly from inequality (9.6), kpkk2 can be used to measure the potentialreduction at the kth iteration of the potential reduction algorithm. For anyx; s 2 �Rn+, let g(x; s) = ��Xs� eand H(x; s) = 2I � (XMT � S)(S2 +MX2MT )�1(MX � S):Note that H(x; s) is positive semi-de�nite (PSD), andkpkk2 = gT (xk ; sk)H(xk ; sk)g(xk; sk): (9.7)



260 CHAPTER 9. NONCONVEX OPTIMIZATIONLet us use kg(x; s)k2H to denote gT (x; s)H(x; s)g(x; s). Then, we de�nea condition number for the LCP (M; q) as
(M; q; �) = inffkg(x; s)k2H : xT s � �;  (x; s) �  0 and (x; s) 2 �Fg: (9.8)We describe a sequence of propositions for 
(M; q; �).Proposition 9.1 Let � � 2n. Then, for M being a diagonal and PSDmatrix, and any q 2 Rn, 
(M; q; �) � n:Proof. If M is diagonal and PSD, then the matrixI � (XMT � S)(S2 +MX2MT )�1(MX � S)is diagonal. It is also PSD since the jth diagonal component is1� (Mjjxj � sj)2s2j +M2jjx2j = 2Mjjxjsjs2j +M2jjx2j � 0:Therefore, for all (x; s) 2 �F and � � 2n,
(M; q; �) � kg(x; s)k2 � (�� n)2n � n: 2Proposition 9.2 Let � � 2n + p2n. Then, for M being a PSD matrixand any q 2 Rn, 
(M; q; �) � 1:We leave its proof to the reader.De�nition 9.1 A matrix M is a P matrix if and only if its every principalsubmatrix has a positive determinant.Proposition 9.3 Let � � 3n +p2n. Then, for M being a P-matrix andany q 2 Rn, 
(M; q; �) � min(n�(M)=j�(M)j; 1)where �(M) is the least eigenvalue of (M+MT )=2, and �(M) is the positiveP-matrix number of MT , i.e.,�(M) = minx6=0fmaxj xj(MTx)jkxk2 g:



9.1. LINEAR COMPLEMENTARITY PROBLEM 261We will prove this proposition in the next section.De�nition 9.2 A matrixM is row-su�cient if and only if for every vector�, diag(�)MT � � 0 implies diag(�)MT � = 0. A matrix M is column-su�cient if and only if MT is row-su�cient. A matrix M is a su�cientmatrix if and only if it is both row- and column-su�cient.Note that the class of row-su�cient matrices contains some popular matri-ces such as PSD and P matrices.Proposition 9.4 Let � > n and be �xed. Then, for M being a row-su�cient matrix and f(x; s) 2 �F :  (x; s) �  0g being bounded,
(M; q; �) > 0:Proof. It is easy to show that for any (x; s) 2 �F ,kg(x; s)k2H > 0:Moreover, for all (x; s) 2 �F , xT s � � and  (x; s) �  0, 0�  (x; s)= � ln(xT s)� nXj=1 log(xjsj)= (�� n+ 1) ln(xT s) + (n� 1) ln(xT s)�Xj 6=i log(xjsj)� log(xiyi)� (�� n+ 1) ln(xT s) + (n� 1) ln(xT s� xiyi)�Xj 6=i log(xjsj)� log(xisi)� (�� n+ 1) ln(xT s) + (n� 1) ln(n� 1)� log(xisi)� �(�� n+ 1) ln(1=�) + (n� 1) ln(n� 1)� log(xisi);where i 2 f1; 2; : : : ; ng. Thus,ln(xisi) � �(�� n+ 1) log(1=�) + (n� 1) ln(n� 1)�  0;that is, xisi is bounded away from zero for every i. Since f(x; s) 2 �F : (x; s) �  0g is bounded, there must exist a positive number ��, independentof (x; s), such thatxi � �� and si � ��; i = 1; 2; : : : ; n



262 CHAPTER 9. NONCONVEX OPTIMIZATIONfor all (x; s) such that xT s � �,  (x; s) �  0 and (x; s) 2 �F . Therefore,
(M; q; �)= inffkg(x; s)k2H : xT s � �;  (x; s) �  0 and (x; s) 2 �Fg� inffkg(x; s)k2H : x � ��e; s � ��e;  (x; s) �  0 and (x; s) 2 Fg> 0:The last inequality holds since the inf is taken in a compact set wherekg(x; s)k2H is always positive. 2Note that  (x; s) �  0 implies that xT s �  0=(� � n). Hence, theboundedness of f(x; s) 2 F : xT s �  0=(�� n))g guarantees the bounded-ness of f(x; s) 2 �F :  (x; s) �  0g: We now deriveTheorem 9.5 The potential reduction algorithm with � = �(n) > n solvesthe LCP for which 
(M; q; �) > 0 inO(( 0 + (�� n) log(1=�)� n logn)=�(
(M; q; �)))iterations and each iteration solves a system of linear equations in at mostO(n3) operations, where�(
(M; q; �)) = min(
(M; q; �)2(�+ 2) ; 12(�+ 2)):Proof. Since �F is nonempty, by solving a linear program in polynomialtime, we can �nd an approximate analytic center (x0; s0) of F . Due to (9.4),(9.5) and (9.6) the potential function is reduced by O(�(
(M; q; �))) at eachiteration. Hence, in total O(( 0 + (��n) log(1=�)�n logn)=�(
(M; q; �)))iterations we have  (xk ; sk) < (�� n) log �+ n logn and (xk)T sk < �. 2Corollary 9.6 An instance (M; q) of the LCP is solvable in polynomialtime if 
(M; q; �) > 0 and if 1=
(M; q; �) is bounded above by a polynomialin log(1=�) and n.The condition number 
(M; q; �) represents the degree of di�culty forthe potential reduction algorithm in solving the LCP (M; q). The largerthe condition number, the easier the LCP problem. We know that someLCPs are very hard, and some are easy. Here, the condition number buildsa connection from easy LCPs to hard LCPs. In other words, the degree ofdi�culty continuously shifts from easy LCPs to hard LCPs.



9.1. LINEAR COMPLEMENTARITY PROBLEM 2639.1.2 A class of LCPsWe now further study kpkk by introducing the following lemma.Lemma 9.7 kpkk < 1 impliessk +MT�k > 0; xk � �k > 0and 2n�p2n� �k < �� < 2n+p2n� �k;where �� = (xk)T (sk +MT�k) + (sk)T (xk � �k).Proof. The proof is by contradiction. Let �s = sk+MT�k and �x = xk��k.It is obvious that if �s 6> 0 or �x 6> 0, thenkpkk2 � 1:On the other hand, we havekpkk2 = ( ��k )2k� Xk�ssk�x �� ��2nek2 + k � ��2n�k e� ek2� ( � ��2n�k � 1)22n:Hence, the following must be true( � ��2n�k � 1)22n < 1;that is, 2n�p2n� �k < �� < 2n+p2n� �k: 2�� can be further expressed as�� = 2�k � qT�k:Now let�+(M; q)= f� : xT s� qT� < 0; x� � > 0; and s+MT� > 0 for some (x; s) 2 �Fg:Then, we can prove the following propositions.



264 CHAPTER 9. NONCONVEX OPTIMIZATIONProposition 9.8 Let �+(M; q) be empty for an LCP (M; q). Then, for� � 2n+p2n, 
(M; q; �) � 1:Proof. The proof results directly from Lemma 9.7. 2Proposition 9.9 Letf� : xT s� qT� > 0; x� � > 0 and s+MT� > 0 for some (x; s) 2 �Fgbe empty for an LCP (M; q). Then, for n < � � 2n�p2n
(M; q; �) � 1:Proof. The proof again results from Lemma 9.7. 2Now, letG = f(M; q) : �F is nonempty and �+(M; q) is emptyg:It may not be possible in polynomial time to tell if an LCP problem (M; q)is an element of G (this is also true for some other LCP classes publishedso far). However, the co-problem, to tell whether an LCP problem (M; q)is not in G, can be solved in polynomial time. We can simply run thepotential reduction algorithm for the LCP problem. In polynomial timethe algorithm either gives the solution or concludes that (M; q) is not in G.9.1.3 Some existing classesWe see that the new class G has the same bound on the condition numberas the PSD class, that is, 
(M; q; �) � 1. Here, we list several existingclasses of LCPs that belong to G.1. M is positive semi-de�nite and q is arbitrary.We have if �+ is not empty, then0 < (x � �)T (s+MT�) = xT s� qT� � �TMT�which implies xT s� qT� > �TMT� � 0;a contradiction.



9.1. LINEAR COMPLEMENTARITY PROBLEM 2652. M is copositive and q � 0.We have xT s� qT� = xTMx+ qT (x � �):Thus, x > 0 and x�� > 0 imply xT s�qT� � 0, that is, �+ is empty.3. M�1 is copositive and M�1q � 0.We have xT s� qT� = sTM�T s� (M�1q)T (s+MT�):Thus, s > 0 and s+MT� > 0 implies xT s� qT� � 0, that is, �+ isempty.Although a trivial solution may exist for the last two classes (e.g., x = 0and s = q for the second class), our computational experience indicates thatthe potential reduction algorithm usually converges to a nontrivial solutionif multiple solutions exist.Example 9.1 M = � 0 �11 �1 � and q = � 20 � :For this example the potential reduction algorithm constantly generates thesolution x = (2 2)T and s = (0 0)Tfrom virtually any interior starting point, avoiding the trivial solution x = 0and s = q.Another nonconvex LCP also belongs to G.Example 9.2 M = � 1 �12 0 � ; and q = � �1�1 � :�F is nonempty since x = (3 1)T is an interior feasible point; �+ is emptysince x1�x2 > 1, x1 ��1 > 0, x2 ��2 > 0, x1�x2 � 1+�1+2�2 > 0 and2x1 � 1� �1 > 0 implyxT s� qT�= xT (Mx+ q)� qT�= x1(x1 � x2) + 2x1x2 � x1 � x2 + �1 + �2= x21 + x1x2 � 2x1 � x2 + 1 + (x1 � x2 � 1 + �1 + 2�2) + (x2 � �2)> x21 + x1x2 � 2x1 � x2 + 1= (x1 � 1)2 + x2(x1 � 1) > 0:



266 CHAPTER 9. NONCONVEX OPTIMIZATIONAs a byproduct, we haveG � f(M; q) : jsol(M; q)j � 1g:In fact, any LCP (M; q) with 
(M; q; �) > 0 belongs to f(M; q) : jsol(M; q)j �1g. Furthermore, if 
(M; q; �) > 0 for all q 2 Rn, then M 2 Q, a matrixclass where the LCP (M; q) has at least one solution for all q 2 Rn. Howto calculate 
(M; q; �) or a lower bound for 
(M; q; �) in polynomial time isa further research topic.9.2 P-Matrix Linear Complementarity Prob-lemWe now prove Proposition 9.3, that is,
(M; q; �) � min(n�=j�j; 1)where � = �(M) is the least eigenvalue of (M +MT )=2, and � = �(M)is the positive P-matrix number of MT . Thus, the P-matrix LCP can besolved in O(n2max(���n ; 1) log(1=�))iterations and each iteration solves a system of linear equations in at mostO(n3) arithmetic operations. This bound indicates that the algorithm isa polynomial-time algorithm if j�j=� is bounded above by a polynomial inlog(1=�) and n.It has been shown that kpkk2 � 1 if M is positive semi-de�nite (that is,if � � 0). Thus, in this section we assume that � < 0. We also �x� = 3n+p2n: (9.9)We �rst prove the following lemma.Lemma 9.10 (a+ b)2 + (a+ c)2 � a2 � 2bc:Proof.(a+ b)2 + (a+ c)2 = 2a2 + 2a(b+ c) + b2 + c2= a2 � 2bc+ a2 + 2a(b+ c) + (b+ c)2= a2 � 2bc+ (a+ b+ c)2 � a2 � 2bc: 2



9.2. P-MATRIX LINEAR COMPLEMENTARITY PROBLEM 267Now, we have the following lemma.Lemma 9.11 Given any (xk; sk) 2 �F , let pk be the scaled gradient projec-tion computed from (9.2) and (9.3). Then,kpkk2 � min(
nj�j ; 1):Proof. Let �s = sk +MT�, �x = xk � � and �� = (xk)T �s+(sk)T �x. Then, itis obvious that if �s 6> 0 or �x 6> 0, thenkpkk2 � 1: (9.10)Therefore, we assume that �s > 0 and �x > 0 in the rest of the proof. Notethat from Lemma 9.7 kpkk2 � ( � ��2n�k � 1)22nand �� = �k + �xT �s+ �TMT� > �k + �TMT�:Thus, if �MT� � �n�k� ;then from (9.9) kpkk2 � ( � ��2n�k � 1)22n � 1: (9.11)Otherwise, we have �k�k2 � �TMT� < �n�k� ;i.e., k�k2 � n�k�j�j : (9.12)Since M is a P-matrix, there exists an index j such that �j(MT�)j �
k�k2 > 0. Using Lemma 9.10 and (9.12), we havekpkk2� ( ��k xkj skj � 1 + ��k xkj (MT�)j)2 + ( ��k xkj skj � 1� ��k skj�j)2� ( ��k xkj skj � 1)2 + 2xkj skj�j(MT�)j( ��k )2� ( ��k xkj skj � 1)2 + 2 ��k xkj skj 
k�k2 ��k� ( ��k xkj skj � 1)2 + 2 ��k xkj skj 
nj�j : (9.13)



268 CHAPTER 9. NONCONVEX OPTIMIZATIONIf 
nj�j � 1;then again kpkk2 � ( ��k xkj skj )2 + 1 � 1; (9.14)otherwise, kpkk2 � 2
nj�j � (
n)2�2 � 
nj�j (9.15)since the quadratic term of (9.13) yields the minimum at��k xkj skj = 1� 
nj�j :From (9.10), (9.11), (9.14) and (9.15), we have the desired result. 2The result leads to the following theorem.Theorem 9.12 Let  (x0; s0) � O(n logn) and M be a P-matrix. Then,the potential reduction algorithm terminates at (xk)T sk � � inO(n2max(j�j=(
n); 1) log(1=�))iterations and each iteration uses at most O(n3) arithmetic operations.9.3 Generalized Linear Complementarity Prob-lemIn this section we consider a generalized linear complementarity problem:(GLCP ) minimize xT ssubject to Ax+Bs+ Cz = q; (x; s; z) � 0:Let F denote the feasible set. It is evident that a solution, with xT s = 0,to the GLCP may not exist even when the problem is feasible. However,a �nite stationary or KKT point of the GLCP, which is de�ned as a pointsatisfying the �rst order optimality conditions of (GLCP), must exist, sincethe objective function is quadratic and bounded from below so that it hasa �nite minimum.More precisely, a KKT point, (�x; �s; �z) 2 F , of the GLCP is representedby �sT �x+ �xT �s � �sTx+ �xT s for all (x; s; z) 2 F :



9.3. GENERALIZED LINEAR COMPLEMENTARITY PROBLEM 269In other words, (�x; �s; �z) is a minimal solution for the related linear programminimize �sTx+ �xT ssubject to Ax+Bs+ Cz = q;(x; s; z) � 0;where its dual is maximize qT�subject to �s�AT� � 0;�x�BT� � 0;�CT� � 0:Thus, (�x; �s; �z) 2 F is a KKT point if and only if there exists �� 2 Rm suchthat �s�AT �� � 0; �x�BT �� � 0 and � CT �� � 0;and �xT (�s�AT ��) = 0; �sT (�x �BT ��) = 0 and �zT (�CT ��) = 0:We see that �nding such a KKT point itself is a GLCP. We also note thata solution to the GLCP, (x�; s�; z�), can be viewed as a special KKT pointwith �� = 0.The concept of the fully polynomial-time approximation scheme (FP-TAS) was introduced in combinatorial optimization. Given an instance ofan optimization problem and an � > 0, it returns an �-approximate solutionwithin a time period bounded by a polynomial both in the length of the in-stance and 1=�. For some combinatorial optimization problems, the theoryof NP -completeness can be applied to prove not only that they cannot besolved exactly by polynomial-time algorithms (unless P = NP ), but alsothat they do not have �-approximate algorithms, for various ranges of �,again unless P = NP . Furthermore, approximation algorithms are widelyused and accepted in practice.In this paper, we develop a fully polynomial-time approximation schemefor generating an �-KKT point of the GLCP|a point (x̂; ŝ; ẑ) 2 F and�̂ 2 Rm witĥs�AT �̂ � 0; x̂�BT �̂ � 0 and � CT �̂ � 0; (9.16)and x̂T (ŝ�AT�) + ŝT (x̂�BT�) + ẑT (�CT�)x̂T ŝ � �: (9.17)In other words, (x̂; ŝ; ẑ; �̂) is feasible and the sum of the complementaryslackness vectors (or the primal-dual objective gap) relative to the (primal)



270 CHAPTER 9. NONCONVEX OPTIMIZATIONobjective value is less than �. Thus, the algorithm is actually a polynomialapproximation algorithm for solving a class of GLCPs in which every KKTpoint is a solution. This class includes the LCP with the row-su�cientmatrix.We assume at this moment that the interior of F , �F= f(x; s; z) 2 F :x > 0; s > 0 and z > 0g is nonempty, and an approximate analytic center,(x0; s0; z0) of F , is available. We further assume that each component of zis bounded by R in the feasible set F . Both assumptions will be removedlater, so that the results should hold for general cases.9.3.1 Potential reduction algorithmLet � � 2n+ d and de�ne the potential function (x; s; z) := � ln(xT s)� nXj=1 log(xj)� nXj=1 log(sj)� dXj=1 log(zj)to associate with a feasible point (x; s; z) 2 �F . Using the arithmetic-geometricmean inequality, we have(�� n) ln(xT s)� dXj=1 log(zj) �  (x; s; z)� n ln(n) �  (x; s; z):On the other hand, Pdj=1 log(zj) � d logR from the boundedness assump-tion. Thus, (x; s; z) < n logn� d logR+ (�� n) log � =) xT s < �: (9.18)The basic idea of the potential reduction algorithm works as follows.Given an approximate analytic center (x0; s0; z0) 2 �F , we generate a se-quence of interior feasible solutions fxk; sk; zkg 2 �F and f�kg 2 Rm withthe following property: Unlesssk �AT�k > 0; xk �BT�k > 0; �CT�k > 0and (xk)T (sk �AT�k) + (sk)T (xk �BT�k) + (zk)T (�CT�k)(xk)T sk< (2n+ d+p2n+ d)=�;we always have (xk+1; sk+1; zk+1) �  (xk ; sk; zk)�O(1=�):



9.3. GENERALIZED LINEAR COMPLEMENTARITY PROBLEM 271Thus, if we choose � = (2n+d+p2n+ d)=�, the algorithm requires at most�2(log(1=�) + logR) iterations, which is a polynomial in 1=�, to generateeither a solution or an �-KKT point of the GLCP. Note that each iterationinvolves O(n3) arithmetic operations.There are many ways to achieve a potential reduction. We again usethe scaled gradient projection method. The gradient vectors r x and r sare identical to those in the preceding section, and the one with respect toz is r z = �Z�1e;where � = xT s. Now, we solve the following linear program subject to anellipsoidal constraint at the kth iteration:maximize rT xkdx +rT skds +rT zkdzsubject to Adx +Bds + Cdz = 0;k(Xk)�1dxk2 + k(Sk)�1dsk2 + k(Zk)�1dzk2 � �2 < 1;and denote by �dx, �ds and �dz its minimal solutions. Then, we have0@ (Xk)�1 �dx(Sk)�1 �ds(Zk)�1 �dz 1A = ��pkkpkk ;where pk is the projection of the scaled gradient vector(rT xkXk;rT skSk;rT zkZk)onto the null space of the scaled constraint matrix (AXk; BSk; CZk), i.e.,pk = 0@ pkxpkspkz 1A = 0@ ��kXk(sk �AT�k)� e��kSk(xk �BT�k)� e��kZk(�CT�k)� e 1A ;�k = �k� ( �A �AT )�1 �A(rT xkXk;rT skSk;rT zkZk)T ;�A = (AXk; BSk; CZk); and �k = (xk)T sk:Let xk+1 = xk + �dx, sk+1 = sk + �ds and zk+1 = zk + �dz. Then� ln((xk+1)T sk+1)� � ln((xk)T sk)� ��k ((sk)T �dx + (xk)T �ds + �dTx �ds)= ��k ((sk)T �dx + (xk)T �ds) + ��k �dTx (Xk)�1(XkSk)(Sk)�1 �ds



272 CHAPTER 9. NONCONVEX OPTIMIZATION� ��k ((sk)T �dx + (xk)T �ds) + ��k k �dTx (Xk)�1kk(XkSk)kk(Sk)�1 �dsk� ��k ((sk)T �dx + (xk)T �ds) + �k �dTx (Xk)�1kk(Sk)�1 �dsk(since kXkSkk � �k)� ��k ((sk)T �dx + (xk)T �ds) + �2(k �dTx (Xk)�1k2 + k(Sk)�1 �dsk2)� ��k ((sk)T �dx + (xk)T �ds) + ��22 :Furthermore, from Lemma 3.1 of Chapter 3� nXj=1 log(xk+1j )� nXj=1 log(sk+1j )� dXj=1 log(zk+1j )+ nXj=1 log(xkj ) + nXj=1 log(skj ) + dXj=1 log(zkj )� �eT (Xk)�1 �dx � eT (Sk)�1 �ds � eT (Zk)�1 �dz + �22(1� �) :Thus, (xk+1; sk+1)�  (xk ; sk)� ��k ((sk)T �dx + (xk)T �ds)� eT (Xk)�1 �dx � eT (Sk)�1 �ds � eT (Zk)�1 �dz+�22 (�+ 11� � )= rT xk �dx +rT sk �ds +rT zk �dz + �22 (�+ 11� � )= (rT xkXk;rT skSk;rT zkZk)��pkkpkk + �22 (�+ 11� � )= ��kpkk2kpkk + �22 (�+ 11� � )= ��kpkk+ �22 (�+ 11� � ):Therefore, choosing � as in (9.5), we have (xk+1; sk+1; zk+1)�  (xk; sk; zk) � �min( kpkk22(�+ 2) ; 12(�+ 2)): (9.19)In practice, the step-size � can be determined by a line search along thedirection pk to minimize the potential function.



9.3. GENERALIZED LINEAR COMPLEMENTARITY PROBLEM 2739.3.2 Complexity AnalysisWe further study kpkk by introducing the following lemma.Lemma 9.13 The scaled gradient projection kpkk < 1 impliessk �AT�k > 0; xk �BT�k > 0; �CT�k > 0;and 2n+ d�p2n+ d� �k < �� < 2n+ d+p2n+ d� �k;where �� = (xk)T (sk �AT�k) + (sk)T (xk �BT�k) + (zk)T (�CT�k).Proof. The proof is by contradiction. It is obvious that if sk �AT�k 6> 0or xk �BT�k 6> 0 or �CT�k 6> 0, thenkpkk � kpkk1 � 1:On the other hand, we havekpkk2 = ( ��k )2k0@ Xk(sk �AT�k)Sk(xk �BT�k)Zk(�CT�k) 1A� ��2n+ dek2 + k � ��(2n+ d)�k e� ek2� k � ��(2n+ d)�k e� ek2= ( � ��(2n+ d)�k � 1)2(2n+ d): (9.20)(Note that the dimension of e is 2n + d here.) Hence, the following mustbe true ( � ��(2n+ d)�k � 1)2(2n+ d) < 1;that is, 2n+ d�p2n+ d� �k < �� < 2n+ d+p2n+ d� �k: 2Now we can prove the following theorem. For simplicity, we assumethat  0 = O(n logn).



274 CHAPTER 9. NONCONVEX OPTIMIZATIONTheorem 9.14 For any given 0 < � � 1, let � = (2n + d + p2n+ d)=�.Then, under the assumptions (A1) and (A2), the potential reduction al-gorithm terminates in at most O(�2 log(1=�) + �d logR) iterations. Thealgorithm generates an �-KKT point (xk; sk; zk) 2 F and �k 2 Rm of theGLCP, either (xk)T sk � �or sk �AT�k > 0; xk �BT�k > 0; �CT�k > 0and (xk)T (sk �AT�k) + (sk)T (xk �BT�k) + (zk)T (�CT�k)(xk)T sk < �:Proof. The proof directly follows Lemma 9.13. If kpkk � 1 for all k, thenfrom (9.19)  (xk+1; sk+1; zk+1)�  (xk; sk; zk) � �O(1=�):Therefore, in at most O(�2 log(1=�) + �d logR) iterations (xk ; sk; zk) � (�� n) log �� d logR+ n logn;and from (9.18) (xk)T sk � �:As we mentioned before, in this case (xk ; sk; zk) is a special stationary pointwith �� = 0. Otherwise, we have kpkk < 1 for some k � O(�2 log(1=�) +�d logR). This implies the relations (9.16) and (9.17) from Lemma 9.13.2Theorem 9.14 indicates that the potential reduction algorithm is a fullypolynomial-time approximation scheme for computing an �-approximateKKT point of the GLCP. In the following, we present a su�cient condi-tion to show that a solution to the GLCP always exists, and the potentialreduction algorithm solves it in polynomial time under the assumptions.Moreover, we haveTheorem 9.15 Let BAT be negative semi-de�nite. Furthermore, let � =2n + d + p2n+ d. Then, the potential reduction algorithm generates asolution to the GLCP in O((2n+ d)2 log(1=�) + (2n+ d)d logR) iterations.



9.3. GENERALIZED LINEAR COMPLEMENTARITY PROBLEM 275Proof. Basically, we show that kpkk � 1 for all k if BAT is negative semi-de�nite and � � 2n+ d+p2n+ d. We prove it by contradiction. Supposekpkk < 1, thensk �AT�k > 0 xk �BT�k > 0 and � CT�k > 0:Thus, (xk �BT�k)T (sk �AT�k) > 0;that is (xk)T sk � (xk)TAT�k � (sk)TBT�k + (�k)TBAT�k > 0:Also note �(zk)TCT�k > 0:Combining the above two inequalities, we have(xk)T sk � (xk)TAT�k � (sk)TBT�k � (zk)TCT�k > �(�k)TBAT�k � 0or �� = (xk)T (sk �AT�k) + (sk)T (xk �BT�k) + (zk)T (�CT�k)= (xk)T sk + (xk)T sk � (xk)TAT�k � (sk)TBT�k � (zk)TCT�k> (xk)T sk = �k:From (9.20), we havekpkk2 � ( � ��(2n+ d)�k � 1)2(2n+ d) � 1;which is a contradiction. 2Clearly, the result for the LCP with positive semi-de�nite matrix is aspecial application of Theorem 9.15.9.3.3 Remove the assumptionsThe above theorems hold under certain assumptions. We now remove someof them and show that our main results remain valid. Note �rst that thez-boundedness assumption is automatically unnecessary for LCP.We now remove the assumption of availability of the initial point. Weapply the linear programming Phase I procedure to �nd a feasible solutionfor the system (A;B;C)u = q and u � 0:



276 CHAPTER 9. NONCONVEX OPTIMIZATIONIn polynomial time, an interior-point algorithm either declares that thesystem is infeasible, or generates a max-feasible solution �u. Thus, we havedetected those variables that must be zero in every feasible solutions of(GLCP) (in this case, the feasible region has empty interior). Then, weeliminate those variables from the system. For example, if x1 is zero inevery feasible solution of (GLCP), we can eliminate x1 and then move s1into z; if both x1 and s1 are zero in every feasible solution, we can eliminateboth of them. Thus, we will have a reduced system where the feasible regionhas a nonempty interior, and a feasible solution is at hand.Hence, Theorems 9.14 and 9.15 hold without the assumption. It hasbeen shown that every KKT point of the LCP with a row-su�cient matrixis a solution of the LCP. Therefore, we haveCorollary 9.16 The potential reduction algorithm is a fully polynomial-time approximation scheme for generating an �-approximate stationary pointof the LCP with row-su�cient matrices, where every KKT point is a solu-tion of the LCP.9.3.4 Numerical ExamplesWe give three examples of the GLCP and try to illustrate the convergencebehavior of the algorithm. These experiments are very preliminary.Example 9.3A = 0@ 0 1 100 1 10 0 2 1A ; B = �I; C = ;; and q = e:The starting point is x0 = (2; 2; 2)T . The algorithm consistently generatesthe solution to the LCP, x� = (0; 0:5; 0:5)T and s� = (4:5; 0; 0)T . In thisexample, A is a so called P0 matrix, and it is inde�nite.Example 9.4A = 0@ 0 1 100 0 10 0 2 1A ; B = �I; C = ;; and q = e:The starting point is again x0 = (2; 2; 2)T . The algorithm consistentlygenerates a KKT point of the LCP, �x = (0; �; 1)T , �s = (9 + �; 0; 1)T and�� = (0;�3; 1)T for some � > 0. Note that there is no solution to the GLCPin this example.



9.4. INDEFINITE QUADRATIC PROGRAMMING 277Example 9.5A = 0@ 0 1 100 0 10 0 0 1A ; B = �I; C = ;; and q = 0@ 11�1 1A :The starting point is again x0 = (2; 2; 2)T . The algorithm consistentlygenerates a KKT point of the LCP, �x = (0; �; 1)T , �s = (9 + �; 0; 1)T and�� = (0;�1; 1)T for some � > 0. Again, there is no solution to the GLCPin this example.9.4 Inde�nite Quadratic ProgrammingConsider the quadratic programming (QP) problem and its dual (QD) inSection 1.3.7. For simplicity we assume that A has full row-rank. If Q ispositive semi-de�nite in the null space of A, that is, for any given d 2 N (A),dTQd � 0;then (QP ) is a convex optimization problem and it can be solved in poly-nomial time. In this case, the standard duality theorems hold and theoptimality condition becomes x 2 Fp, (x; y) 2 Fd, and q(x) � d(x; y) =xT (Qx+ c�AT y) = xT s = 0.The algorithm presented in this section handles general QP problems:convex or nonconvex. For the simplicity of our analysis, throughout thissection we let (QP ) be a non-convex problem, e.g., Q have at least onenegative eigenvalue in the null space of A. Then, (QP ) becomes a hardproblem, an NP-complete problem.No time complexity bounds have been developed for various QP meth-ods. (Of course, an enumerative search approach will solve (QP ) but itpossesses an exponential time bound.) These algorithms generally gen-erate a sequence of points that converges to a stationary or KKT pointassociated with (QP ), which satis�esxT (Qx+ c�AT y) = 0; x 2 Fp; and (x; y) 2 Fd:For convenience, we let s = Qx+ c�ATy. Then, (x; y) 2 Fd implies s � 0.For any x 2 Fp and (x; y) 2 Fd, the quantity xT s = q(x) � d(x; y) is thecomplementarity gap.Here we assume that the feasible set, Fp, of (QP ) has a strictly positivefeasible solution. For any given (A; b), to see if Fp possesses a strictly posi-tive feasible solution can be solved as a single linear program in polynomialtime, so that the above assumption is without of loss of any generality. We



278 CHAPTER 9. NONCONVEX OPTIMIZATIONmake an additional assumption that the feasible region is bounded. Withthis assumption (QP ) has a minimizer and a maximizer. Let z and �z betheir minimal and maximal objective values, respectively.An �-minimal solution or �-minimizer, � 2 (0; 1), for (QP ) is de�ned asan x 2 Fp such that q(x) � z�z � z � �:(Vavasis [360] discussed the importance to have the term (�z� z) in the cri-terion for continuous optimization.) Similarly, we de�ne an �-KKT solutionfor (QP ) as an (x; y; s) such that x 2 Fp, (x; y; s) 2 Fd, andxT s�z � z = q(x)� d(x; y)�z � z � �:Note that the minimizer of (QP ) is a special KKT point such that q(x) =d(x; y) = z.In this section we extend the potential reduction algorithm described inSection 9.3 to compute an �-KKT point in O((n6� log 1�+n4 logn) log(log R� ))arithmetic operations. We also show that Q is positive semi-de�nite in thenull space of the active set at the limit of this point, indicating that thelimit satis�es the second-order necessary condition to be a local minimalsolution. The result is the �rst approximation algorithm whose runningtime is almost linear in 1� , which was an open question in the area ofnonlinear optimization complexity.9.4.1 Potential reduction algorithmWe now describe the potential function and the potential reduction al-gorithm for solving (QP ). Let z � z. Then the potential function of0 < x 2 Fp here is �(x) := � log(q(x) � z)� nXj=1 log(xj);where � > n.Starting from a point 0 < x0 2 Fp, the potential reduction algorithmwill generate a sequence of fxkg 2 Fp such that �(xk+1) < �(xk). Forsimplicity and convenience, we assume x0 = e, and x0 is the analytic centerof Fp. Our results hold even if x0 is replaced by an approximate center.Therefore, this assumption is also without loss of generality.



9.4. INDEFINITE QUADRATIC PROGRAMMING 279Since x0 is the analytic center of Fp,fx 2 Fp : k(X0)�1(x�x0)k � 1g � Fp � fx 2 Fp : k(X0)�1(x�x0)k � ng:(9.21)In other words, Fp contains the ellipsoid fx 2 Fp : k(X0)�1(x�x0)k � 1gand it is contained in the co-centered ellipsoid fx 2 Fp : k(X0)�1(x �x0)k � ng, where the ratio of their radii is n.Thus, for any x 2 FpnXj=1 log(x0j=xj) � �n log(n+ 1): (9.22)Note that if � log(q(xk)� z)� � log(q(x0)� z) � � log �or �(xk)� �(x0) � � log �+ nXj=1 log(x0j=xj) (9.23)we must have q(xk)� z�z � z � q(xk)� zq(x0)� z � q(xk)� zq(x0)� z � �;which implies that xk is an �-minimizer and, thereby, an �-KKT point.From relations (9.22) and (9.23), the above inequality holds if�(xk)� �(x0) � � log �� n log(n+ 1): (9.24)In other words, xk becomes an �-minimizer as soon as the net potentialreduction exceeds � log(1=�) + n log(n+ 1).Given 0 < x 2 Fp, let � = q(x) � z and let dx, Adx = 0, be a vectorsuch that x+ := x+ dx > 0. Then� log(q(x+)� z)� � log(q(x) � z)= � log(� + 12dTxQdx + (Qx+ c)T dx)� � log�= � log(1 + (12dTxQdx + (Qx+ c)T dx)=�)� ��(12dTxQdx + (Qx+ c)T dx):



280 CHAPTER 9. NONCONVEX OPTIMIZATIONOn the other hand, if kX�1dxk � � < 1 then� nXj=1 log(x+j ) + nXj=1 log(xj) � �eTX�1dx + �22(1� �) :Thus, if kX�1dxk � � < 1 then x+ = x+ dx > 0 and�(x+)��(x) � ��(12dTxQdx+ (Qx+ c� �� X�1e)T dx) + �22(1� �) : (9.25)To achieve a potential reduction, we minimize a quadratic function sub-ject to an ellipsoid constraint. We solve the following problem at the kthiteration: minimize 12dTxQdx + (Qxk + c� �k� (Xk)�1e)T dxsubject to Adx = 0;k(Xk)�1dxk2 � �2:LetQk = XkQXk; ck = XkQxk+Xkc��k� e; Ak = AXk; and d0x = (Xk)�1dx:Then the above problem becomes(BQP ) minimize q0(d0x) := 12 (d0x)TQkd0x + (ck)T d0xsubject to Akd0x = 0;kd0xk2 � �2:Let Nk 2 Rn�(n�m) be an orthonormal basis spanning the null space ofAk, where (Nk)TNk = I , and let Hk = (Nk)TQkNk 2 R(n�m)�(n�m) andgk = (Nk)T ck 2 Rn�m. Then d0x = Nkv for some v 2 Rn�m and problem(BQP ) can be rewritten as(BHP ) minimize 12vTHkv + (gk)T vsubject to kvk � �2:This is the so-called ball-constrained quadratic problem. We assume that,for now, this problem can be solved e�ciently ( we will establish this factlater).



9.4. INDEFINITE QUADRATIC PROGRAMMING 281The solution d0x of problem (BQP ) satis�es the following necessary andsu�cient conditions:(Qk + �kI)d0x � (Ak)T y(�k) = �ck for some y(�k);Akd0x = 0;�k � maxf0;��kg;and kd0xk = �; (9.26)or, equivalently, the solution v of (BHP ) satis�es the following necessaryand su�cient conditions:(Hk + �kI)v = �gk;�k � maxf0;��kg;and kvk = �; (9.27)where �k = �(Hk), and �(H) denotes the least eigenvalue of matrix H .Since Q is not convex in the null space of A and xk is strictly positive, wemust have �k < 0.Let s(�k) = Q(xk + dx) + c�AT y(�k) andpk = Qkd0x + ck � (Ak)T y(�k)) = Xks(�k)� �k� e: (9.28)Then, �k = kpkk=�; d0x = � �pkkpkk (9.29)and q0(d0x) = 12(d0x)TQkd0x + (ck)T d0x= (d0x)T (Qkd0x + ck)� 12(d0x)TQkd0x= (d0x)T (Qkd0x + ck � (Ak)T y(�k))� 12(d0x)TQkd0x= ��2�k � 12(d0x)TQkd0x= ��2�k � 12vT (Nk)TQkNk(Nk)T v� ��2�k � 12�((Nk)TQkNk)kvk2



282 CHAPTER 9. NONCONVEX OPTIMIZATION= ��2�k + �22 j�k j� ��2�k2 = ��kpkk2 : (9.30)This implies that��(12dTxQdx + (Qxk + c� �k� X�1e)T dx) = �k� q0(d0x) � ��2 ��k kpkk:Thus, not only we have xk+1 := xk + dx > 0 but also, from (9.25),�(xk+1)� �(xk) � ��2 ��k kpkk+ �22(1� �) : (9.31)Here we see that if ��k ��k = ��k kpkk � 34and if � is chosen around 1=4, then�(xk+1)� �(xk) � � 596 :Therefore, according to the implication of (9.24) we haveTheorem 9.17 Let �k and � be in condition (9.26). Then, If ��k ��k =��k kpkk � 34 for all k, then in O(� log 1� + n logn) iterations the algorithmreturns an �-minimal solution for (QP ).Now, the question is what happens if ��k kpkk < 34 for some k. In thenext section we prove that then xk+1 must be an �-KKT solution for asuitable z and � = 2n2(n + pn)=�. Thus, the total number of iterationsto generate an �-minimal or �-KKT solution is bounded by O(n3� log 1� +n logn). The algorithm can be simply stated as follows:Algorithm 9.2 Let � = 2n2(n + pn)=�, � = 1=4, z � z, and x0 be anapproximate analytic center of Fp. Set k := 0.While ��k ��k = ��k kpkk < 34 in (9.26) or q(xk)�zq(x0)�z < � do1. Solve (BQP).2. Let xk+1 = xk +Xkd0x.3. Set k := k + 1 and return to Step 1.



9.4. INDEFINITE QUADRATIC PROGRAMMING 2839.4.2 Generating an �-KKT pointWe �rst illustrate how to compute a lower bound, z, for the (QP ) minimalvalue z. A z can be generated by solving, again, a ball-constrained problem:minimize 12 (x� e)TQ(x� e) + (Qe+ c)T (x� e)subject to A(x� e) = 0;kx� ek2 � 1:Let x̂ be the minimizer. Then, according to Theorem 4 of [376] (we leaveits proof as an exercise) and relation (9.21) (i.e., the ratio of the radii ofthe inscribing and circumscribing ellipsoids to Fp is 1=n), we haveq(e)� q(x̂) � 1n2 (q(e)� z):Thus, we can assign z := q(e)� n2(q(e)� q(x̂)): (9.32)Note that an approximate x, say q(e) � q(x) � (q(e) � q(x̂))=1:1, wouldestablish a lower bound z := q(e) � 1:1n2(q(e) � q(x)). This bound isperfectly acceptable for establishing our complexity result as well.We now back to the case that ��k kpkk < 34 . In fact, we address a weakercase where ��k kpkk < 1, that is,k ��kXks(�k)� ek < 1:First, we must haves(�k) = Q(xk + dx) + c�AT y(�k) = Qxk+1 + c�AT y(�k) > 0:Furthermore,k ��kXks(�k)� ek2= ( ��k )2kXks(�k)� (xk)T s(�k)n ek2 + k�(xk)T s(�k)n�k e� ek2� k�(xk)T s(�k)n�k e� ek2� ��(xk)T s(�k)n�k � 1�2 n:



284 CHAPTER 9. NONCONVEX OPTIMIZATIONHence, ��k kpkk < 1 impliesn�pn� � (xk)T s(�k)�k � n+pn� :Moreover, (xk+1)T s(�k) = (xk)T (Xk)�1Xk+1s(�k)� k(Xk)�1Xk+1k(xk)T s(�k)� (1 + �)(xk)T s(�k) � 2(xk)T s(�k):Therefore, we have (xk+1)T s(�k)�k � 2(n+pn)� � �n2or (xk+1)T s(�k)q(xk)� q(x0) + n2(q(x0)� q(x̂)) � �n2 :Consequently, if q(xk) � q(x0) then(xk+1)T s(�k)n2(q(xk)� q(x̂)) � �n2 ;otherwise (xk+1)T s(�k)n2(q(x0)� q(x̂)) � �n2 :Both of them imply that (xk+1)T s(�k)�z � q(x̂) � �;which further implies that (xk+1)T s(�k)�z � z � �:That is, xk+1 is an �-KKT point for (QP ). To summarize, we haveTheorem 9.18 Let z and � be chosen as above and let � < 1 in condition(9.26). Then, �kkd0xk = kpkk < �k� implies that xk+1 := xk +Xkd0x is an�-KKT point for (QP ).



9.4. INDEFINITE QUADRATIC PROGRAMMING 2859.4.3 Solving the ball-constrained QP problemWe now analyze solving (BQP ), or (BHP ) equivalently, in each iterationof the algorithm. Consider the necessary and su�cient conditions (9.26) or(9.27). It has been shown that �k is unique in these conditions and�k � j�(Hk)j+ kgkk� � j�(Qk)j+ kckk� :It is also known that any eigenvaluej�(Qk)j � nmaxfjqkij jg;where qkij is the (i; j)th component of matrix Qk. Thus,0 � �k � Rk := nmaxfjqkij jg+ kckk� ;where Rk is a computable upper bound at each iteration.Since Qk = XkQXk, thereforemaxfjqkij jg � maxfjqij jgmaxfxki xkj g � n2maxfjqij jg;which implies that j�(Qk)j � n3maxfjqij jg:Similarly, we can showkckk � n3:5maxfjqij jg+ nkck+ (�z � z):Let R := (n3:5 + n3)maxfjqij jg+ nkck+ (�z � z)�(q(e)� z) : (9.33)Then, Rk is uniformly bounded by R(q(e)� z), which only depends on theproblem data. Note that R is invariant if the objective function or (Q; c)is scaled by a positive number.For any given �, denote solutions of the top linear equations by d0x(�) inconditions (9.26) and v(�) in conditions (9.27). It can be also shown thatkd0x(�)k = kv(�)k is a decreasing function for any � � j�k j. Besides, forany given � we can check to see if � � j�k j by checking the de�niteness ofmatrixHk+�I , which can be solved as a LDLT decomposition. These factslead to a bisection method to search for the root of kd0x(�)k = kv(�)k = �while � 2 [j�kj; Rk] � [0; Rk]. Obviously, for a given �0 2 (0; 1), a �, suchthat 0 � �� �k � �0, can be obtained in log(Rk=�0) � log(R(q(e) � z)=�0)bisection steps, and the cost of each step is O(n3) arithmetic operations.



286 CHAPTER 9. NONCONVEX OPTIMIZATIONThe remaining question is what �0 would be su�cient to carry out ourmain algorithm. In what follows we let�k = q(xk)� z � �(q(e)� z); (9.34)since otherwise xk is already an �-minimizer for (QP ). We discuss thecondition of �0 in three cases.(A) The termination iteration.Let us consider the termination iteration wherekpkk < 3�k4� :From relation (9.29) we see 0 < �k < 3�k4�� :Let the right endpoint of the interval generated by the bisection search bedenoted as �. If we require � such that0 � �� �k � �k4�� ;then �k � � < �k�� :Also note kd0x(�)k � � since � � �k. This leads to thatk�d0x(�)k � �k� ;and, from Theorem 9.18, x+ := xk + Xkd0x(�) must be an �-KKT point.Thus, noticing the choice of �, � = 14 and (9.34), in this case we can choose�0 � �2(q(e)� z)2n2(n+pn) (9.35)to meet the requirement.(B) The non-termination iteration.Now let us consider the non-termination iteration, i.e.,kpkk � 3�k4� :



9.4. INDEFINITE QUADRATIC PROGRAMMING 287In this iteration from (9.29) and (9.30) we have�k � 3�k4�� and q0(d0x(�k)) � �3�k�8� :Thus, if we could generate a d0x such thatq0(d0x)� q0(d0x(�k)) � 3�k�24� � �kpkk6 = �2�k6 (9.36)and kd0xk � �;then q0(d0x) � ��kpkk2 + �kpkk6 = ��kpkk3 ;which implies that��(12dTxQdx + (Qxk + c� �k� X�1e)T dx) � ��3 ��k kpkk;and we would still have xk +Xkd0x > 0 and, from (9.25),�(xk +Xkd0x)� �(xk) � � 296 :In other words, d0x is an acceptable approximation to d0x(�k) to reduce thepotential function by a constant.We analyzes the complexity bounds to compute such an approximation.Again, let the right endpoint of the interval generated by the bisectionsearch be denoted as �. Then, � � �k. If � = �k, then we get an exactsolution. Thus, we assume � > �k � j�k j. We consider two sub-cases,(B.1) in the non-termination iteration. In this case, we let�k � j�kj+ 5�0:Note thatkd0x(�k)k2 � kd0x(�)k2= kv(�k)k2 � kv(�)k2= vT (�k)(I � (Hk + �kI)(Hk + �I)�2(Hk + �kI))v(�k)= vT (�k) �2(�� �k)(Hk + �I)�1 � (�� �k)2(Hk + �I)�2� v(�k)� kv(�k)k2�2(�� �k)(�� j�k j) � (�� �k)2((�� j�k j))2�



288 CHAPTER 9. NONCONVEX OPTIMIZATION= kv(�k)k2� 2(�� �k)(�� �k) + (�k � j�k j) � (�� �k)2((�� �k) + (�k � j�kj))2�= �2 (�� �k)2 + 2(�� �k)(�k � j�kj)((�� �k) + (�k � j�k j))2= �2�1� (�k � j�k j)2((�� �k) + (�k � j�k j))2�� �2�1� (5�0)2((�� �k) + 5�0)2� :In O(log(Rk=�0)) bisection steps, we have �� �k � �0. Then,kd0x(�k)k2 � kd0x(�)k2 � 11�236 :On the other hand,q0(d0x(�))� q0(d0x(�k))= 12v(�)THkv(�) + (gk)T v(�)� 12v(�k)THkv(�k)� (gk)T v(�k)= 12(Hkv(�) + gk)T (v(�)� v(�k)) + 12(Hkv(�k) + gk)T (v(�) � v(�k))= �12�v(�)T (v(�) � v(�k))� 12�kv(�k)T (v(�) � v(�k))= �12(�� �k)v(�)T (v(�) � v(�k))� 12�k(kv(�)k2 � kv(�k)k2)� �0�2 + 11�2�k72 :Thus, if we condition �0�2 � 172 3�k�4� � �2�k72 ;then (9.36) holds, i.e.,q0(d0x(�))� q0(d0x(�k)) � �2�k72 + 11�2�k72 = �2�k6and d0x(�) will be an acceptable approximation to d0x(�k). Note that choos-ing �0 � �2(q(e)� z)48n2(n+pn) (9.37)will meet the condition, due to (9.34) and the selection of � and �.



9.4. INDEFINITE QUADRATIC PROGRAMMING 289(B.2) in the non-termination iteration. In this case, we have�k < j�kj+ 5�0:Thus, in O(log(Rk=�0)) bisection steps, we have ���k < �0 so that ��j�kj <6�0. However, unlike Case (B.1) we �nd d0x(�) (or v(�)) is not a su�cientapproximation to d0x(�k) (or v(�k)). When we observe this fact, we do thefollowing computation.Let qk, kqkk = 1, be an eigenvector corresponding the �k, the leasteigenvalue of matrix Hk. Then, one of the unit vector ej , j = 1; :::; n�m,must have jeTj qkj � 1=pn�m. (In fact, we can use any unit vector q toreplace ej as long as qT qk � 1=pn�m.) Now solve for y from(Hk + �I)y = ejand let v = v(�) + �y;where � is chosen such that kvk = �. Note we have(Hk + �I)v = �gk + �ej ;and in the computation of v(�) and y, matrix Hk + �I only needs to befactorized once.We have that kyk � 1pn�m(�� j�k j)and j�j � 2�(�� j�k j)pn�m � 2�(6�0)pn�m:Let d0x = Nkv. Then, we haveq0(d0x)� q0(d0x(�k))= 12vTHkv + (gk)T v � 12v(�k)THkv(�k)� (gk)T v(�k)= 12(Hkv + gk)T (v � v(�k)) + 12(Hkv(�k) + gk)T (v � v(�k))= 12(Hkv + gk � �ej)T (v � v(�k)) + 12�eTj (v � v(�k))�12�kv(�k)T (v � v(�k))= �12�vT (v � v(�k)) + 12�eTj (v � v(�k))� 12�kv(�k)T (v � v(�k))= �12(�v + �kv(�k))T (v � v(�k)) + 12�eTj (v � v(�k))



290 CHAPTER 9. NONCONVEX OPTIMIZATION= �12(�� �k)vT (v � v(�k)) + 12�eTj (v � v(�k))� �0�2 + 2(6�0)�2pn�m:Thus, if we condition �0�2 + 12�0�2pn�m � 3�k�24� ;then (9.36) holds, i.e.,q0(d0x)� q0(d0x(�k)) � 3�k�24� � �kpkk6 ;and d0x must be an acceptable approximate to d0x(�k). Note that choosing�0 � �2(q(e)� z)52n2(n+pn)pn�m; (9.38)will meet the condition, due to (9.34) and the selection of � and �.Comparing (9.35), (9.37), and (9.38), we choose�0 = �2(q(e)� z)52n2(n+pn)pn�m;will meet the conditions for all three cases. Hence, our bisection methodwill terminate in at most O(log(R=�) + logn) steps, where R is de�ned by(9.33), and it either �nds an �-KKT point in Case A of the terminationiteration, or calculates a su�cient approximation d0x(�) in Case (B.1) ofthe non-termination iteration, or spends additional O((n�m)3) arithmeticoperations to generate a su�cient approximation d0x in Case (B.2) of thenon-termination iteration. Normally, n < R=�. Thus, the running timeof the bisection method in each iteration is bounded by O(n3 log(R=�))arithmetic operations. To summarizeTheorem 9.19 The total running time of the potential reduction algorithmis bounded by O((n6� log 1� + n4 logn) log R� )arithmetic operations.One comment is about z, the lower bound for z, used in our algorithm.If we somehow know z (we probably do in solving many combinatorial



9.5. NOTES 291optimization problems), then we can choose � = 2(n + pn)=� and reducethe overall complexity bound by a factor n2.Finally, when � ! 0, we must have �k ! 0, so that j�kj ! 0. At thelimit, �k represent the least eigenvalue of Q in the null space of all activeconstraints: Ax = b plus xj = 0 for every j that xkj ! 0. This implies thatQ is positive semi-de�nite in the null space of all active constraints of thelimit. This is the second order necessary condition for the limit being alocal minimal solution.9.5 NotesIn this chapter we have extended a potential reduction algorithm to solvingthe general linear complementarity problem and quadratic programming.We have shown that the algorithm is a fully polynomial-time approximationscheme for computing an �-approximate stationary or KKT point, whichitself is a (nonconvex) linear complementarity problem. (The concept ofthe fully polynomial-time approximation scheme (FPTAS) was introducedin combinatorial optimization, for example, see Papadimitriou and Steiglitz[272].) The result is the �rst approximation algorithm whose running timeis almost linear in 1� , which was an open question in the area of nonlinearoptimization complexity, see Vavasis [359]. We would also like to mentionthat algorithms, similar to the one described in this paper, have actuallybeen used in practice, and they seem to work very well (e.g., Kamarth,Karmarkar, Ramakrishnan, and Resende [170, 171]).If (QP ) is a convex optimization problem, then it can be solved inpolynomial time, e.g., see Vavasis [359] and references therein. If Q haveat least one negative eigenvalue in the null space of A, then (QP ) becomesa hard problem{an NP-complete problem. ([101], [273], [294], [359], andetc). Some proposed algorithms for solving general QP problems include theprincipal pivoting method of Lemke-Cottle-Dantzig (e.g., [71]), the active-set method (e.g., [105]), the interior-point algorithm (e.g., [170, 171] and[376]), and other special-case methods (e.g., [249] and [273]). Other interior-point methods for nonconvex optimization can be found in Bonnans andBouhtou [58] and Pardalos and Ye [376, 385].Even �nding a local minimal and checking the existence of a KKT pointare NP-complete problems (see, e.g., Murty and Kabadi [251], Horst, Parda-los and Thoai [150], Johnson, Papadimitriou and Yannakakis [166], andPardalos and Jha [274]). Finding even an �-minimal or �-KKT point arehard problems. Bellare and Rogaway [41] showed that there exists a con-stant, say 14 , such that no polynomial-time algorithm exists to compute an14 -minimal solution for (QP ), unless P = NP . Vavasis [360] and Ye [376]



292 CHAPTER 9. NONCONVEX OPTIMIZATIONdeveloped a polynomial-time algorithm to compute an (1 � 1n2 )-minimalsolution. Using a steepest-descent-type method, Vavasis [359] also provedan arithmetic operation upper bound, O(n3(R� )2), for computing an �-KKTpoint of a box-constrained QP problem, where R is a �xed number depend-ing on the problem data.The LCP potential algorithm described in this chapter is due to Kojima,Megiddo and Ye [181]. Other algorithms can be found in Kojima, Mizunoand Noma [182] and Noma [268]. The description of G is technically similarto Eaves' class and Garcia's class. These two classes and some others havebeen extensively studied, see Cottle, Pang and Stone [72]. Since every KKTpoint of the LCP with a row-su�cient matrix is a solution (Cottle et al.[72]), the algorithm is actually a polynomial approximation algorithm forsolving the class of LCPs with row-su�cient matrices.Now consider (BQP ), or (BHP ) equivalently. First, a brief history ofthis problem. There is a class of nonlinear programming algorithms calledmodel trust region methods. In these algorithms, a quadratic functionis used as an approximate model of the true objective function aroundthe current iterate. The next step is to minimize the model function. Ingeneral, however, the model is expected to be accurate or trusted only ina neighborhood of the current iterate. Accordingly, the quadratic model isminimized in a 2-norm neighborhood, which is a ball, around the currentiterate.The model-trust region problem, (BQP ), is due to Levenberg [196] andMarquardt [209]. These authors considered only the case when Qk is pos-itive de�nite. Mor�e [248] proposed an algorithm with a convergence prooffor this case. Gay [102] and Sorenson [309] proposed algorithms for the gen-eral case, also see Dennis and Schnable [76]. These algorithms work verywell in practice, but no complexity result was established for this problemthen.A simple polynomial bisection method was proposed by Ye [376] andVavasis and Zippel [361]. Recently, Rendl and Wolkowicz [285] showed that(BQP ) can be reformulated as a positive-semide�nite problem, which is aconvex nonlinear problem. There are polynomial interior-point algorithms(see Nesterov and Nemirovskii [263]) to compute an d0x such that q0(d0x)�q(d0x(�k)) � �0 in O(n3 log(Rk=�0)) arithmetic operations. This will alsoestablish an O((n6� log 1� + n4 logn) log R� )arithmetic operation bound for our algorithm.In addition, Ye [380] further developed a Newton-type method for solv-ing (BQP ) and established an arithmetic operation boundO(n3 log(log(Rk=�0)))to yield a � such that 0 � ���k � �0. The method can be adapted into our



9.6. EXERCISES 293each iteration. We �rst �nd an approximate � to the absolute value of theleast eigenvalue j�k j and an approximate eigenvector q to the true qk, suchthat 0 � �� j�kj � �0 and qT qk � 1=pn�m. This approximation can bedone in O(log(log(Rk=�0))) arithmetic operations. Then, we will use q toreplace ej in Case (B.2) of the non-termination iteration (i.e., kv(�)k < �)to enhance v(�) and generate a desired approximation. Otherwise, we know�k > � and, using the method in Ye [380], we will generate a � 2 (�;Rk)such that j���kj � �0 in O(n3 log(log(Rk=�0))) arithmetic operations. Thisshall establish an O((n6� log 1� + n4 logn) log(log R� ))arithmetic operation bound for our algorithm.9.6 Exercises9.1 Verify inequality (9.4).9.2 For any x; s 2 �Rn+, prove thatH(x; s) = 2I � (XMT � S)(S2 +MX2MT )�1(MX � S)is positive semi-de�nite.9.3 Prove Proposition 9.2.9.4 In Proposition 9.4 show that for any (x; s) 2 �Fkg(x; s)k2H > 0:9.5 Given r > 0 and let d(r) be the minimizer forminimize q(d) := 12dTQd+ cT dsubject to Ad = 0;kdk2 � r2:Then, for 0 < r � Rq(0)� q(d(r)) � r2R2 (q(0)� q(d(R))):9.6 Given z, the exact global minimal objective value of a QP problem, de-velop an approximation algorithm for �nding an KKT point of the problemand analyze its complexity.
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