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Abstract. In the last two decades, many heuristics have been developed for finding good 
elimination orderings for sparse Cholesky factorization. These heuristics aim to find elimination 
orderings with either low fill, low operatian count, or low elimination height. Though many heuristics 
seem to perform weil in practice, there has been a marked absence of much theoretieal analysis to 
back these heuristics. Indeed, few heuristics are known to provide any guarantee on the quality of 
the elimination ordering produced for arbitrary matrices. 

In this work, we present the first polynomial-time ordering algorithm that guarantees approxi
mately optimal fill. Our algorithm is a variant of the well-known nested dissectian algorithm. Our 
ordering performs particularly weil when the number of elements in each row (and hence each col
umn) of the coeflicient matrix is small. Fortunately, many problems in practice, especially those 
arising from finite-element methods, have such a property due to the physical constraints of the 
problems being modeled. 

Our ordering heuristie guarantees not only low fill, but also approximately optimal operatian 
count, and approximately optimal elimination height. Elimination orderings with small height and 
low fill are of much interest when performing factorization on parallei machines. No previous orderi ng 
heuristic guaranteed even small elimina.tion height. 

We wiJJ describe our ordering algorithm and prove its performance bounds. We shall also present 
some experimental resuIts comparing the quality of the orderings produced by our heuristic to those 
produced by two other well-known heuristics. 

1. Introduction. Solution of Iinear systems of the form Ax = b is a basie tool 
in numerical an"':i3i~ ~n<l is eommonly used in almost all branehes of seienee and 
engineering. The most popular direet method of solving a system of linear equations 
is Gaussian elimination, in whieh the matrix A is first transformed into an upper 
triangular matrix by forward elimination, and then the solution is found by baekward 
substitution. In many applieations, the coefficient matrix A is sparse, i.e. has very 
few non-zero elements. Sinee the eomputations on the zero element s in A ean be 
performed trivially without requiring any floating point operations, it is important to 
take advantage of the sparsity to keep the eomputational eomplexity low. However, 
as the elimination phase progresses, new non-zero elements are introdueed into the 
coefficient matrix, and the matrix tends to beeome less sparseo The loss in sparsity 
translates into an inereased storage requirement, and also inereased eomputation time 
sinee the non-zero elements enter into subsequent ealeulations. 

The new non-zero elements introdueed during the elimination proeess are ealled 
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lill-in. Different orders of eliminating the variables may yield very different fill-in. 
It is thus of prime importanee to be able to choose an elimination ordering of the 
variables that results in small fill-in. The choice of an elimination ordering that 
results in small fill-in often conflicts with the requirement of an ordering that ensures 
numerical stability of the solution process. Fortunately, many of the systems of 
equations that arise in practice are positive definite, in which numerical stability is 
not a problem (17). In solving such lineal' equations, we are free to choose an ordering 
of variables entirely based on our desire to preserve the sparsity of the matrix during 
the elimination process. 

A matrix A is called symmetric if Aij equals Aji for every Z,J. Positive defi
nite matrices that are also symmetric frequently arise in structural analysis, signal 
processing, economics, VLSI simulation, solution of lineal' prograrns, and solution of 
partial differential equations, to name a few. In this work, we study the problem of 
finding a good elimination orderi ng for such matrices. 

Henceforth, when we refer to a lineal' system of equations Ax = b, we assume that 
A is ~ symmetric positive definite matrix. 

Minimizing till. We shall define the fiil for an ordering as the sum of the number 
of non-zero elements in the matrix, and the fill-in introduced by the ordering. The 
fill for an ordering measures the amount of storage required, and also has bearing on 
the total time required for the elimination process. It is thus of interest to find an 
elimination ordering that minimizes fill. For the purposes of analyzing fill, we shall 
count each pair of symmetric elements only once. 

Findiug such an ordering is NP-complete [58) and hence is unlikely to have a 
polynomial-time solution. Nevertheless, this problem is of fundamental importance 
and a large set of orderi ng heuristics have been developed [3, 55, 14, 20, 49, 16, 15, 43, 
18, 17, 9, 10). However, none of them are known to give any performance guarantee 
on the size of the fill for arbitrary symmetric matrices. In this work, we present 
the first polynomial-time algorithm that guarantees approximately optimal fill. Our 
algorithm performs particularly weIl when the number of elements in each row (and 
hence each column) of the matrix is small. Fortunately, many problems in practice, 
especially those arising from finite-element methods, have such a property due to the 
physical constraints of the problems being modeled. As stated earlier, all our results 
are for the dass of symmetric positive definite systems of equations. 

THEOREM 1.1. There is a polynomial-time algorithm that finds an elimination 
ordering yielding approximately optimal fiil. The fiIl for the ordering is within a 
factor of O( v'd log4 n) of the optimum, where n is the number of variables and d is 
the maximum number of non-zero entries in any row or column of the coefficient 
matrix. 

Our algorithm is a variant of the well-known nested dissection algorithm (14). It 
treat s the input matrix as the adjacency matrix of a graph. The algorithm is based on 
finding a recursive decomposition of the graph associated with the coefficient matrix. 
The use of graphs in the study of elimination orderi ng is not new [51, 54). There is an 
obvious way of associating a graph with a given symmetric matrix; the variables of 
the matrix associate with the nodes of the graph, and there is an edge between nodes 
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i and j iff the element (i,j) of the matrix is non-zero. The values of the non-zero 
element s in the eoefIicient matrix are not relevant for the ordering problem in the 
case of symmetrie positive definite systems. 

Parter [51 J first showed how to interpret the elimination proeess as a graph
theoretieal proeess. Rose [55J eharacterized the dass of graphs for whieh there is 
an elimination order with no fill-in, and showed how to find such an ordering. George 
[14J first proposed a nested dissection approach, designed specifieally for grid graphs. 
The algorithm was shown to be optimal (within eonstant faetors) in terms of opera
tion eount for the ease of a regular finite-element mesh [29J. George's approach was 
first generalized to arbitrary graphs by George and Liu [16J. However they used a 
simple heuristie for graph separators and henee eould not prove any bounds on its 
performance. Lipton, Rose, and Tarjan [41J proved a performance bound for their 
version of nested dissection algorithm for graphs with small (O( vin) in size) sepa
rators. Gilbert and Tarjan [26J later showed that ~y using small separators, George 
and Liu's nested dissection algorithm also gives dose to optimal fill for planar graphs, 
but does not generalize to the dass of graphs with O( vin) size separators. A good 
overview of these algorithms ean be found in the books of George and Liu [17J and 
Duff and Reid [9J. 

Node separators are fundamental to the nested dissection algorithm. A node 
separator consists of aset of nodes whose removal breaks the graph up into pieees. 
For our purposes, every subset of the nodes is a separator. A separator is f-balanced, 
for some f < 1, if no pieee on its removal has more than fn nodes, where n is the 
number of nodes in the graph. 

The fill restlItinI!; from applying the approaeh of Lipton, Rose, and Tarjan depends 
upon the size of the separators for the dass of graphs being dealt with. For example, 
their approaeh yields O( n log n) fill for any planar graph based on the fact that planar 
graphs have ~-balaneed separators of size O( vin). 

There are three main differenees between our work and the work of Lipton, Rose 
and Tarjan. One, we do not assume the existenee of any speeial separator strueture 
in the graphs. Two, our analysis is more striet; we are able to analyze the quality 
of our result with respeet to the minimum fill aehievable over all orderings. Three, 
our variation of nested disseetion is similar to that of George and Liu, and somewhat 
simpler than that of Lipton, Rose and Tarjan. 

Gilbert [22J showed that for a matrix with at most d non-zero elements in each row 
(and eolumn), there exists a nested dissection algorithm whose fill is within O(dlog n) 
of minimum. His nested disseetion algorithm, however, is inherently non-eonstruetive; 
the choice of separators in his algorithm depends erucially on the optimally filled 
matrix. 

Our nested disseetion algorithm also uses balaneed node separators. No polynomial 
time algorithms are known for finding a minimum-size balaneed node separator in a 
graph. However, we show that ehoosing near-optimal balaneed node separators is 
sufIicient to achieve near-optimal fill. All our proofs are independent of the method 
by whieh the near-optimal separators are found. To our knowledge, Leighton and Rao 
[36, 37J have provided the first and the only polynomial-time algorithm to find an 
approximately balaneed separator in an arbitrary graph. We henee use their method 
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in our nested dissection algorithm. However, in practice, other separator algorithms 
may be preferable on grounds of efficiency. 

Though the performance guarantee of our algorithm deteriorates in going from a 
graph of small degree to one without this restriction, it is the first such algorithm 
that gives any non-trivial performance bound on the quality of the fill. 

THEOREM 1.2. There is a polynomial-time algorithm that produces an elimination 
ordering yielding afill ofO(F*~rmlog3.5n), where F* is the size of the minimumfill, 
and m is the number of non-zero elements in the given n x n matrix. 

Note that the performance guarantee for fill from the above theorem is never worse 
than O(mt log3.5 n) since the size of the minimum fill F* must be at least as much as 
the number of edges m in the graph. 

Minimizing the operation count. We show that the orderi ng generated by 
our algorithm approximately minimizes not only fill, but also the total number of 
arithmetic operations required to solve the system of equations using Gaussian elim
ination. Much of the previous work in elimination orderi ng has been concerned with 
minimizing fill, and surprisingly little attention has been given to minimizing the 
number of operations. The onlyexceptions we know of are the works of Hoffman et 
al. [29], Lipton et al. [41] and Gilbert and Talojan [26], who analyzed the operation 
counts for their nested dissection algorithms. However, their results only apply to 
specific elasses of problems as explained in the discussions above. 

THEOREM 1.3. The elimination ordering produced by our algorithm approximately 
minimizes the to tal number of arithmetic operations. The performance guarantee is 
O( d log6 n) for an n x n matrix with a maximum of d non-zero elements in each row 
and column. 

Solving sparse systems in parallel. With the advent of parallei machines, 
much attention has naturally been focussed on solving sparse systems in parallel. In 
a typical parallei implementation of the elimination process, multiple variables are 
eliminated simultaneously in a step. Such variables must then have no dependencies 
between them, i.e. there must be no edge in the graph between the nodes correspond
ing to the variabIes. For an elimination ordering, the minimum number of paralleI 
steps required to eliminate all the variables is called its height [47]. It is hence of 
interest to find an elimination orderi ng of minimum height. This problem is also 
known to be NP-complete [53]. Many researchers have given heuristics without any 
guarantees for this problem in the past [30, 38, 44, 48, 40, 10]. We prove that our 
nested dissection algorithm can guarantee approximately minimum height. 

THEOREM 1.4. The elimination ordering produced by our algorithm has height 
with in a factor of O(log2 n) of optimal. 

Note that our algorithm itself is not parallei, but is to be used to generate an 
orderi ng with small height. Such an approach is suitable for problems where the 
sparsity structure of the matrix is fixed, and the linear system has to be solved for 
many different coefficient values and/or right hand sides. A good elimination ordering 
can hence be found sequentially as a preprocessing step. Our work is thus different 



35 

TABLE 1 

Performance guarantees for the elimination ordering produced by our algorithm. In the above taMe, 
n, m and d respectively denote the number of nodes, edges, and the maximum degree of the graph 
associated with the coefficient matrix. 

Characteristic Performance Guarantee 

Fill o S~in(.jd log4 n, mi log3.s n) ) 
Operation Count O(dlog6 n) 

Elimination Height o (log2 n) 

from other work addressing the issue of generating the ordering itself in parallel 
[43,52,39,27,25,5). 

Along with minimizing the height, it is desirable to keep both the fill and the 
operation count small, since they determine the to.tal space and the total work done 
by the algorithm. Our algorithm is the first one known that approximately minimizes 
all three quantities simultaneously: fill, operation count, and height. By putting 
Theorems'1.1, 1.3 and 1.4 together, we get the following result. 

THEOREM 1.5. The elimination ordering produced by our algorithm simultane
ously minimizes height to within a O(log2 n) factor, fill to within O(.jd log4 n) factor, 
and the operation count to within a O( d log6 n) factor of the respective optimum quan
Uties. In the guarantee, d denotes the maximum number of non-zero elements in any 
row or column of the n x n coefficient matrix. 

Bodlaender et al. (2) have independently presented essentially the same algorithm 
as ours for findine: an elimination ordering of approximately minimum height. How
ever, they do not analyze the fill and operation count for their ordering. 

The performance guarantees for the elimination ordering obtained by our algo
rithm are given in Table 1. 

Gilbert (22) has conjectured that there is an orderi ng that simultaneously min
imizes height and approximately minimizes fill (to within a constant factorl. Our 
analysis here represents progress towards proving this conjecture. Our algorithm is a 
polynomial-time algorithm since we utilize near-optimal node separators in our nested 
dissection algorithm. By utilizing a minimum node separator (non-polynomial) algo
rithm, we can prove the following: 

THEOREM 1.6. There exists a nested dissection ordering that simultaneously 
minimizes height to within a O(log n) factor, fill to within a O(.jd log2 n) factor, and 
operation count to within a O( d log4 n) factor of the respective optimum quantities. 
In the guarantee, d denotes the maximum number of non-zero elements in any row 
or column of the n x n coefficient matrix. 

Chordal graphs. An elimination step can be interpreted as updating the asso
ciated graph by adding new edgesj the fill-in introduced by eliminating a vanable i 
turns the higher numbered neighbors of node i into a clique. At the termination of 
the elimination process, the edges of the associated graph thus obtained correspond 
directly to the fill yielded by the ordering. Rose [55) showed that this updated graph 
is in fact chordal, and that minimizing fill corresponds to finding a minimum-size 
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chordal graph containing the graph associated with the input matrix. A chordal 
graph is a graph in which every cyele of length at least four has a chord, i.e. there 
is an edge between two non-consecutive no des in the cyele. Chordal graphs are also 
sometimes referred to as triangulated graphs. 

We exploit the characterization of the elimination process given by Rose. We 
prove that our nested dissection orderi ng yields a chordal graph of small size with 
respeet to the optimal. 

Organization of the paper. We explain the relationship between the elimina
tion process and graph chordalization in Section 3. We give our algorithm in Section 
4, and explain our algorithm in terms of a separator tree in Section 5. The lower 
and upper bounds for the fill, operation count, and height are provided in Sections 
6, 7 and 8 respectively. We provide some experimental results for the performance of 
our algorithm in Section 9, and conelude the paper by discussing some open issues in 
Section 10. 

2. Notation. A graph G and a matrix A are said to be corresponding if (u, v) E 
G if and only if Auv =1= O. Very often we shall refer to a matrix as a graph, meaning 
the graph corresponding to the matrix. The position of a no de v in an elimination 
ordering a will be denoted by a( v). Throughout this paper, we shall use G~ to refer 
to the chordal extension of a graph G for a given orderi ng a. Moreover, we shall refer 
to the optimal chordal extension of a graph G by G'; the optimality criteria for the 
extension will be elear from the context. By IGI for a graph G, we shall refer to its 
number of edges. 

3. Graph chordalization. An elimination orderi ng of a graph G is said to 
be perfect, if the orderi ng induees zero fill-in on the matrix corresponding to the 
graph. A graph is chordal if it has a perfect elimination order. One of the simplest 
characterizations of a chordal graph is that every cyele of length at least four in 
the graph has an edge between some pair of non-consecutive nodes of the cyele. A 
good discussion of chordal graphs can be found in Golumbic's book [28]. Apart from 
Gaussian elimination, study of chordal graphs has applications in pedigree analysis, 
and evidence propagation in belief networks [31]. 

Graph chordalization is the problem of extending an input graph G to a chordal 
graph by adding a minimum number of edges. Every minimaI chordal extension of 
a graph can be completely specified by an orderi ng of the no des of the graph; the 
ordering is a perfect elimination orderi ng for the chordal extension of the graph. For 
the matrix corresponding to the graph, this orderi ng of nodes also corresponds to an 
elimination orderi ng of the corresponding variabIes. 

To construct a chordal extension of a graph G from a given orderi ng a of its nodes, 
we mimic the elimination process in terms of the following operations on G [54]. Go 
is set to be the original graph G. Let Gi be the graph at the end of step i, and let v 
be the (i + l)th node in the ordering. At step i + 1, we augment Gi to obtain GHI 
by turning all the neighbors of v numbered higher than i + 1 into a elique. Gn is the 
desired unique chordal graph corresponding to the orderi ng a, where n is the number 
of no des in the graph. 
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An ordering of the nodes of a graph is henee sufficient to specify a ehordal extension 
of a graph. We employ this approaeh in presenting our algorithm for approximately 
minimum ehordalization. 

4. Our algorithm 

Graph separators. Before we give the orderi ng algorithm, we need some baek
ground on an essential ingredient of our algorithm, namely balaneed no de separators. 
Reeall that aset of nodes X in a graph G = (V, E) is ealled an J-balanced node 
separator for some fraction J < 1, if no connected eomponent of G - X is of size more 
than the fraction J of IVI. No polynomial-time algorithms are known for finding an J
balaneed no de separator of minimum size for a non-trivial eonstant J. However, using 
the technique of Leighton and Rao [36], one ean find an approximately minimum-sized 
balaneed node separator. This was also shown by Makedon and Tragoudas [50]. 

LEMMA 4.1 ([36, 50]). There exists a polynomial-time algorithm to find a ~
balanced node separator in a graph oJ size within an 0 (log n) Jactor oJ the optimal 
~ -balanced node separator. 

Note that every ~-balaneed node separator is also a ~-balaneed no de separator. 

Elimination ordering algorithm. Our ordering algorithm is a nested dissee
tion algorithm that is based on a reeursive deeomposition of the graph. 

Given a graph G = (V, E) with n nodes, we proeeed as follows to number its no des 
in the range la, b], where b = a + n - 1. If n = 1, we number the single no de a. Else, 
we find an approximate ~-balaneed no de separator X for G Hsing the algorithm in 
Lemma 4.1. We number the vertiees in the separator from b - lXI + 1 to b in any 
order. The rest of the nodes are numbered as follows. Let G - X have k eonnected 
subgraphs AI, ... , Ak of sizes nl, ... , nk. We reeursively number the graph Ai in the 
range [a + L:~;;'; nj, a - 1 + L:~=l nj] for eaeh i E [1, kl. 

We shall refer to this ordering as 0: for the rest of this paper. 

5. Separator tree. In this seetion, we will establish a lower bound on the size 
of the optimum ehordal extension of a graph in terms of the separator sizes found 
by the nested dissection algorithm. In our nested dissection ordering, we employ an 
approximation algorithm for finding balaneed node separators. However, for ease of 
exposition below, we shall as sume that we have a separator algorithm that finds the 
best balaneed node separator in a graph. We shall later forego this assumption. 

Consider the following tree, ealled the separator tree, representing the nested dis
seetion process on a graphj the separator vertiees form the root of the tree, and the 
trees of eaeh of the pieees are built reeursively. To distinguish from the nodes of the 
tree, we shall refer to the no des of the graph as ve1,tices. A tree node henee stands 
for a separator that may eonsist of several vertiees. Our algorithm thus defines an 
elimination ordering of the vertiees of the original graph that is eonsistent with a 
postorder traversal of the nodes of the separator tree. However, the algorithm orders 
the vertiees within a tree no de arbitrarily. 
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Let G(V, E) be an input graph and G* be a minimum-size chordal extension of 
G. Let T be the separator tree given by our nested dissedion ordering (employing 
an optimal balaneed separator algorithm). With each node x in the separator tree T, 
let us associate three quantities Sx, Vx, and Gx. Sx ~ V is the set of vertices forming 
the node x, li" ~ V is the set of vertices belonging to the nodes of the subtree rooted 
at x, and Gx ~ G is the subgraph induced by the vertex set Vx in the original graph 
G. Let us denote the separator containing a vertex v by Xv and the set of vertices 
belonging to any of the nodes in the subtree rooted at Xv by Tv. The separator tree 
naturally defines an ancestor relation on the no des of the tree. We shall also consider 
a node to be a trivial ancestor of itself. We shall say that a no de u is a proper ancestor 
of a no de v if u is an ancestor of v but u =/= v. 

We sh all derive a lower bound on the size of the optimal chordal extension G* in 
terms of the sizes of the separators at any level of the separator tree. By a level of the 
tree we mean all the nodes in the tree that are at the same distance from the root. 
Let Xl> ••• ,Xp be the tree nodes at some level of the separator tree. Since VX1 ' ••• , VXp 

are disjoint, it follows that the graphs G;" ... , G;p induced by them in G* are also 
disjoint. Thus we have 

(1) 
p 

2:: lG:, I S; IG*I 
i=l 

where IGI refers to the number of edges (size) of G. 
We shall now use the following two previously known results. 

FACT 5.1. Every node-induced subgraph of a chordal graph is chordal. 

Gilbert, Kose, aHd. Edenbrandt [24J showed that every chordal graph has a bal
anced elique separator, i.e. aset of nodes that along with being a balaneed node 
separator, induees a elique in the chordal graph. Since the number of edges in this 
elique can be at most the number of edges in the chordal graph, the following theorem 
follows. 

THEOREM 5.1 ([24]). Evel'y chordal graph has a ~-balanced clique separator, and 

hence has a ~-balanced node separator of size at most m, where E is the number 
of edges in the chordal graph. 

By Fact 5.1, each of the graphs G;, is chordal. Hence by Theorem 5.1, we can 
write 

(2) 

On rewriting (1) using this observation, we have the following lemma. 

LEMMA 5.2. The size of the optimai chordal extension is at least one-half the 
largest sum of the squares of the sizes of the separatars at any level of the nested 
dissection separator tree. 

One of the main results of this work is to show that the nested dissection algorithm 
in fad yields a chordal graph whose size is elose to the lower bound given above (see 
Section 6.3 for proof). 
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THEOREM 5.3. For any level 1 of the nested dissection separator tree, let S/ be 
the sum of the squares of the sizes of the separators at this level. Then the size of the 
optimal chordal extension ofG is at least! max/ S"~ and at most O( Vdlog4 n)*max, S,. 

In employing an approximation algorithm for finding balaneed node separators 
that has a factor of f performance guarantee, we prove that the size of the chordal 
graph thus obtained is no more than O(P) times the size of that obtained by using 
the optimal balaneed node separators. We employ a separator algorithm with an 
O(logn)-factor performance guarantee, and obtain the following resuIt (see Section 
6.3 for proof). 

THEOREM 5.4. There is a polynomial-time algorithm that generates a nearly 
optimai chordal extension of an input graph. The size of the chordal graph is 
O(min(IG"1 Vdlog4 n, IG"I~ Jmlog3.sn)), where IG"I is the size of the optimai chordal 
extension of an input graph of n nades, medges, and maximum degree d. 

6. Performance guarantee: Number of edges. In this section, we est ab
lish the performance guarantees for the number of edges and hence the fill for our 
elimination ordering. 

6.1. A lower bound. We shall first establish a lower bound on the number of 
edges in the optimally filled graph G*. In Lemma 5.2, we showed a lower bound 
for IG*I in terms of the sizes of the separators at any level of the separator tree. 
However, we had assumed that we had an optimal separator algorithm. We now 
relax that restriction, and derive a similar resuIt using the nested dissection tree 
buiIt with the O(logn) separator approximation algorithm of Leighton and Rao (see 
Lemma4.1). 

We first state the following simple observation. 

PROPOSITION 6.1. Let x!, ..• ,xp be the separatars at some level of the separator 
tree. The 'I{ertex sets T"", ... ,T",p of the subtrees rooted at these separatars are disjoint. 

LEMMA 6.2. Let Xl' •.• ' X p be the separatars at any level of the nested dissectian 

separator tree. The size of the optimai chordal extension is n e:r~;}~;l2). 

Proof. Let G'i be the subgraph induced in G* by the vertices belonging to the 
subtree rooted at Xi. By Theorem 5.1, ai has a !-balanced separator of size at most 

J2IGil. Let this separator be Xi. Then we have 

(3) ::; 21G*1 

The second inequality follows from the disjointness of the subgraphs G'i, using Propo
sition 6.1. Let the graph induced in G by the vertices of Gr be Gi • Since the edges of 
Gi form a subset of the edges of G';, it follows that Xi is also a !-balanced separator 
in Gi. By construction, the vertex set Xi is a ~-balanced node separator in Gi, and 
on applying Theorem 4.1, we have 

lXii = O(logn)lXil 
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whieh implies that 

p p 

(4) L IX;l2 ~ 0(1og2 n) L IXil2 
.=1 .=1 

On substituting (3) into (4), we get 

p 

(5) L IXil2 ~ O(log2 n)IG*1 
i=l 

Hence the lemma follows on rewriting the last equation. 0 

6.2. A characterization of chordal graphs. Our aim is to estimate the num
ber of edges in the chordal graph corresponding to the ordering given by our algorithm. 
To do so, we need a good charaeterization of these edges. Earlier we discussed one 
such characterization by specifying how to extend a graph to be chordal given the 
elimination orderi ng of its nodes. However, there is in fact a more direet characteri
zatiqn of these edges. We shall employ this charaeterization in estimating the total 
number of edges in the chordal extension resulting from our elimination ordering. 
This characterization is the following. 

LEMMA 6.3 ([56]). For a given elimination ordering a, an edge (u, v) is in G~ if 
and only if there is a path P = {zo = U, ZI, ... ,zp = v} in G such that a( Zi) ~ a( u ) 
and a(zi) ~ a(v), for each i = 1, ... ,p - 1. 

Using Lemma 6.3 and the strueture of the separator tree, we claim the following 
characterization of the edges in a chordal extension given by our nested disseetion 
ordering. T~!~ has also been shown by Gilbert and Tarjan as Lemmas 3 and 4 in 
their paper [26] . 

LEMMA 6.4. Let a be a nested dissection ordering, and w, v E G such that 
a( w) ~ a( v). An edge (w, v) is in G~ only if there exists an edge (u, v) E G such 
that Xv is an ancestor of X w , and X w is an ancestor of Xu • 

Proof By Lemma 6.3, we know that if the edge (w, v) exists in G~, then there is 
a path P = {w = Zo, ZI, ... ,zp = v} from w to v such that all the vertices in the path 
are ordered before w and v. We claim this implies that all the vertices in P belong 
both to Tw and Tv. We prove it by contradietion. For contradietion, let us assume 
that such is not the case, and that there is a vertex Zi E P such that Zi fj. Tw . Since 
X w is a node separator, any path from a vertex in Tw to a vertex not in Tw must 
contain a vertex belonging to a proper ancestor of X w • But then such a vertex will 
be numbered higher than w, since the numbering is consistent with a post-ordering 
of the three nodes. By our assumption of the path P, this eannot be true. Thus eaeh 
of the vertices on the path P belongs to Tw • A similar argument shows that each of 
these vertices also belongs to Tv. 

Thus X w and Xv are aneestors of X Zi for every 0 ~ i ~ p. In partieular, X w and 
Xv are ancestors of X Zp_" and the edge (zp_!, v) exists in G. The only way both X w 

and Xv can be ancestors of another separator, is if one of them is an aneestor of the 
other. Sinee a(v) > a(w), it follows that X w must be an ancestor of X w • Henee the 
lemma holds. 0 
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FIG. 1. The associated tree of a node v. 

6.3. An upper bound: Small degree graphs. Now we shall establish an 
upper bound on the number of edges in the chordal graph for the orderi ng given by 
our nested dissection algorithm. We shall count the edges to a vertex v from any of 
the vertices numbered smaller than v. 

Let us define the level of a node v in the tree as the distance of v from the root, 
and denote it by level~v J. -eyaleveli in the tree, we refer to all the nodes at leveli. 
By the level of a vertex we shall refer to the level in the separator tree of the no de it 
belongs to. The depth of a t.ee refers to the maximum level of any node in the tree. 
We claim that the depth of the tree is small. 

LEMMA 6.5. The depth of the separafo. f.ee is at most O(log n). 

Proof On removing a balaneed separator from a graph with n vertiees, each of 
the pieces has at most ~n vertices. Hence the graph size decreases exponentially with 
the increase in recursion depth of the nested dissection algorithm. The depth of the 
separator tree is then at most log~ n. D 

We shall now count the number of edges to a vertex v from any of the vertices 
numbered smaller than v. For that, we define the notion of an associated tree for each 
vertex. The associated t.ee for a vertex v belonging to a separator X is constructed 
as follows. Let Vb"" Vk be the neighbors of v such that level( Vi) ~ levele v), for 
1 :s i :s k. Let Xi be the separator containing Vi. The associated tree for v is the 
smallest subtree root ed at X containing each of the separators Xl,"" X k (see Figure 
1 ). 

Lemma 6.4 implies that for every edge (w,v) E G~ where a(v) > a(w), w must 
belong to the associated tree of v. Thus the total number of edges to v from vertices 

In Liu's terminology [47], the associated tree for a vertex is exactly the part of the separator 
tree that contains its "row subtree" . 
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numbered lower than v in the orderi ng is at most the number of vertices belonging 
to all the separators in the associated tree of v. We shall refer to this number for v 
as the cost of v. Thus the total number of edges in our chordal extension is at most 
the sum of the costs of the vertices. 

THEOREM 6.6. The total number of edges in the chordal extension obtained by 
our nested dissection ordering is at most is O(,jJ log4 n) times optimai, where d is 
the maximum degree of the graph. 

Proof. Let us estimate the sum of the costs of all vertiees at a given levelil in the 
tree. Let this level consist of separators Xl,"" Xp • For i = 1, ... ,p, consider the 
highest-cost vertex of Xi, and let Ai be the associated subtree for this vertex. For 
each leveli:::: Il, let W/(Ai) be the number of vertiees in Ai at leveli. Then the sum 
of the costs of vertiees at level h is no more than the sum, over all levels I greater 
than 11, of the value 

p 

(6) :L lXii· W/(Ai ). 
i=l 

Let Ai have qi separators Xi,l, . .. ,Xi,qi at level I. Since each vertex has a maximum 
degree of d, it follows that the associated tree of a vertex has at most d leaves. This 
implies that each level of the tree has at most d nodes, and hence qi is at most d. 
Substituting into (6), we get 

P qi P qi 

:L:LIXdIXi,il ::; :L:LIXi ,jI2 
i=l j=l i::::::l j=l 

P qi 

(7) :L:LIXi ,jI2 
;=1 j=l 

where the first inequality follows from the Cauchy-Schwartz inequality, and the second 
from the fact that q; ::; d. By Lemma 6.2 it follows that 

and similarly 

P qi 

:L :L IXi,j 12 = O( jiQ.!log n) 
i=l j=l 

Thus the right-hand side of (7) is 0 ( ,jJIG* Ilog2 n). Summing over all levels 11 and 

I, we conelude that there are O( ,jJIG*llog4 n) edges. D 

Our elimination orderi ng hence yields a chordal graph which has only a polylog 
factor more edges than the optimal if the maximum degree of the graph is at most 
polylog in the number of nodes. This al so proves that the fill for such graphs is 
also provably small. Moreover, many problems in practice, for example finite element 
probIems, have small degree and thus for these problem s our nested dissection ordering 
is guaranteed to produce near-optimal fill. 
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6.4. An upper bound: Large degree graphs. While the performance bound 
is polylog for small degree graphs, we cannot claim the same for the unbounded degree 
graphs. We can, however, claim a non-trivial performance bound which is no worse 
than a faetor of mt log" n times the optimal, where m is the number of edges in the 
graph. We omit the proof for brevity. The details can be found elsewhere [1]. 

THEOREM 6.7. For an unbounded degree gmph G with n vertiees and medges, 
the total number of edges in G~ is 0 (lG*lt vmlog3.sn). 

7. Performance guarantee: Number of multipIications. In this section, 
we shall establish the performance guarantee for the number of multiplications re
quired by our nested dissection ordering. Since the cost of solving a system of linear 
equations is proportional to the number of multiplications required for the process, 
this guarantee reHeets the guarantee for the total sequential time required to solve 
the problem using Gaussian elimination. 

7.1. A characterization of number of multiplications required. We shall 
use the following characterization of the total number of multiplications required by 
an elimination ordering in terms of the cliques of the filled-in chordal graph. Every 
vertex v in G~ forms a clique with all its neighbors ordered after v. We shall refer to 
this clique as the associated clique for the vertex, and denote it by Cv. The number 
of multiplications required to eliminate a variable v is the total number of edges in 
the clique Cv. Thus the total number of multiplications required to eliminate all the 
variables in a chordal graph equals the sum of the number of edges in the associated 
cliques of each node. 

7.2. A lower bound. Consider the case when a chordal graph has a clique of 
size p. Then for any ordering of variables in the clique, the node numbered i within 
the clique has an associated clique of size p - i, for every i from 1 to p. Thus the 
total number of multiplications required to eliminate all the variables in this clique 
is L:f=l (p - i)2, which is n (p3). By Lemma 5.1, since every chordal graph has a 
~-balanced clique separator, the following lemma easily follows. 

LEMMA 7.1. For any ehordal gmph G*, if P is the size of its clique sepamtor, then 
n (p3) is a lower bound on the number of multiplieations required for any elimination 
ordering. 

Let M* be the least multiplication count for any elimination ordering of G. We 
shall extend Lemma 7.1 a step further to relate M* to the sizes of the separators at 
any level of the separator tree. 

LEMMA 7.2. Let a given level in the sepamtor tree obtained by our algorithm have 

p sepamtors XI, . .. , X p • Then n e::r~~~;l3) is a lower bound on M*. 

Proof. Let Tõ be the subtree rooted at X; and G'; be the subgraph induced by the 
vertices of Tõ in G*. Since Gi is chordal by Fact 5.1, it has a clique separator. Since 
our separator approximation has aguarantee of O(log n), the optimal clique separator 

must have size n (&n). By Lemma 7.1, ai must then require n O!() multiplica
tions. Since the subgraphs Gi, .•. ,G; are disjoint, it follows that any ordering in G* 
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FIG.2. The only vertices z which can contribute to the edge (u,v) must beiaug both to the associated 
tree of v and to the subtree rooted at u. 
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7.3. An upper bound. We shall now derive an upper bound on the number 
of multiplications required. Let M be the number of multiplications required for the 
eEmination ordering defined by the algorithm. M is given by the sum over all nodes v 
of the number of edges in v's associated clique. Thus we can write M as L:v L:eECv 1, 
whieh is the same as L:e L:v:Cv 3e 1. The contribution of an edge to this sum is the 
number of vertiees containing the edge in their associated cliques. We shall refer to 
this quantity as the contribution of the edge. M is hence the sum of the contributions 
of the edges in a:. We shall use this characterization along with Lemma 7.2 to relate 
M to M*. 

THEOREM 7.3. The number of multiplications required by our nested dissection 
elimination ordering is 0 (dlog6n) times optimai, where d is the maximum degree of 
the grap; •. 

Proof The contribution of an edge (u, v) is 1 for each vertex z such that Cz 

contains the edge (u,v). Without loss of generality, let us assume that a(v) > a(u). 
Since (u, v) E a:, by Lemma 6.4, u must belong to the associated tree of v. Since u, 
v and z belong to the clique C" Cz must contain the edges (z,v) and (z,u). Since 
a(z) < aev), the presence of the edge (z,v) in Cz implies that z must also belong 
to the associated tree of v (see Figure 2). Similady, the fact that (u,v) is in Cz 

implies that z must belong to the subtree rooted at u. Thus the only vertices that 
can contribute to the edge (u, v) are those which belong to the associated tree of v 
and also belong to the subtree rooted at u. Note that the latter implies that the level 
of such a vertex is at least as high as that of u. 

Our approach in counting the total number of multiplications is the following. 
We consider all the edges in a: that go between two given levels. For each edge 
we count the number of vertices in a given third level which contain the edge in its 
associated clique. We show that this count over all the edges between two levels is 
at most O(dlog3 nM*). Since there are o (log3 n) choiees of the three levels under 
consideration, the total number of multiplication is O(dlog6 nM*), and we get the 
theorem. 

So let us consider three level s in the separator tree II, i2 , and i3 such that i3 ;::: 

lz ;::: il' Our aim is to count for each edge (u, v) between a vertex v in levelil and a 
vertex u in level i2 , the total number of vertices in the level 13 that contain (u, v) in 
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their associated clique. Let this quantity be called M'. M' can be written as 

(8) M'= L 1 
vElevelil tlElevel b.(u.v)EG~ zElevells,Cz3{u,v) 

We want to estimate M'. Let us denote by M v the sum 

1 
uElevelI2,(u,v)EG~ zElevelI3 ,cz3(u,v) 

for a vertex v. Let XI, ... , X q be the separators at level il, and let Vi denote the 
vertex V in Xi for which !'vtv is maximum. Then we can rewrite (8) as 

q 
(9) M' = LLMv 

i=l VEXi 
q 

(10) ::; LLMv , 
i=l vEXj 
q 

(11) LIXilMv, 
i=l 

Let us now estimate the value of !'vtv,. Let Av, denote the associated tree of Vi. Let 
the separators in Av, at level i2 be XiI, ... , X iq,. Each of the edges of Vi to level i2 

must have a vertex in Av, as its endpoint. Consider all the ed ges between Vi and the 
vertiees of the separator Xij. There are a maximum of IXij I such edges. By the above 
discussion, any vertex that has any of these edges in its associated clique must belong 
to the subtree of Av, rooted at Xi. All such vertices at leveli3 must then belong to 
one of the separators in the subtree of Av, rooted at Xij. Let the separators in Av, at 
level i3 be Xijl , ... ,Xijq'l' Then the maximum number of vertiees whose associated 
cliques can contain an eäge between Vi and a vertex in Xij is given by L:k;1 IXijkl, 
and there can be at most IXijl such edges. Summing over all the separators in Av, at 
level 12 , we get 

qi qij 

(12) Mv , < LIXijlLIXijkl 
j=1 k=1 

We can rewrite (11) after substituting (12) as 

q qi qi, 

(13) M' ::; L IX;! L IXijl L IXijkl 
,=1 j=1 k=1 

By using the inequality L XiYiZ, ::; L:i(X; + Y7 + z7), we can rewrite (13) as 

q qi qij q qi qi, q qi qi) 

M' ::; LLLIXiI3+LLLIXijI3+LLLIXijkI3 
i=1 j=1 k=1 i=1 j=1 k=1 i=1 j=1 k=1 

(14) 
i=l j=1 k=1 i=1 j=1 k=1 i=1 j=1 k=1 

Since each vertex has degree at most d, it follows that the associated tree of each of 
the vertices has at most d separators at any level. Hence we have L:J~I L:k';l 1 ::; d 
for all i, and L:k;11 ::; d for all i and j. We can then rewrite (14) as 

q q ql q ql qij 

(15) M' < d· L IX;j3 + d . L L IXij 13 + L L L IXijk 13 
i=I i=1 j=1 ;=1 j=1 k=1 
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Note that each of the terms on the right hand side of (15) is a sum over the (disjoint) 
separators at a single level, and hence we can apply Lemma 7.2. We get 

(16) 

(17) 
M' ~ dO(M log3 n) + dO(M lol n) + O(Mloln) 

O(dM log3 n) 

As mentioned before, the total number of multiplications is the sum of M' over all 
the possible choiees of 11, 12, and 13 . There bei ng o (log3 n) such possible choices, the 
theorem follows. D 

The theorem above shows that the performance guarantee of our nested dissection 
algorithm is a polylog factor if the degree of the graph is small. As mentioned earlier, 
low degree graphs account for many of the matrices arising in practice. 

8. Performance guarantee: Elimination height. Since problem s in numer
ieal analysis are a favorite for parallei machines, it is natural to consider how weIl one 
can perform Gaussian elimination in parallei. The amount of parallei time required 
by !tn elimination ordering can be characterized by its height. Multiple variables can 
be eliminated simultaneously in parallei only if the variables do not have any depen
dencies between them. In the graph representation, in eliminating a vertex v, we 
update all the neighbors of v that are numbered higher than v. Hence two vertices 
cannot be eliminated simultaneously if they have an edge between them. If we think 
of each edge being directed from the vertex with a lower number to the other, then 
the height of an ordering fr is the longest directed path in the chordal graph a:. 
Alternate characterizations of the height in terms of the elimination tree are given by 
Liu [47]. 

An elimmatioll "tdering that minimizes height does not necessarily minimize other 
important quantities like fill, or the multiplication count for the ordering. In fact, for 
the example of a simple line graph, the minimum degree heuristic is optimal in terms 
of fill, but has much worse height than a nested dissection ordering. Gilbert [21] 
has conjectured that there is an ordering that minimizes height and simultaneously 
approximately minimizes fill to within a constant factor. The conjecture remains 
umesolved. 

Finding an ordering that minimizes height itself is NP-hard [53]. Hence we have 
to be content with finding an ordering that approximately minimizes height. It turns 
out that our nested dissection elimination ordering also approximately minimizes 
height, and thus we obtain an algorithm that simultaneously gives low fill, number 
of multiplications, and height. Contrary to our performance bounds for the fill and 
multiplication count, the guarantee for the height is independent of the degree of the 
input graph, and is always a O(log2 n) factor of the optimal. We prove this result in 
this section. 

Bodlaender et al. [2] have independently proposed an ordering scheme similar 
to ours that achieyes approximately minimum height. The problem of finding an 
ordering with small height has been studied by many researchers in the past and an 
excellent survey can be found in the artide by Heath, Ng, and Peyton (in [10]). 

Since the height of an ordering is of concern when solving a system of linear 
equations in parallei, it will be desirable to obtain the ordering itself in paralleI. 
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However, we do not address that issue here. Our implementation of the algorithm 
at present is sequential. We use the technique of Leighton and Rao [36] for finding 
small balaneed separators in a graph, and no efficient parallei implementations are 
known for it. Some work has been done [32] on parallelizing the technique, but the 
resulting method is still not competitive. We suspect that the algorithm of Leighton 
and Rao cannot be parallelized efficiently. However, we hope that other techniques 
for finding small graph separators will be developed, which will be more amenable to 
parallel implementations. The issue of generating the elimination ordering itself in 
parallei has been studied by other researchers [10]. However, none of the previously 
proposed algorithms have yielded any performance guarantees. 

8.1. A lower bound. From the discussion on the height of an elimination or
dering, it follows that the height of any elimination orderi ng for a clique of size m is 
m. That gives us the following simple lemma. 

LEMMA 8.1. For any chordal graph G*, if m is the size of its clique separator, 
then the he,ight of any elimination ordel-ing must be n (m). 

We can build on the above lemma to get the following result. 

LEMMA 8.2. Let the Zargest separator in the separator tree obtained by our algo
rithm for a graph G be X. Then any elimination ordering for G must have height 

n(~). 
Proof. Let Vx be the set of vertices in the subtree of the separator X and G* 

be the chordal graph with minimum height over all elimination orders. By Theorem 
5.1, and the performance guarantee of our separator algorithm (see Theorem 4.1), 
the graph induced by \Ix 111 G* has a clique separator of size n (~). This clique 
size is a lower bound on the height of any elimination ordering by Lemma 8.1, and 
hence the lemma follows. 

8.2. An upper bound. We shaH now show that the height generated by our 
nested dissection orderi ng is not too much more than the optimal height. 

Consider the separator tree. Let X be the largest separator in the tree. Consider 
all the separators at each level. One variable from each of the separators can be 
eliminated simultaneously as there are no direet edges between the variables of dif
ferent separators. Hence the number of parallei elimination steps for eliminating all 
the variables at a level is no more than the size of the largest separator at the level. 
This size is no more than lXI by assumption. Since the number of levels is O(log n), 
the height of the orderi ng is at most O(IXllogn). By Lemma 8.2, the value of lXI 
is at most O(log n) times the minimum height of any elimination ordering. It then 
follows that the height of our orderi ng is at most O(log2 n) times the minimum height 
over all orderings. We have thus proved our claim of this performance guarantee in 
Theorem 1.4. 

9. Experimental results. In this section we back up the theoretically provable 
performance of our ordering with some experimental data. We compared the quality 
of our results to two publicly available codes. These two codes use two different well
known heuristics. The first is the minimum-degree heuristic code by Joseph Liu [43]. 
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The second code is the nested disseetion heuristic that is implemented in SPARSPAK 
[19]. 

The minimum-degree heuristic is by far the most commonly used and acknowl
edged as the most effeetive heuristic known for finding good elimination orderings. It 
has a rich history. It originated from the work of Markowitz in 1957, has undergone 
many enhancements over the last fifteen years, and has been incorporated in many 
publicly available codes like MA2S, YALESMP, and SPARSPAK. Much statistics re
garding the performance of this heuristic and all the enhancements are also available 
in literature. George and Liu [IS] present an excellent survey of the developments 
and enhancements in the minimum-degree heuristic. They suggest that a minimum
degree heuristic with certain enhancements [43J outperforms other variations of this 
heuristic. We abtained the latest versian of the code implementing this heuristic from 
Joseph Liu in July 1991, and that is what we shall refer to as the minimum-degree 
code for the purposes of the comparison. vVe al so wanted to compare our nested dis
section ordering against an already existing one. The SPARSPAK nested disseetion 
was an ideal choice because of its popularity. 

We compared the fill, the total number of multiplications, and the height of our 
ordering with those abtained by the other two codes for a variety of matrices. These 
matrices were abtained from the Harwell-Boeing test set of sparse matrices [7, 6]. 
They are symmetric positive definite matrices that are derived from real applications 
in the industry. They have also been extensively used as a test suite by many re
searchers [S, 45, 40, 46, 47]. Many of the matrices that we used came from struetural 
engineering and finite-element analysis probiems. 

We inlPlemented the algorithm for fillding approximate balanced node separatars 
as described by Leighton and Rao [36J. Their algorithm consists of repeatedly apply
ing the algorithm for finding an approximately sparsest no de separator in a graph. 
The algorithm for finding the node separator consists of two phases. In the first 
phase, a uniform concurrent How problem is salved, and in the second phase, the so
lutian of the concurrent How problem is rounded to produce a node separator in the 
graph. The first phase requires the solution of a linear program, the time complexity 
of which, though polynomial, was unacceptable for our purposes. We hence turned 
to an approximation algorithm for solving the uniform concurrent How problem [35], 
which was implemented by Sarah Kang and Philip Klein [34]. 

We report our results below. We give the names of the matrices from the Harwell
Boeing colleetion, and the actual values of the three quantities of interest for the 
orderings. For the other two codes, we also compute the percentage difference in the 
values of the three quantities as compared to the values for our ordering. The number 
of non-zero elements in the original matrix is given in the table for reference. 

Our fill is usually within ± 11% of the minimum-degree ordering. The height 
of our orderi ng is generally bettel' than that of the minimum-degree ordering. The 
latter however, has better performance in terms of the number of multiplications. 
Compared to the SPARSPAK nested dissection ordering, our ordering seems to fare 
weIl in all the three criteria. 

Though our nested disseetion algoritlun seem s to provide competitive results, its 
practical use is limited dtie to the computationally intensive algorithm for finding the 
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TABLE 2 

Comparison of fill: fill is the total number of elements in the matrix that were either non-zero or 
became non-zero during the course of elimination 

matrix Order # entries Our ordering Minimum Degree SPARSPAK 
isymmetric) # # '10 Change # % Change 

CANN24 24 92 213 214 +0% 228 +7% 
CANN61 61 309 752 669 -11% 781 +4% 
CANN96 96 432 1895 1856 -2% 2166 +14% 
CANN144 144 720 1683 1746 +4% 1812 +8% 
CANN187 187 839 3776 3735 -1% 4067 +8% 
CANN229 229 1033 5502 5883 +7% 7439 +35% 
BCSSTKOl 48 224 901 906 +0'10 1072 +19% 
BCSSTK04 132 1890 7121 6544 -8% 9414 +32% 
BCSSTK05 153 1288 5022 4524 -10'10 5415 +8'10 
BCSSTK06 420 4140 22249 20782 -7% 24116 +8% 
BCSPWR02 49 108 212 215 +1% 265 +25% 
BCSPWR05 443 1033 2720 2425 -11% 4557 +67% 
DWT193 193 1843 8556 8155 -5% 9489 +11% 
DWT209 209 976 4118 3812 -7% 6263 +52% 
NOS4 100 347 1515 1206 -20% 1754 +16% 

approximate separators. Our algorithm may run for hours while the minimum degree 
heuristic algorithm or the SPARSPAK nested dissection algorithm might terminate 
in minutes or even seconds. 

10. Conclusions and open issues. Our study suggests some new directions 
for further research and many open issues. We list them here. 

• Improving the performance bounds for the orderi ng probiems: The perfor
mance guarantees for the fill and the operation counts for our nested dissec
tion ordering depend upon the maximum degree of the graph associated with 
the coefficient matrix. It is a challenging problem to find a polynomial-time 
ordering algorithm whose performance guarantees are independent of the de
gree of the input graph. A simpler problem might be to obtain an ordering 
algorithm whose performance guarantees are proportional to the average de
gree of the input graph. Such aresult will be interesting even for the cases 
where the graph has excluded minors. 

• Experiments with variants of our nested dissection algorithm: While our 
nested dissection algorithm seems to perform weil in practice, we have not 
yet experimented with variants of our algorithm. We think that further 
experience with this algorithm might suggest practical enhancements to the 
elimination orderings produced by the algorithm. We point out again that 
the minimum-degree code against which we compare our heuristic has been 
tuned and adjusted over many years. 

• Finding in parallei an elimination orderi ng of small height: Our nested dissec
tion ordering is a good orderi ng for solving sparse linear systems in paralleI. 
However, our algorithm for finding the eliminationordering itselfis inherently 
sequential at present. That is because no parallei approximation algorithms 
are yet known for finding balanced separators in a graph. It is of interest to 
find a parallei algorithm that produces an ordering that has provably small 
height. 
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TABLE 3 
Comparison of multipIieation eount 

# entries 
(symmetric) 

92 
309 
432 
720 
839 

1033 
224 

1890 
1288 
4140 

108 
1033 
1843 
976 
347 

# edges 
(symmetric) 

92 
309 
432 
720 
839 

1033 
224 

1890 
1288 
4140 

108 
1033 
1843 
976 
347 

Our ordering II Minimum Degree 

# II # % Change 

1076 895 -17% 
5794 3757 -35% 

22983 22360 -3% 
13165 14435 +10% 
49313 48754 -1% 

104839 119890 +14% 
8688 8893 +2% 

201202 144314 -28% 
95389 51549 -46% 

815252 639199 -21% 
772 658 -15% 

17299 11568 -33% 
229852 185812 -19% 
60381 45457 -25% 
15967 8585 -46% 

TABLE 4 
Comparison of height 

Our ordering Minimum Degree 

# # % Change 

9 11 +22% 
14 24 +71% 
28 26 -7% 
16 18 +12% 
32 42 +31% 
48 52 +8% 
25 24 -4% 
61 86 +41% 
41 84 +105% 
97 138 +42% 

5 13 +160% 
23 31 +35% 
58 92 +59% 
32 54 +69% 
24 30 +25% 

SPARSPAK 
# % Change 

1162 +8% 
6201 +7% 

30349 +32% 
14172 +8% 
58165 +18% 

184882 +76% 
11706 +35% 

316461 +57% 
110254 +16% 
993936 +22% 

1147 +48% 
50220 +190% 

291769 +27% 
126012 +109% 

19331 +21% 

SPARSPAK 
# % Change 

10 +11% 
18 +29% 
36 +29% 
20 +25% 
34 +6% 
71 +48% 
30 +20% 
72 +18% 
43 +5% 
92 -5% 

9 +80% 
56 +143% 
73 +26% 
54 +69% 
27 +12% 
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o 100 200 o 100 
nz = 1777 nz = 5502. nops = 104839. h = 48 

nz = 7439. nops = 184882. h = 71 nz = 5883. nops = 119890. h = 52 

Flo. 3. The quo/i/li oI th. dirnination ordenng! produced by the Ihree cod •• are co rnpa red. The 
ongina/ malnx lrom Ih. JJaMllell-Boeill9 t.st-suile alld is ealled CANtt9. The fill, Ih. number oI 
rnu/lip/ication., and th e lI eigllt lor III. ordenllgs are speci/i.d. 
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100 200 

nz = 4118, nops = 6038 1. h = 32 

nz = 3821. nops = 45457. h = 54 

FIG . 4. The qualily of Ihe eliminalioll o"d" 'illgs produced by the Ihree codes are compared. The 
originaI malriz from Ih e lfa rwe/l·Boeillg lesl.suite alld i ealled DWTf09. Th. jill, Ihe number of 
multipliea lions, and Ihe heigM for Ih . orderi/lgs are specijied. 
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Finding a parallel algorithm for approximating minimum balaneed no de sep
arators in a graph is independently of mueh interest . 

• Running time for finding good balaneed separators: The running time of 
our nested dissection algorithm for finding an elimination orderi ng directly 
depends upon the running time of the balaneed separator algorithm. For 
the algorithm to gain aeeeptanee, we must have a faster approximate separa
tor algorithm. Separators have numerous other applieations also and henee 
having fast separator algorithms is of mueh independent interest. 

11. Acknowledgments. We gratefully aeknowledge the contributions of Sarah 
Kang, John Gilbert, and R. Ravi to this work. 
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