
1

1

Course Structure
1. Introduction

Goal, Overview, Motivation, Notions,
Lab 1: Set implementation

2. Testing
3. O-Calculus
4. Measurements
5. Profiling
6. Application profiles
7. Graphs / grail
8. Competition results I
9. Grail results
10. Competition results II

2

Motivation

Concluding practical example:
Find/remove performance bugs in a larger
application (graph library grail)
Use analytical and measuring techniques

As side effects
Refresh some algorithms
Become aware of the grail graph library for
reuse in own projects

3

Graphs

Directed graph:
Let V be a non-empty set and let E: V × V be a
binary relation. The pair G = (V, E) is then called a
directed graph, where V is the set of vertices (or
nodes) and E is the set of edges (or arcs).

Undirected graph:
A graph G = (N, E) is an undirected graph iff it holds
(v1, v2) ∈ E ⇒ (v2, v1) ∈ E.

We can attach labels to nodes and arcs.

4

Loops, Paths, and Cycles
Let (u, v) be an arc in a directed graph. If u = v then the arc
(u, v) is called a loop.
A path in a graph G = (V, E) is a list of nodes (v1, … vn) such
that: ∀i = 1..n-1: (vi, vi+1) ∈ E. The length of the path is n-1.
A path in a graph that begins and ends at the same node is
called a cycle. The length of the cycle is the length of the
path. A cycle is simple if the only node that appears twice in
the path is the first node.

Example:

1

2

3

4

Cyclic graphs, DAGs, Trees
A graph is cyclic if it has at
least one cycle. A graph
that is not cyclic is called
acyclic.

A directed acyclic graph is
called a DAG.

A DAG is called a tree if ∃ n
∈ V (the root of the tree)
such that for each node n’
there is a unique path from
n to n’.

5

1

2

3
4

5

1

2

3
4

5

2

1

3 4

6 6

Topological Order

A topological order of a DAG G is an order of
all the nodes in G such that for each arc (u, v)
of G the source node u precedes the target
node v in that order

2

7

Strongly Connected Components

Let n and n’ be two nodes of a directed graph G.
Node n is reachable from node n’ iff there is a path
from n’ to n in G.
A strongly connected component of a directed
graph G = (V, E) is a set of nodes C ⊆ V such that
for every pair of nodes (u, v) ∈ C, u is reachable
from v and v is reachable from u.
Example: C = {2,3,4,5}

5

1

2

3
4

8

Depth-first search

Used in many graph algorithms, e.g. for
Computing a topological order of a DAG
Computing the strongly connected
components of a graph

9

Depth-first search
Mark all nodes unvisited.
Loop:

Choose any unvisited node s, as start node
Call DFS(s)

Until all nodes are visited

DFS(n):
Mark n visited
For all successors m, of n

If m is unvisited:
Recursively call DFS(m)

10

Classification

With respect to a given DFS of the graph G the
arcs of G can be divided in four groups:

Tree arcs: arcs (u, v) such that DFS(v) is called by
DFS(v).
Forward arcs: arcs (u, v) such that v is a proper
descendant of u but not a child of u in the tree defined
by the tree arcs.
Backward arcs: arcs (u, v) such that v is an ancestor of u
in the tree defined by the tree arcs. A loop (u, u) is a
backward arc.
Cross arcs: arcs (u, v) such that v is neither an ancestor
nor a descendant of u.

11

Example

5

1

2

3
4

5

1

2

3

4

5

1

2

3

4

5

1

2

3

4

Depth-first forest

Backward arcs Cross arcs and
forward arc

12

Strongly Connected Components
[Tarjan’s and Gabow’s Algorithm]

Idea: Each backward arc in the
DFS -forest of graph G indicates a
cycle in G. All nodes of a cycle are
strongly connected.

Example:

1

63

52

4

9

8

7G

6

3

5

9

8

7

1

2

4

DFS -
forest of
graph G

3

13

Tarjan’s and Gabow’s Algorithm

Algorithm:
scc_number := 0
mark all nodes in G as 'not visited'
for each node v in G that is not visited, do

scc(v)
end for

14

Tarjan’s and Gabow’s Algorithm (cont’d)

scc(v) :
lowlink(v) := number(v) := ++scc_number
push(v)
for all successors w of v do

if w is not visited then // v->w is a tree arc
scc(w)
lowlink(v) := min(lowlink(v), lowlink(w))

elsif number(w) < number(v) then // v->w is backwards arc
if in_stack(w) then

lowlink(v) := min(lowlink(v), number(w))
end if

end if
end for
if lowlink(v) = number(v) then // next scc found

while w := top_of_stack_node; number(w) >= number(v) do
pop(w)

end while
end if

15

Example

id
1low
1num

987654321

Stack: 1

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

16

Example

id
21low
21num

987654321

Stack: 1 4

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

17

Example

id
231low
231num

987654321

Stack: 1 4 2

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

18

Example

id
2431low
2431num

987654321

Stack: 1 4 2 3

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

4

19

Example

id
52431low
52431num

987654321

Stack: 1 4 2 3 5

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

20

Example

id
652431low
652431num

987654321

Stack: 1 4 2 3 5 7

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

21

Example

id
7652431low
7652431num

987654321

Stack: 1 4 2 3 5 7 8

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

22

Example

id
6652431low
7652431num

987654321

Stack: 1 4 2 3 5 7 8

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

23

Example

id
6652431low
7652431num

987654321

Stack: 1 4 2 3 5 7 8

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

24

Example

id
6652431low
7652431num

987654321

Stack: 1 4 2 3 5 7 8

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

5

25

Example

1id
6652431low
7652431num

987654321

Stack: 1 4 2 3 5 7

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

26

Example

11id
6652431low
7652431num

987654321

Stack: 1 4 2 3 5

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

27

Example

11id
6652431low
7652431num

987654321

Stack: 1 4 2 3 5

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

28

Example

11id
86652431low
87652431num
987654321

Stack: 1 4 2 3 5 9

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

29

Example

11id
866952431low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

30

Example

11id
866452431low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

6

31

Example

11id
866452431low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

32

Example

11id
466452431low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

33

Example

11id
466452431low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

34

Example

11id
466442431low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

35

Example

11id
466422431low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

36

Example

11id
466422231low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

7

37

Example

11id
466422221low
876952431num
987654321

Stack: 1 4 2 3 5 9 6

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

38

Example

112id
466422221low
876952431num
987654321

Stack: 1 4 2 3 5 9

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

39

Example

2112id
466422221low
876952431num
987654321

Stack: 1 4 2 3 5

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

40

Example

21122id
466422221low
876952431num
987654321

Stack: 1 4 2 3

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

41

Example

211222id
466422221low
876952431num
987654321

Stack: 1 4 2

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

42

Example

2112222id
466422221low
876952431num
987654321

Stack: 1 4

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

8

43

Example

21122422id
466422221low
876952431num
987654321

Stack: 1

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

44

Example

21122422id
466422221low
876952431num
987654321

Stack: 1

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

min

45

Example

211224223id
466422221low
876952431num
987654321

Stack:

1

63

52

4

9

8

7

6

3

5

9

8

7

1

2

4

46

Loop Tree

Given a Control Flow Graph
(CFG) of a program, with node
being basic blocks and edges
control flow dependencies
Problem in Data Flow Analysis:
find a traversal order of the nodes
corresponding to the execution
order of the basic blocks
Solution: compute a loop tree. 6

3

5

9

8

7

1

2

4

CFG

47

Loop Tree Computation of CFG=(V, E)
Create a root node r
Call LoopTree(CFG , r)

LoopTree(G,n):
C = {C1 … Ck} = SCC(G)
G’ = (C, E’) with (Ci, Cj) ∈ E’ iff (vi, vj) ∈ E ∧ vi ∈ Ci ∧ vj ∈ Cj
For all nodes Ci in topologic order of nodes in G’

If | Ci | = 1 (single node SCC) add vi ∈ Ci as i-th child of n
Otherwise

Create a new root node ri,
add ri as i-th child of n
Gi = (Ci, Ei) with (u, v) ∈ Ei iff (u, v) ∈ E
Remove a single back-edge from Gi
Recursively call LoopTree(Gi ,ri) 48

Example

6

3

5

9

8

7

1

2

4

CFG

A

1 B C

7 8E 4 2

9 63 5

Loop Tree

9

49

Assignment 4: Improving LoopTree

Improve the LoopTree algorithm and all parts of the
grail package upon which it depends.

Graphs with a large depth results in stack-overflow exception due
to the usage of recursive algorithms (e.g. depth-first and
scc). Your task is to re-implement all those algorithms without
using recursion.
We can detect very poor performance when applying the loop
tree algorithm on larger graphs. Your task is to identify (and
repair) the bottlenecks causing this poor performance.
The result of this assignment is:

1. An updated version of the Grail package
2. A test program that verifies the changes.
3. A written documentation of all your changes in the graph

package with a brief motivation.

