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We consider the problem of coloring a 3-colorable graph in polynomial time using as few colors as possible. We
first present a new combinatorial algorithm using Õ(n4/11) colors. This is the first combinatorial improvement
since Blum’s Õ(n3/8) bound from FOCS’90. Like Blum’s algorithm, our new algorithm composes immediately
with recent semi-definite programming approaches, and improves the best bound for the polynomial time
algorithm for the coloring of 3-colorable graphs from O(n0.2072) colors by Chlamtac from FOCS’07 to O(n0.2049)
colors.

Next, we develop a new recursion tailored for combination with semi-definite approaches, bringing us
further down to O(n0.19996) colors.
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1. INTRODUCTION

If ever you want to illustrate the difference between what we consider hard and easy
to someone not from computer science, use the example of 2-coloring versus 3-coloring:
suppose there is too much fighting in a class, and you want to split it so that no enemies
end up in the same group. First, you try with a red and a blue group. Put someone in
the red group, and everyone he dislikes in the blue group, everyone they dislike in the
red group, and so forth. This is an easy systematic approach. Digging a bit deeper, if
something goes wrong, you have an odd cycle, and it is easy to see that if you have a
necklace with an odd number of red and blue beads, then the colors cannot alternate
perfectly. This illustrates both efficient algorithms and the concept of a witness for the
case of 2-coloring. Knowing that red and blue do not suffice, we might try introducing
green, but this 3-coloring is already beyond what we believe computers can do.

This article combines results presented in preliminary form at the 53rd Symposium on Foundations of
Computer Science, 2012 [Kawarabayashi and Thorup 2012] and at the 31st Symposium on Theoretical
Aspects of Computer Science, 2014 [Kawarabayashi and Thorup 2014].
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Formally, a k-coloring of an undirected graph assigns k colors to the vertices. The
coloring is only valid if no two adjacent vertices get the same color. The validity of
coloring is trivially checked in linear time so deciding if a graph is k-colorable is in NP.
However, recognizing 3-colorable graphs is a classic NP-hard problem. It was proved
to be NP-hard by Garey, Johnson, and Stockmeyer at STOC’74 [Garey et al. 1976], and
was the prime example of NP-hardness mentioned by Karp [1975]. In this article, we
also focus on 3-colorable graphs.

Bipartite or 2-colorable graphs are very well-understood. How about tripartite or
3-colorable graphs? How can we reason about them if we cannot recognize them? 3-
colorable graphs are obvious targets for any approach to NP-hard problems. With the
approximation approach, given a 3-colorable graph, which is a graph with an unknown
3-coloring, we try to color it in polynomial time using as few colors as possible. The
algorithm is allowed to fail or give up if the input graph was not 3-colorable. If a
coloring is produced, we can always check that it is valid even if the input graph is
not 3-colorable. This challenge has engaged many researchers. At STOC’82, Wigderson
[1983] got down to O(n1/2) colors for a graph with n vertices. Berger and Rompel
[1990] improved this to O((n/(log n))1/2). Blum [1994] came with the first polynomial
improvements, first to Õ(n2/5) colors at STOC’89, and then to Õ(n3/8) colors at FOCS’90.

The next big step from FOCS’94 was by Karger et al. [1998] using semi-definite
programming (SDP). This came in the wake of Goemans and Williamson’s seminal use
of SDP for the max-cut problem in STOC’94 [Goemans and Williamson 1995]. For a
graph with maximum degree �max, Karger et al. got down to O(�1/3

max) colors. Combining
this with Wigderson’s algorithm, they got down to O(n1/4) colors. Later in 1997, Blum
and Karger [1997] combined the SDP from Karger et al. [1998] with the Blum [1994]
algorithm, yielding an improved bound of Õ(n3/14) = Õ(n0.2142). Later improvements
on SDP have also been combined with Blum’s algorithm. At STOC’06, Arora et al.
[2006] got down to O(n0.2111) colors. The proof in Arora et al. [2006] is based on the
seminal construction of Arora et al. [2009] from STOC’04 which gives an O(

√
log n)

approximation algorithm for the sparsest cut problem. Finally, in FOCS’07, Chlamtac
[2007] got down to O(n0.2072) colors.

On the lower bound side, for general graphs, the chromatic number is inapproximable
in polynomial time within factor n1−ε for any constant ε > 0, unless coRP = NP
[Feige and Kilian 1998; Håstad 1999]. This lower bound is much higher than the
above-mentioned upper bounds for 3-colorable graphs. The lower bounds known for
the coloring of 3-colorable graphs are much weaker. We know that it is NP-hard to get
down to 4 colors [Guruswami and Khanna 2004; Khanna et al. 2000]. Recently, Dinur
et al. [2009] proved that it is hard to color 3-colorable graphs with any constant number
of colors (i.e., O(1) colors) based on a variant of the Unique Games Conjecture. Some
integrality gap results [Feige et al. 2004; Karger et al. 1998; Szegedy 1994] show that
the simple SDP relaxation has an integrality gap at least n0.157, but such a gap is not
known for SDPs using levels of Lasserre lifting [Arora et al. 2006; Arora and Ge 2011;
Chlamtac 2007].

In this article, we present the first improvement on the combinatorial side since
Blum from FOCS’90 [Blum 1994]. Our first main result is as follows.

THEOREM 1.1. There is a combinatorial (i.e., not using linear or semi-definite pro-
gramming) polynomial time algorithm to color 3-colorable graphs with Õ(n4/11) colors.

The standard combination of our new combinatorial coloring and the best SDP
[Chlamtac 2007] brings us down to O(n0.2049) colors. However, we proceed to develop
a new recursion tailored for combination with SDP approaches, bringing us further
down to O(n0.19996) colors, which is our second main result.
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THEOREM 1.2. There is a polynomial time algorithm to color 3-colorable graphs with
O(n0.19996) colors.

We note that getting down to Õ(n1/5) colors (as in the Theorem 1.2) has been consid-
ered as a natural and clean milestone for many years (see more details later). Below,
we briefly mention our techniques.

Technique. For our basic combinatorial algorithm, we reuse a lot of tools pioneered
by Blum [1994], but our overall strategy is more structural. The starting point is a
3-colorable graph G = (V, E). We will be looking for sparse cuts that we can recurse
over. When no more sparse cuts can be found (and if we are not done by other means),
we will have crystallized a non-trivial vertex set X that we guarantee is monochromatic
in every 3-coloring of G.

Next, we present a novel recursion tailored for integrating the above combinatorial
approach with SDP. To appreciate it, let us first consider the current interplay between
combinatorial and SDP approaches. So far, they have just been balanced via a degree
parameter �. Using Blum’s notion of progress, it suffices to work with graphs that
either have minimum degree � or maximum degree � (this general statement is new
to this article, but slightly less general statements are proved in Arora et al. [2006] and
Blum and Karger [1997]). High minimum degree is good for combinatorial approaches,
while low maximum degree is good for SDP approaches. The best bounds are obtained
by choosing � to balance between the best SDP and combinatorial algorithms. We note
that if a vertex has a degree below the coloring target k, then it is trivially colored after
we have colored the rest of the graph, so we can always assume minimum degree � ≥ k.

On the combinatorial side, with � as minimum degree, the coloring bounds have
followed the sequence Õ((n/�)i/(2i−1)) for i = 1, 2, 3, 4. Since � ≥ k, this yields
combinatorial colorings with Õ(ni/(3i−1)) colors. Here, i = 1 is by Wigderson in 1982
[Wigderson 1983], while i = 2 is by Blum in 1989, and i = 3 is by Blum in 1990 (both
covered by Blum [1994]). Finally, i = 4 is our new combinatorial algorithm using
Õ((n/�)4/7) = Õ(n4/11) colors. For i → ∞, the sequence approaches Õ((n/�)1/2).

With maximum degree �, the first SDP solution of Karger et al. [1998] from FOCS’94,
got O(�1/3) colors. Balancing this with yet to be found Õ((n/�)1/2) coloring, would yield
Õ(n1/5) colors, which, hence, became a natural and clean milestone.

Later, SDP approaches of Arora et al. [2006] and Chlamtac in FOCS’07 [Chlamtac
2007], respectively, have gotten down to O(�1/3−ε(n,�)) colors, where ε(n,�) > 0 is a
small value that decreases as a complicated function of �. Thanks to these develop-
ments, Chlamtac [personal communication] stated that to get below n1/5 colors, we
would “only” need to get down to around Õ((n/�)12/23) colors on the combinatorial side.
This, however, is eight steps away in the current sequence where the first four steps
have taken 20 years, each bringing in new combinatorial ideas.

Our goal is to improve the overall coloring bound in terms of n, and we will indeed
get down to o(n1/5) colors. To do so, we specifically target the connection between combi-
natorial and SDP approaches. Using our new combinatorial algorithm as a subroutine,
we present a novel recursion that gets us down to Õ((n/�)12/23) colors, but only for the
large values of � needed for an optimal combination with SDP. In combination with
Chlamtac’s SDP [Chlamtac 2007], we get a polynomial time algorithm that colors any
3-colorable graph on n vertices with O(n0.19996) colors.

We note that for smaller values of �, our new recursion does not offer any im-
provement over our new combinatorial bound Õ((n/�)4/7). Instead of adding another
independent dot, the new recursion connects the dots, improving the combinatorial
side only in the parameter range of relevance for combination with SDP.
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2. PRELIMINARIES INCLUDING INGREDIENTS FROM BLUM

To hide log n factors, we use the notation that Õ(x) ≤ x logO(1)(n), �̃(x) ≥ x/ logO(1)(n),
õ(x) ≤ x/ logω(1)(n), and ω̃(x) ≥ x logω(1)(n).

We are given a 3-colorable (simple undirected) graph G = (V, E) with n = |V | vertices.
The (unknown) 3-colorings are red, green, and blue. For a vertex v, we let N(v) denote
its set of neighbors. For a vertex set X ⊆ V , let N(X) = ⋃

v∈X N(v) be the neighborhood
of X. If Y is a vertex set, we use NY to denote neighbors in Y , so NY (v) = N(v) ∩ Y
and NY (X) = N(X) ∩ Y . We let dY (v) = |N(v) ∩ Y | and dY (X) = {dY (v) | v ∈ X}. Then,
min dY (X), max dY (X), and avg dY (X) denote the minimum, maximum, and average
degree from X to Y . Here, in our combinatorial algorithms, we shall use � as a lower
bound for all degrees in the graph.

For some color target k depending on n, we wish to find an Õ(k) coloring of G in
polynomial time. We are going to reuse several ideas and techniques from Blum’s
approach [Blum 1994]. So, let us summarize below Blum’s techniques.

Progress. Blum has a general notion of progress toward Õ(k) coloring (or progress for
short if k is understood). The basic idea is that such progress eventually leads to a full
Õ(k) coloring of a graph. Blum presents three types of progress toward Õ(k) coloring:

Type 0: Same color. Finding vertices u and v that have the same color in every 3-
coloring.

Type 1: Large independent set. Finding an independent vertex set X of size �̃(n/k).
Type 2: Small neighborhood. Finding a non-empty independent vertex set X such that

|N(X)| = Õ(k|X|).

In order to get from progress to actual coloring, we want k to be bounded by a near-
polynomial function f of the vertex number n, where near-polynomial means that f is
non-decreasing and that there are constants c, c′ > 1 such that c f (n) ≤ f (2n) ≤ c′ f (n)
for all n. As noted in Blum [1994], this includes any function of the form f (n) = nα logβ n
for constants α > 0 and β.

LEMMA 2.1 ([BLUM 1994, LEMMA 1]). Let f be near-polynomial. If we, in time polynomial
in n, can make progress toward Õ( f (n)) coloring of either Type 0, 1, or 2, on any 3-
colorable graph on n vertices, then, in time polynomial in n, we can Õ( f (n)) color any
3-colorable graph on n vertices.

We shall review the proof of Lemma 2.1 in Section 7 when we integrate the above
types of progress with progress via SDP. Until then, all progress is understood to be of
Type 0, 1, or 2.

Our general strategy now is to identify a small parameter k for which we can guaran-
tee progress. To apply Lemma 2.1 and get a coloring, we want k to be a near-polynomial
function of n. As soon as we find progress of one of the above types, we are done; so,
generally, whenever we see a condition that implies progress, we may assume that the
condition is not satisfied.

Our algorithm will focus on finding a set X, |X| > 1, that is guaranteed to be
monochromatic in every 3-coloring. This will happen, assuming that we do not get
other progress on the way. When we have the set X, we get same-color progress for any
pair of vertices in X. We shall refer to this as monochromatic progress.

Below, we review some of the basic results that we need from Blum [1994] and
Wigderson [1983], including simple proofs for completeness. First, as a trivial example
of Type 2 progress, take the neighborhood of a degree d vertex. It gives progress toward
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Õ(d) coloring. With degree lower bound �, we may, therefore, assume

k ≤ �/ loga n for any constant a. (1)

OBSERVATION 2.2. Both for the large independent set progress (Type 1) and for the
small neighborhood progress (Type 2), it suffices to find a 2-colorable set X.

PROOF. If X is 2-colorable, we can find a 2-coloring in linear time. Let X1 and X2 be
the two color classes, each being an independent set. Assume X1 is the larger set. It is
an independent set of size |X1| ≥ |X|/2 = �̃(n/k). For the small neighborhood, we note
|N(X1)|/|X1| ≤ |N(X)|/|X1| ≤ 2|N(X)|/|X| = Õ(k).

Consider a vertex v of degree d. The neighborhood of v is 2-colorable, so by Observa-
tion 2.2, we get Type 1 progress toward Õ(n/d) = Õ(n/�) coloring. Balancing with the
color bound from Statement (1) implies the Õ(

√
n) coloring from Wigderson [1983]. We

only consider near-polynomial color targets k = n�(1), so we may assume

� = n1−�(1) (2)

Much of our progress will be made via subroutines of Blum, presented below using a
common parameter

	 = n/k2. (3)

We will only consider color targets k such that

k = (n/�)1/2+�(1). (4)

Combining Equations (2) and (4), we get

� = 	n�(1). (5)

The gap between � and 	 will be the driving force behind most progress. A very useful
tool from Blum [1994] is the following multichromatic test:

LEMMA 2.3 ([BLUM 1994, COROLLARY 4]). Given a vertex set X ⊆ V of size at least
	, in polynomial time, we can either make progress toward Õ(k)-coloring of G, or else
guarantee that under every legal 3-coloring of G, the set X is multichromatic.

PROOF. Note that if X is monochromatic in some 3-coloring, then X is independent and
N(X) is 2-colored. To prove the lemma, we check that X is independent and that N(X)
is 2-colorable. If either test fails, we know that X is multichromatic in every 3-coloring.
Suppose no test fails. If |N(X)| < n/k = k	, we have a small neighborhood of the
independent set X. If |N(X)| ≥ n/k, since |N(N(X))| ≤ n, we have a small neighborhood
of the 2-colored set N(X), hence, Type 2 progress by Observation 2.2.

In fact, Blum has a stronger lemma [Blum 1994, Lemma 12] guaranteeing not only
that X is multichromatic, but that no single color is used by more than a fraction
(1 − 1/(4 log n)) of the vertices in X. This stronger version is not needed here. Using
Lemma 2.3, he proves:

LEMMA 2.4 ([BLUM 1994, THEOREM 3]). If two vertices have more then 	 common
neighbors, we can make progress toward Õ(k) coloring. Hence, we can assume that no
two vertices have more than 	 common neighbors.

PROOF. Suppose v and w have two different colors in a 3-coloring. Then, M = N(v) ∩
N(w) must be monochromatic with the third color. We apply Lemma 2.3 to M. If no
progress is made, we conclude that M is multichromatic in every 3-coloring, hence, that
v and w have the same color, and then we can make same color progress.

Journal of the ACM, Vol. 64, No. 1, Article 4, Publication date: March 2017.



4:6 K. Kawarabayashi and M. Thorup

Using this bound on joint neighborhoods, Blum proves the following lemma (which
he never states in this general quotable form):

LEMMA 2.5. If the vertices in a set Z on the average have d neighbors in U, then the
whole set Z has at least min{d/	, |Z|} d/2 distinct neighbors in U.

PROOF. If d/	 ≤ 2, the result is trivial, so d/	 ≥ 2. It suffices to prove the lemma
for |Z| ≤ d/	, for if Z is larger, we restrict our attention to the d/	 vertices with most
neighbors in U . Let the vertices in Z be ordered by decreasing degree into U . Let di be
the degree of vertex vi into U . We now study how the neighborhood of Z in U grows
as we include the vertices vi. When we add vi, we know from Lemma 2.4 that its joint
neighborhood with any (previous) vertex vh, h < i is of size at most 	. It follows that vi

adds at least di − (i − 1)	 new neighbors in U , so |N(Z) ∩ U | ≥ ∑|Z|−1
i=0 (di − (i − 1)	) >

|Z|d/2.

Two-Level Neighborhood Structure. The most complex ingredient we get from Blum
[1994] is a certain regular second neighborhood structure. Let � be the smallest degree
in the graph G.

For some �0 = �̃(�), Blum [1994, Theorems 7 and 8 and the Proof of Theorem 5]
identifies, in polynomial time, a 2-level neighborhood structure H0 = (r0, S0, T0) in G
consisting of:

—A root vertex r0. We assume r0 is colored red in any 3-coloring.
—A first neighborhood S0 ⊆ N(r0) of size at least �0.
—A second neighborhood T0 ⊆ N(S0) of size at most n/k. The sets S0 and T0 could

overlap.
—The edges between vertices in H0 are the same as those in G.
—The vertices in S0 have average degree �0 into T0.
—The degrees from T0 to S0 are all between δ0 and (1 + o(1))δ0, where δ0 ≥ �2

0 k/n.

Note that Blum [1994, Theorems 7 and 8] does not have the n/k size bound on T0.
Instead, there is a large set R of red vertices, leading to a large identifiable independent
set constituting a constant fraction of T0. If this set is of size �̃(n/k), then Blum makes
Type 1 progress toward a Õ(k) coloring as described in Blum [1994, Proof of Theorem 5],
and we are done. Assuming that this did not happen, we have the size bound n/k on
T0.

Blum seeks progress directly in the above structure, but we are going to apply a
series of pruning steps which either make progress, find a good cut recursing on one
side, or identify a monochromatic set. That is why we already now used the subscript
0 to indicate the original structure provided by Blum [1994].

3. OUR COMBINATORIAL COLORING ALGORITHM

We will use Blum’s 2-level neighborhood structure H0 = (r0, S0, T0). For our combina-
torial coloring, we will use a color target

k = �̃((n/�)4/7). (6)

Trivially, this target satisfies the constraint on k from Equation (4). We are going to
work on induced subproblems (S, T ) ⊆ (S0, T0) defined in terms of subsets S ⊆ S0 and
T ⊆ T0. The edges considered in the subproblem are exactly those between S and T in
G. This edge set is denoted E(S, T ).

With r0 red in any 3-coloring, we know that all vertices in S ⊆ S0 ⊆ N(r0) are blue
or green. We say that a vertex in T has high S-degree if its degree to S is bigger than
δ0/16 (almost a factor 16 below the minimum degree δ0 from T0 to S0), and we will
make sure that any subproblem (S, T ) considered satisfies:
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(i) We have at least 	 vertices of high S-degree in T .

We note that (ii)–(vii) will be introduced later.
Cut-or-Color. We are going to implement a subroutine cut-or-color(t, S, T ), which,

for a problem (S, T ) ⊆ (S0, T0), starts with an arbitrary high S-degree vertex t ∈ T . It
will have one of the following outcomes:

—Reporting a “sparse cut around a subproblem (X, Y ) ⊆ (S, T )” with no cut edges
between X and T \ Y and only few cut edges between Y and S \ X. The exact
definition of a sparse cut is complicated, but at this point, all we need to know is that
cut-or-color may declare a sparse cut.

—Some progress toward k-coloring. If that happens, we are done, so we typically assume
that this does not happen.

—A guarantee that if r and t have different colors in a 3-coloring C3 of G, then S is
monochromatic in C3.

Recursing Toward a Monochromatic Set. Assuming an implementation of
cut-or-color, we now describe our main recursive algorithm, monochromatic, which
takes as input a subproblem (S, T ). The pseudo-code is presented in Algorithm 1.

ALGORITHM 1: monochromatic(S, T )
let U be the set of high S-degree vertices in T ;
check that U is multichromatic in G with Lemma 2.3;
if there is a t ∈ U such thatcut-or-color(S, T , t) returns “sparse cut around (X, Y )” then

recursively call monochromatic(X, Y )
end
else

return “S is monochromatic in every 3-coloring”
end

Let U be the set of high S-degree vertices in T . By invariant (i), we have |U | ≥ 	,
so we can apply Blum’s multichromatic test from Lemma 2.3 to U in G. Assuming we
did not make progress, we know that U is multichromatic in every valid 3-coloring. We
now apply cut-or-color to each t ∈ U , stopping only if a sparse cut is found or progress
is made. If we make progress, we are done. If a sparse cut around a subproblem (X, Y )
is found, we recurse on (X, Y ).

The most interesting case is if we get neither progress nor a sparse cut.

LEMMA 3.1. If cut-or-color does not find progress or a sparse cut for any high
S-degree t ∈ U, then S is monochromatic in every 3-coloring of G.

PROOF. Consider any 3-coloring C3 of G. With Lemma 2.3, we checked that U is
multichromatic in every 3-coloring of G, including C3, so there is some t ∈ U that has
a different color than r0 in C3. With this t, cut-or-color(S, T , t) guarantees that S
is monochromatic in C3. Note that different 3-colorings may use a different t for the
guarantee, and our algorithm does not need to know which t are used.

Thus, unless other progress is made, monochromatic ends up with a set S that is
monochromatic in every 3-coloring. We note that the high-degree vertices from invari-
ant (i) imply that S has more than one vertex, so monochromatic progress can be made
with S (see Lemma 6.2 below). However, the correctness demands that we respect
invariant (i) and never apply monochromatic to a subproblem (S, T ) where T has less
than 	 high S-degree vertices (otherwise, Lemma 2.3 cannot be applied to U ). The
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proof that invariant (i) is respected will be based on a global analysis that can only be
described after all the details of our algorithm are in place.

4. IMPLEMENTING CUT-OR-COLOR

We will now implement cut-or-color(S, T , t). The pseudo-code is presented as Al-
gorithm 2. When we present and motivate our implementation of cut-or-color, we
assume an arbitrary 3-coloring C3 of G. The coloring C3 is not known to the algorithm,
and, in fact, it may not even exist. However, based on the assumption, if the algo-
rithm can prove that S is monochromatic in C3, then it can correctly declare that “S
is monochromatic in every 3-coloring where t and r0 have different colors.” Below, we
assume that r0 is red and t is green in C3. The last color is blue. The pseudo-code for
cut-or-color in Algorithm 2 shows the raw code that will be executed regardless of
what 3-colorings of G are possible.

ALGORITHM 2: cut-or-color(S, T , t)
X = NS(t); Y = NT (X);
loop

if X = S then
return “S is monochromatic in every 3-coloring where t and r0 have different colors”

end
else if there is s ∈ S \ X with |NY (s)| ≥ 	
then // X-extension

check that NY (s) is multichromatic in G with Lemma 2.3;
add s to X and NT (s) to Y

end
else if there is t′ ∈ T \ Y with |NY (NS(t′))| ≥ 	
then // Y -extension

check that NY (NS(t′)) is multichromatic in G with Lemma 2.3;
add t′ to Y

end
else // X �= S and no X- or Y -extension possible

return “sparse cut around (X, Y )”
end

The first part of cut-or-color is essentially the coloring that [Blum 1994, §5.2] uses
for dense regions. We shall describe how we bypass the limits of his approach as soon
as we have presented his part.

Let X be the neighborhood of t in S and let Y be the neighborhood of X in T . As in
Blum [1994], we note that all of X must be blue, and that no vertex in Y can be blue.
We are going to expand X ⊆ S and Y ⊆ T , preserving the following invariant:

(ii) if r0 was red and t was green in C3, then X would be all blue and Y would have no
blue.

If we end up with X = S, then invariant (ii) implies that S is monochromatic in any
3-coloring where r0 and t have different colors.

X-Extension. Now consider any vertex s ∈ S whose degree into Y is at least 	. Using
Lemma 2.3, we can check that NY (s) is multichromatic in G. Since Y ⊇ NY (s) has
no blue, we conclude that NY (s) is red and green, and, hence, that s is blue. Note,
conversely, that if s was green, then all its neighbors in Y would have to be red, and
then the multichromatic test from Lemma 2.3 would have made progress. Preserving
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invariant (ii), we now add the blue s to X and all neighbors of s in T to Y . We shall
refer to this as an X-extension.

Relation to Blum’s Algorithm. Before continuing, let us briefly relate to the al-
gorithm presented by Blum [1994]. The above X-extension is essentially the color-
ing Blum [1994, §5.2] uses for dense regions. He applies it directly to his structure
H0 = (r0, S0, T0) from Section 2 from some arbitrary t ∈ T0, which is presumed green,
that is, any color different from that of r0. The initial set X = NS0 (t) is then of size at
least δ0 ≥ �2

0k/n. By counting, he then proves that there are at least 	 vertices s ∈ S0
with degree at least 	 into Y = Nt0 (X). He performs the above X-extensions on all these
s. If none of these X-extensions make direct progress, he ends up with a set X of size
at least 	 that is all blue by invariant (ii), assuming that r0 was red and t was green.
He then applies Lemma 2.3 to X. If Lemma 2.3 does not make progress, he concludes
that X is multichromatic in all colorings, contradicting the assumption that r0 and t
had different colors. He can then make Type 0 progress, identifying r0 and t.

In order to use fewer colors than Blum [1994], our algorithm has to work for degrees
below �2

0k/n from T to S. As a result, our extended X will typically be of size below
	 and then Lemma 2.3 cannot be applied to X. In fact, as we recurse, we will get
sets S that themselves are much smaller than 	. Otherwise, we would be done with
Lemma 2.3 if S was monochromatic.

Below, we introduce Y -extensions. They are similar in spirit to X-extensions, and
would not help us if we, like Blum, worked directly with H0. The important point will
be that if we do not end up with X = S, and if neither extension is possible, then we
have identified a sparse cut that we can use for recursion. We are, thus, borrowing from
Blum’s proof [Blum 1994] in some technical details, but the overall strategy, seeking
sparse cuts for recursion to crystallize a small monochromatic set S, is entirely different
and new. Indeed, this idea is the most critical in our combinatorial proof.

Y -Extension. We now describe a Y -extension, which is similar in spirit to the X-
extension, but which will cause more trouble in the analysis. Consider a vertex t′ from
T \Y . Let X′ = NS(t′) be its neighborhood in S. Suppose |NY (X′)| ≥ 	. Using Lemma 2.3,
we check that NY (X′) is multichromatic in G. We now claim that t′ cannot be blue, for
suppose it was. Then, its neighborhood has no blue and S is only blue and green, so
X′ = NS(t′) must be all green. Then, the neighborhood of X′ has no green, but Y has
no blue, so NY (X′) must be all red, contradicting that NY (X′) is multichromatic. We
conclude that t′ is not blue. Preserving invariant (ii), we now add t′ to Y .

Closure. We are going to extend X and Y as long as possible or till X = S. Suppose
we end up with X = S. By invariant (ii), X is blue, so cut-or-color declares that S is
monochromatic in any 3-coloring where r and t have different colors.

Otherwise, we are in a situation where no X-extension nor Y -extension is possible,
and then cut-or-color will declare a sparse cut around (X, Y ). A sparse cut around
(X, Y ) is simply defined as being obtained this way. It has the following properties:

(iii) The original high S-degree vertex t has all its neighbors from S in X, that is,
NS(t) ⊆ X.

(iv) All edges from X to T go to Y , so there are no edges between X and T \ Y . To see
this, recall that when an X-extension adds s′ to X, it includes all its neighbors in
Y . The Y -extension does not change X.

(v) Each vertex s′ ∈ S \ X has |NY (s′)| < 	.
(vi) Each vertex t′ ∈ T \ Y has |NY (NS(t′))| < 	.

The most important point here is that this characterization of a sparse cut does not
depend on the assumption that t and r have different colors in some 3-coloring. It only
assumes that X and Y cannot be extended further.
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Remark on Correctness of cut-or-color. It should be noted that the correctness of
cut-or-color follows from invariant (ii), which is immediate from the construction. The
only issue that remains is to ensure that we never end up considering a subproblem
with too few high S-degree vertices for invariant (i), hence, where we cannot apply
Lemma 2.3 to ensure that the high S-degree vertices have multiple colors (hence, not
all the same color as r0).

Below we describe our recursive algorithm. The above point will be made clearer in
Lemma 6.4.

5. STARTING THE RECURSION

Before we can start our recursive algorithm, we need some slightly different degree
constraints from those provided by Blum [1994] described in Section 2:

—The vertices in S0 have average degree �0 = �̃(�) into T0.
—The degrees from T0 to S0 are all between δ0 and (1 + o(1))δ0, where δ0 ≥ �2

0 k/n.

We need some initial degree lower bounds, which are obtained simply by removing low-
degree vertices creating our first induced subproblem (S1, T1) ⊆ (S0, T0). Starting from
(S1, T1) = (S0, T0), we repeatedly remove vertices from S1 with degree to T1 below �0/4
and vertices from T1 with degree to S1 below δ0/4 until there are no such low-degree
vertices left. The process eliminates less than |S0|�0/4+|T0|δ0/4 = |E(S0, T0)|/2 edges,
so half the edges of E(S0, T0) remain in E(S1, T1). The point is that the average on the
T -side only goes down when we remove low-degree vertices from S0, and that can take
away at most 1/4 of the edges. With �1 = �0/4 and δ1 = δ0/4, we get

—The degrees from S1 to T1 are at least �1.
—The degrees from T1 to S1 are between δ1 and (1 + o(1))δ0 < 5δ1.

Note that δ1 = δ0/4 ≥ �2
0 k/(4n) = 4�2

1k/n, and that high S-degree in T can now be
restated as a degree to S above δ1/4 = δ0/16 = �2

1k/n.
Our recursion will start from (S, T ) = (S1, T1) ⊆ (S0, T0), that is, the first call to

Algorithm 1 is monochromatic(S1, T1). This completes the description of our combina-
torial coloring algorithm, which we know by the above remark is correct if invariant (i)
is satisfied by all recursive calls.

6. ANALYSIS

We are now going to analyze our recursion. We are going to show that there is a
k = �̃((n/�)4/7), as in Equation (6), such that monochromatic(S1, T1) will never consider
a recursive subproblem (S, T ) ⊆ (S1, T1), violating invariant (i) with less than 	 high
S-degree in T ; for then, monochromatic(S1, T1) must find progress toward an Õ(k)
coloring.

Preparing for a later, more elaborate algorithm in Section 9, we consider here a
general case where the starting point is any quadruple (Sj, Tj,� j, δ j) satisfying certain
pre-conditions presented below. To understand our first algorithm, it suffices to think
of the case j = 1, and we will show (S1, T1,�1, δ1) satisfies the pre-conditions.

As our first pre-condition, we want (Sj, Tj) ⊆ (S0, T0) to be a regular subproblem
satisfying:

—The degrees from Sj to Tj are at least � j .
—The degrees from Tj to Sj are between δ j and 5δ j .

In addition, we have the following two pre-conditions:

� j = �̃(�) (7)
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δ j ≥ 4� j/	. (8)

Note that Pre-condition (7) together with the color bound from Statement (1) imply

k = õ(� j). (9)

LEMMA 6.1. (S1, T1,�1, δ1) satisfies the above pre-conditions.

PROOF. From the description in Section 5, it follows immediately that (S1, T1,�1, δ1)
is regular and satisfies Pre-condition (7), which also implies Equation (9). We also have
δ1 ≥ 4�2

1k/n, and by Equation (9), �2
1k/n = ω(�1k2/n) = ω(�1/	), so Pre-condition (8)

is also satisfied.

When analyzing the general case, we do not assume k = �̃((n/�)4/7), but only the
general parameter constraints Equation (2) that � = n1−�(1) and Equation (5) that
� = 	n�(1). The latter together with Pre-condition (7) implies

	 = õ(� j). (10)

We now make the call monochromatic(Sj, Tj). For each recursive subproblem (S, T ) ⊆
(Sj, Tj) considered, we define high S-degree in T as being at least δ j/4. This agrees with
the original recursion from (S1, T1) where high degree was defined as δ0/16 = δ1/4. For
every subproblem (S, T ) ⊆ (Sj, Tj) considered, we need to make sure that invariant (i)
is satisfied with at least 	 high S-degree vertices in T .

LEMMA 6.2. Invariant (i) implies |S| > 1, so if S is monochromatic in all 3-colorings,
then monochromatic progress can be made.

PROOF. By invariant (i), we have at least one high S-degree vertex in T . It has at least
δ j/4 neighbors in S. By Pre-condition (8) and Relation (10), δ j = ω̃(1), so |S| = ω̃(1).

LEMMA 6.3. Each surviving vertex v ∈ S preserves all its neighbors from Tj in T , so
degrees from S to T remain at least � j .

PROOF. The statement follows inductively from the sparse cut invariant (iv), which
says that every vertex included in X includes all its neighbors from T in Y .

For every subproblem (S, T ) considered, we will make sure that

(vii) The average degree from T to S is at least δ j/2.

The following lemma shows our new invariant (vii) implies our old invariant (i).

LEMMA 6.4. (vii) implies (i).

PROOF. If h is the fraction of high S-degree vertices in T , the average degree in T
is at most h5δ j + (1 − h)δ j/4, which by invariant (vii) is at least δ j/2. Hence, h = �(1).
By Lemma 6.3, we have |T | ≥ � j , so we have �(� j) high S-degree vertices in T .
By Relation (10), this is much more than the 	 high S-degree vertices required for
invariant (i).

Correctness is thus satisfied as long as each subproblem considered satisfies invari-
ant (vii).

Inductively, when a recursive subproblem (S, T ) is considered, we assume that in-
variant (vii) is satisfied. Suppose a sparse cut is declared around a new subproblem
(X, Y ) ⊆ (S, T ). In the general case, we will terminate if (X, Y ) violates invariant (vii).
We will show that this implies that Y is small compared with Tj . For the specific case,
when we start from (S1, T1), we will show that Y is not small enough for a violation of
invariant (vii).
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As in Lemma 6.3, we note that the sparse cut invariant (iv) inductively implies that
each vertex in X includes all its neighbors from Tj in Y , so

min dY (X) ≥ � j . (11)

In our original problem (Sj, Tj), each vertex v ∈ Y had at least δ j edges to Sj , so we
have δ j |Y | edges from Y to Sj . Hence, invariant (vii) follows if at least half of these go
to X. To prove this, we seek a global bound on the number of edges cut by the recursion.

The following main technical lemma relates the number of new cut edges around the
subproblem (X, Y ) to the reduction |T \ Y | in the size of the T -side:

LEMMA 6.5. The number of cut edges from Y to S \ X is bounded by

|T \ Y | 40δ jn2

�2
jk4

. (12)

PROOF. First, we note that from invariant (v), we get a trivial bound of 	|S \ X| on
the number of new cut edges, but this is not strong enough for the Bound (12). Here,
using invariant (vi), we get∑

y∈Y

|NT (NS(y)) \ Y | = |{y ∈ Y, t′ ∈ T \ Y | NS(y) ∩ NS(t′) �= ∅}| =
∑

t′∈T \Y

|NY (NS(t′))|

≤ |T \ Y |	 = |T \ Y |n/k2. (13)

We will now, for any y ∈ Y , relate |NT (NS(y)) \ Y | to the number |NS(y) \ X| of edges
cut from y to S \ X. Let Z = NS(y) \ X. By invariant (iv), we have that NT (NS(y)) \ Y =
NT (Z) \ Y . Consider any vertex v ∈ Z. By Inequality (11), the degree from v to T
is at least � j . Since v �∈ X, by invariant (v), the degree from v to Y is at most 	,
and by Relation (10), 	 = o(� j). The degree from v to T \ Y is, therefore, at least
(1 − o(1))� j ≥ � j/2. This holds for every v ∈ Z. It follows from Pre-condition (8) that
|NT (Z) \ Y | ≥ min{(� j/2)/	, |Z|} � j/4. Relative to |Z|, this is

|NT (Z) \ Y |
|Z| ≥ min

{
� j/(2	)

|Z| , 1
}

� j/4.

From our original configuration (Sj, Tj), we know that all degrees from T to S are
bounded by 5δ j and this bounds the size of Z ⊆ NS(y). Therefore,

� j/(2	)
|Z| ≥ � jk2/(2n)

5δ j
= � jk2

10δ jn
.

By Pre-condition (8) δ j ≥ 4� j/	 = 4� jk2/n, so

� jk2

10δ jn
≤ 1/40 < 1.

Therefore,
|NT (Z) \ Y |

|Z| ≥ min
{

� j/(2	)
|Z| , 1

}
� j/4

≥ � jk2

10δ jn
� j/4 = �2

jk
2

40δ jn
.

Recalling Z = NS(y) \ X and NT (Z) \ Y = NT (NS(y)) \ Y , we rewrite the inequality as

|NS(y) \ X| ≤ 40δ jn
�2

jk2
|NT (NS(y)) \ Y |.
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Using Inequality (13), we now get the desired bound on the number of cut edges from
Y to S \ X: ∑

y∈Y

|NS(y) \ X| ≤ 40δ jn
�2

jk2

∑
y∈Y

|NT (NS(y)) \ Y |

≤ 40δ jn
�2

jk2
|T \ Y | n/k2 = |T \ Y | 40δ jn2

�2
jk4

.

From Lemma 6.5, it immediately follows that the total number of edges cut in the
whole recursion is at most |Tj |(40δ jn2)/(�2

jk
4). In particular, this bounds the number

of edges cut from Y , that is,

|E(Y, Sj \ X)| ≤ |Tj | 40δ jn2

�2
jk4

. (14)

We conclude:

THEOREM 6.6. Suppose

|Y | ≥ |Tj | 80n2

�2
jk4

, (15)

then the average degree from Y to X is at least δ j/2, so (S′, T ′) = (X, Y ) satisfies invari-
ants (vii) and (i).

PROOF. Each vertex from Y starts with at least δ j edges to Sj , so by Inequality (14),
the average degree to X is at least δ j/2 if

δ j |Y |/2 ≥ |Tj | 40δ jn2

�2
jk4

⇐⇒ |Y | ≥ |Tj | 80n2

�2
jk4

.

We will now consider lower bounds on |Y | implying Condition (15) of Theorem 6.6. Let
t be the high S-degree vertex we started with in T . Then, δS(t) ≥ δ j/4. By invariant (iii),
X includes the whole neighborhood NS(t) of t in S. By Pre-condition (8)

|X| ≥ δ j/4 ≥ � j/	. (16)

With Inequalities (16) and (11), Lemma 2.5 immediately implies

|Y | ≥ �2
j/(2	) = �2

jk
2/(2n). (17)

Thus, Condition (15) is satisfied if

�2
jk

2/(2n) ≥ |Tj | 80n2

�2
jk4

⇐⇒ �4
jk

6 ≥ 160 |Tj | n3. (18)

If condition (18) is satisfied, then we will never get a violation of invariants (i) and (vii).
Finally, we return to our original starting point (S1, T1,�1, δ1) from Section 5, which,

by Lemma 6.1, follows the general case. Since T1 ⊆ T0 and |T0| ≤ n/k, we get Condition
(18) satisfied if

�4
1k6 ≥ 160 (n/k)n3 ⇐⇒ k ≥ 1601/7 (n/�1)4/7.

By Pre-condition (7), we have �1 = �̃(�), so setting

k = 1601/7 (n/�1)4/7 = �̃((n/�)4/7),
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we satisfy Condition (18). This is the k from (6) that we use in our purely combinatorial
coloring algorithm, which just calls monochromatic(S1, T1). Thus, we conclude

THEOREM 6.7. If a 3-colorable graph has minimum degree �, then we can make
progress of Type 0, 1, or 2, toward Õ((n/�)4/7) coloring in polynomial time.

The corresponding result of Blum [1994] was that we could make progress toward
Õ((n/�)3/5) coloring.

Finally, we obtain the corollary below, which is the same as Theorem 1.1 from the
introduction.

COROLLARY 6.8. A 3-colorable graph on n vertices can be colored with Õ(n4/11) colors
in polynomial time.

PROOF. Since n4/11 is a near-polynomial function in n, by Lemma 2.1, it suffices
to prove progress toward Õ(n4/11) coloring. If � = Õ(n4/11), then, as argued in the
paragraph preceding Equation (1), a single low-degree vertex and its neighbors give
Type 2 progress. Otherwise, � = �̃(n4/11), and then by Theorem 6.7, we get progress
toward Õ((n/�)4/7) = Õ((n/n4/11)4/7) = �̃(n4/11) coloring.

7. INTEGRATION WITH SDP: ALL SMALL OR ALL LARGE DEGREES

In the introduction, we claimed, for any parameter �, that it suffices to consider either
low-degree graphs with all degrees below �, which is good for current semi-definite
approaches, or high-degree graphs with all degrees above �, which is good for current
combinatorial approaches. Similar, but somewhat more specialized statements have
been proved in Arora et al. [2006] and Blum and Karger [1997]. Below, we briefly
discuss the main ideas from the constructions in Arora et al. [2006] and Blum and
Karger [1997].

In Blum and Karger [1997], they combine Blum’s combinatorial algorithm [Blum
1994] with the now classic SDP algorithm of Karger et al. [1998]. They observe that to
apply the algorithm of Karger et al. [1998], we can orient the edges, and then we only
need a bound � on the out-degree. As they look for progress with Blum’s algorithm
(c.f. Section 2), whenever they encounter a vertex of degree below �, they remove it.
This ensures that they are always looking for progress in a graph with degrees above
�. Now, if half the vertices get removed, they consider instead the graph induced
by the deleted vertices. With edges oriented toward later deletions, their out-degrees
are bounded by �. Applying the algorithm of Karger et al. [1998], they get a large
independent set for Type 1 progress. We note that this sketch is far from a real proof
because Type 2 progress on the reduced high-degree graph may not translate into
Type 2 progress on the original graph.

For the SDP approach in Arora et al. [2006], they want the standard undirected
degree to be bounded, so they suggest a complimentary approach. They state that
Blum’s algorithm is good for progress as long as the average degree is high, so they run
it as long as the average degree is above �. If the average degree drops below �, they
delete all vertices of degrees bigger than 2�, leaving them a graph with at least half
as many vertices, and all degrees below 2�. Now they can apply their SDP approach.

As described above, Blum and Karger [1997] tailor the small-degree graph for Karger
et al. [1998], exploiting the fact that a small out-degree suffices, and Arora et al. [2006]
tailor the high-degree graph for Blum [1994], exploiting the fact that a high average
degree suffices. Our reduction makes a clean split between low- and high-degree graphs:
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PROPOSITION 7.1. Let f and d be near-polynomial functions and assume d(n/2) =
(1/2 + �(1))d(n). Suppose that in time polynomial in n, we can make progress toward
Õ( f (n)) coloring of Type 0, 1, or 2 on any graph from the following two classes:

—3-colorable “large-degree” graphs on n vertices with minimum degree ≥ d(n).
—3-colorable “small-degree” graphs on n vertices with maximum degree ≤ d(n).

Then, in time polynomial in n, we find an Õ( f (n))-coloring of any 3-colorable graph.

Generally, the idea is to use combinatorial algorithms to find progress with the large
degrees in Proposition 7.1 and SDP algorithms to find progress with the small degrees.
The rest of this section is devoted to the proof of Proposition 7.1. The basic idea is the
same as Blum and Karger [1997]. As we look for progress toward coloring, whenever
we meet a vertex v of degree below d(n), we move it to a small-degree graph H. This
includes all edges from v to vertices already in H. Nevertheless, the average degree in
H remains bounded by 2d(n).

Our next step is simply to apply the following lemma twice.

LEMMA 7.2. Consider a graph on n vertices with average degree d. Repeatedly delete
a highest-degree vertex until n/2 + 1 vertices remain. The resulting induced subgraph
has maximum degree at most d and average degree at most d/2.

PROOF. Concerning the maximum degree, when we start, the sum of degrees is nd.
For a contradiction, if a vertex of degree d remains, then all vertices removed had
degree at least d, and when we remove such a vertex, the degree sum is reduced by 2d.
The remaining degree d vertex implies that the degree sum is at least 2d, so we have
removed at most n/2 − 1 vertices.

Concerning the average degree, we exploit the fact that each vertex removed has
degree no less than the average. The first vertex, thus, has degree at least d. Removing
it reduces the average degree of the remaining n−1 vertices to at most d(1−1/(n−1)) =
d(n − 2)/(n − 1). Inductively, when x vertices have been removed, we are down to an
average degree of at most d(n− x − 1)/(n− 1), which is at most d/2 for x ≥ n/2 − 1.

This does not, however, suffice for the full generality of Proposition 7.1. Currently,
Blum and Karger [1997] assume that SDP is applied to the small-degree graph, yielding
a large independent set for Type 1 progress. However, in Proposition 7.1, we allow
arbitrary progress on both the small and the large-degree graph. The non-obvious
issue here is Type 2 progress based on a small neighborhood; for if we find such a
small neighborhood in one of these induced subgraphs, then it may not correspond to
a small neighborhood in the original graph. Therefore, we cannot apply Lemma 2.1 as
a black box. To prove Proposition 7.1, we need to study the inner workings of the proof
of Lemma 2.1.

Lemma 2.1 states that if we in time polynomial in n can make progress toward
Õ( f (n)) coloring of either Type 0, 1, or 2 on any 3-colorable graph on n vertices, then in
time polynomial in n, we can Õ( f (n)) color any 3-colorable graph on n vertices.

The simplest case is the same color progress of Type 0 with two vertices u and v that
have the same color in all 3-colorings of G. We can then identify u and v in a new vertex
w, removing u and v from the graph. Any edges that ended in u or v now end in w.
The 3-colorings of G and the new graph G′ are isomorphic, so G′ is still 3-colorable, and
when we have colored G′, we color G, transferring the color of w to u and v. Working
with G′ is an advantage because f (n) is non-decreasing in n.

When looking for other types of progress, we will be working with decreasing induced
subgraphs of G. We note that if u and v have some color in all 3-colorings of a subgraph
of G, then they must also have the same color in all 3-colorings of G, so Type 0 can be
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made on G. When this happens, we simply abandon any other progress we might be
aiming for. Type 0 progress can happen at most n times, so this strategy cannot violate
polynomial time. The fact that we do a complete restart with Type 0 progress means that
we do not have to mix the Type 0 identification of vertices with other types of progress.

The other simple type of progress is Type 1 progress with an independent set X of size
�̃(n/ f (n)). The set X gets its own color (unless we find Type 0 progress and restart), and
then we recurse on G\ X using Õ( f (n−|X|)) other colors. Because f is near-polynomial,
we end up with at most Õ( f (n)) colors by Lemma 2.1. Note that if an independent set
X is found in an induced subgraph, then it is also independent in the original graph.

We would now be done if all the progress was of Type 0 or 1, and in fact, it is, for all
other progress will lead to Type 1 progress with a large independent set. This includes
both Type 2 progress with a small neighborhood and progress with SDP. However, we
can no longer just study each type of progress on its own, for we will work iteratively,
switching between different types of progress. To get the right interaction, we define
it as a game played on a decreasing induced subgraph G′ = (V ′, E′), n′ = |V ′| of a
3-colorable graph G = (V, E), n = |V |. We start with G′ = G, and while we play, G′ will
always have at least n/2 vertices. Because G′ is induced, an independent set of G′ is
also independent in G.

We have a constant number of players i = 1, . . . , � = O(1) that may make progress
on G′. Each player i starts with an empty vertex set Vi. When player i makes progress,
he removes some vertices from G′ and places them in his set Vi. The game stops when
less than n/2 vertices remain. The conditional guarantee of player i is that if he ends
up with ni = |Vi| ≥ n/(2�) = �(n) vertices, then he can find an independent set Ii of size
�̃(n/ f (n)) in the subgraph G|Vi of G induced by Vi.

When we play, we always need someone to make progress on G′, as long as it has
n′ ≥ n/2 vertices. When done, the players all together removed more than n/2 vertices,
so some player i ends up with ni ≥ n/(2�) = �(n) vertices. The condition of player i
is satisfied so his independent set Ii is of size �̃(n/ f (n)). This is the desired Type 1
progress for G.

We will now first play the game with a Player 1 and 2 using progress on G′ of Type 1
and 2, respectively. If we find Type 0 progress on G′, we restart as described above, so
we may assume this does not happen.

Player 1 looks directly for a Type 1 progress on G′, that is, an independent set X
of size �̃(n′/ f (n′)) = �̃(n/ f (n)). If he finds it, he just deletes the rest of the vertices,
terminating the game with I1 = X and V1 = V ′.

More interestingly, we have a Player 2 looking for Type 2 progress on G′ with a small
neighborhood. Player 2 claims progress when he finds a non-empty independent vertex
set X such that |N(X)| = Õ( f (n′)|X|) = Õ( f (n)|X|). He adds X to his independent set Ii
and removes X∪ N(X) from the graph, adding them to his set Vi. Because all neighbors
of X are removed, the successive independent sets he gets are all independent of each
other, so I2 remains independent with |V2| = Õ( f (n)|I2|). Thus, if Player 2 ends up with
|V2| = �(n), then |I2| = �̃(n/ f (n)), as promised.

This completes our review of the proof of Lemma 2.1 from Blum [1994], based on
progress of Type 0, 1, and 2. However, we are free to add more players i = 3, 4, .., � =
O(1) to the game, as long as player i guarantees that if he ends up with ni = |Vi| = �(n)
vertices, then he can find an independent set Ii of size �̃(n/ f (n)) in G|Vi.

Now, as in Blum and Karger [1997], we introduce Player 3 with a parameter �
looking for the following type of progress.

Type 3: Small degree. Finding a vertex of degree at most � = d(n), where n is the
number of vertices in the initial graph G. When Player 3 finds such a vertex of
degree at most �, he removes it from G′ and places it in his set V3.
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We now have a complete game in the sense that for any subgraph G′ of G considered,
there will always be one of our players that can make progress. The point is that if
Player 3 cannot make progress, then all degrees are above � = d(n) ≥ d(n′). We are
then in the high-degree case of Proposition 7.1, where progress of Type 0, 1, or 2 is
assumed possible.

To complete the proof of Proposition 7.1, we need to show that if Player 3 “wins” with
n3 = �(n) vertices, then, either we can make Type 0 progress, identify vertices, or we
can find an independent set I3 of size �̃(n/ f (n)) in G3 = G|V3.

First we argue that the average degree in G3 is bounded by 2�. To see this, note that
when a vertex v is added to V3, it has at most � edges to vertices w currently outside
V3. If such a w is later added to V3, the edge (v,w) is included in G|V3. This is the only
way edges can end in G3 = G|V3, so we end up with at most |V3|� edges, hence, with
an average degree of at most 2�.

We now apply Lemma 7.2 repeatedly to G3 until we get an induced subgraph G∗
with n∗ vertices such that the maximum degree is at most d(n∗/2). The condition
d(n/2) = (1/2 + �(1))d(n) from Proposition 7.1 implies that a constant number of
applications suffice and that we end up with n∗ = �(n) vertices.

We now start a new game on G∗, but looking only for progress of Type 0, 1, and 2,
that is, Player 3 is no longer involved. We only play on induced subgraphs G′ of G∗ with
n′ ≥ n∗/2 vertices. The maximal degree, therefore, remains bounded by d(n∗/2) ≤ d(n′),
so we will always be in the low-degree case of Proposition 7.1 where progress of Type 0,
1, or 2 is assumed possible. This is the case we analyzed before introducing Player 3,
the difference being that progress is always possible. Either we get progress of Type 0,
and then we are done by identification of two vertices, or we continue with progress of
Type 1 or 2, until we have a winner providing us with an independent set I of G∗ of size
�̃(n∗/ f (n∗)) = �̃(n/ f (n)). Then, I is also an independent set in G3, so this completes the
proof of Proposition 7.1.

8. CHLAMTAC’S SDP

Contrasting the combinatorial approaches that benefit from a large minimum degree
(c.f. Theorem 6.7), SDP coloring of 3-colorable graphs works best for graphs of low
maximum degree bound �max. The original result of Karger et al. [1998] was that
we, in polynomial time, can find an independent set of size �̃(n/�

1/3
max), and, hence,

make Type 1 progress toward an Õ(�1/3
max) coloring. The bound has been improved

[Arora et al. 2006; Chlamtac 2007] to O(�1/3−ε(n,�max)), where ε(n,�) > 0 is a small
value that decreases as a complicated function of �. The strongest current bounds are
due to the work of Chlamtac [2007, Theorem 15]. In Chlamtac [2007, Corollary 16]
the author provided an instantiation of Theorem 15 from his work in 2007 Chlamtac
[2007, Theorem 15], which was optimized for combination with Blum [1994] coloring.
Chlamtac [personal communication] has provided us a corresponding instantiation of
Chlamtac [2007, Theorem 15], optimized for combination with our Theorem 6.7:

THEOREM 8.1. For any τ > 6
11 , there is a c > 0 such that there is a polynomial time

algorithm that for any 3-colorable graph G with n vertices, all degrees below � = nτ find
an independent set of size �̃(n/�1/(3+3c)). Hence, we can make Type 2 progress toward
an Õ(�1/(3+3c)) = Õ(nτ/(3+3c))-coloring.

The requirement on τ and c is that c < 1/2 and λc,τ (α) = 7/3 + c + α2/(1 − α2) − (1 +
c)/τ − (

√
(1 + α)/2 +

√
c(1 − α)/2)2 is positive for all α ∈ [0, c

1+c ].

PROOF BY TRANSLATION FROM CHLAMTAC [2007]. Chlamtac [personal communica-
tion] helped us interpreting his Theorem 15 in Chlamtac [2007]. To see how our
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Theorem 8.1 follows, we need to make reference to Theorem 15 with surrounding
texts and definitions in Chlamtac [2007]. First, we note that Chlamtac [2007] wants
the above requirements to be satisfied by some c(τ ) > c. It is, however, easy to see that
if the constants τ and c satisfy the above requirements, then the requirements are also
satisfied with a slightly larger constant c′ > c. Also, Chlamtac [2007, Definition 14]
defines the c-inefficiency of a parameter r (which looks a bit like τ but plays an entirely
different role). We pick r to be exactly c-inefficient if the maximal degree is exactly
� = �nτ �. Then, as described in the paragraph above Theorem 15 in Chlamtac [2007],
we get N(r) = �̃(�1/(3+3c)) and an independent set of size �(N(r)n) = �̃(n/�1/(3+3c)) as
stated in Theorem 8.1 above.

Using Mat-lab R© to check the conditions in Theorem 8.1, we get the following concrete
bounds:

COROLLARY 8.2. For any 3-colorable graph G on n vertices,

(i) if all degrees are below �max = O(n0.6415), then in polynomial time, we can find an
independent set of size �(n0.7951), and hence, make Type 1 progress toward Õ(n0.2049)
coloring. Here, Õ(n0.2049) is (slightly) bigger than (n/�max)4/7.

(ii) if all degrees are below O(n0.61673832), then in polynomial time, we can find an inde-
pendent set of size �(n0.80004), and hence, make Type 1 progress toward Õ(n0.19996)
coloring. Here, Õ(n0.19996) is bigger than (n/�max)13/25.

(iii) if all degrees are below O(n0.600309), then in polynomial time, we can find an inde-
pendent set of size �(n0.80015), and hence, make Type 1 progress toward Õ(n0.19985)
coloring. Here, Õ(n0.19985) is (slightly) bigger than (n/�max)1/2.

Combining Corollary 8.2(i) with Proposition 7.1, Theorem 6.7, and Lemma 2.1, we
immediately get the following corollary:

COROLLARY 8.3. We can color any 3-colorable graph G on n vertices in polynomial time
using Õ(n0.2049) colors.

We are going to use Corollary 8.2 (ii) in the next section in conjunction with a new
combinatorial recursion tailored for combination with SDP so as to get down below n1/5

colors.

9. A NEW RECURSION FOR HIGH-DEGREE GRAPHS

We will now present a combinatorial recursion tailored for the high-degree graphs we
get by combination with SDP. Complementing Corollary 8.2(ii), we set the color target
k and the minimum degree bound � as follows.

k = n0.19996 and � = n0.61673832 (19)

We note that (n/�)13/25 < k < (n/�)12/23. With such a small value of k in the call
monochromatic(S1, T1) (Algorithm 1), we can no longer guarantee that the average
degree from Y to X remains above δ1/2 as required for invariant (vii).

To preserve the correctness, we simply stop our recursive Algorithm 1 if we get to
a subproblem (X, Y ) where the average degree from Y to X is less than δ1/2. Inside
(X, Y ), we find a new regular subproblem (S2, T2) where degrees are between δ2 and
5δ2 for some δ2. Again, we apply Algorithm 1 until the average drops below δ2/2. We
continue this new outer loop, generating a sequence of regular subproblems (S1, T1) ⊃
(S2, T2) ⊃ (S3, T3) ⊃ · · · , until we somehow end up either making progress, or some
error event happens. In combination with SDP, our analysis will show that this outer
loop can be used to give error-free progress toward Õ(n0.19996) coloring.
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The regularization is described in Algorithm 3, and it is, in itself, fairly standard.
Blum [1994] used several similar regularizations.

ALGORITHM 3: regularize(S, T )

Let d� = (4/3)�;
Partition the vertices of T into sets U� = {v ∈ T | dS(v) ∈ [d�, d�+1)};
Subject to d� ≥ avg dS(T )/2 let � maximize |E(U�, S)|;
δ r ← d�/3; �r ← avg dU�

(S)/3;
Repeatedly remove vertices v ∈ S with dU�

(v) ≤ � r and w ∈ U� with dS(w) ≤ δ r ;
Sr ← S; T r ← U�;
return (Sr, T r,� r, δ r)

LEMMA 9.1. When regularize(S, T ) in Algorithm 3 returns (Sr, T r,� r, δ r), then
�r ≥ avg dT (S)/(30 lg n) and δ r ≥ avg dS(T )/8. The sets Sr and T r are both non-empty.
The degrees from Sr to T r are at least � r and the degrees from T r to Sr are between δ r

and 5δ r.

PROOF. Below S and U� refers to the sets before vertices are removed. We have Sr

and T r denoting the sets after the vertices have been removed.
To prove �r ≥ avg dT (S)/(30 lg n), we first note that the sets U� with d� < avg dS(T )/2

only contain vertices of degrees below (4/3)avg dS(T )/2 = (2/3)avg dS(T ), so at least
1/3 of the edges from E(S, T ) leave vertices from sets U� satisfying the condi-
tion d� ≥ avg dS(T )/2. There are only log4/3 n < (5/2) lg n possible values of �, and
subject to the condition, we picked � maximizing E(S,U�). Therefore, |E(S,U�)| >
(1/3)|E(S, T )|/((5/2) lg n) = (2/15)|E(S, T )|/ lg n. It follows that �r ≥ avg dU�

(S)/4 >
avg dT (S)/(30 lg n).

The only other slightly non-trivial statement is that the sets Sr and T r do not end
up empty. When we remove vertices from S, we remove at most |S|avg dU�

(S)/3 ≤
|E(S,U�)|/3 edges, and likewise for the vertices removed from U�, so these removals
take away at most two-thirds the edges. It follows that some edges remain, and hence,
that Sr, T r �= ∅.

Our new coloring is described in Algorithm 4. Except for the possible regularization,
each round j is an iterative version of the recursive Algorithm 1. Moreover, we have
made it self-checking in the sense that we report an error if the set U of high-degree
vertices is too small for invariant (i) (“Error B” below). Also, we report an error if the
set S is too small for monochromatic progress, which requires at least two same-color
vertices (“Error A” below). With k = �((n/�)4/7), our previous analysis shows that we
never get an error and that we never get |E(S, T )| ≤ δ1|T |/2, so the regularization
never happens.

The outer loop in Algorithm 4 continues until it either makes an error or makes
progress. The progress can either be explicit with a monochromatic set, or it can happen
implicitly as part of the multichromatic test from Lemma 2.3. Ensuring that we make
progress and no errors happen will require a very careful choice of parameters, and we
will only gain over our combinatorial result (i.e., Theorem 1.1) when large minimum
degree vertices are guaranteed from SDP as in Equation (19).

10. ANALYSIS OF OUTER LOOP

In this section, we will identity parameter settings for which our recursive Algorithm 4
will not make errors. Therefore, it will eventually make progress toward the desired
coloring.
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ALGORITHM 4: Seeking Progress Toward Õ(k) Coloring
let (S1, T1, �1, δ1) be the initial two-level structure from Section 2;
for j ← 1, 2, . . . do // outer loop, round j

(S, T ) ← (Sj, Tj);
repeat // iterative version of recursive monochromatic(Sj, Tj)

if |S| ≤ 1 then return “Error A”;
U ← {v ∈ T | dS(v) ≥ δ j/4};
if |U | < 	 then return “Error B”;
check U multichromatic with Lemma 2.3; // if not, progress was found and we are
done
if ∃t ∈ U such that cut-or-color(S, T , t) returns “sparse cut around (X, Y )” then

(S, T ) ← (X, Y )
end
else return “S is monochromatic in every 3-coloring, so monochromatic progress found”

until |E(S, T )| < δ j |T |/2;
(Sj+1, Tj+1, � j+1, δ j+1) = regularize(S, T );

end

THEOREM 10.1. Consider a 3-colorable graph on n vertices with all degrees above �

where � = n1−�(1). Suppose for some integer c = O(1) that

k = ω̃
(
(n/�)

2c+2
4c+3

)
, (20)

and for all j = 1, . . . , c − 1,

(�/k)(�k/n) j(�k2/n) j( j+1) = � j2+2 j+1k2 j2+3 j−1/n j2+2 j = ω̃(1). (21)

Then, Algorithm 4 will make progress toward an Õ(k) coloring no later than round c.

If we did not have the j-bound Condition (21), we would just make c very large, with
the bound in Condition (20) converging to (n/�)1/2.

The j-bound Condition (21) is rather unattractive, but we need it to make sure that
no errors are made when c > 1. As an example, our previous bound k = Õ((n/�)4/7)
from Theorem 6.7 corresponds to the case c = 1 in Condition (20). To improve this
bound, we need c > 1. In particular, we need to satisfy Condition (21) for j = 1, which
becomes �4k4/n3 = ω̃(1). Now, k ≤ (n/�)4/7 implies �4(n/�)4/7·4/n3 = �12/7/n5/7 =
ω̃(1) ⇐⇒ � = ω̃(n5/12). Thus, we can only make improvements over Theorem 6.7
if we restrict ourselves to sufficiently high-degree vertices, e.g., relying on SDP for
lower-degree vertices.

PROOF OF THEOREM 10.1. First, we note that the parameters in Theorem 10.1 satisfy
the general parameter constraints of Equation (2) that � = n1−�(1) and Equation (5)
that � = 	n�(1).

We now consider round j = O(1), satisfying the Pre-conditions (7) and (8). We know
from Lemma 6.1 that round j = 1 satisfies the pre-conditions. Inductively, for j > 1,
we assume that all the previous rounds satisfied the pre-conditions, made no errors,
and ended up regularizing.

Based on our previous analysis, it is easy to see that round j does not make errors;
for Lemma 6.4 states that we cannot violate invariant (i) unless the average degree
from T to S has dropped below δ j/2, but this is when round j got stopped. Error B is
the violation of invariant (i), so Error B cannot happen. Also, by Lemma 6.2, invariant
(i) implies that |S| > 1, so Error A cannot happen either.
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Since no errors happen, we make progress in round j unless we regularize. The
challenge is to show that if we regularize, then j < c and then the pre-conditions will
be satisfied for round j + 1. Thus, assume that we end up regularizing in round j. Let
Xj and Yj denote the last values of X and Y . Then,

(Sj+1, Tj+1,� j+1, δ j+1) = regularize(Xj, Yj).

By Lemma 9.1, this quadruple is regular. We need to show that it satisfies Pre-condition
(7) that � j+1 = �̃(�) and Pre-condition (8) that δ j+1 ≥ 4� j+1/	. To do so, we derive
inductive bounds on � j+1, |Tj+1|, and δ j+1. From Inequality (11) and Lemma 9.1, with
(S, T ) = (Xj, Yj), we get

� j+1 ≥ avg dYj (Xj)/(30 lg n) ≥ � j/(30 lg n)

≥ �1/(30 lg n) j = �̃(�). (22)

In particular, we conclude that Pre-condition (7) is satisfied for round j + 1.
Round j terminates with (Xj, Yj) because the average degree from Yj to Xj is below

δ j/2. Hence, it follows from Theorem 6.6 that |Yj | ≤ |Tj |(80n2)/(�2
jk

4). Since Tj+1 ⊆ Yj ,
we get

|Tj+1| ≤ |Yj | ≤ |Tj |(80n2)/(�2
jk

4)

= Õ(|Tj |n2/(�2k4))

= Õ

(
|T1|

(
n2

�2k4

) j)

= Õ

(
(n/k)

(
n2

�2k4

) j)
. (23)

From Inequality (17), we know that any Y considered is of size at least �2
j/(2	) =

�̃(�2/	) = �̃(�2k2/n), so we must have

�2k2/n = Õ

(
(n/k)

(
n2

�2k4

) j)
⇐⇒ k = Õ

(
(n/�)

2 j+2
4 j+3

)
.

By our choice of k in Condition (20), j < c.
Our last challenge is to make sure that Pre-condition (8) is satisfied with δ j+1 ≥

4� j/	 = �̃(�k2/n). Applying Inequality (11) for the first inequality below, and In-
equality (16), Relation (22), and Relation (23) for the second, we get

avg dXj (Yj) ≥ � j |Xj |/|Yj |

= �̃(�)(δ j/4)/Õ

(
(n/k)

(
n2

�2k4

) j)
.

= �̃

(
�δ j(k/n)

(
�2k4

n2

) j)
.
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By Lemma 9.1, δ j+1 ≥ avg dXj (Yj)/8, so δ j+1 = δ j �̃((�k/n)(�2k4

n2 ) j). Since j = O(1), it
follows inductively that

δ j+1 = �̃

(
δ1(�k/n) j

(
�2k4

n2

) j( j+1)/2)
.

Here, 5δ1 ≥ |S1|�1/|T1| = �̃(�2k/n), so we get

δ j+1 = �̃

(
�(�k/n) j+1

(
�k2

n

) j( j+1))
By Condition (21), we have (�/k)(�k/n) j(�k2/n) j( j+1) = ω̃(1), so

δ j+1 = ω̃(�k2/n) = ω̃(�/	) > 4� j/	,

so Pre-condition (8) is indeed satisfied for round j + 1. This completes our proof of
Theorem 10.1.

Our main coloring result (Theorem 1.2) follows.

THEOREM 10.2. In polynomial time, we can color any 3-colorable n vertex graph using
Õ(n0.19996) colors.

PROOF. Combining Corollary 8.2 (ii) with Proposition 7.1, for progress toward k =
Õ(n0.19996) coloring, we may assume the minimum degree is at least � = n0.61674333, as
stated in Equation (19). Then, (n/�)14/27 < k < (n/�)12/23, so to satisfy Condition (20)
in Theorem 10.1, we set c = 6. It is easily verified that Condition (21) is satisfied for
j = 1, . . . , 5. By Theorem 10.1, we conclude that progress is made within the first c = 6
rounds.

Incidentally, with our particular values of kand �, the j-bound Condition (21) reaches
its minimum with j = 5. This implies that our bounds also hold with any larger c.

11. CONCLUDING REMARKS

We have shown that we can color any 3-colorable n vertex graph using less than n1/5

colors. Recall here that n1/5 colors could have been obtained as a simple balancing with
Proposition 7.1 between the clean O(�1/3) coloring from Karger et al. [1998] when all
degrees are below �, and a yet to be discovered O((n/�)1/2) coloring when all degrees
are above �. With the first combinatorial improvement in 23 years, we managed here
to find a clean O((n/�)4/7) coloring. To get below n1/5 colors, we made a new recursion
tailored for combination with SDP, focusing only on the large-degree vertices that
make SDP perform purely. This was then combined with the latest improvements on
the SDP side by Chlamtac [2007]. For this combination, the general bounds on either
side, that is, Theorem 8.1 and Theorem 10.1, are rather complicated, illustrating just
how delicate the combination is. It is, however, this recursion, tailored for combination
with SDP, which yields the biggest nominal improvement in the coloring bound in
17 years, illustrating that carefully targeting the combination of techniques can be
far more powerful than the development of new individual techniques: the difference
between adding dots and connecting the dots.

In some sense, this article marks the end of what we can currently hope to achieve
combinatorially. Almost all combinatorial ideas for coloring 3-colorable graphs break
down if we try to use less than (n/�)1/2 colors. Even getting down to (n/�)1/2 colors
seems quite elusive at this point, and even if we did, the improvement in terms of n
would be minimal. More precisely, in combination with Corollary 8.2 (iii), we would get
down to Õ(n0.19985) colors, as compared with our current Õ(n0.19996) colors.
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