Course Structure

1. Introduction

Goal, Overview, Motivation, Notions, Lab 1: Set implementation

- 2. Testing
- 3. O-Calculus
- 4. Measurements
- 5. Profiling
- 6. Application profiles
- 7. Graphs/grail
- 8. Competition results I
- 9. Grail results
- 10. Competition results II

Motivation

- Concluding practical example:
 - Find/remove performance bugs in a larger application (graph library grail)
 - Use analytical and measuring techniques
- As side effects
 - Refresh some algorithms
 - Become aware of the grail graph library for reuse in own projects

2

Graphs

- Directed graph:
- Let V be a non-empty set and let E: V×V be a binary relation. The pair G = (V, E) is then called a directed graph, where V is the set of vertices (or nodes) and E is the set of edges (or arcs).

Undirected graph:

• A graph G = (N, E) is an *undirected graph* iff it holds $(v_1, v_2) \in E \Rightarrow (v_2, v_1) \in E$.

We can attach labels to nodes and arcs.

Loops, Paths, and Cycles

- Let (u, v) be an arc in a directed graph. If u = v then the arc (u, v) is called a *loop*.
- A path in a graph G = (V, E) is a list of nodes (v₁, ... v_n) such that: ∀i = 1..n-1: (v_p v_{i+1}) ∈ E. The length of the path is n-1.
- A path in a graph that begins and ends at the same node is called a cycle. The length of the cycle is the length of the path. A cycle is simple if the only node that appears twice in the path is the first node.
- Example:

Cyclic graphs, DAGs, Trees

- A graph is cyclic if it has at least one cycle. A graph that is not cyclic is called acyclic.
- A directed acyclic graph is called a *DAG*.
- A DAG is called a *tree* if ∃ n ∈ V (the root of the tree) such that for each node n' there is a unique path from n to n'.

Topological Order

A topological order of a DAG G is an order of all the nodes in G such that for each arc (u, v) of G the source node u precedes the target node v in that order

Strongly Connected Components

- Let *n* and *n*' be two nodes of a directed graph *G*. Node *n* is *reachable* from node *n*' iff there is a path from *n*' to *n* in *G*.
- A strongly connected component of a directed graph G = (V, E) is a set of nodes $C \subseteq V$ such that for every pair of nodes $(u, v) \in C$, *u* is reachable from v and v is reachable from u.
- Example: $C = \{2,3,4,5\}$

Depth-first search

Used in many graph algorithms, e.g. for

- Computing a topological order of a DAG
- Computing the strongly connected components of a graph

Depth-first search

Mark all nodes unvisited.

Loop:

Choose any unvisited node s, as start node Call DFS(s) Until all nodes are visited

DFS(n):

Mark n visited For all successors *m*, of *n* If *m* is unvisited: Recursively call DFS(m)

Classification

- With respect to a given DFS of the graph G the arcs of G can be divided in four groups:
 - *Tree arcs*: arcs (u, v) such that DFS(v) is called by DFS(v).
 - *Forward arcs*: arcs (u, v) such that v is a proper descendant of u but not a child of u in the tree defined by the tree arcs.
 - **Backward arcs:** arcs (u, v) such that v is an ancestor of u in the tree defined by the tree arcs. A loop (u, u) is a backward arc.
 - Cross arcs: arcs (u, v) such that v is neither an ancestor nor a descendant of u.

10

Backward arcs

Example

5 Depth-first forest

(1)

11

Strongly Connected Components [Tarjan's and Gabow's Algorithm]

Idea: Each backward arc in the DFS -forest of graph G indicates a cycle in G. All nodes of a cycle are strongly connected. Example: DFS -G forest of

Tarjan's and Gabow's Algorithm

Algorithm:

scc_number := 0
mark all nodes in G as 'not visited'
for each node v in G that is not visited, do
 scc(v)
end for

Tarjan's and Gabow's Algorithm (cont'd)

14

Example

13

Example

Example

Example

Example

Example

21

Example

Example

Example

Example

Example

Example

Example

33

Example

Example

Example

Example

Loop Tree

- Given a Control Flow Graph (CFG) of a program, with node being basic blocks and edges control flow dependencies
- Problem in Data Flow Analysis: find a traversal order of the nodes corresponding to the execution order of the basic blocks

• Solution: compute a loop tree.

CFG

Loop Tree Computation of CFG = (V, E)

Create a root node r

Call LoopTree(CFG, r)

LoopTree(G,n):

$$\begin{split} C &= \{C_1 \dots C_k\} = \operatorname{SCC}(G) \\ G' &= (C, E') \text{ with } (C_i, C_j) \in E' \text{ iff } (v_i, v_j) \in E \land v_i \in C_i \land v_j \in C_j \\ \text{For all nodes } C_i \text{ in topologic order of nodes in } G' \\ \text{If } |C_i| &= 1 \text{ (single node SCC) add } v_i \in C_i \text{ as } i\text{-th child of } n \\ \text{Otherwise} \\ \text{Create a new root node } r_i, \\ \text{add } r_i \text{ as } i\text{-th child of } n \\ G_i &= (C_i, E_i) \text{ with } (u, v) \in E_i \text{ iff } (u, v) \in E \\ \text{Remove a single back-edge from } G_i \\ \text{Recursively call LoopTree}(G_i, r_i) \end{split}$$

Assignment 4: Improving LoopTree

- Improve the LoopTree algorithm and all parts of the grail package upon which it depends.
 - Graphs with a large depth results in stack-overflow exception due to the usage of recursive algorithms (e.g. depth-first and scc). Your task is to re-implement all those algorithms without using recursion.
 - We can detect very poor performance when applying the loop tree algorithm on larger graphs. Your task is to identify (and repair) the bottlenecks causing this poor performance.
 - The result of this assignment is:
 - 1. An updated version of the Grail package
 - 2. A test program that verifies the changes.
 - 3. A written documentation of all your changes in the graph package with a brief motivation.

49