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IMPROVED DYNAMIC REACHABILITY ALGORITHMS
FOR DIRECTED GRAPHS∗
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Abstract. We obtain several new dynamic algorithms for maintaining the transitive closure of
a directed graph and several other algorithms for answering reachability queries without explicitly
maintaining a transitive closure matrix. Among our algorithms are: (i) A decremental algorithm
for maintaining the transitive closure of a directed graph, through an arbitrary sequence of edge
deletions, in O(mn) total expected time, essentially the time needed for computing the transitive
closure of the initial graph. Such a result was previously known only for acyclic graphs. (ii) Two
fully dynamic algorithms for answering reachability queries. The first is deterministic and has an
amortized insert/delete time of O(m

√
n), and worst-case query time of O(

√
n). The second is

randomized and has an amortized insert/delete time of O(m0.58n) and worst-case query time of
O(m0.43). This significantly improves the query times of algorithms with similar update times. (iii)
A fully dynamic algorithm for maintaining the transitive closure of an acyclic graph. The algorithm
is deterministic and has a worst-case insert time of O(m), constant amortized delete time of O(1),
and a worst-case query time of O(n/ logn). Our algorithms are obtained by combining several new
ideas, one of which is a simple sampling idea used for detecting decompositions of strongly connected
components, with techniques of Even and Shiloach [J. ACM, 28 (1981), pp. 1–4], Italiano [Inform.
Process. Lett., 28 (1988), pp. 5–11], Henzinger and King [Proceedings of the 36th Annual Symposium
on Foundations of Computer Science, Milwaukee, WI, 1995, pp. 664–672], and Frigioni et al. [ACM
J. Exp. Algorithmics, 6 (2001), (electronic)].
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1. Introduction. The problem of maintaining the transitive closure of a dy-
namic directed graph, i.e., a directed graph that undergoes a sequence of edge inser-
tions and deletions, is a well studied and well motivated problem. Demetrescu and
Italiano [5], improving an algorithm of King [15], recently obtained an algorithm for
dynamically maintaining the transitive closure under a sequence of edge insertions
and deletions with an amortized insert/delete time of O(n2), where n is the number
of vertices in the graph. King and Thorup [17] reduced the space requirements of
these algorithms. All these algorithms support extended insert and delete operations
in which an arbitrary set of edges, all touching the same vertex, may be inserted, and
a completely arbitrary set of edges may be deleted, all in one update operation.

When the transitive closure of a graph is explicitly maintained, it is of course
possible to answer every reachability query, after each update, in O(1) time. As
the insertion or deletion of a single edge may change Ω(n2) entries in the transitive
closure matrix, an amortized update time of O(n2), in the worst-case, is essentially
optimal. When the number of queries after each update operation is relatively small,
it is desirable to have a dynamic algorithm with a smaller update time, at the price
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1456 LIAM RODITTY AND URI ZWICK

of a nonconstant query time. Such algorithms can escape the Ω(n2) lower bound on
the amortized update time by implicitly maintaining the transitive closure matrix.

Several dynamic algorithms for answering reachability queries, without explicitly
maintaining the transitive closure, were developed. Most recently, Demetrescu and
Italiano [5, 6] gave such a Monte Carlo algorithm with an amortized update time
of O(n1.58) and worst-case query time of O(n0.58). They exhibit, in fact, a tradeoff
between the update and query times. Smaller query times may be obtained at the
cost of higher update times. However, their algorithm can handle only acyclic graphs,
and can insert or delete only one edge at a time. Furthermore, it relies on fast rect-
angular matrix multiplication and thus may not be very efficient in practice. Earlier,
Henzinger and King [10] gave two Monte Carlo algorithms for answering reachability
queries. The first algorithm has an amortized update time of O(m

√
n log2 n) and a

worst-case query time of O(n/ log n), where m is the number of edges in the graph.
The second one has an amortized update time of O(m0.58n) and a query time of
O(n/ log n).

We present two new fully dynamic reachability algorithms for general graphs
that improve upon the results of Henzinger and King [10]. The first is a deterministic
algorithm that has an amortized update time of O(m

√
n) and a worst-case query time

of O(
√
n). The update time of this algorithm is faster by a polylogarithmic factor

than the update time of the first algorithm of Henzinger and King [10] while the query
time is reduced from O(n/ log n) to O(

√
n). Furthermore, we can obtain a tradeoff

between the update and query times. For every t ≤
√
n, we can get an update time

of O(mn/t) and query time O(t). This algorithm is purely combinatorial and does
not use fast matrix multiplication algorithms.

Our second algorithm is a randomized algorithm with an amortized update time
of O(m0.58n) and worst-case query time of O(m0.43). This improves the query time of
the second algorithm of Henzinger and King [10] from O(n/ log n) to O(m0.43). This
algorithm does use fast matrix multiplication. We again get a tradeoff. For every
t ≤ (m log n)1/ω, we can get an update time of O(mn log n/t) and a query time of
O(t), where ω < 2.376 is the matrix multiplication exponent (see Coppersmith and
Winograd [3]). Note that this is essentially the same tradeoff as that of the first
algorithm. But, when m ≥ nω/2 log n, larger values of t may be chosen, giving lower
update times.

We also obtain a fully dynamic reachability algorithm for acyclic graphs. This
algorithm is deterministic and has a linear amortized update time of O(m) and a
worst-case query time of O(n/ log n). A comparison between our dynamic reachability
algorithms and the previously available ones is given in Table 1.1.

In the time bounds given above for decremental algorithms, m stands for the
initial number of edges in the graph. In time bounds given above for fully dynamic
algorithms, m stands for the maximum number of edges in the graph during the phase
in which the update operation is performed. (Phases will be defined later.)

One of the ingredients used in obtaining the improved fully dynamic reachabil-
ity algorithms is an improved decremental algorithm for maintaining the transitive
closure. A decremental algorithm is an algorithm that can handle deletions but not
insertions. Italiano [14] obtained a decremental algorithm for acyclic graphs that
processes any sequence of deletions in O(mn) time. Slower algorithms for general,
i.e., not necessarily acyclic, graphs were obtained by La Poutré and van Leeuven [19],
Frigioni et al. [8], Demetrescu and Italiano [5], and by Baswana, Hariharan, and Sen
[1]. A summary of previous decremental algorithms for maintaining the transitive
closure, and for answering reachability queries is given in Table 1.2. (All the algo-
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IMPROVED DYNAMIC REACHABILITY ALGORITHMS 1457

Table 1.1

Fully dynamic reachability algorithms.

Graphs Algorithm Query Amortized update time Reference

DAGs Monte Carlo O(1) O(n2) [16]
DAGs Monte Carlo O(n0.58) O(n1.58) [5]

DAGs Deterministic O( n
log n

) O(m) This paper

General Monte Carlo O( n
log n

) O(m
√
n log2 n) [10]

General Monte Carlo O( n
log n

) O(m0.58n) [10]

General Monte Carlo O(1) O(n2.26) [16]
General Deterministic O(1) O(n2 logn) [15]
General Deterministic O(1) O(n2) [5]

General Deterministic O(
√
n) O(m

√
n) This paper

General Monte Carlo O(m0.43) O(m0.58n) This paper

Table 1.2

Decremental reachability algorithms.

Graphs Algorithm Query Total update time Reference

DAGs Deterministic O(1) O(mn) [14]

General Monte Carlo O( n
log n

) O(mn log2 n) [10]

General Deterministic O(1) O(m2) [19, 8]
General Deterministic O(1) O(n3) [5]
General Monte Carlo O(1) Õ(mn4/3) [1]

General Las Vegas O(1) O(mn) This paper

rithms there, except that of Henzinger and King [10], explicitly maintain the transitive
closure matrix.)

We obtain a new randomized decremental algorithm for maintaining the transitive
closure of arbitrary, not necessarily acyclic, graphs. It processes any sequence of edge
deletions in a total expected time of O(mn). The algorithm is a Las Vegas algorithm,
i.e., its answers are always correct. This matches the time bound of Italiano [14]
for acyclic graphs, and answers an open problem raised there. As mentioned in the
abstract, a time bound of O(mn) is essentially optimal for the problem, as Ω(mn)
time is needed just for computing the transitive closure of the initial graph using the
currently best matrix multiplication-free algorithm. The new decremental algorithm
is based on a very simple sampling idea.

Next, we adapt the results of Cohen [2] on estimating the size of the transitive
closure to the dynamic setting. In particular, we obtain an incremental algorithm
that can process any sequence of edge insertions and requests to estimate the number
of vertices reachable from a certain vertex in O(m log n + q) time, where m is the
total number of edges inserted and q is the number of queries. We also obtain such a
decremental algorithm for acyclic graphs. In the fully dynamic setting, we can provide
such estimates at the cost of O(log n) reachability queries.

The rest of this extended abstract is organized as follows. In the next section we
present a new decremental algorithm for maintaining the strongly connected com-
ponents of a directed graph. This algorithm is used in section 3 to obtain the
O(mn) decremental algorithm for maintaining the transitive closure of general di-
rected graphs. In section 4 we then describe three new fully dynamic reachability
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1458 LIAM RODITTY AND URI ZWICK

algorithms for general graphs. (Only two of them were mentioned above.) In sec-
tion 5 we describe a new fully dynamic reachability algorithm for acyclic graphs. In
section 6 we sketch our dynamic size estimation results. We end in section 7 with
some concluding remarks and open problems.

Recent developments. Since the appearance of the preliminary version of this
paper, some additional dynamic algorithms for maintaining the transitive closure and
for answering reachability queries were obtained. None of them, however, supersedes
the results presented in this paper. Roditty [20] obtained another fully dynamic
algorithm, with an amortized update time of O(n2) and a worst-case query time of
O(1), for maintaining the transitive closure matrix of a general graph. Sankowski [24]
obtained a randomized algorithm with a worst-case update time of O(n2) and a worst-
case query time of O(1) for maintaining, with high probability, the transitive closure
matrix. We [22] obtained yet another algorithm for answering reachability queries that
has an amortized update time of O(m + n log n) and a query time of O(n). Finally,
Krommidas and Zaroliagis [18] have implemented some of the algorithms presented
in this paper and they report that they work fairly well in practice.

2. Decremental maintenance of strongly connected components. In this
section we consider the dynamic maintenance of the strongly connected components
(SCCs) of a directed graph under a sequence of edge deletions. This is a seemingly
easier problem than the maintenance of the transitive closure of a graph. In sec-
tion 3, however, we use the results of this section to obtain an improved decremental
algorithm for the maintenance of the transitive closure, and in section 4 we use this
decremental algorithm as a building block in our new fully dynamic reachability al-
gorithms.

The new algorithm is given in Figure 2.1. It handles any sequence of edge deletions
and queries in O(mn+ q) total expected time, where q is the number of queries. Each
query is answered correctly in O(1) worst-case time. The expected amortized time
per edge deletion, if all edges are eventually deleted, is O(n).

The algorithm starts by computing the SCCs of the graph using any linear time
algorithm (see Tarjan [26], Sharir [25], Gabow [9], or Chapter 22 of Cormen et al. [4]).
In each SCC C of the graph it then constructs and maintains a shortest-paths in-tree
In(w) and a shortest-paths out-tree Out(w) rooted at a random representative w of
this SCC. These shortest-paths trees are maintained using the decremental algorithm
of Even and Shiloach [7], as adapted to directed graphs by Henzinger and King [10].
If C is composed of n′ vertices and m′ edges, then the total cost of maintaining these
two shortest-paths trees, over any sequence of edge deletions, is O(m′n′).

The algorithm also maintains an array A of length n that holds for every vertex
v the representative vertex of the SCC containing v. Using this array it is easy to
answer any strong connectivity query in O(1) time.

Edge deletions are handled as follows. If the edge e = (u, v) is not contained in
an SCC, i.e., if A(u) �= A(v), then nothing needs to be updated. If e is contained in
an SCC C with representative vertex w, i.e., A(u) = A(v) = w, and e is not contained
in the trees In(w) and Out(w), then again, the SCCs of the graph do not change and
we need only record that the edge e was deleted.

The difficult case, of course, is when e is contained in one of the trees In(w) or
Out(w). In this case, we use the decremental algorithm to update the shortest-paths
trees In(w) and Out(w). If after this update we have u ∈ In(w) and v ∈ Out(w),
then there is still a directed path from u to v in the graph. Thus C is still an SCC,
and the partition of the graph into SCCs did not change.
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IMPROVED DYNAMIC REACHABILITY ALGORITHMS 1459

init(V ):
1. Allocate an array A of size n.
2. Choose a random vertex w ∈ V .
3. Call findSCC(V,w).

findSCC(C,w):
1. Find the SCCs C1, C2, . . . , Ck of the graph G[C].
2. In each SCC Cj , where 1 ≤ j ≤ k, do:

(a) If w ∈ Cj , then let wj ← w.
Otherwise, choose a random representative wj ∈ Cj .

(b) For every v ∈ Cj , let A(v) ← wj .
(c) Initialize decremental data structures for maintaining a

shortest-paths in-tree In(wj) and a shortest-paths out-tree
Out(wj) of G[Cj ] rooted at wj .

query(u, v):
1. If A(u) = A(v) then “yes,” otherwise “no.”

delete(u, v):
1. If A(u) �= A(v), i.e., u and v are not in the same SCC, do nothing.
2. Otherwise, let w ← A(u), and let C be the vertices of the SCC

containing w.
3. Delete the edge (u, v), if necessary, from the trees In(w) and

Out(w) using the appropriate decremental data structures.
4. If u �∈ In(w) or v �∈ Out(w), i.e., C decomposed, then call

findSCC(C,w).

Fig. 2.1. A randomized decremental algorithm for maintaining strongly connected components.

If u �∈ In(w) or v �∈ Out(w), then clearly C is no longer a SCC. We construct,
in O(m′ + n′) time, the new SCCs C1, C2, . . . , Ck to which C decomposed. Let Ci be
the new SCC containing w. We let wi = w be the representative of Ci. In every other
SCC Cj , for j �= i, we choose a random representative wj ∈ Cj .

By removing from In(w) and Out(w) the vertices that do not belong to Ci, we
obtain shortest-paths trees that span Ci. It is crucial for the analysis of the algorithm
to note that the decremental data structures maintaining these two shortest-paths
trees do not have to be reinitialized.

From each random representative wj , for j �= i, we build from scratch shortest-
paths trees In(wj) and Out(wj) that span Cj , and initialize the data structure of Even
and Shiloach [7] for maintaining them. Finally, we update the array A accordingly.
We now claim the following theorem.

Theorem 2.1. The algorithm of Figure 2.1 correctly handles any sequence of
deletions and strong connectivity queries. Each query is answered in O(1) time. The
expected running time of the algorithm, for any sequence of deletions and queries is
O(mn + q), where q is the number of queries.

Proof. The correctness of the algorithm follows easily from the above discussion.
(Note that the random choices of the representatives affect only the running time,
not the answers given.) It remains, therefore, to show that the expected time spent
in processing all edge deletions is only O(mn).

Let f(m,n) be an upper bound on the expected running time of the algorithm
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1460 LIAM RODITTY AND URI ZWICK

on the worst possible strongly connected graph with m edges and n vertices, and for
the worst sequence of edge deletions. (If the initial graph is not strongly connected,
we repeat the analysis in each strongly connected component.) In the upper bound
f(m,n) we charge m′n′ units of time for the decremental maintenance of the in-tree
and out-tree of an SCC containing, initially, n′ vertices and m′ edges, even if the
actual cost of maintaining these trees is smaller.

We claim that

f(m,n) ≤ mn +

k∑
i=1

(
f(mi, ni) −

min
2
i

n

)
,

for some k ≥ 2 and m1,m2, . . . ,mk ≥ 0, n1, n2, . . . , nk ≥ 1 such that
∑k

i=1 mi ≤ m

and
∑k

i=1 ni = n. Here, k is the number of SCCs to which the graph breaks when it
is no longer strongly connected, and mi and ni, respectively, are the number of edges
and vertices in the ith SCC. (Note that k, the ni’s and the mi’s do not depend on
the random choices made by the algorithm.)

The term mn covers the initialization cost of the algorithm and the cost of all fu-
ture maintenance operations performed on the shortest-paths trees In(w) and Out(w).
When the graph breaks into the k SCCs, the algorithm continues independently on
each one of them. So we clearly have f(m,n) ≤ mn +

∑k
i=1 f(mi, ni).

This naive estimate fails, however, to take advantage of the following fact. The
new component that contains w, the representative of the original component, inher-
its the shortest-paths trees In(w) and Out(w), and does not have to pay for their
construction and maintenance. Furthermore, as w was randomly chosen, the larger
a new component is, the more likely it is to receive this “gift.” The probability that
a new component of ni vertices will contain w is ni/n. Thus, with a probability of
ni/n, the term mini, incorporated into f(mi, ni), can be dispensed with, giving the
desired relation. We now claim the following lemma.

Lemma 2.2. f(m,n) ≤ 2mn.
Proof. The proof is by induction. The basis of the induction is easily established.

Suppose now that the claim holds for any (m′, n′) with m′ < m and n′ < n. We show
that it also holds for (m,n). We have to verify that

mn + 2

k∑
i=1

mini −
k∑

i=1

min
2
i

n
≤ 2mn.

Letting xi = mi/m and yi = ni/n, so that xi, yi ≥ 0,
∑k

i=1 xi ≤ 1, and
∑k

i=1 yi = 1,
we get after a simple manipulation that we have to verify that

2

k∑
i=1

xiyi −
k∑

i=1

xiy
2
i ≤ 1.

We show that in fact

2

k∑
i=1

xiyi −
k∑

i=1

xiy
2
i ≤

k∑
i=1

xi ≤ 1.

This follows as we have

k∑
i=1

xi − 2

k∑
i=1

xiyi +

k∑
i=1

xiy
2
i =

k∑
i=1

xi(1 − yi)
2 ≥ 0.
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This completes the proof of the lemma.
This completes the proof of the theorem.

3. Decremental maintenance of the transitive closure. Our goal in this
section is to prove the following two theorems.

Theorem 3.1. There is a randomized algorithm for maintaining the transitive
closure matrix of a graph that undergoes a sequence of edge deletions whose total
expected running time is O(mn).

Theorem 3.2. There is a deterministic algorithm for maintaining the transitive
closure matrix of a graph that undergoes a sequence of edge deletions whose total
running time is O(mn+del·m), where del is the number of delete operations performed
on the graph. Each delete operation may remove an arbitrary set of edges from the
graph.

The first result is obtained by combining the algorithm for the decremental main-
tenance of the strongly connected components of a graph, described in the previous
section, with an algorithm of Frigioni et al. [8] for the decremental maintenance of the
transitive closure matrix. The second result is obtained by a small modification of the
algorithm of Frigioni et al. For completeness, we sketch the operation of the algorithm
of Frigioni et al. and describe the modifications needed to obtain our results.

Italiano [14] describes a deterministic algorithm, with a total running time of
O(mn), for the decremental maintenance of the transitive closure matrix of an acyclic
directed graph. Frigioni et al. [8] extend Italiano’s algorithm so that it could handle
general, not necessarily acyclic, graphs. Frigioni et al. [8] report that their algorithm
works well in practice, though its worst-case time complexity is O(m2).

We begin with a sketch of the operation of Italiano’s algorithm. The algorithm
maintains, in addition to the transitive closure matrix M , a collection of reachability
trees, one rooted at every vertex of the graph. The tree of a vertex v, denoted by
T (v), contains all the vertices in the current version of the graph that are reachable
from v. Note that M(v, u) = 1 if and only if u ∈ T (v). Every vertex u has two linked
lists Ein(u) and Eout(u) of its incoming and outgoing edges that were not yet deleted.
If u ∈ T (v), then we let p(v, u) be a pointer to the edge (u′, u) in Ein(u) such that u′

is the parent of u in T (v). If u �∈ T (v), then p(v, u) = null.
When an edge (u,w) is deleted from the graph, the algorithm performs the fol-

lowing operations. For every vertex v, it checks whether (u,w) is an edge of the tree
T (v). (This is done by checking whether p(v, w) points to (u,w).) If (u,w) is not an
edge of T (v), then nothing needs to be done. Otherwise, if (u,w) is a tree edge, the
algorithm tentatively sets p(v, w) to point to the next edge (u′, w) in Ein(w), or to
null, if (u,w) is the last edge of Ein(w). Note that if u′ ∈ T (v), then the new edge
(u′, w) reconnects w to T (v). As this condition still needs to be checked, the algo-
rithm sets R(v) ← {w}. If (u,w) is not an edge of T (v), or if (u,w) is the last edge
in Ein(w), it lets R(v) ← φ. The set R(v) is thus the set of vertices with tentative
parent pointers that might or might not connect them to the remaining part of T (v).
After these operations, the edge (u,w) is removed from the graph, i.e., from the lists
Eout(u) and Ein(w).

For every vertex v, the algorithm now needs to check the tentative pointers of the
vertices in R(v). While there is a vertex w ∈ R(v), the algorithm scans the edges of
Ein(w), starting from the edge pointed to by p(v, w), until an edge (u′, w) for which
p(v, u′) �= null is found, or until the list Ein(w) is exhausted. If such an edge is
found, then w is removed from R(v). If the list Ein(w) is exhausted before finding
such an edge, the algorithm sets p(v, w) to null and M(v, w) to 0. It then scans all
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the outgoing edges of w. If (w,w′) is a tree edge, then it adds w′ to R(v).
As shown by Italiano [14], the algorithm sketched previously correctly maintains

the transitive closure of an acyclic graph that undergoes a sequence of edge deletions,
and its total running time is O(mn). To see that the total running time of the
algorithm is indeed O(mn), note that the lists Ein(u) and Eout(u) are examined only
once per reachability tree.

The algorithm of Frigioni et al. [8] maintains the strongly connected components of
the graph, and the skeleton of the graph, i.e., the acyclic graph induced on the strongly
connected components. The skeleton is maintained using Italiano’s algorithm [14].

For each SCC, the algorithm of Frigioni et al. [8] maintains a sparse certificate
composed of an in-tree and an out-tree rooted at an arbitrary vertex. When an edge
from this certificate is deleted, their algorithm may have to spend O(m + n) time
to check whether the SCC decomposed. As this may happen every time an edge is
deleted, the worst case total running time of the algorithm may be Ω(m2).

However, the total running time of the algorithm of Frigioni et al. [8], excluding the
time needed to detect decompositions of SCCs is only O(mn). Thus, combining their
algorithm with our algorithm for maintaining the SCCs yields a decremental algorithm
for maintaining the transitive closure of general graphs with a total expected time of
O(mn), matching the time bound of Italiano [14] for acyclic graphs. This proves
Theorem 3.1.

To provide a proof of Theorem 3.2 we need to sketch the operation of the algorithm
of Frigioni et al. [8] in more detail. The algorithm of Frigioni et al. [8] is similar to
the algorithm of Italiano [14], with SCCs playing the role played by vertices in the
algorithm of Italiano. Some of the details, however, are slightly more involved. A
sketch of (a variant of) the algorithm of Frigioni et al. [8] follows.

Every vertex u has a pointer C(u) to the component containing it. For every com-
ponent C, the algorithm maintains three linked lists Ein(C), Eout(C), and Eint(C) of
the incoming, outgoing, and the internal edges of the component C. An edge (u,w)
belongs to Ein(C) if u �∈ C while w ∈ C, to Eout(C) if u ∈ C while w �∈ C, and to
Eint(C) if u,w ∈ C. For every component C the algorithm maintains a tree T (C)
of all the components reachable from C. If C2 ∈ T (C1), then we let p(C1, C2) be a
pointer to the edge (u′, u) in Ein(C2) such that C(u′) is the parent of C(u) = C2 in
T (C1). If C2 �∈ T (C1), then p(C1, C2) = null.

The algorithm handles the deletion of a set of edges E′ in the following way.
First it lets E′ = E′

int ∪E′
ext, where E′

int are edges that connect two vertices that are
in the same component, while E′

ext are edges that connect vertices in two different
components. The algorithm first removes all the edges of E′

int and then all the edges
of E′

ext.
The first step is the computation of the new SCCs. This can be done determin-

istically in O(m+ n) time by simply recomputing the SCCs from scratch. (To get an
algorithm that satisfies the conditions of Theorem 3.1 we replace this step with the
randomized algorithm of the previous section.) Suppose that a component C breaks
into k new components C1, C2, . . . , Ck. The first step is to split the lists Ein(C),
Eout(C), and Eint(C) into new lists Ein(Ci), Eout(Ci), and Eint(Ci), for 1 ≤ i ≤ k,
and to replace the pointers p(D,C), for every component D by new pointers p(D,Ci).
This step also constructs for each component D a set R(D) of the components that
need to be reconnected, if possible, to T (D). We also initialize new reachability trees
for the new components C1, C2, . . . , Ck.

The incoming edges of C are now split between the new components C1, C2, . . . , Ck.
The splitting of Ein(C) is done as follows. We scan the edges Ein(C) and move each
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edge (u,w), where w ∈ Ci, to the list Ein(Ci). If p(D,C) = (u,w), then we let
p(D,Ci) = (u,w), while p(D,Cj), for each j �= i, is set to the next edge to be added
to Ein(Cj). In the latter case, we also add Cj to R(D), as Cj lost its link to T (D).
(Note that p(D,Cj) now is not the edge connecting Cj to T (D) but rather the first
edge that should be checked.) The list Eout(C) is split in a similar manner. Finally,
each edge (u,w) ∈ Eint(C) with u ∈ Ci and w ∈ Cj is moved into Eint(Ci), if i = j,
and to Eout(Ci) and Ein(Cj), otherwise. It is important to note that the edges of
Eint(C) are placed at the end of the lists Eout(Ci) and Ein(Cj). We can now remove
the edges of E′

int from the graph.
We now deal with the deletion of the edges of E′

ext. Suppose that (u,w) ∈ E′
ext.

If p(D,C) = (u,w), we move p(D,C) to point to the next edge in Ein(C), or to null
if there is no such edge, and add C to R(D).

Finally, we try to repair the trees. For every component D, while R(D) is not
empty, we choose C ∈ R(D) and scan the edges of Ein(C), starting from p(D,C),
until an edge (u,w) for which p(D,C(u)) �= null is found. If such an edge is found,
we let p(D,C) point to this edge and remove C from R(D). Otherwise, we find all
the components C ′ for which p(D,C ′) = (w, v) with w ∈ C and add them to R(D).

This completes the sketch of (a variant of the) algorithm of Frigioni et al. [8].
Frigioni et al. [8] show that the algorithm correctly maintains the transitive closure
matrix of the graph. It is easy to check that the worst case total running time of the
algorithm is indeed O(mn + del · m), where del is the number of delete operations
performed. This completes the proof of Theorem 3.2.

4. Fully dynamic reachability algorithms.

4.1. The first fully dynamic algorithm. Our first fully dynamic reachability
algorithm is given in Figure 4.1. It is essentially a combination of an algorithm of
Henzinger and King [10] with our improved decremental reachability algorithm, or
with the somewhat slower, but deterministic algorithm of Frigioni et al. [8] described
in the previous section.

The algorithm works in phases. In the beginning of each phase, a decremental
reachability data structure is initialized. We let S be the set of vertices that were
centers of insertions during the phase. Initially S = φ. When a set of edges Ev,
all touching v, is inserted, we add v to S and construct reachability trees In(v) and
Out(v) rooted at v. When the size of S, the set of insertion centers, reaches t, a
parameter fixed in advance, the phase is declared over, and all the data structures are
reinitialized.

The deletion of an arbitrary set E′ of edges is handled as follows. First, the edges
of E′ are removed from the decremental data structure. Next, for every w ∈ S, the
shortest-paths trees In(w) and Out(w) are rebuilt from scratch.

A query query(u, v) is answered as follows. First the decremental data structure
is queried to see whether there is a directed path from u to v composed solely of edges
that were present in the graph at the start of the current phase. If not, it is checked
whether there exists w ∈ S such that u ∈ In(w) and v ∈ Out(w). If such a vertex w
exists, then the answer is “yes.”

It is easy to check that the answer given for each query is always correct. Clearly,
if query(u, v) returns “yes,” then there is indeed a path from u to v in the graph.
Suppose now that there is a path p from u to v in the graph. If this path uses only “old”
edges, i.e., edges that were not inserted in the current phase, then the decremental
data structure would signal that out. Otherwise, let w be the last vertex on a path
from u to v that was the center of an insert operation during the current phase. This
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init:
1. Initialize a decremental reachability data structure.
2. Let S ← φ.

query(u, v):
1. Query the decremental reachability data structure.
2. For each w ∈ S check if u ∈ In(w) and v ∈ Out(w).

delete(E′):
1. Let E ← E − E′.
2. Delete E′ from the decremental data structure.
3. For every w ∈ S, rebuild the trees In(w) and Out(w).

insert(Ev):
1. Let E ← E ∪ Ev.
2. Let S ← S ∪ {v}.
3. If |S| > t, then call init.
4. Otherwise, construct the trees In(v) and Out(v).

Fig. 4.1. The first fully dynamic reachability algorithm for general graphs.

insert operation added w to S and constructed the trees In(w) and Out(w). At the
time of this insertion all the edges of the path p were already present in the graph,
so u ∈ In(w) and v ∈ Out(w). Some edges from these trees may be subsequently
deleted, but as the path p remains in the graph, the vertex u would stay in In(w),
and similarly v would stay in Out(w). This completes the proof of correctness. We
claim the following theorem.

Theorem 4.1. For any t ≤
√
n, the algorithm of Figure 4.1 handles each insert

or delete operation in O(mn/t) amortized time, and answers each query correctly in
O(t) worst-case time. In particular, when t =

√
n, the amortized update time is

O(m
√
n), and the worst-case query time is O(

√
n).

Proof. Assume, at first, that our decremental reachability algorithm is used. The
expected complexity of setting up the decremental data structure in the beginning of
each phase, and of handling all subsequent delete operations on it, is only O(mn). As
each phase, except possibly the last phase, is composed of at least t update operations,
we can cover this cost by charging O(mn/t) of these operations to each update.

Each delete operation involves the recomputation of up to 2t trees. This is easily
done in O(mt) time. An insert operation is even cheaper as only two trees need to be
constructed.

The total expected amortized cost per insert or delete operation is therefore
O(mn/t + mt). When t ≤

√
n, the first term dominates the second and the ex-

pected cost per operation is O(mn/t), assuming that at least t update operations are
performed. The query time is clearly O(t).

As presented, the algorithm is randomized (Las Vegas). We can get a determin-
istic version of the algorithm, with the same time bounds, by using the variant of the
decremental algorithm of Frigioni et al. [8] described in section 3.

4.2. The second fully dynamic algorithm. Our second fully dynamic reach-
ability algorithm is given in Figure 4.2. It is essentially a combination of a second
algorithm of Henzinger and King [10] with our decremental reachability algorithm, or
with the algorithm of Frigioni et al. [8].
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init:
1. Initialize a decremental reachability data structure.
2. Let S be a random set of t vertices.
3. For every w ∈ S, construct shortest-paths trees In(w) and Out(w)

of depth at most (cn lnn)/t, and initialize decremental data struc-
ture for them.

4. Call build(S).

build(S):
1. Construct Boolean matrices A1, A2, and B of sizes n×|S|, |S|×n,

and |S| × |S|:
(a) A1(u,w) = 1 iff u ∈ In(w), for every u ∈ V and w ∈ S.
(b) A2(w, v) = 1 iff v ∈ Out(w), for every w ∈ S and v ∈ V .
(c) B(w1, w2) = 1 iff w1 ∈ In(w2), for every w1, w2 ∈ S.

2. Compute B∗, the transitive closure of B, and A∗
1 = A1B

∗.

query(u, v):
1. Query the decremental data-structure.
2. Check whether there exists w ∈ S such that A∗

1(u,w) = A2(w, v) =
1.

delete(E′):
1. E ← E − E′.
2. Delete E′ from the decremental data structure.
3. For every w ∈ S, update the shortest-paths trees In(w) and Out(w)

of depth at most (cn lnn)/t using the decremental algorithm for
maintaining shortest-paths trees.

4. Call build(S).

insert(Ev):
1. E ∪ E ∪ Ev.
2. Let S ← S ∪ {v}.
3. If |S| > 2t, then call init.
4. Otherwise, construct shortest-paths trees In(v), Out(v) of depth

at most (cn lnn)/t, and initialize a data structure for maintaining
them under a sequence of edge deletions.

5. Call build(S).

Fig. 4.2. The second fully dynamic reachability algorithm for general graphs.

The algorithm again works in phases. In the beginning of each phase, a decre-
mental reachability data structure is again initialized. The algorithm again maintains
a set S of special vertices. For each vertex w ∈ S, the algorithm maintains an in-tree
In(w) and an out-tree Out(w). These trees are shortest-paths trees that contain all
vertices that are at distance at most (cn lnn)/t from w, where c is some fixed con-
stant. (For concreteness, we choose c = 10.) These trees are maintained using the
algorithm of Even and Shiloach [7]. In the beginning of each phase, t random vertices
are placed in S.

The algorithm also maintains two Boolean matrices, A∗
1 of size n × |S|, and A2

of size |S| × n. The columns of A∗
1 and the rows of A2 are indexed by the elements

of S. For every u ∈ V and w ∈ S, we have A∗
1(u,w) = 1 if and only if there is a path
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1466 LIAM RODITTY AND URI ZWICK

(of arbitrary length) in the graph from u to w, and A2(w, u) = 1 if and only if there
is a path of length at most (cn lnn)/t from w to u.

When a set of edges Ev touching v is inserted, we add v to the set S of special ver-
tices and construct shortest-paths trees In(v) and Out(v) of depth at most (cn lnn)/t
rooted at v. When the size of the set S reaches 2t, a parameter fixed in advance, the
phase is over, and all data structures are reinitialized.

The deletion of an arbitrary set E′ of edges is handled as follows. First the edges
of E′ are removed from the decremental data structure. Next, for every w ∈ S, the
shortest-paths trees In(w) and Out(w) are updated using the algorithm of Even and
Shiloach [7].

A query query(u, v) is answered as follows. First the decremental data structure
is queried to see whether there is a directed path from u to v composed solely of
“old” edges. If not, it is checked whether there exists w ∈ S such that A∗

1(u,w) =
A2(w, v) = 1. The correctness of the algorithm relies on the following observation of
Ullman and Yannakakis [27].

Lemma 4.2. Let G = (V,E) be a directed graph on n vertices. Let S be a set of
(cn lnn)/t random vertices. Then, with a probability of at least 1−n−(c−3), for every
two vertices u, v ∈ V , if there is a path from u to v in G, then there is also such a
path that among any t consecutive vertices on it there is a vertex from S.

As stated, the lemma applies to a fixed graph. However, it is easy to adapt it to
our dynamic setting.

Corollary 4.3. Let G1, G2, . . . , G� be directed graphs on the same set of n
vertices. Let S be a set of (cn lnn)/t random vertices. Then, with a probability of at
least 1 − �n−(c−3), for every 1 ≤ i ≤ � and every u, v ∈ V , if there is a path from u
to v in Gi, then there is also such a path in Gi that among any t consecutive vertices
on it there is a vertex from S.

The random set S may be chosen, of course, without knowing the sequence of
graphs. We note in passing that similar ideas are also used by Zwick [28] and King [15].

Theorem 4.4. For any t ≤ (m log n)1/ω, the algorithm of Figure 4.1 handles
each insert or delete operation in O(mn log n/t) amortized time and answers each
query correctly, with very high probability, in O(t) worst-case time. In particular,
when t = (m log n)1/ω, the expected amortized update time is O((m log n)1−1/ωn),
and the worst-case query time is O((m log n)1/ω).

Proof. The correctness of the algorithm follows easily from Corollary 4.3. As
with the previous algorithm, the O(mn) complexity of setting up and maintaining
the decremental data structure is split among the at least t updates operations of a
phase.

In the beginning of each phase, the algorithm also sets up 2t shortest-paths trees
of depth at most (cn lnn)/t. The cost of setting up and maintaining these trees
throughout the phase, using the algorithm of Even and Shiloach [7], is O(2t · m ·
cn lnn

t ) = O(mn log n). This cost is again split among the update operations of the
phase.

Each delete operation updates the decremental data structure and the shortest-
paths trees. These operations are already accounted for. It also involves the call
build(S). As |S| ≤ 2t, the complexity of this procedure is O(nt · tω) = O(ntω−1),
where ω < 2.376 is the exponent of matrix multiplication.

Each insert operation constructs two new shortest-paths trees of depth at most
(cn lnn)/t. The total cost of maintaining these trees throughout the phase, using the
algorithm of Even and Shiloach [7] is O(mn log n/t). The cost of calling build(S) is
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init:
1. Initialize a decremental reachability data structure.
2. Let S be a random set of t vertices.
3. For every w ∈ S, construct shortest-paths trees In(w) and Out(w) of

depth at most (cn lnn)/t, and initialize decremental data structures
for maintaining them.

4. Construct a directed graph H = (S, F ), where F = {(w1, w2) ∈ S2 |
w1 ∈ In(w2)}.

5. Initialize a fully dynamic algorithm for maintaining the transitive
closure B∗ of H.

query(u, v):
1. Query the decremental data-structure.
2. Check whether there exist w1, w2 ∈ S such that u ∈ In(w1),

B∗(w1, w2) = 1, and v ∈ Out(w2).

delete(E′):
1. E ∪ E − E′.
2. Delete E′ from the decremental data structure.
3. For every w ∈ S, update the shortest-paths trees In(w) and Out(w)

of depth at most (cn lnn)/t using the decremental algorithm.
4. Update the transitive closure B∗ of the graph H after the removal

of edges from F .

insert(Ev):
1. E ∪ E ∪ Ev.
2. Let S ← S ∪ {v}.
3. If |S| > 2t, then call init.
4. Otherwise, construct shortest-paths trees In(v) and Out(v) of depth

at most (cn lnn)/t and initialize decremental data structures for
maintaining them.

5. Update the transitive closure B∗ of the graph H after the addition
of v to it.

Fig. 4.3. A third fully dynamic reachability algorithm for general graphs.

again O(ntω−1).

Thus, the total amortized cost per each update operation is O(mn logn
t + ntω−1).

When t ≤ (m log n)1/ω, the first term is the dominant term, and the expected amor-
tized time per update is O((mn log n)/t). Each query is clearly answered in O(t)
worst-case time.

We note in passing that the tradeoff of an amortized update time of O((mn log n)/t)
and query time of O(t) can be extended to values of t that are slightly larger than
(m log n)1/ω using the fast rectangular matrix multiplication algorithms of Huang and
Pan [13].

4.3. A third fully dynamic reachability algorithm. Our third fully dy-
namic reachability algorithm for general graphs is given in Figure 4.3. It is somewhat
similar to our second algorithm. However, it does not maintain the matrices A∗

1 and
A2, and it uses a fully dynamic algorithm, e.g., the algorithm of Demetrescu and
Italiano [5], to maintain the matrix B∗. We now claim the following theorem.
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Theorem 4.5. For any 1 ≤ t ≤
√
m, the algorithm of Figure 4.3 handles each

insert or delete operation in O(mn log n/t) amortized time and answers each query
correctly, with very high probability, in O(t2) worst-case time. In particular, when
t = m(1−ε)/2, the amortized update time is O(m(1+ε)/2n log n), and the worst-case
query time is O(m1−ε).

Proof. The correctness proof of the algorithm is identical to the correctness proof
of the second fully dynamic algorithm. The cost of initializing a phase is O(mn log n+
t3). The cost of an insert operation is O(mn log n/t + t2). (The first term is the cost
of constructing and maintaining the trees In(v) and Out(v). The second term is the
cost of updating of the matrix B∗ using the fully dynamic algorithm for maintaining
the transitive closure.) The added cost of a delete operation is only O(t2), the cost of
updating B∗. Thus, the amortized cost of each update operation is O(mn log n/t+t2).
As t ≤

√
m, the first term is always dominant. The query time is clearly O(t2).

5. A very simple fully dynamic reachability algorithm for acyclic
graphs. A very simple fully dynamic reachability algorithm for acyclic graphs is
presented in Figure 5.1. The algorithm is based on the main idea of King [15]. The
acyclicity assumption allows us to greatly simplify the algorithm, and to obtain the
first fully dynamic reachability algorithm, for acyclic graphs, with a linear, i.e., O(m),
amortized update time. The query time of the algorithm, O(n/ log n), is quite large.
However, it is still much faster than the Ω(m) time that may be needed to answer
such a query without a dynamic data structure.

init(V ):
• For every v ∈ V construct reachability trees In(v) and Out(v) and

initialize appropriate decremental data structures for them.

query(u, v):
• For every w ∈ V , check whether u ∈ In(w) and v ∈ Out(w).

delete(E′):
• Delete E′ from all reachability trees and update each one of

them using the decremental single-source reachability algorithm
for DAGs.

insert(Ev):
• Call init({v}).

Fig. 5.1. A very simple dynamic reachability algorithm for acyclic graphs.

Italiano [14] showed that, in acyclic graphs, a forest of reachability trees, one
rooted at each vertex, can be decrementaly maintained in O(mn) total time. His
result is, in fact, stronger. Each of these trees can be individually maintained in
O(m) total time. Our algorithm exploits this fact.

Theorem 5.1. The algorithm of Figure 5.1 handles each insert operation, which
keeps the graph acyclic, in O(m) worst-case time, each delete operation in O(1) amor-
tized time, and answers every reachability query correctly in O(n/ log n) worst-case
time.

Proof. The algorithm starts by constructing a forest of in-trees and a forest of
out-trees. Each of these trees is individually maintained using the data structure
of Italiano [14]. When a set E′ of edges is deleted, we simply update each of these
trees individually. To insert a set Ev of edges, we simply rebuild the trees In(v)
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and Out(v). The cost of building these two trees, and of maintaining them through
all future delete operations, is only O(m). Thus, the cost of all delete operations is
covered by either the initialization cost, of O(mn), or by preceding insert operations.

A query query(u, v) is answered by checking whether there is a w ∈ V such that
u ∈ In(w) and v ∈ Out(w). If there is a path p from u to v, then this condition holds
when w is the last vertex on the path that was the center of an insert operation, or by
u and v themselves, if no such insertions took place. As described, each query would
require O(n) time.

However, it is easy to reduce the query time to O(n/ log n). The algorithm essen-
tially maintains two n × n Boolean matrices A and B such that A(u,w) = 1 if and
only if u ∈ In(w), and B(w, v) = 1 if and only if v ∈ Out(w). We can pack each
row of A and B into n/ log n machine words, and each query would then require only
O(n/ log n) time.

6. Dynamic estimation of the size of reachability sets. Cohen [2] presents
an O(m) time randomized algorithm that estimates, for every vertex of a given di-
rected graph, the number of vertices that are reachable from that vertex. We discuss
here adaptations of her ideas to the dynamic setting.

One of the variants of the algorithm of Cohen [2] works roughly as follows. It
chooses a random permutation on the vertices of the graph and labels the vertices
according to it. For every vertex v, it then finds the smallest label s(v) assigned to a
vertex reachable from v. In the static setting, this can be easily done in O(m) time.
Then, n/s(v) is a reasonable estimate to the number of vertices reachable from v.
To obtain higher accuracy and higher confidence, this experiment is repeated several
times and the results are combined in several possible ways. See Cohen [2] for exact
details.

Here we make the simple observation that a request to estimate the size of a
reachability set can be reduced to O(log n) reachability queries. This is done as follows.
Let ε > 0. Add k = log1+ε n new vertices u1, u2, . . . uk to the graph. For every 1 ≤
i ≤ k, add an edge (v, ui) for every vertex v ∈ V whose label is in [(1+ ε)i−1, (1+ ε)i].
Now, for every v ∈ V , the queries query(v, ui), for 1 ≤ i ≤ k, allow us to estimate
s(v) with a relative error of ε, which is good enough for our purposes. Furthermore,
these queries involve only k = O(log n) destinations. This can be exploited, especially
in the semidynamic setting, to obtain more efficient algorithms as there is only a
logarithmic number of trees to which we save reachability information. The cost of
maintaining a reachability tree while edges are added to the graph is O(m). Thus,
this leads to an incremental algorithm whose total running time is O(m log n + q).
The cost of maintaining a reachability tree while edges are removed from a directed
acyclic graph is O(m); thus, this leads to a decremental algorithm whose total running
time is O(m log n + q) in directed acyclic graphs.

7. Concluding remarks and open problems. We presented an essentially
optimal decremental algorithm for maintaining the transitive closure of a general
graph. We also presented several improved fully dynamic algorithms for the reacha-
bility problem. There is still a huge gap, however, between the results obtained here,
and elsewhere, for directed graphs, and the polylogarithmic results available for undi-
rected graphs (see Henzinger and King [11] and Holm, de Lichtenberg, and Thorup
[12]).

Many open problems still remain. Among them are the following.
1. Is there a decremental algorithm for maintaining the strongly connected com-

ponents of a directed graph whose total running time is O(mn)?
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2. Is there a decremental algorithm for maintaining a reachability tree, from a
single source in a general directed graph whose total running time is O(mn)?
(Note that the decremental maintenance of a single-source shortest paths tree
seems to be a harder task than just maintaining a reachability tree. See [23].)

3. Is there a deterministic decremental algorithm for maintaining the transitive
closure of a general directed graph whose total running time is O(mn)?
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