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Course Structure
1. Introduction 

Goal, Overview, Motivation, Notions, 
Lab 1: Set implementation

2. Testing
3. O-Calculus
4. Measurements
5. Profiling
6. Application profiles
7. Graphs / grail
8. Competition results I
9. Grail results 
10. Competition results II
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Motivation

Concluding practical example:
Find/remove performance bugs in a larger 
application (graph library grail)
Use analytical and measuring techniques

As side effects
Refresh some algorithms 
Become aware of the grail graph library for 
reuse in own projects
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Graphs

Directed graph:
Let V be a non-empty set and let E: V × V be a 
binary relation. The pair G = (V, E) is then called a 
directed graph, where V is the set of vertices (or 
nodes) and E is the set of edges (or arcs). 

Undirected graph:
A graph G = (N, E) is an undirected graph iff it holds 
(v1, v2) ∈ E ⇒ (v2, v1) ∈ E.

We can attach labels to nodes and arcs.
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Loops, Paths, and Cycles
Let (u, v) be an arc in a directed graph. If u = v then the arc 
(u, v) is called a loop.
A path in a graph G = (V, E) is a list of nodes (v1, … vn) such 
that: ∀i = 1..n-1: (vi, vi+1) ∈ E. The length of the path is n-1.
A path in a graph that begins and ends at the same node is 
called a cycle. The  length of the cycle is the length of the 
path. A cycle is simple if the only node that appears twice in 
the path is the first node.

Example:
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Cyclic graphs, DAGs, Trees
A graph is cyclic if it has at 
least one cycle. A graph 
that is not cyclic is called 
acyclic.

A directed acyclic graph is 
called a DAG.

A DAG is called a tree if ∃ n 
∈ V (the root of the tree) 
such that for each node n’
there is a unique path from 
n to n’.
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Topological Order

A topological order of a DAG G is an order of 
all the nodes in G such that for each arc (u, v)
of G the source node u precedes the target 
node v in that order
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Strongly Connected Components

Let n and n’ be two nodes of a directed graph G. 
Node n is reachable from node n’ iff there is a path 
from n’ to n in G. 
A strongly connected component of a directed 
graph G = (V, E) is a set of nodes C ⊆ V such that 
for every pair of nodes (u, v) ∈ C, u is reachable 
from v and v is reachable from u. 
Example: C = {2,3,4,5}
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Depth-first search

Used in many graph algorithms, e.g. for
Computing a topological order of a DAG
Computing the strongly connected 
components of a graph 
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Depth-first search
Mark all nodes unvisited.
Loop:

Choose any unvisited node s, as start node
Call DFS(s)

Until all nodes are visited

DFS(n):
Mark n visited
For all successors m, of n

If m is unvisited:
Recursively call DFS(m)
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Classification

With respect to a given DFS of the graph G the 
arcs of G can be divided in four groups:

Tree arcs: arcs (u, v) such that DFS(v) is called by 
DFS(v).
Forward arcs: arcs (u, v) such that v is a proper 
descendant of u but not a child of u in the tree defined 
by the tree arcs.
Backward arcs: arcs (u, v) such that v is an ancestor of u 
in the tree defined by the tree arcs. A loop (u, u) is a 
backward arc.
Cross arcs: arcs (u, v) such that v is neither an ancestor 
nor a descendant of u.
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Example
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Backward arcs Cross arcs and 
forward arc
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Strongly Connected Components
[Tarjan’s and Gabow’s Algorithm]

Idea: Each backward arc in the 
DFS -forest of graph G indicates a 
cycle in G. All nodes of a cycle are 
strongly connected.

Example:
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Tarjan’s and Gabow’s Algorithm

Algorithm:
scc_number := 0
mark all nodes in G as 'not visited'
for each node v in G that is not visited, do

scc( v )
end for
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Tarjan’s and Gabow’s Algorithm (cont’d)

scc( v ) :
lowlink(v) := number(v) := ++scc_number
push( v )
for all successors w of v do

if w is not visited then // v->w is a tree arc
scc( w )
lowlink(v) := min( lowlink(v), lowlink(w) )

elsif number(w) < number(v) then // v->w is backwards arc
if in_stack(w) then

lowlink(v) := min( lowlink(v), number(w) )
end if

end if
end for
if lowlink(v) = number(v) then // next scc found

while w := top_of_stack_node; number(w) >= number(v) do
pop(w)

end while
end if
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Example
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Loop Tree

Given a Control Flow Graph 
(CFG) of a program, with node 
being basic blocks and edges 
control flow dependencies
Problem in Data Flow Analysis: 
find a traversal order of the nodes 
corresponding to the execution 
order of the basic blocks
Solution: compute a loop tree. 6
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Loop Tree Computation of CFG=(V, E)
Create a root node r
Call LoopTree(CFG , r)

LoopTree(G,n):
C = {C1 … Ck} = SCC(G)
G’ = (C, E’) with (Ci, Cj) ∈ E’ iff (vi, vj) ∈ E ∧ vi ∈ Ci ∧ vj ∈ Cj
For all nodes Ci in topologic order of nodes in G’

If | Ci | = 1 (single node SCC) add vi ∈ Ci as i-th child of n
Otherwise

Create a new root node ri, 
add ri as i-th child of n
Gi = (Ci, Ei) with (u, v) ∈ Ei iff (u, v) ∈ E
Remove a single back-edge from Gi
Recursively call LoopTree(Gi ,ri) 48
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Assignment 4: Improving LoopTree

Improve the LoopTree algorithm and all parts of the 
grail package upon which it depends. 

Graphs with a large depth results in stack-overflow exception due 
to the usage of recursive algorithms (e.g. depth-first and
scc). Your task is to re-implement all those algorithms without 
using recursion.
We can detect very poor performance when applying the loop 
tree  algorithm on larger graphs. Your task is to identify (and 
repair) the bottlenecks causing this poor  performance.
The result of this assignment is: 

1. An updated version of the Grail package 
2. A test program that verifies the changes. 
3. A written documentation of all your changes in the graph 

package with a brief motivation.


