Undirected Single Source Shortest Paths in Linear Time

Mikkel Thorup

AT\&T Labs—Research

Based on:
Mikkel Thorup.Undirected single source shortest paths with positive integer weights in linear time. Journal of the ACM, 46(3):362-394, 1999. See also FOCS'97.

SSSP

Weighted graph $G=(V, E), s \in V, n=|V|$, $m=|E|$

Find $\operatorname{dist}(s, v) \forall v \in V$

This talk: undirected SSSP in deterministic linear time and linear space.

Previously linear time only for planar graphs [Klein, Rao, Rauch, Subramanian, STOC'94]

Since 1959 all theoretical developments for general directed and undirected graphs based on Dijkstra's algorithm

Dijkstra

Super distance $D(v) \geq d(v)=\operatorname{dist}(s, v)$

$$
\begin{aligned}
& v \in S \Rightarrow D(v)=d(v) \\
& v \notin S \Rightarrow D(v)=\min _{u \in S}\{d(u)+\ell(u, v)\}
\end{aligned}
$$

Dijkstra's SSSP algorithm

$$
\begin{aligned}
& S \leftarrow\{s\} \\
& D(s) \leftarrow 0, \forall v \neq s: D(v) \leftarrow \ell(s, v)
\end{aligned}
$$

$$
\text { while } S \neq V
$$

pick $v \in V \backslash S$ minimizing $D(v)$
$\triangleright D(v)=d(v)$
$S \leftarrow S \cup\{v\}$
for all $(v, w) \in E$

$$
D(w) \leftarrow \min \{D(w), D(v)+\ell(v, w)\}
$$

Implementations of Dijkstra

$O\left(m+n^{2}\right)$
$O(m \log n)$
$O(m+n \log n)$
$O(m \sqrt{\log n})$
$O\left(m+n \frac{\log n}{\log \log n}\right)$
$O(m \log \log n)$
$O\left(m+n \sqrt{\log n}^{1+\varepsilon}\right)$
$O(m+n \sqrt[3]{\log n} 1+\varepsilon)$
$O\left(m+n \sqrt[3]{l o g}^{\log n}\right.$
$O\left(m \sqrt{\log \log n}^{1+\varepsilon}\right)$
$O(m+n \log \log n)$

Dijkstra'59
William'64
Fredman and Tarjan'87
Fredman and Willard'93
Fredman and Willard'94
Thorup'96
Thorup'96
Raman'97
Raman'97
Han and Thorup'02
Thorup'03
$O(m \log \log C)$
$O(m+n \sqrt{\log C})$
$O(m+n \sqrt[3]{\log C \log \log C})$
$O\left(m+n \sqrt[4]{\log C^{1}}{ }^{1+\varepsilon}\right)$
$O(m+n \log \log C)$
van Emde Boas'77 Ahuja et.al.'90 Cherkassky et.al.'97 Raman'97
Thorup'03

Linear Dijkstra \Longleftrightarrow linear sorting, Thorup'96

Still use S, D :

$$
\begin{aligned}
& v \in S \Rightarrow D(v)=d(v) \\
& v \notin S \Rightarrow D(v)=\min _{u \in S}\{d(u)+\ell(u, v)\}
\end{aligned}
$$

"visit v " \equiv moving v to S

New: flexible visit sequence, not order of $d(v)$

Identify many other vertices $v \notin S$ with $D(v)=$ $d(v)$

Note: Dinitz (1978) buckets occording to

$$
\left\lfloor D(v) / \min _{e \in E} \ell(e)\right\rfloor
$$

We use hierarchical bucketting structure.

Suppose

- V partitions into V_{1}, \ldots, V_{k}
- Edges between different V_{i} have weight $\geq \delta$
- For some $v \in V_{i} \backslash S$,

$$
D(v)=\min D\left(V_{i} \backslash S\right) \leq \min _{j} D\left(V_{j} \backslash S\right)+\delta
$$

Then

$$
d(v)=D(v)
$$

A recursive version

$$
\begin{aligned}
& V_{\Gamma=-2^{2}-\equiv 1} \quad|\hat{\imath} \hat{i} \quad| \min D\left(V_{i} \backslash S\right) \\
& V_{2} ヤ i_{i}|M| \quad \mid i
\end{aligned}
$$

$$
\begin{aligned}
& \Gamma \cdot \mid \\
& \Gamma \cdot \bullet \cdot \bullet
\end{aligned}
$$

Component Hierarchy

$G_{i}=\left(V,\left\{e \in E \mid \ell(e)<2^{i}\right\}\right)$
$[v]_{i}$: component of v in G_{i}
\equiv "level i component of v "
(notation: $x \downarrow i \equiv\left\lfloor x / 2^{i}\right\rfloor \equiv " x$ drop $i^{\prime \prime}$)
Observation $u \notin[v]_{i}, \operatorname{dist}(u, v) \geq 2^{i}$

$$
\text { (notation: }[v]_{i}^{-}=[v]_{i} \backslash S \text {) }
$$

$[v]_{i}$ min-child $[v]_{i+1}$ if

$$
\min D\left([v]_{i}^{-}\right) \downarrow i=\min D\left([v]_{i+1}^{-}\right) \downarrow i
$$

$\left.{ }^{[v}\right]_{i}$ minimal if $\forall j \geq i:[v]_{j}$ min-child $[v]_{j+1}$
Lemma $[v]_{i}$ minimal $\Rightarrow \min D\left([v]_{i}^{-}\right)=\min d\left([v]_{i}^{-}\right)$

Corollary $[v]_{0}$ minimal $\Rightarrow D(v)=d(v)$

Component hierachy only stores components with multiple children
-don't store $[v]_{i}$ if $[v]_{i-1}=[v]_{i}$.
—at most $2 n-1$ nodes in hierachy.

Component hierachy computed in linear time via minimum spanning tree

Some clusters $[v]_{i}$ are expanded:

- Children clusters stored in buckets $B\left\langle[v]_{i}, \cdot\right\rangle$.
- Child $[v]_{h}$ stored in

$$
B\left\langle[v]_{i}, \min D\left([v]_{h}^{-}\right) \downarrow(i-1)\right\rangle
$$

unless $[v]_{h}^{-}=\emptyset$.

- Maintain index

$$
i x\left\langle[v]_{i}\right\rangle=\min D\left([v]_{i}^{-}\right) \downarrow(i-1)
$$

of first non-empty bucket.

- min-children in $B\left\langle[v]_{i}, i x\left\langle[v]_{i}\right\rangle\right\rangle$.
$\left.{ }^{[v}\right]_{i}$ expandable if minimal and parent expanded
No vertex in $[v]_{i}$ visited yet so $[v]_{i}^{-}=[v]_{i}$

Expanding $[v]_{i}$

$$
\begin{aligned}
& i x\left\langle[v]_{i}\right\rangle \leftarrow \min D\left([v]_{i}\right) \downarrow i-1 \\
& \text { for all children }[w]_{h} \text { of }[v]_{i}, \\
& \quad \text { put }[w]_{h} \text { in } B\left\langle[v]_{i}, \min D\left([w]_{h}\right) \downarrow(i-1)\right\rangle
\end{aligned}
$$

We shall later see...

A data structure maintains $\min D\left([w]_{h}\right)$ for all unexpanded roots, i.e., unexpanded children of expanded clusters.

The total number of buckets needed is linear.

Visiting a vertex

v visitable if $[v]_{0}$ minimal and parent expanded
Visiting v
$\triangleright D(v)=d(v)$
for all $(v, w) \in E$
$D(w) \leftarrow \min \{D(w), D(v)+\ell(v, w)\}$
update bucket of unexpanded root of w
$S \leftarrow S \cup\{v\}$
\triangleright updating expanded bucket structure let i be maximal level such that $[v]_{i}^{-}=\emptyset$ let $[v]_{j}$ be parent of $[v]_{i}$
remove $[v]_{i}$ from $B\left\langle[v]_{j}, i x\left\langle v_{j}\right\rangle\right\rangle$
loop
exit if $B\left\langle[v]_{j}, i x\left\langle[v]_{j}\right\rangle\right\rangle \neq \emptyset$ $i x\left\langle[v]_{j}\right\rangle \leftarrow i x\left\langle[v]_{j}\right\rangle+1$.
let $[v]_{k}$ be parent of $[v]_{j}$
exit if $i x\left\langle[v]_{j}\right\rangle \downarrow(k-j)=i x\left\langle[v]_{k}\right\rangle$
move $[v]_{j}$ to $B\left\langle[v]_{k}, i x\left\langle[v]_{k}\right\rangle+1\right\rangle$
$j \leftarrow k$

Work in bucket structure proportional to number of buckets.

Not too many buckets
$\max d\left([v]_{i}\right)-\min d\left([v]_{i}\right) \leq \sum_{e \in[v]_{i}} \ell(e)$
so allocate
$\left|B\left\langle[v]_{i}, \cdot\right\rangle\right|$
$=\left|\left\{\min d\left([v]_{i}\right) \downarrow i-1, \ldots, \max d\left([v]_{i}\right) \downarrow i-1\right\}\right|$
$\leq 2+\sum_{e \in[v]_{i}} \ell(e) / 2^{i-1}$

Thus

$$
\begin{aligned}
& |B(\cdot, \cdot)| \\
& \leq \sum_{[v]_{i}}\left(2+\sum_{\left.e \in[v]]_{i} \ell(e) / 2^{i-1}\right)}^{<4\left(\sum_{e} \sum_{[e]} i\right]_{i j e} \ell(e) / 2^{i-1}}\right. \\
& <4 n+\sum_{e} \sum_{i \geq h} \ell(e) / 2^{i-1}, \text { where } 2^{h}>\ell(e) \\
& <4 n+\sum_{e} \sum_{j \geq 0} 2^{1-j} \\
& <4 n+\sum_{e} 4 \\
& <4 n \\
& =4 n+4 m \\
& =O(m)
\end{aligned}
$$

For each unexpanded root $[v]_{i}$, maintain min $D[v]_{i}$.
Formulated as independent data structure:

- We have a forest of rooted trees.
- Each leaf w has a key $D(w)$.
- The root has min key of descending leaves.
- The key of a leaf may decrease.
- A root may be deleted.
bottom trees are maximal with $<\log ^{2} n$ leaves. bottom trees are handled recursively above bottom are $\leq n / \log ^{2} n$ middle nodes. decrease \rightarrow bottom root \rightarrow middle \rightarrow Fibonacci heap

When root deleted, bigger subtree inherits Fi bonacci heap

After two recursions: size $O\left(\log \log ^{2} n\right)$. Then atomic heaps with tabulation.

Now all updates in constant time.

Summing up

- Computing the component hierachy takes linear time.
- The data structure allows us in constant time to move unexpanded roots when a key is decreased.
- The bucketting of expanded components is maintained in constant time per bucket and the number of buckets is linear.

Thus undirected SSSP solved in linear time.

Concluding remarks

- People have implemented simpler variants. If the component hierachy has been constructed once for the whole graph, subsequent USSSP compuations are fast in practice.
- Basid ideas reused for the best external memory USSSP.
- Main open problem do directed SSSP in linear time... Hagerup has done some nice generalizations for directed graph, but lost the linear time.

Exercises for undirected SSSP

- How quickly can you construct component hierachy?
- Solve independent data structures problem for trees of size $O\left(\log \log ^{2} n\right)$ using tables and atomic heaps (free rank queries within set of size $O\left(\log \log ^{2} n\right)$ while items decreased).
- Why doesn't this work for immediately directed graphs?
- Discuss simpler implementation, e.g., not using atomic heaps, and what happens to the asymptotic running time.

