Course Structure

1. Introduction

Goal, Overview, Motivation, Notions, Lab 1: Set implementation
Testing
O-Calculus
Measurements
Profiling
Application profiles
Graphs / grai 1
8. Competition results I
9. Grail results
10. Competition results II

Graphs

Directed graph:

- Let V be a non-empty set and let $E: V \times V$ be a binary relation. The pair $G=(V, E)$ is then called a directed graph, where V is the set of vertices (or nodes) and E is the set of edges (or arcs).

Undirected graph:

- A graph $G=(N, E)$ is an undirected graph iff it holds $\left(v_{1}, v_{2}\right) \in E \Rightarrow\left(v_{2}, v_{1}\right) \in E$.

We can attach labels to nodes and arcs.

Cyclic graphs, DAGs, Trees

- A graph is cyclic if it has at least one cycle. A graph that is not cyclic is called acyclic.
- A directed acyclic graph is called a DAG.
- A DAG is called a tree if $\exists n$ $\in V$ (the root of the tree) such that for each node n there is a unique path from n to n '.

Motivation

- Concluding practical example:
- Find/remove performance bugs in a larger application (graph library grai 1)
- Use analytical and measuring techniques
- As side effects
- Refresh some algorithms
- Become aware of the grai 1 graph library for reuse in own projects

Loops, Paths, and Cycles

- Let (u, v) be an arc in a directed graph. If $u=v$ then the arc (u, v) is called a loop.
- A path in a graph $G=(V, E)$ is a list of nodes $\left(v_{1}, \ldots v_{n}\right)$ such that: $\forall i=1 . . n-1:\left(v_{i}, v_{i+1}\right) \in E$. The length of the path is $n-1$.
- A path in a graph that begins and ends at the same node is called a cycle. The length of the cycle is the length of the path. A cycle is simple if the only node that appears twice in the path is the first node.
- Example:

Topological Order

- A topological order of a DAG G is an order of all the nodes in G such that for each $\operatorname{arc}(u, v)$ of G the source node u precedes the target node v in that order

Strongly Connected Components

- Let n and n ' be two nodes of a directed graph G. Node n is reachable from node n ' iff there is a path from n ' to n in G.
- A strongly connected component of a directed graph $G=(V, E)$ is a set of nodes $C \subseteq V$ such that for every pair of nodes $(u, v) \in C, u$ is reachable from v and v is reachable from u.
- Example: $C=\{2,3,4,5\}$

Depth-first search

Mark all nodes unvisited.
Loop:
Choose any unvisited node s, as start node
Call DFS(s)
Until all nodes are visited
DFS(n):
Mark n visited
For all successors m, of n
If m is unvisited:
Recursively call DFS(m)

Example

Depth-first search

Used in many graph algorithms, e.g. for

- Computing a topological order of a DAG
- Computing the strongly connected components of a graph

Classification

- With respect to a given DFS of the graph G the arcs of G can be divided in four groups:
- Tree arcs: $\operatorname{arcs}(u, v)$ such that $\operatorname{DFS}(v)$ is called by DFS (v).
- Forward arcs: $\operatorname{arcs}(u, v)$ such that v is a proper descendant of u but not a child of u in the tree defined by the tree arcs.
- Backward arcs: arcs (u, v) such that v is an ancestor of u in the tree defined by the tree arcs. A loop (u, u) is a backward arc.
- Cross arcs: arcs (u, v) such that v is neither an ancestor nor a descendant of u.

Strongly Connected Components
 [Tarjan's and Gabow's Algorithm]

Idea: Each backward arc in the DFS -forest of graph G indicates a cycle in G. All nodes of a cycle are strongly connected.

Example:

G

DFS forest of graph G

Tarjan's and Gabow's Algorithm

Algorithm:

scc_number := 0
mark all nodes in G as 'not visited'
for each node v in G that is not visited, do $\operatorname{scc}(\mathrm{v})$
end for

Example

Stack: 1

Example

Stack: 142

Tarjan's and Gabow's Algorithm (cont'd)
$\operatorname{scc}(\mathrm{v})$:
lowlink(v) := number(v) := ++scc number
push(v)
for all successors w of v do
if w is not visited then $\quad / / v->w$ is a tree arc
scc(w)
lowlink(v) := min(lowlink(v), lowlink(w))
elsif number(w) < number(v) then // v->w is backwards arc
if in_stack(w) then
lowlink(v) := min(lowlink(v), number(w))
end if
$\begin{array}{r}\text { en } \\ \hline\end{array}$
if lowlink $(v)=$ number (v) then $/ /$ next scc found
while $w:=$ top_of_stack_node; number(w) >= number(v) do
pop(w)
end while
end if

Stack: 14

Example

Stack: 1423

Example

Stack: 14235

Example

Stack: 14223578

Example

Stack: 14223578

Example

Stack: 14223578

Example

Stack: $14 \begin{array}{llllll} & 4 & 5 & 7 & 8\end{array}$

Example

Stack: 142357

Example

Stack: 14235

Example

Stack: 1423596

Example

Example

Stack: 142359

Example

Stack: 14223559

Example

Stack: 1423596

Example

Stack: 1423596

Example

Stack: 1423596

Example

Stack: 1423596

Example

Stack: 14223596

Example

Stack: 1423596

Example

Stack: 14235

Example

Stack: 142

Stack: 142359

Example

Stack: 1423

Example

Stack: 14

Stack: 1

Example

Stack:

Stack: 1

Loop Tree

Loop Tree Computation of $C F G=(V, E)$
Create a root node r
Call LoopTree $(C F G, r)$
LoopTree (G, n):
$C=\left\{C_{1} \ldots C_{\mathrm{k}}\right\}=\operatorname{SCC}(G)$
$G^{\prime}=\left(C, E^{\prime}\right)$ with $\left(C_{\mathrm{i}}, C_{\mathrm{j}}\right) \in E^{\prime}$ iff $\left(v_{\mathrm{i}}, v_{\mathrm{j}}\right) \in E \wedge v_{\mathrm{i}} \in C_{\mathrm{i}} \wedge v_{\mathrm{j}} \in C_{\mathrm{j}}$
For all nodes C_{i} in topologic order of nodes in G^{\prime}
If $\left|C_{\mathrm{i}}\right|=1$ (single node SCC) add $v_{\mathrm{i}} \in C_{\mathrm{i}}$ as i-th child of n Otherwise

Create a new root node r_{i},
add r_{i} as i-th child of n
$G_{i}=\left(C_{i}, E_{i}\right)$ with $(u, v) \in E_{i}$ iff $(u, v) \in E$
Remove a single back-edge from G_{i}
Recursively call LoopTree $\left(G_{i}, r_{i}\right)$

Example

48

Assignment 4: Improving LoopTree

- Improve the LoopTree algorithm and all parts of the grai 1 package upon which it depends.
- Graphs with a large depth results in stack-overflow exception due to the usage of recursive algorithms (e.g. depth-first and scc). Your task is to re-implement all those algorithms without using recursion.
- We can detect very poor performance when applying the loop tree algorithm on larger graphs. Your task is to identify (and repair) the bottlenecks causing this poor performance.
- The result of this assignment is:

1. An updated version of the Grail package
2. A test program that verifies the changes.
3. A written documentation of all your changes in the graph package with a brief motivation
