
Fully Dynamic Algorithms for Maintaining All-Pairs Shortest Paths and Transitive
Closure in Digraphs

Valerie King
Department of Computer Science

University of Victoria
P.O. Box 3055

Victoria, BC, Canada
V8W 3P6

email: val@csr.uvic.ca �

Abstract

This paper presents the first fully dynamic algorithms for
maintaining all-pairs shortest paths in digraphs with posi-
tive integer weights less than b. For approximate shortest
paths with an error factor of (2 + �), for any positive con-
stant �, the amortized update time isO(n2 log2 n= log logn);
for an error factor of (1 + �) the amortized update time is
O(n2 log3(bn)=�2). For exact shortest paths the amortized
update time is O(n2:5

p
b logn). Query time for exact and

approximate shortest distances is O(1); exact and approx-
imate paths can be generated in time proportional to their
lengths.

Also presented is a fully dynamic transitive closure al-
gorithm with update time O(n2 logn) and query time O(1).
The previously known fully dynamic transitive closure algo-
rithm with fast query time has one-sided error and update
time O(n2:28).

The algorithms use simple data structures, and are de-
terministic.

1. The problem

A fully dynamic graph algorithm is a data structure for a
graph which implements an on-line sequence of update op-
erations that insert and delete edges in the graph and answers
queries about a given property of the graph. A dynamic al-
gorithm should process queries quickly and must perform
update operations faster than computing from scratch (as
performed by the fastest “static” algorithm).

We give fully dynamic algorithms for the following prob-
lems on directed graphs: transitive closure, and approxi-

�This work was done while the author was visiting U.C. Berkeley and
ICSI in Berkeley.

mate and exact all-pairs shortest paths, on graphs with edge
weights which are positive integers bounded by b. Another
consequence of our work is an all-pairs shortest path algo-
rithm for edge deletions only.

Our data structures implements the following update op-
erations:

� insert(Ev): inserts a set of edges incident to the same
vertex v.

� delete(E0): deletes any arbitrary subset E0 of edges
currently in the graph.

For transitive closure, the query operation is of the form:

� (A) Is there a path from u to w in the current graph?

For all-pairs shortest paths, the queries are of the form:

� (A) What is the shortest distance from u to w?

� (B) Generate a shortest path from u to w.

For approximate all-pairs shortest paths, the queries are
of the form:

� (A) What is an upper bound on the shortest distance
from u to w which is within a factor of (1 + �) of the
shortest distance?

� (B) Generate a path from u to w whose distance is
within a factor of (1 + �) of the shortest distance.

Let n be the number of vertices in the graph andm be the
number of edges initially in the graph. All update times are
amortized over a worst case sequence of operations of length
Ω(m=n). All query times are proportional to the length of
the output; in particular, type (A) queries run in O(1) time.
All algorithms are deterministic.



For transitive closure, the amortized update time is
O(n2 logn) per update. The only previously known fully
dynamic transitive closure algorithm [10] with fast query
time is randomized with one-sided error and has update
time O(n2+!�2

!�1 ) where ! is the usual exponent of matrix
multiplication. If the method of Coppersmith and Winograd
[3] is used, this is O(n2:28).

For exact all-pairs shortest paths, the amortized update
time is O(n2:5

p
b logn). There are no previously known

fully dynamic algorithms for general graphs. The fastest
static algorithm [15] for exact distances in a directed graph
runs in time O(b:681n2+�) where � satisfies the equation
!(1; �; 1) = 1 + 2� and !(1; �; 1) is the exponent of the
multiplication of an n � n� matrix by an n� � n matrix.
The smallest value known is � = :575, if the method of [3]
is used.

The approximate all-pairs shortest paths algorithms
maintain paths whose distances are bounded above by
the product of the error factor and the actual shortest
distance. The amortized update time in graphs with
unweighted edges and error factor 2 + � for any pos-
itive � is O(n2 log2 n= log logn). For weighted edges
and error factor 1 + �, the amortized update time is
O(n2 log3(bn)=�2). The fastest static algorithm for approx-
imate all-pairs shortest paths with error factor 1 + � has
running time Õ((n!=�) log(b=�)).

For all-pairs shortest paths with edge deletions only, the
total cost is O(mn2b), or O(n2b) per deletion if there are
Ω(m) deletions.

1.1. The techniques: an overview

In Section 2, we first show that a single-source shortest
path tree up to distance d can be maintained during a se-
quence of any number of edge deletions in time O(md), in
a graph with positive integer edge weights.

For the exact all-pairs shortest path algorithm with edge
deletions only, we simply maintain a forest of n single-
source shortest path trees of depth nb.

We then show how to maintain exact all-pairs shortest
paths with insertions and deletions for distance up to d. For
each vertex v, we maintain a single-source shortest path tree
of depth d of vertices which reach v (Inv) and another tree
of vertices which are reached by v (Outv). We call this
a “forest of In and Out trees of depth d”. For each pair
of vertices u;w, we keep a count, count(u;w; j), of the
number of Inv and Outv such that there is a path from u
to v to w of length j. For each operation insert(Ev) we
rebuild Inv and Outv.

In Section 3, we show how to maintain the transitive
closure. We keep a hierarchy of lgn forests of In and Out
trees of depth 2, where the edges used to construct a forest
on one level depend on the paths in the forest of the previ-

ous level. In Section 4, we maintain approximate all-pairs
shortest paths by keeping a hierarchy of O(logn= log logn)
forests of In and Out trees of depth lgn or more depending
on the error factor.

We maintain exact shortest paths in Section 4, by main-
taining one forest of In and Out trees of depth

p
nb. After

each update, we stitch the paths in these trees together to
generate the shortest paths.

1.2. Related Work

In 1981, Even and Shiloach showed how to maintain a
breadthfirst search tree, which could process any number of
deletions in time O(mn) for m the number of edges, and
n the number of vertices. In 1995, Henzinger and King
[7] recognized that this data structure could be adapted to
directed graphs, to maintain reachability from a single ver-
tex for distances (for unweighted edges) of up to d, for
any number of edge deletions, in time O(md). They use a
forest of such data structures as part of a fully dynamic
transitive closure algorithm with amortized update time
Õ(nm!�1=!) = Õ(nm0:58) for ! = 2:38. Like our exact
shortest paths algorithm, that algorithm involves stitching
together short paths, but uses fast matrix mulitplication to
do so. It is randomized, with one-sided error, and has a slow
query time of O(n= logn).

In 1999, King and Sagert designed a dynamic transitive
closure algorithm with O(1) query time, and also one-sided
error. They maintain a count of the number of distinct
paths for each pair of vertices, modular a random prime,
for acyclic graphs. Non-acyclic graphs are reduced to the
acyclic case. The cost per update is O(n2�) where � =
minfmax size of a strongly connected component; n:28g.
An advantage of this algorithm is that if the size of the
strongly connected component is no greater than n:28, then
its worst case update time matches its amortized update
time. Using the techniques of King and Sagert, Kapron and
King have devised an exact shortest path algorithm for un-
weighted graphs for distances up to d which has worst case
update time of O(n22d).

Here, we incorporate the King-Sagert idea of keeping a
count with the forest data structure of Henzinger-King.

The best amortized update times for partially dynamic
problems are as follows: for maintaining transitive closure
with insertions, O(n)[8; 11]; with deletions, O(m) [11];
with deletions in acyclic graphs, O(n) [9]; for maintaining
shortest paths with insertions and positive integer weights
no greater than b, O(nb logn) [1].

Klein et.al. give a fully dynamic algorithm for the all-
pairs shortest path problem on planar graphs. If the sum of
the absolute values of the edge-lengths is D then the time
per operation is O(n9=7 lognD).

G. Ramalingham and T. Reps consider the problem of



maintaining shortest paths in a different model of complex-
ity in which running time is given in terms of a parameter
different from input size [12, 14]. Their algorithm for main-
taining a single source shortest path is similar to ours for the
short distances, deletions-only case. It has been experimen-
tally analyzed by D. Frigioni et. al. [4].

Lower bounds for dynamic transitive closure and shortest
paths problems have been considered by several researchers,
but in general, the models assumed are too restrictive to
imply a lower bound for our algorithms. See [14] for a
discussion of these works. The only relevant lower bound is
the Ω(logn= log logn) bound for dynamic connectivity for
undirected graphs in the cell probe model by Henzinger and
Fredman [6].

1.3. Applications

In a 1990 survey of the application of graph algorithms
to data bases, Yannakakis discusses the application of par-
tially dynamic transitive closure to problems in data bases.
The “regular path problem” in data bases corresponds to
computing transitive closure in a directed graph where each
relation in the data base corresponds to k sets of k edges
with a common endpoint in a directed graph. Here, k is
the number of states of a finite automaton for a regular
language. With the new fully dynamic transitive closure
algorithm presented here, each new relation can be inserted
in O(k(nk)2 log(kn)) time. Each deletion of a relation can
be accomplished inO((nk)2 log(kn)) time. See also [2]. In
[5], the question of maintaining distances between objects
in a very large data base is posed.

Reps and others have investigated the application of dy-
namic shortest paths and transitive closure algorithms to data
flow analysis and compilers. See [13].

2. Exact all-pairs shortest paths for small dis-
tances

2.1. Single-source shortest path trees of depth d–
deletions-only

In this section, we give a deletions-only algorithm for
maintaining a single-source shortest path tree from a vertex
s of depth up to d, in a graph whose edges weights are
positive integers.

When a tree edge (u; v) is deleted, the algorithm mimics
Dijkstra’s single source shortest path algorithm to reinsert
the vertices in the subtree rooted at v. That is, a vertex v
is added to the shortest path tree when its distance to s is
minimal among the vertices not in the tree. The goal is to
spend no more time than that proportional to 1 + the sum
of the degrees of those vertices whose distance from s have
been changed by the deletion.

We call a vertex is changed if we’ve determined that the
distance from s to w has increased. A vertex is settled if it is
joined to the source by tree edges. A vertex is uncertain if it
has been examined but it is not yet determined if its distance
from s has changed.

For each vertex w, for distances no greater than d, l(w)
denotes the distance of w from s before the deletion, until
l(w) is revised, in which case it is revised to the distance of
w from s after the deletion. If the distance is greater than d,
then l(w) =1.

Each vertex w maintains a set predlist(w) containing
all vertices z which are either settled or uncertain and such
that (w; z) 2 E and (w; z) is not a tree edge. For each w,
we maintain d(w) = minz2predlist(w) l(z) + weight(z; w)
and let minpred(w) be a vertex z which minimizes the
expression.

The data structure is initialized by computing a shortest
path tree and forming predlist(w) for each vertex w.

When a tree edge (u; v) is deleted from the graph, (u; v)
is removed from the shortest path tree. Vertex v becomes
uncertain. All other vertices in v’s subtree are unexamined
and not in the tree.

If any vertex w is uncertain, w is stored in a heap H
with key(w) = l(w), the old distance of w from s. If w
is changed and unsettled, then w is also stored in H with
key(w) = d(w). H is empty between runs of Delete.

If key(w) is minimal over all keys stored in H and w is
uncertain, the algorithm decides if w has changed, based on
whether d(w) = key(w) (i.e. l(w)). If w is not changed,
it can be settled. When w is settled, all its descendants
(which are unexamined) are automatically reinserted into
the tree. (The edges between them are intact.) If d(w) 6=
key(w) then w is changed, and is unsettled. If key(w) is
minimal over all keys in H and w is changed, this means
that key(w) = d(w) and w can be settled.

Delete(u; v)
Make uncertain(v);
Repeat until H is empty.
w  delete min(H)
if key(w) > d then for all w in H , l(w) 1; STOP.
if uncertain(w) then do

if key(w) = d(w) then Settle(w);
else do

Make changed(w);
for each tree edge (w; z) do

remove (w; z) from tree;
Make uncertain(z);

else Settle(w).

Make changed(w)
For each nontree edge (w; z) 2 E, remove w from predlist(z).
Add w to H with key(w) d(w).



uncertain(w) false

Settle(w)
Add edge (minpred(w); w) to tree.
Remove minpred(w) from predlist(w).
If not(uncertain(w)) then do

for all (w; z), insert w into predlist(z).
l(w) d(w).

Make uncertain(z)
uncertain(z) true; add z to H with key(z) = l(z).

Proof of correctness: The proof follows that of Dijkstra’s
algorithm, with some minor differences. We note that the
only vertices that need to be examined are v and those
vertices in v’s subtree which have an ancestor which has
changed. We also note that to follow Dijkstra’s algorithm,
we wish to choose the settled vertex in predlist(w) which
minimizes d(w). But the vertices in predlist are not neces-
sarily settled; they may be uncertain or unexamined. Hence
one needs to argue that the minimality of key(w) when
w  delete min(H) implies that minpred(w) is settled.
We leave the details to the reader.

Analysis: Each predlist and H may be implemented as
a heap of up to d keys, one for each distance represented
in the list. Hence, Make certain runs in time O(log d),
Settle(w) runs in O(log d) if w is uncertain, and O(log d �
degree of w) if w is changed. Make changed runs in time
O(log d � degree of w).

The cost of running Delete is thenO(logd) if no distances
change (but the total number of edges stored is reduced by
1), or O(degree(w) log d) for each w such that l(w) is
increased. Thus the worst case time for the deletion of
a single edge is no more than O(

P
v degree(v) log d) or

O(m log d).
Over a sequence of deletions, l(w) can increase no more

than d times, for a total charge of O(d�degree(w) log d) or
(dm log d) for all vertices. Also no more than O(m log d)
is incurred by those deletions where no distances change.
This gives a total cost of O(md log d).

2.1.1 A faster implementation

We eliminate the use of heaps and save a factor of log d,
in the amortized time. We sketch that variation here. Each
predlist(w) is represented by an array such that for i =
1; :::; d, predlist(w)[i] is the set of all settled and uncertain
vertices z such that l(z) + weight(z; w) = i. The heap
H is replaced by the set of all changed, unsettled vertices
plus an array H 0 such that for i = 1; :::; d, H 0[i] is a set
of uncertain vertices w with l(w) = i. Note that in the

algorithm, the sequence of minimum keys extracted from
the heap is nondecreasing. We keep a pointer L to the next
possible value for the minimum key. When Delete(u; v) is
run, L is initially set to l(v).

For each value of L, each changed and unsettled vertex
w is examined to see if it can be settled or not, determined
by whether predlist(w)[L] is nonempty or not. After these
vertices are examined, the uncertain verticesw0with l(w0) =
L are then either settled or become changed and unsettled.
While L � d and there remain unsettled vertices, L is
incremented and the process is repeated.

Analysis of faster implementation This implementation re-
duces the costs of Make certain, Settle, and Make changed
by a factor of log d. If no distances from the source are
changed, the cost of Delete is O(1).

If there is at least one vertex whose distance from the
source s has changed, then there are two costs to consider:
the cost charged to each changed vertex and the cost of
incrementingL. L is incremented until all uncertain vertices
are settled, up to d � 1 times. This introduces an extra
additive cost of O(d) for each run of Delete. The total cost
of these increments is O(md) since there are no more than
m deletions.

Since each changed vertex is examined each time L is
incremented until the vertex is settled, the cost charged to
each changed vertex w in this implementation is is O(∆w +
degree(w)) where ∆w = change in distance of w from s.
Hence the worst case cost per operation becomesO(nd+m).
However the total cost over all deletions remains O(md)
since the cost per vertex w is maximized when its distance
increases by only one each time it is increased, for a maxi-
mum cost of O(d � degree(w)). Thus the total cost over all
deletions is O(

P
w(degree(w) � d)) = O(md).

In later sections, we will assume that the faster imple-
mentation is used. Its only drawbacks are its worst case
performance and extra costs incurred for the operation of
increasing an edge weight, described below.

2.1.2 Handling edge weight increases

It is not hard to modify the algorithm to handle an increase
in edge weight. Suppose weight(u; v) is increased. Then
make (u; v) a nontree edge by inserting u into predlist(v)
and run Delete(u; v).

If the first implementation method is used, then the cost
of Delete is, as before, O(log d) plus O(degree(w) log d)
for each w such that l(w) is increased. Since each edge can
be increased no more than b � d times, no more than mb
calls to Delete can be made for the purpose of increasing
edge weights. Hence adding this operation results in a cost
ofO(mb log d+md) which leaves the asymptotic total time
unchanged.



If the second implementation method is used and no dis-
tances from s are increased then the cost of the edge increase
isO(1). If an increase to an edge weight causes some vertex
w to increase its distance from the source, then, as described
above, there is an extra additive cost ofO(d). This can occur
no more than minfinc; ndg times, where inc is the number
of edges whose weights have increased.

Hence the total cost is O(md + minfinc � d; nd2g). So
the operations to increase an edge weight could increase the
asymtotic value of the total cost if nd > m and inc > m.

In the later sections, we do not discuss the special op-
eration of increasing edge weights, but the technique and
analysis follow easily from what is described here. We
leave this to the reader.

2.1.3 All-pairs shortest paths, deletions only

We maintain all-pairs shortest paths in a graph whose
weights are positive integers less than b and where updates
are restricted to edge deletions and edge weight increases.
It suffices to maintain a single source shortest path tree of
depth d = nb for each vertex. Then the shortest path from
a vertex u to w is given by l(w) in the tree for u. The total
cost of processing the deletions isO(mn2b). Hence, if there
are Ω(m) update operations, amortized cost is O(n2b) per
update operation.

2.2. A forest of In and Out trees

We show how to maintain all-pairs shortest paths and
distances for pairs of vertices no more than distance d apart.

During the algorithm, we maintain single source shortest
path trees Inv and Outv of depth no greater than d for
each vertex v 2 V . The first is for vertices which reach v
and the second is for vertices which are reachable from v.
Let Inv(u) be the distance from u to v in the tree Inv and
Outv(u) be the distance from v to u in treeOutv . We define
Inv(v) = Outv(v) = 0 for all v.

For each pair of vertices u;w and depth k = 1; 2; :::d,
we keep count(u;w; k) equal to the number of v such that
Inv(u) + Outv(w) = k and a list list(u;w; k) of these
vertices. For each pair of vertices u;w, we keep D(u;w)
set to the minimum k such that count(i; j; k) is positive. If
there is no such k, then D(u;w) =1.

To initialize, it suffices to maintain only Outv trees for
each vertex v. Then set count(v; w; k) = 1 if Outv(w) =
k; else count(v; w; k) = 0.

� To do insert(Ev): Remove Inv and Outv if they
exist. Build and maintain a new Inv and a newOutv ,
using the set of edges in the current graph G. For
each u;w; k, adjust count(u;w; k), list(u;w; k) and
D(u;w) accordingly. We call vertex v the center of
insert(Ev).

� To do delete(E0): Process each deleted edge in ev-
ery In and Out tree data structure which contains it.
Each time a vertex u moves down in a tree, we may
need to adjust the count(u;w; k), count(w; u; k),
list(u;w; k), and D(u;w).

� To answer the query: "What is the distance from u to
w?", return D(u;w).

� To return the shortest path from vertex u to w: Let v
be a vertex in list(i; j;D(i; j)). The path from u to
v in Inv(u) and from v to w in Outv(w) is a shortest
path.

Analysis and implementation details: We can initialize and
maintain each single source shortest path tree in O(md).
For the original forest of Out trees, we can initialize count,
list and D in O(n) time per tree. The total cost to maintain
these is O(nd) per tree, since Outv(w) can increase at most
d times, for any v and w. Thus the total cost for initializing
and maintaining the initial forest of Out trees is O(nmd +
n2d) = O(nmd).

For each insert(Ev), when Inv and Outv trees are de-
stroyed and recreated, we can reset count, list and D in
O(n2) and maintain each tree in O(md) time. Each time a
vertex moves down in a tree, Inv for example, count and
list must be revised, for each vertex in Outv , or up to n� 1
vertices. Hence if every vertex moves down d times in each
tree, the maximum cost of maintaining the count and the lists
over all modifications to the single-souce shortest path tree
is O(n2d). This cost may be charged to the insert operation
which constructs the single-source shortest path trees. Thus
the total cost per insert is O(n2d+md) = O(n2d).

DeterminingD(u;w) takes no longer thanO(d) time for
each pair of vertices u;w. We can charge O(n2d) to each
delete operation for the cost of updating the D’s. Alter-
natively, for each u;w, we can maintain the k’s such that
count(u;w; k) > 0 in a heap to extract the minimum in
O(log d) time with each change to the count. This gives an
additional log d factor but reduces the cost of a deletion.

The total cost of a sequence with del deletions, ins in-
sertions and q queries is O(nmd + (del + ins)n2d + q)
or O((nmd log d + ins � n2d log d + q), depending on the
implementation. The first implementation has amortized
time O(n2d) per update operation in a sequence of length
Ω(m=n). The second has amortized time O(n2d log d) per
insertion if there are Ω(m=n) insertions and O(nd log d)
per deletion, if del + ins � n = Ω(m).

Proof of correctness:

Lemma 2.1 The algorithm maintains the following invari-
ant:

Invariant: Let p be a shortest path from u to w of length
d0 � d. Let v be the vertex in p which was most recently a



center of an insertion. Then there is a path from u to v in Inv
and from v to w in Outv such that Inv(u)+Outv(w) = d0.

Proof: Since the edges in p fromu to v and from v tow were
present in the graph at the time Inv and Outv were most
recently created, they are included in these data structures.
Also, only edges currently in the graph are in these data
structures, since edges which have been deleted from G
since Inv andOutv were built have been deleted from these
data structures. Since Inv andOutv maintain shortest paths
from each vertex into v and to each vertex out of v, then in
particular, the sum of distance from u to v and from v to u
is d0.

It follows from the invariant and the accurate updating of
count, list and D that:

Theorem 2.2 For any pair of vertices u;w 2 V , if the
distance from u to w is no greater than d, then the dis-
tance from u to w is given by the minimum k such that
count(i; j; k) > 0, i.e., D(u;w).

3. Transitive closure

We maintain k = dlgne forests F 1; F 2; :::; F k where
each F i contains a pair of breadthfirst search trees Iniv and
Outiv of depth 2 for each vertex v 2 V .

We define count0(u;w) = 1 if (u;w) 2 E and 0 other-
wise. For all pairs of vertices u;w, and each forest F i we
maintain

� counti(u;w): the number of vertices v such that u 2
Iniv and w 2 Outiv ;

� listi(u;w): the set of vertices v such that u 2 Iniv
and w 2 Outiv .

F 1 is the forest of In and Out trees of depth 2, con-
structed as in the previous section for unweighted edges,
for the current graph G = (V;E). We maintain Ei =
f(u;w) j counti�1(u;w) > 0g. Initially, F i is the forest of
breadthfirst search trees of depth 2 constructed for the graph
(V;Ei).

Note also that counti(u;w) is used, rather than
counti(u;w; k). Different values of k are not distinguished
and we keep the count for depths up to 4 which is greater
than the depth of the breadthfirst search trees.

In the routines below, insert(Ev ; i) and delete(E0; i)
are defined as in the previous section, with the modified
definition of count, for the forest F i. That is, insert(Ev ; i)
adds Ev to Ei and uses the set of edges Ei to construct new
trees Iniv and Outiv in F i; delete(E0; i) deletes edges in E0

from the data structures for F i.

To insert a set of edges incident to a vertex v:

InsertTC(Ev)
for i = 1; :::; k do
insert(Ev ; i);
Ev  f(u; v) 2 Eig [ f(v; u) 2 Eig.

Note that when executing insertTC(Ev), we only re-
build Iniv and Outiv even though it is possible that inserting
edges incident to v may have made counti�1(u;w) positive
for some vertices u;w 6= v. Thus, after the initialization, it
may no longer be the case that F i is the same as the forest
of breadthfirst search trees of depth 2 that we would have
constructed and maintained for the graph (V;Ei).

To delete any set of edges E0:

DeleteTC(E0)
for i = 1; :::; k do
delete(E0; i);
E0  f(x; y) j counti(x; y) changed frompositive to 0g

Proof of correctness: Let dist(u;w) denote the shortest
distance from u to w in the current graph G. We first show:

Lemma 3.1 The following invariant holds for i = 0; :::; k:
Invariant(i): For all vertices u and w, the counti(u;w) >

0 if dist(u;w) � 2i, and only if there is a path from u to w.

It follows that:

Theorem 3.2 For all u;w 2 V , countk(u;w) > 0 iff there
is a path from u to w.

Proof of Lemma: The proof is by induction on i. For i = 0,
we have count0(u;w) > 0 iff there is an edge (u;w) 2 E.
Let us assume both directions of the invariant are true for
i� 1.

Suppose there is path p from u to w of length l � 2i.
Let v be the most recent center of an insertion in p. Let
x be the midpoint of p. Assume x lies between u and v.
(If x lies between v and w, the argument is similar.) Then,
dist(u; x) � 2i�1, dist(x; v) � 2i�1 and dist(v; w) �
2i�1. Since v is the most recent center of an insertion,
these inequalities were true when Inv and Outv were most
recently built, and have been true since that time.

Hence, by induction, counti�1(u; x), counti�1(x; v)
and counti�1(v; w) were all positive when Inv and Outv
were built, and therefore (u; x), (x; v), and, (v; w) are
edges in these data structures. Hence, Inv(u) � 2 and
Outv(w) � 1, and counti(u;w) > 0. This concludes one
direction of the proof.

Suppose counti(u;w) > 0 but there is no path from u to
w. But counti(u;w) > 0 implies that there is some v such
that Iniv(u)+Out

i
v(w) � 4. But each edge (x; y) in Inv and

Outv is inserted only if counti�1(x; y) > 0 and is deleted if
counti�1(x; y) becomes 0. Hence counti�1(x; y) > 0. By



our induction assumption,each edge represents a path,hence
there is a path from u to w consisting of their concatenation.

Analysis: From Section 2.2, we see that the cost of main-
taining an initial forest is O(nmd) and a total of O(knmd)
for maintain all k initial forests. Each update operation re-
quires an update operation to each forest, at a cost ofO(n2d)
per update operation or a total of O(kn2d). Hence, the cost
of per update is O(n2dk) for a sequence of length Ω(m=n).
For k = dlgne and d = 2, this is O(n2 logn).

4. Approximate shortest path

We give an approximate shortest path algorithm in di-
rected graphs, first for graphs with unweighted edges.

Let d = lgn and k = lgn= lg lgn. We initialize and
maintain k = logn= logd forestsF 1; F 2; :::; F k of breadth-
first search trees Iniv and Outiv of depth d for each vertex
v 2 V .

For all pairs of vertices u;w, j = 1; :::; d, and each forest
F i we maintain

� counti(u;w; j): the number of vertices v such that
Iniv(u) +Outiv(w) = j;

� Ei = f(u;w) j counti�1(u;w; j) > 0 for any jg; ;

� listi(u;w; j): fv | Iniv(u) +Outiv(w) = jg;
� approxdist(u;w): the pair (i0; j0) such that i0 is the

minimal i such that (u;w) 2 Ei and j0 is the minimal
j such that counti

0

(u;w; j) > 0.

For each vertex, In1
v andOut1

v are the breadthfirst search
trees constructed in the previous section, for depth d, for the
graph G = (V;E).

We perform updates and answer queries as follows.

� To insert a set of edges Ev incident to a vertex v
or delete an arbitrary set of edges E0, we use the
routines InsertTC(Ev) andDeleteTC(E0)with the
definitions of count and list as defined above, and
also maintain approxdist.

� To answer a query: What is the approximate shortest
path from u to w?, we output jdi�1 where (i; j) =
approxdist(u;w).

� To generate an approximate shortest path from u to
w: Let (i; j) = approxdist(u;w). We choose a
vertex v from listi(u;w; j) and recursively determine
approximate shortest paths for each edge on the path
from u to v in Iniv(u) and each edge on the path from
v to w in OUtiv(w).

Proof of correctness: We first show the following.

Lemma 4.1 Let dist(u;w) be the shortest distance from u
to w in the current graph. The following invariant holds:
Invariant(i):
1. For each edge (u;w) in Ei, dist(u;w) � di�1.
2. If there is a path of length j from u to w in F i then
dist(u;w) � jdi�1.
3. If dist(u;w) � (d� 1)i�1 then (u;w) is an edge in Ei.
4. For j = 2; 3; 4; :::; d, if dist(u;w) � (j � 1)(d � 1)i�1

then there is a path from u to w of length no greater than j
in F i.

Proof: We prove Invariant (1) is by induction on i. It is
straightforward and is left to the reader.

Invariant (2) follows easily from (1) and is left to the
reader.

Invariant (3) is true for i = 0. We assume it is true for i
and show it is true for i+ 1. Let v be the most recent center
of insertion in the path of length no greater than (d � 1)i.
We can partition the path from u to v and the path from
v to w into segments of length (d � 1)i�1 with no more
than two segments of length less than (d � 1)i�1, one on
either side of v. Either there are d � 1 segments of length
(d� 1)i�1 or there are d� 2 segments of length (d� 1)i�1

and two segments with fewer edges. In either case, there
are no more than d total segments. Since each segment
has length no greater than (d� 1)i�1 then by the induction
assumption, each segment is represented by an edge in Ei,
and was represented by an edge in Ei when Iniv and Outiv
were constructed. Then Iniv(u) +Outiv(w) � d and hence
(u;w) is represented by an edge in Ei+1.

The proof of Invariant (4) is similar to the proof of In-
variant (3) and is left to the reader.

The invariant implies the following theorem.

Theorem 4.2 Let approxdist(u;w) = (i; j). If j = 1
then (d � 1)i�1 � dist(u;w) � di�1; and if j � 2, then
(j � 1)(d � 1)i�1 � dist(u;w) � jdi�1. I.e., jdi�1 is
within a factor of 2[d=(d�1)]k+1 of the actual distance, for
any i � k.

To bound every length, we must have (d � 1)k+1 � n,
or k � logn= log(d � 2) + 1. Choosing d = lgn and
k = lgn= lg lgn, we get a error less than 2 + � for any
positive constant �.

Analysis: As in the analysis of the transitive closure algo-
rithm we see that the cost of maintaining all initial forests is
O(knmd). Each update operation requiresO(kn2d). Main-
taining approxdist for every pair of vertices can be per-
formed O(n2k). Hence, the cost of per update is O(n2dk)
for a sequence of length Ω(m=n),orO(n2 log2 n= log logn)
when d = lgn and k = lgn= log logn.



4.1. Reducing the error

We sketch the technique for lowering the error to 1 + �
for any � < 1.

The error is worst when j is a small value greater than
1. To reduce this error, we can add a certain redundancy, so
that when j is small, the path of length j is also represented
at a lower level in the hierarchy of forests.

To do this, we use trees of distance d2. As before, Ei =
f(u;w) j counti�1(u;w; j) > 0 for any j � dg. However,
we define weight(u;w) = j0 where j0 is the minimal over
all j � d such that counti(u;w; j) > 0.

The invariants follow as before, where length of a path
refers to the sum of the weights of the edges in the path.
The only difference is that if approxdist(u;w) = (i; j), it
must be the case that either i = 1 or j > d; otherwise there
is a path from u to w in F i�1. In the first case, j is the
exact distance. In the second case, the error factor is no
greater than (d=(d�1))i+1. For d = 2 lgn= ln(1+�), since
i � logn= logd, the error factor is less than 1+�. The update
time is increased by a factor of d to O(n2d2k) since trees of
depth d2 are maintained. Setting k = lgn and substituting
in for k and d, the update time is O(n2 log3 n=�2).

4.1.1 Graphs with weighted edges

If weight(u;w) is between j � 1 and j(di), for d2 �
j > d, represent (u;w) by an edge weighted jd in Ei.
If weight(u;w) < d then add an edge weighted j into E1.

Furthermore, since the shortest distance may be bnwhere
b is the maximum weight of any edge, then we need to
increase the the number k of forests to Ω(log(nb)= logd).
Choosing d = O(log(bn)= log(1 + �)) gives the desired
error. Setting k = lg bn and substituting into O(n2d2k)
gives an update time of O(n2 log3(bn)= log2(1 + �)).

5. Exact shortest paths for arbitrarily long
paths

For graphs with unweighted edges, we construct and
maintain a forest F of In and Out breadthfirst search trees
of depth d. We refer to v as the root of Inv and Outv .

A subset S � V is a blocker for F if every directed path
starting or ending at the root, i.e., in an Out tree or an In
tree respectively, of exactly length d contains a vertex in S
which is distinct from the root.

Lemma 5.1 LetS be a blocker forF . Then for allu;w 2 V
such that w is reachable from u, there is a shortest path
p from u to w which may be partitioned into consecutive
subpaths (u; s1); (s1; s2); :::; (sr; w) (where (x; y) denotes
a subpath from vertex x to vertex y) with the following
properties: (1) s1; :::; sr 2 S; and (2) For each subpath

(x; y), there is some v such that x 2 Inv , y 2 Outv and
(x; y) consists of the contenation of the path from x to v in
Inv with the path from u to y in Outv.

Proof: We prove this by induction on the length of p. Let
p be a shortest path from u to w. If p has length no greater
than d then there is some v such that u is in Inv and w is in
Outv.

Now suppose the lemma is true for all pairs u;w and all
lengths up to s � d. Consider a path of length s + 1. Let
e = (i; j) be the most recently inserted edge in the path. Let
the distance of i from u be d0. Then if d0 � d, then there
is a shortest path from u to i in Ini. Let i0 be a vertex of
distance d0 + d from u in p. Since all edges from p were
present in the graph at the time Outi was constructed, i0 is
in Outi and must be a leaf at distance d from i. Then there
is some s 2 S on the path from i to i0 in Outu not equal
to i, such that a shortest path from i to i0 passes through s.
Hence there is a shortest path from u to w containing the
path from u to i in Ini and from i to s in Outu. While it is
possible that u = i, since s 6= i, the remainder of the path p,
from s to w, is shorter and can be appropriately partitioned,
by induction. If d0 > d let i0 be a vertex of distance d from
i, between u and i. Then i0 is a leaf in Ini at distance d from
i, and there is an element s between i0 and i. Hence the path
from u to s and the path from s to w are both of size less
than p. By induction, the lemma holds for them, and hence
for their concatenation.

We observe that given a set of n elements and L subsets
of these elements, each of size d, some element is contained
in at least Ld=n subsets. We use this to show:

Lemma 5.2 A blocker S for F of size O(n=d logn) can be
constructed deterministically in time O(n2 + nd lnn).

Proof: Let the score of vertex be the number of leaves of
depth d in the subtrees rooted at that vertex, summed over all
In and Out trees in which that vertex appears as a nonroot.
Let L be the total number of leaves at depth d in all In and
Out trees.

To construct S, repeatly find the vertex of maximum
score, add it to S, then remove it and its subtrees from
every tree in which it appears. Hence, the number of leaves
remaining in the set of trees has been reduced, from L to
(1� d=n)L. After O(n lnL=d) selections, S is a blocker.

To find the scores, it suffices to traverse each tree in pos-
torder, labeling a parent node with the sum of its children’s
labels. To revise the score when a vertex v is added to S,
let lt(v) be the number of leaves in v’s subtree in tree t.
Then for each w in v’s subtree, when w is removed from t,
subtract lt(w) from score(w), and subtract lt(v) from v’s
ancestors. The running time of this algorithm is O(1) per
vertex in a tree, since each is removed once from a tree or
O(n2) over all trees plus for each v inserted into S a cost



of O(d) per tree to visit v’s ancestors, for a total cost of
O(n2 + nd lnn).

Recall that D(u;w) = dist(u;w) if the distance is no
greater than d and1 otherwise.

Stitching Algorithm

1. Construct a blocker S for F .

2. Use any Õ(n3) algorithm to compute the static all-
pairs shortest paths on the graph G0 = (S;Es) where
the weight of edge (s; s0) is given by D(s; s0). Let
SS(s; s0) denote the shortest distance from s to s0, as
computed by this algorithm.

3. For eachu 2 V; s 2 S, ifD(u; s) =1, letD(u; s) =
mins02S D(u; s0)+SS(s0; s). A shortest path from u
to s is the concatenation of a shortest path from u to
s00 with one from s00 to s, where s00 is a vertex which
minimizes the expression.

4. For each u;w 2 V , if D(u;w) = 1, let D(u;w) =
mins2S D(u; s) + D(s; w). A shortest path from u
to w is the concatenation of a shortest path from u to
s" with one from s" to w, where s" is a vertex which
minimizes the expression.

Analysis: The cost of constructing the blocker is O(n2 +
nd logn). The cost of performing the stitching algo-
rithm is dominated by the cost of the last step which is
O(n2jSj) = O(n2(n logn=d)). The amortized cost per
update of maintaining the shortest paths up to length d is
O(n2d). Choosing d = jSj = (n logn):5 gives an amor-
tized update time of O(n2:5plogn).

5.1. Exact shortest paths for graphs with weighted
edges

We maintain all-pairs shortest distances up to d in
weighted graphs, using the algorithm described previously,
and we stitch together as we did before. The only difference
occurs in the definition and size of the blocker S.

Let b be the bound on the maximum weight, b <
p
n. We

call a subset S � V a b-blocker for F if every path starting
or ending at the root in an Out tree or an In tree respectively,
of length greater than (d � b) contains a vertex in S which
is distinct from the root. (Here, length refers to the sum
of the weights of edges in the path.) Each path contains
d(d� b)=be vertices excluding the root. Hence we can con-
struct in a similar way a b-blocker of size O(n logn=(d=b)).
The cost of stitching together is O((n3b logn)=d).The cost
per update of maintaining the all-pairs shortest paths up to
distance d isO(n2d). Choosing d = jSj =pnb logn gives
a running time of O(n2:5

p
b logn).

References

[1] G. Ausiello, G. Italiano, A. Spaccamela, and U. Nanni. Incre-
mental algorithm for minimal length paths. In Proceedings of
the ACM-SIAM Symposium on Discrete Algorithms (SODA),
pages 12–21, 1990.

[2] A. Buchsbaum, P. Kanellakis, and J. Vitter. A data struc-
ture for arc insertion and regular path finding,. Annals of
Mathematics and Artificial Intelligence, 3:187–210, 1991.

[3] D. Coppersmith and S. Winograd. Matrix multiplication via
arithmetic progressions. Journal of Symbolic Computation,
9:1–6, 1990.

[4] D. Frigioni, M. Ioffreda, U. Nanni, and G. Pasqualone. Ex-
perimental analysis of dynamic algorithms for the single-
source shortest path problem. ACM Jounal of Experimental
Algorithmics, 3, article 5, 1998.

[5] R. Goldman, N. Shivakumar, S. Venkatasubramanian, and
H. Garcia-Molinas. Proximity search in databases. In Pro-
ceedings of the 24th VLDB Conference, 1998.

[6] M. Henzinger and M. Fredman. Lower bounds for fully
dynamic connectivity problems in graphs. Algorithmica,
22:351–362, 1998.

[7] M. Henzinger and V. King. Fully dynamic biconnectivity
and transtive closure. In 36th Symposium on Foundations of
Computer Science (FOCS), 1995.

[8] G. F. Italiano. Amortized efficiency of a path retrieval data
structure. Theoretical Computer Science, 48:273–281, 1986.

[9] G. F. Italiano. Finding paths and deleting edges in directed
acyclic graphs. Information Processing Letters, pages 5–11,
1988.

[10] V. King and G. Sagert. A fully dynamic algorithm for main-
taining the transitive closure. In Proceedings of the Thirty-
first Annual Symposium on the Theory of Computing (STOC),
1999.

[11] H. L. Poutré and J. van Leeuwen. Maintenance of transitive
closure and transitive reduction of graphs. In Proc. Workshop
on Graph-Theoretic Concepts in Computer Science, pages
106–120. LNCS 314, Springer Verlag, 1988.

[12] G. Ramalingam and T. Reps. An incremental algorithm
for a generalization of the shortest-path problem. Jounal of
Algorithms, 21(2):267–305, 1996.

[13] T. Reps. www.cs.wisc/sim/reps.
[14] T. Reps and G. Ramalingam. On the computational com-

plexity of dynamic graph problems. Theoretical Computer
Science A, 158:233–277, 1996.

[15] U. Zwick. All pairs shortest paths in weighted directed
graphs–exact and almost exact algorithms. In 39th Sym-
posium on Foundations of Computer Science (FOCS), pages
310–319, 1998.


