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Optimization can be viewed as an exhaustive search, starting at some quite arbitrary place and then
climbing or descending through a very rugged landscape searching for the highest mountaintop, or
lowest valley (where altitude represents the quality of the current solution). We will consider landscapes
at least as rugged as in the picture above, taken in the Navaho Reservation’s Monument Valley (Arizona
and Utah, USA) by Norman Koren. Although the problems we consider usually offer more than two
dimensions in which to explore, they share the challenges of peaks which arise in clumps, separated by
long stretches which one must go both up and down to cross, and valleys of contorted shape, difficult
to find your way out of. Metaphors abound in this field, ranging from simulated annealing (q.v.) to
millenial floods, such that the walker flees to the mountaintops to keep his feet dry. We recommend
returning to this picture from time to time, not only for inspiration but also to ask just how the more
advanced optimization algorithms might work in this landscape.
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Preface

Our purpose in writing this book was to provide a compendium of stochastic
optimization techniques, some guides to when each is appropriate in practical
situations, and a few useful ways of thinking about optimization as a pro-
cess of search in some very rich configuration spaces. Each of us has come
to optimization, traditionally a subject studied in applied mathematics, from
a background in physics, especially the statistical physics of random mix-
tures or materials. One of us (SK) has used ideas developed in the study of
magnetic alloys to explore the optimal placement of computer circuits sub-
ject to many conflicting constraints, while at IBM Research, in Yorktown
Heights, NY. The other (JJS) while completing his studies in physics under
Prof. Ingo Morgenstern in Regensburg, Germany, and working at the IBM
Scientific Center Heidelberg, was exposed to optimization problems as varied
as scheduling the pickup of fresh milk and planning automobile assembly line
schedules. We had the opportunity to work together after SK moved from
IBM to a professorship at The Hebrew University of Jerusalem, Israel, and
JJS was, for a year, a postdoc there. JJS has taught a course on stochastic
optimization at the University of Mainz, where his students have used por-
tions of the present manuscript. We hope to make this material readable by
undergraduates, and useful to graduate students and practitioners as well, in
computer science, applied mathematics, physics, and economics.

Mainz, April 2006 Johannes Josef Schneider
Jerusalem, April 2006 Scott Kirkpatrick
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0 General Remarks

0.1 Why Optimize Things?

Why do we want to optimize things? Well, first of all, this is part of our nature:
each race has developed and optimized strategies to survive in the struggle
of life over the millions of years of evolution. Humankind, not equipped with
weapons like the poisonous fangs of a snake, the fast legs of a tiger, the strong
bite of a crocodile, or the size and strength of an elephant, has developed
a large brain in order to think of complex strategies to avoid enemies and
to obtain food. Although our animal origin is now a little bit hidden below
a civilizing layer, we still act in a resourceful way: we drive the shortest
way from work to home; we want to earn the most money with the least
effort.

This is not a book about how to make money. However, it is a book
that may bring you some other pleasure, namely, being a champion. It is
a hidden desire of all of us to be the best, at least in one discipline. There
are several avenues for becoming the best. Many people play some kind of
sport. The best meet in the Olympic games and try to win medals. Some
people derive pleasure from beating others in games such as chess. There are
also many competitions to find the best solutions to problems that must be
solved using a computer as a human being would not be able to find a good
solution manually. Examples of these are competitions to find optima for
instances of the traveling salesman problem: the traveling salesman problem
is given through a set of cities, through which the traveling salesman must
drive the shortest closed route possible, visiting each city exactly once. It has
been found that humans can solve random instances up to 50 cities optimally
by hand. With larger instances, the results are at least 10% worse than the
optimum. Therefore, a number of people have developed complex strategies
for computers working on problems like this in order to arrive at either the
true optimum or at least a very good solution to the problem in a reasonable
amount of time. One further prominent example of a successful computer
algorithm was the defeat of the world chess champion Garry Kasparov by
the IBM supercomputer Deep Blue in 1997.

The most frequent motivation for optimization is business: production
processes are improved in order to save time, resources, and human workers
and in order to increase product quality. This must be done to stay competi-
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tive with other companies in the industry. Optimization algorithms are used
in various fields of industrial processes: starting with the determination of the
requirements of material, workers, and machines, and the estimation of the
costs and the possible gain, a company owner or executive has to decide which
parts of the production processes should be outsourced to subcontractors and
suppliers. Then there is a vehicle routing problem with time windows as the
preproducts must be delivered to the factory in time. These preproducts have
to be stored and distributed inside a factory. The distribution of the workers
on individual tasks also has to be planned carefully. The main production
processes themselves have to be supervised in such a way that one is faced
with an information-gathering, filtering, and administration problem. Errors
have to be registered and corrected such that there might arise the need to
exchange information with subcontractors and customers in real time. After
that the final products have to be checked for their quality and delivered to
the customers. Finally, the prospective profit has to be estimated and dis-
tributed. There are decisions such as whether some portfolio selection shall
be made, whether the profits shall be reinvested, or whether a dividend shall
be disbursed. All these problems must not be seen as independent of one an-
other. They must be considered as parts of a complex system with long-range
interactions. This overall system can only be solved by a global optimization
technique.

0.2 Moral Aspects of Optimization

Besides the fact that the topic of optimization is satisfying and might lead to
some financial gain, the moral aspects of optimization have to be considered:
as always in science, the question arises as to whether all that can be done
should be done.

One might argue that in our world today optimization is no longer nec-
essary. We in the western world have already reached a rather high standard
of living that could be extended to the whole world if some global circum-
stances were changed. And even worse, optimization is said to eliminate jobs,
as in the process of rationalizing work formerly done by humans and now
done by machines, which forces many people into unemployment. If one has
to optimize the problem of, e. g., a dairy farm, which consists of the vehicle
routing problem to route trucks that collect the milk from individual farmers,
one is most successful if one not only considers constraints like time windows
in which the farmers would like to have the milk fetched but also saves one
or more of the trucks. However, one must also think about the driver of the
trucks, who might be unemployed after the real-life implementation of this
successful optimization result. Similarly, an optimization process might lead
to the result that some workers can be saved in the manufacturing process
or that even an expensive machine, replacing a whole working group, would
pay for itself quickly and have the added advantage that it works 24 hours
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a day without making mistakes, without getting sick, and without going on
strike and demanding more money.

However, it is not so easy. Probably the most successful social system in
the modern world is that of the market economy and capitalism. It makes use
of the fact that people want to possess more in the future than they possess at
present. Furthermore, people want to possess something more or better than
their neighbor. If a company owner or executive wants to stay competitive,
he cannot simply maintain the present state of affairs, as stagnation means
regression, because his competitors will optimize their companies for a reduc-
tion in production costs and an increase in product quality. Globalization now
leads to even greater pressure on all companies worldwide to stay competi-
tive. Therefore, if one has to write an optimization program for a company,
then it should be done as well as possible. One takes some responsibility for
the large majority of the workers, for if the company cannot compete, the
consequences could be closure and unemployment. This is even more the case
as company owners or executives clamor for optimization tools from outside
experts when they are unable to solve their problems from within.

0.3 How To Think About It

The first question to ask about any problem is whether there exists an ex-
act algorithm to generate the mathematically proved optimum solution for
a given problem in a reasonable amount of time. If this is the case, then
this exact and fast algorithm should be implemented. The calculation time
of such an algorithm is commonly estimated as a function of the problem
size N : for example, calculating the scalar product of two vectors consisting
of N elements takes 2 ×N operations (N additions and N multiplications).
Therefore, this algorithm is linear in N , and one writes that the algorithm is
of the order O(N). Another example is the matrix summation: let us assume
two matrices A and B consisting of N × N elements; then calculating one
element of A + B takes only one operation [this is of the order O(1)] such
that the calculation of all elements is of the order O(N2). Matrix multipli-
cation takes even more time: calculating one element of the product matrix
C = A × B, cij =

∑N
i=1 aikbkj , takes 2 × N operations (N multiplications

and N additions) such that the overall order of this algorithm is O(N3). The
time t such a fast and exact algorithm needs generally depends on the system
size in a way that one can estimate t ∝ Np or t ∝ Np ln(N). As the time
can therefore be estimated by some polynomial, these problems are usually
solved by use of an exact algorithm, except if the system size is very large
and p exceeds the value of 3.

However, such algorithms do not exist for every problem. Indeed, there
is no such algorithm for most of the complex problems occurring in practi-
cal applications of operations research, applied mathematics, computational
physics, chemistry, and biology.
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0.4 Minima, Maxima, and Extrema

When looking for the best solution, this means finding the extreme value of
some proposed function, depending on many variables. This function is often
called the cost function or the objective function. In physics, it is also called
the Hamiltonian of the system. As physical systems tend to reduce their en-
ergy, and thus to find the minimum value of their Hamiltonian, physicists
usually search for the minimum of a proposed cost function. In contrast,
mathematicians usually search for the maximum, perhaps because many of
them liked to climb mountains in their youth. Thus, most optimization lit-
erature in mathematics deals with finding the maximum, whereas this book,
written by physicists, mostly deals with finding the minimum.

However, it usually makes no difference whether the optimization algo-
rithm searches for a minimum or a maximum. Some problems, of course,
behave differently when searching for a maximum as opposed to a mini-
mum [181]. But usually maximizing the cost function of a problem with
a minimization algorithm can simply be done by taking the negative of the
cost function, and vice versa. Thus, in these cases one often speaks of the
optimum such that both the minimum and maximum cases are covered by
one single term.

Some algorithms that gradually improve configurations might get stuck
at some specific configuration σ and are then unable to improve the system
even further, although there are better configurations in the system. In this
case, the configuration σ is called a local optimum of the system. This local
optimum might be much worse than the overall best configuration, which is
called the global optimum of the system.

0.5 What Is So Hard About Optimization?

In this book we will introduce a number of exact and approximate algorithms
for optimization and apply them to problems, most generally to what is called
the traveling salesman problem. Since most of the methods under discussion
are heuristic, rather than exact, methods, it is important to remember that
what works for one problem may not be a viable approach to another prob-
lem. As a result, we shall try to present a set of approaches for developing
heuristics of steadily increasing power for any given problem. One hopes that
the simplest method, which requires the least detailed study of the problem
of interest, will give a result good enough for one’s immediate objectives.
Otherwise, one of the stronger methods will be needed. The particulars of
the problem, such as the cost of calculating the objective quality or utility
of each proposed solution, or the difficulty of rearranging its elements to see
if an improvement results, will determine which of a group of comparably
powerful methods should be used.
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We shall see that the really hard optimization problems are those with
many local optima of widely varying quality. It may be necessary to introduce
methods that will allow getting “unstuck” from a local optimum in order to
find another that is of much better quality. But how hard must one work to
achieve this, and how far from the quality of a given local optimum must one
explore (how high a barrier will we have to climb over?) in order to get to
something much better? Is it best to wait until one has found a reasonably
good local optimum before searching among inferior solutions for a path
to the ultimate goal, or should one from the beginning include solutions
with obvious flaws, hoping to isolate their best characteristics and ultimately
combine them into one successful solution? To answer such questions we must
first gain experience with a range of problems and a variety of methods.

0.6 Algorithms, Heuristics, Metaheuristics

In the literature on optimization, one often comes across the terms algorithms
and heuristics and sometimes even metaheuristics. But different authors use
these terms in different ways. Some authors differentiate between these terms
as follows. Algorithms are approaches that solve a problem exactly and then
return the global optimum solution of the problem. In addition, they also
provide the mathematical proof that the returned solution is optimal. On
the other hand, for these authors heuristics are approaches that only return
some configuration that might be quite good and that could even be optimal if
the applicant was lucky. But usually these heuristics cannot provide a proof
of whether the returned configuration is optimal or at least how good the
returned configuration is if compared to the optimum solution. For other
authors, generally every approach leading to either the optimum or even
any quite good solution of the given problem is called an algorithm. They
thus regard the set of heuristic algorithms to be a subset of the set of all
optimization algorithms.

Furthermore, some authors differentiate between heuristics and meta-
heuristics. For such authors metaheuristics use some heuristics for providing
good solutions to the proposed problem, which cannot usually be achieved
with the underlying heuristics alone. Some of them consider a metaheuristic
to be only a framework that needs an underlying, mostly simple, heuristic to
enable it to optimize the specific application to the proposed problem.

In this book, we will call any approach leading to a quite good or optimum
solution to a proposed problem an optimization algorithm. If the algorithm
leads always to the optimum solution of the problem and in addition provides
the proof that this solution is optimal, then we will call the algorithm an exact
algorithm; otherwise we will speak of a heuristic. Furthermore, we will not
use the term metaheuristics in this book.
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for Simple Problems

1.1 A Simple Example—
Exact Optimization in One Dimension

We are interested in finding optimal operating points of systems with many
variables and a definite cost for any operating point so that there will exist
a cost function whose value we can minimize. In order to have a clear mental
picture of the obstacles to be overcome, this discussion usually proceeds from
one degree of freedom to a few degrees, and finally to many. Although we
shall see that the problems of “many” are entirely different in nature than
those of optimizing a function of a few variables, the classical literature of
optimization contains very detailed treatments of the already difficult prob-
lems of optimizing functions of a few variables, where a “few” might be 50
or less. Simple pictures capture the essential obstacles to be overcome. Let
us start with a function of a single variable, x.

x0 x3 x1 x4 x2

co
st

Fig. 1.1. Minimizing a function of one variable

The sketch in Fig. 1.1 shows the starting point for finding a minimum. We
need to know the value of our function, H(x), at three points, x0, x1, and x2,
with the value at the middle point, x1, less than the values at x0 and x2. Even
if the only information available is the value of H(x) at selected additional
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points on the line, we can tighten up this bracket of the minimum by sampling
at points x3 between x0 and x1 and x4 between x1 and x2. Now the new
bracket is whichever sequence of three consecutive points has the middle point
lowest, in this case x0. x3, and x1. One can bisect the intervals at each step
and obtain linear convergence, that is, the error term, or difference between
the lowest value of H(x) found so far and the true minimum, will decrease by
a constant ratio with each narrowing of the bracket. Press [166], Chap. 10.1,
shows that an improvement over this scheme is obtained by tightening the
brackets using intervals whose ratio forms a golden mean (1 +

√
5)/2, but

convergence remains linear.

1.2 Newton–Raphson Method

Now suppose that it is possible and inexpensive to compute derivatives of
H(x). In this case, if we start with a value of x not too far from a minimum,
the Taylor expansion,

H(x) = H(x0) − b(x− x0) +A(x− x0)2/2 , (1.1)

allows us to estimate the location of the minimum (the point at which the
first derivative of H vanishes), at the point where

b = A(x− x0) . (1.2)

Choosing the next approximation, x1, for the location of the minimum to be

x1 = x0 + b/A (1.3)

gives a quadratically convergent series of approximations to the minimum,
in which the error in minimizing H decreases by the square of the deviation

x0 x3 x1 x4 x2

co
st

Fig. 1.2. Even functions of one variable may contain several minima
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remaining in x with each iteration, at least until roundoff and other machine
computation limitations halt further convergence. However, this scheme does
not distinguish a maximum from a minimum and may not converge if we
start too far from the minimum. And finally, what if the function, even in
this limiting case, actually looks like Fig. 1.2, with many minima? And what

a
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Δt=0.001

Fig. 1.3. (a) At each time step, the normalized gradient at the current point r(t) is
determined. Then the system moves to a new point r(t+1) = r(t)+ dr(t)/dt×Δt.
The two curves are shown for Δt = 1 and Δt = 0.001. Finally it freezes near the
origin or performs periodic jumps if Δt is chosen too large. A maximum of 10,000
time steps is used. (b) Initially, the gradient at the initial point is calculated. Then
the system moves in the direction of this gradient over several time steps, thus
reducing the energy value gradually until a deterioration occurs if the energy value
is reduced even further. At this final point, the local gradient is evaluated. Then the
system moves in the direction of this new gradient, again until some deterioration
occurs if it moves even further. This approach is repeated up to 10,000 time steps
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if the minimum we just lavished such care on reaching is not even the lowest
of them? We will return to the problem of functions with many local minima
in subsequent chapters. They are not at all rare.

These two approaches, bracketing and interpolation, extend to more di-
mensions, although bracketing is more difficult to use in higher dimensions
than interpolation. Pictures are instructive in two dimensions, so consider
the function H(x) whose contour lines are shown as Fig. 1.3.

1.3 Descent Methods in More Than One Dimension

The 1D optimization methods, bracketing and Newton’s method, are a valu-
able building block for optimization of functions in more than one dimension.
As before, the calculation of a local gradient may be easy, or relatively expen-
sive. Pictures are instructive in two dimensions, although the problems are
richer as the number of dimensions increases further. Consider minimizing
the function H(x, y) with a single minimum whose contour lines are shown
in Fig. 1.3:

H(x, y) = x2 + 4y2 . (1.4)

If evaluation of the local gradient of H is easy (as is certainly the case here,
where ∇H = 2xex + 8yey), we may find its minimum by taking many suffi-
ciently small steps, each of them in the direction of the local gradient. This
is shown in Fig. 1.3a by the solid line of steps of length Δt = 0.001: starting
out at an initial point r(0) = (4, 1.5), we continue in discrete steps according
to

r(t+ 1) = r(t) + dr
dt (t) × Δt

= r(t) + ∇H
|∇H| (t) × Δt

= r(t) + x(t)ex + 4y(t)ey√
x2(t) + 16y2(t)

× Δt .

(1.5)

While a 2D generalization of Newton’s method would require far fewer steps,
this approach requires absolutely minimal thought and programming effort,
even with functions that are more contorted than our example. But suppose
that we wish to avoid unnecessary evaluations of the gradient and as a result
took longer steps. Figure 1.3a presents an extreme example. Using steps of
length 1, we reach the vicinity of the minimum in six giant steps. Unfortu-
nately, the search then oscillates helplessly across the innermost ellipse in
the contour plot, so some more sophisticated routine must then be used to
reduce the step length, or search more finely along our path. Our desire to
speed things up has brought us back to the domain of 1D search and opti-
mization. There are a large number of algorithms for selecting a sequence of
1D searches to find minima of a higher-dimensional function. For a thorough
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review, consult Press [166], Chap. 10. We will sketch here some of the basic
ideas involved.

The immediate generalization of our downhill search to deal with func-
tions in which gradient calculations are expensive is to determine a direction
of search from one local gradient calculation and then search along that di-
rection, moving in a straight line, until a local minimum is found. Then
stop, calculate a new local gradient, and search along that line for a second
local minimum. Repeat as needed until the gradient is as close to zero as
desired. This common form of “steepest descents” is shown in the example
of Fig. 1.3b. It requires roughly seven 1D searches to reach the minimum of
H(x, y). If our function were even more anisotropic, or its valleys curved back
and forth as our search went through them in descending order, we might
find that the steepest descents involve many more crossings of the valley, and
the method can become rather inefficient. Especially in higher dimensions,
which are difficult to illustrate on 2D paper surfaces, the proliferation of 1D
search directions can be quite wasteful.

1.4 Conjugate Gradients

A reasonable strategy for enforcing efficient use of 1D search inD-dimensional
(D > 1) potentials is to require that each such search explores a previously
unexplored direction. Naturally, we can explore only D orthogonal directions
in a D-dimensional space, so we should take no more than D 1D search
steps, or try to forget about previously explored directions in some graceful
way everyD searches. In two dimensions, the gradient is perpendicular to the
direction of each 1D search when we reach a minimum, so that the right angle
turns will constantly oscillate across the narrow valley that we are searching.
In higher dimensions, the space orthogonal to a line search is much richer,
so the concept of finding a “conjugate” gradient direction that is not exactly
the local gradient becomes interesting. The trick in generating each search
direction is to ensure that, while orthogonal to previous searches, it also
points toward a reasonable estimate of the location of the minimum we are
seeking. The Newton method, assuming that the function to be minimized
is a quadratic form, is the basis for this. And since we choose our direction
orthogonal to all previous directions, the search must stop in D iterations.
The details of this approach to solving large systems of linear equations as
well as minimizing multivariate functions are given in Press et al. [166] and
in the original papers referenced therein.

This is a powerful method, but because it only works within one minimum,
and the hard part of these problems, we believe, is finding the best minimum
to work on, we will address that class of issues for the remainder of this book.



2 Exact Optimization Algorithms

for Complex Problems

For complex problems, there are some rather general exact optimization
methods guaranteed to lead to the optimum solution of the proposed prob-
lem. These will in general be appropriate only for modest-sized problems,
but they serve to calibrate and to tune the heuristic methods that are the
main subject of this book. In this chapter we shall describe several such
methods, the simplex algorithm for linear cost functions over continuous and
integer variables and the various branch & bound techniques for exhaustive,
but pruned, search. We also refer the interested reader to several texts and
articles cited for more detail.

2.1 Simplex Algorithm

The simplex algorithm is an exact method for solving linear problems of the
following kind: the state of a system can be described with an N -dimensional
vector x with real-valued components. The cost or objective function of such
a linear problem is given by

H(x) = d1x1 + d2x2 + · · · + dNxN + ϑ = d ◦ x + ϑ , (2.1)

with d ∈ IRN and ϑ ∈ IR. As usual, this objective function is to be minimized.
[With a linear function f(x) to be maximized, simply set H(x) = −f(x).]
However, some constraints must be met, usually given as inequalities. The
standard form of this algorithm demands

x ≥ 0 , (2.2)

i. e., all components of vector x are restricted in their sign: xi ≥ 0. (If there
is the constraint that xi ≥ c and c �= 0, then the variable xi can easily be
replaced by xi−c to obtain the standard form. Analogously, a variable xi ≤ c
can be replaced by −xi+c.) According to this constraint in the sign, any posi-
tive di causes costs if the corresponding xi > 0, while any negative di leads to
gains. Furthermore, the following set of linear inequalities must be fulfilled:

a11x1 + a12x2 + · · · + a1NxN ≤ b1 ,
a21x1 + a22x2 + · · · + a2NxN ≤ b2 ,

...
aM1x1 + aM2x2 + · · · + aMNxN ≤ bM .

(2.3)
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This is usually abbreviated to Ax ≤ b with A ∈ IRM×N , b ∈ IRM , and b ≥ 0.
One can also consider constraints given as equations, e. g., by rewriting them
as two inequalities, instead of the “=” sign, once “≤” and once “≥” are used.

0

1

2

3

4

5

6

0 1 2 3 4 5 6

x 2

x1

Fig. 2.1. Small example depicting an N = 2-dimensional linear optimization prob-
lem: the variables x1 and x2 must be nonnegative; furthermore the inequalities
x1 ≤ 4, x1 + x2 ≤ 6, and −x1 + x2 ≤ 1 will be fulfilled. The framed part of the
graphics shows the bounded region in which all feasible solutions lie. The cost func-
tion to be minimized shall be H(x) = −x1 − 2x2. The parallel lines that exhibit
a gradient of − 1

2
will demonstrate how this 2D problem can be solved in a geometric

way by shifting this line through the convex polytope of the feasible solutions. One
can easily imagine that the optimum solution must lie not inside this polytope but
on one of its edges, in this example at (x1, x2) = (2.5, 3.5). The simplex algorithm
starts at the edge (0, 0) in the lower left edge and jumps from edge to edge mini-
mizing the cost function value in a way that the decrease of the cost function shall
be as large as possible at each jump

In two dimensions, this problem can be solved geometrically, as demon-
strated in Fig. 2.1: one first determines the polytope, i. e., the region of feasible
solutions bounded by hyperplanes (which are straight lines in two dimensions)
given by the inequalities. This polytope is always convex. Searching for the
extreme value of the cost function, one simply shifts a straight line with the
gradient −d1/d2 through the polytope of the feasible solutions. One sees that
this objective function takes its extreme value on one edge of this polytope.
There might be the case that the cost function has the same gradient as
one of the boundary lines and that one ends up at this boundary line when
searching for the optimum. In this case, the optimum is degenerate as both
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edges of the boundary line, and therefore all points on the boundary line,
exhibit the same minimum value. The coordinates x1 and x2 of the optimum
edge can be determined by either estimating them from the graphics or by
solving the set of equations ai1x1 + ai2x2 = bi and aj1x2 + aj2x2 = bj given
by the two border lines from inequalities i and j, which cut this edge. From
the coordinates of the optimum solution the minimum objective value can
be calculated. For higher dimensions, such a graphical solution is usually
impossible. The simplex algorithm [136, 155] must be applied.

In the solution process of problems occurring in practice, one usually
starts with a preprocessing phase in which inequalities that are automatically
fulfilled by other inequalities are removed. Furthermore, given an inequality
where a variable xi ≤ 0, this variable can be set to 0 due to the further
constraint that it must be nonnegative. Thus, the cost function and the in-
equalities containing this variable can be simplified, decreasing the dimension
of the problem.

The simplex algorithm itself starts with introducing so-called slack vari-
ables xN+1, . . . , xN+M with xN+i ≥ 0 ∀ 1 ≤ i ≤ M supplemental to the
variables x1, . . . , xN . With these slack variables, the set of inequalities can
be transformed to a set of equations:

a11x1 + a12x2 + · · · + a1NxN + xN+1 = b1 ,
a21x1 + a22x2 + · · · + a2NxN + xN+2 = b2 ,

...
aM1x1 + aM2x2 + · · · + aMNxN + xN+M = bM .

(2.4)

This can also be written in the compressed form

(
A IM

)

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x1

...
xN

xN+1

...
xN+M

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

= b, (2.5)

with IM being the M ×M identity matrix.
Furthermore, an index array σ is introduced that is initialized with σ(i) =

i for all 1 ≤ i ≤ N+M . As the column vectors of the identity matrix IM form
the basis of the IRM , the corresponding new components xN+1, . . . , xN+M of
vector x are called the basis variables and the old components x1, . . . , xN are
the nonbasis variables.

Now an iterative scheme is started in which the entries of vectors d and b,
of the matrix A, of the constant ϑ, and of the index array σ are changed:

• If d ≥ 0, then the simplex algorithm has already reached the optimum
such that it can be stopped.
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(If this is already the case at the very beginning, then all di would incur
costs if the corresponding xi were larger than zero such that the point
x = 0 is the optimum solution.)
If d > 0, then the optimum is even nonambiguous.
Otherwise, usually the so-called pivot column s of the matrix A is chosen
according to

ds = min
j

{dj} < 0 . (2.6)

• Then it is checked whether all ais ≤ 0. If so, then there exists no minimum,
as the objective function is not limited to small values.

• Otherwise, the so-called pivot line r is chosen according to

br
ars

= min
{
bi
ais

∣
∣
∣ais > 0

}

. (2.7)

• The following settings are made:

(aij)new =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

aij −
aisarj
ars

if i �= r and j �= s ,

1
ars

if i = r and j = s ,

− ais
ars

if i �= r and j = s ,

arj
ars

if i = r and j �= s ,

(bi)new =

⎧
⎪⎨

⎪⎩

bi − brais
ars

if i �= r ,

br
ars

if i = r ,

(dj)new =

⎧
⎪⎪⎨

⎪⎪⎩

dj −
dsarj
ars

if j �= s ,

− ds
ars

if j = s ,

(ϑ)new = ϑ+ dsbr
ars

.

(2.8)

• Finally, the old values are replaced by the new values and σ(N + r) is
exchanged with σ(s) in order to indicate that the basis variable xσ(N+r)

has been exchanged with the nonbasis variable xσ(s).
Then the algorithm jumps back to the first step.

Ultimately, ϑ contains the optimum value. The corresponding values for
the components of x are stored in b:

xσ(i) =

{
0 if 1 ≤ i ≤ N ,

bi−N if N + 1 ≤ i ≤ N +M
. (2.9)
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The values for the slack variables determine how much space would be left ac-
cording to the corresponding inequality. Incidentally, similarly one can check
during execution of the simplex algorithm which edge of the polytope the
current solution is at.

When one searches for the maximum instead of the minimum of a linear
function d ◦ x + ϑ under the constraints x ≥ 0 and Ax ≤ b, nearly the same
algorithm can be applied. The above scheme must be changed only at the
following point:

• If d ≤ 0, then the simplex algorithm has already reached the optimum;
if d < 0, the optimum is nonambiguous. The rule (2.6) for choosing the
pivot column s is changed to

ds = max
j

{dj} > 0 . (2.10)

The simplex algorithm is constructed in such a way that it will lead as
fast as possible to the optimum value. The choice of the position of the pivot
element ars is done in such a way that the greatest of all possible improve-
ments is guaranteed. Thus, the number of steps the simplex algorithm needs
is usually reduced. However, one can construct instances in which this type of
pivoting leads to an endless cycling over two or more edges. If this happens,
the problem can be solved by selecting not the optimum pivoting indices r
and s but the minimum or maximum ones that consider the constraints of
ds < 0 and ars > 0. Furthermore, other strategies might lead to a faster
convergence to the optimum. However, the simplex algorithm in its proposed
form is optimal for most problems.

In practical applications, usually not all constraints are implemented ex-
plicitly. Typically, some important inequalities are chosen at the beginning.
The achieved solution is checked to see if it fulfills the other constraints. In-
equalities that are not fulfilled are introduced step by step. A simplex run is
performed at each step. One sometimes investigates what the minimum cost
of additional constraints is, which are nice to fulfill but not necessary.

In performing the simplex algorithm manually, it is quite useful to use
a so-called simplex tableau in which all values are written, e. g.:

σ(1) . . . σ(s) . . . σ(N)
σ(N + 1) a11 . . . a1s . . . a1N b1 b1/a1s

...
...

...
...

...
...

σ(N + r) ar1 . . . ars . . . arN br br/ars

...
...

...
...

...
...

σ(N +M) aM1 . . . aMs . . . aMN bM bM/aMs

d1 . . . ds . . . dN ϑ

(2.11)
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The small example of Fig. 2.1 can be solved by this method. The initial
tableau is given as

1 2
3 1 0 4
4 1 1 6 6
5 −1 1 1 1
−1 −2 0

The pivot element, chosen with s = 2 and r = 3, is marked by a frame. In
the intermediate tableau

1 5
3 1 0 4 4
4 2 −1 5 5

2
2 −1 1 1
−3 2 −2

σ(2) and σ(2 + 3) are exchanged and the new values for aij , bi, dj , and ϑ
are calculated. The new pivot element is again determined by selecting the
minimum component of vector d and the minimum of the fractions bi/ais for
all ais > 0. With the pivot element a21 = 2, σ(1) and σ(2 + 2) are exchanged
and the final tableau is calculated:

4 5
3 −0.5 0.5 1.5
1 0.5 −0.5 2.5
2 0.5 0.5 3.5

1.5 0.5 −9.5

One gets the solution point (x1, x2) = (b2, b3) = (2.5, 3.5), the values x3 =
b1 = 1.5 and x4 = x5 = 0 for the slack variables, and the optimum value
ϑ = −9.5. Thus the simplex algorithm jumps from the initial point (x1, x2) =
(0, 0) via the intermediate edge point (x1, x2) = (0, 1) to the final point
(x1, x2) = (2.5, 3.5) in only two steps, which is the minimum amount of
jumps needed, as Fig. 2.1 shows.

2.2 Integer Optimization

Integer optimization problems have in common that many or even all xi must
be integers or are otherwise only allowed to take values from a discrete set of
numbers. (As is common in the literature, henceforth we will only speak of
integer values.) Usually, such problems can only be solved exactly with a large
amount of calculation time, which increases exponentially with system size.

A special case of this class of problems is integer linear optimization prob-
lems, which, just as above, are given by a linear cost function H(x) = d◦x+ϑ
and an inequality set Ax ≤ b, x ≥ 0, and b ≥ 0. But there is the additional



2.3 Branch & Bound 21

restriction that some or even all of the xi are noncontinuous but can only
take discrete values, e. g., must be integers. For solving this type of problem,
one usually starts with a so-called relaxation of the problem in such a way
that all xi can take any real value, so that the simplex algorithm can be ap-
plied. If the simplex algorithm finds that there is no solution to this relaxed
problem, then there is also no solution to the integer problem. Otherwise,
the solution to the relaxed problem is examined. Sometimes one is lucky,
such that all xi meet the desired constraints and are already integers or they
can at least simply be rounded up to the next highest integer or down to the
next smallest integer, thus also ending up at a feasible solution. However, this
rounding idea can mostly only be used if the entries in vector x are rather
large; otherwise the probability for choosing a solution much worse than the
optimum is too large.

The Gomory algorithm and related algorithms follow another approach
for solving such integer linear problems [63, 178]: after solving the relaxed
problem with the simplex algorithm, it is checked whether there are some
real-valued components of the solution vector that should be integers. In this
case, a further restriction is introduced in such a way that

• The resulting configuration of the simplex algorithm performed becomes
a nonfeasible solution and

• Each feasible integer solution of the linear integer problem fulfills this new
restriction.

The new restriction is added to the optimization problem as an inequal-
ity such that the dimension of the optimization problem is enlarged (M →
M +1). This enlarged problem is again solved in its relaxed form by the sim-
plex algorithm, which leads to a new solution. This solution is again checked
to verify whether it meets all integer constraints. If not, the algorithm is
iterated until it ends at a feasible solution with integer components.

As further cutting hyperplanes are introduced in the N -dimensional space
in this algorithm, which cut off the current nonfeasible solution, one speaks
of a cutting plane algorithm. Usually, only a small amount of the polytope is
cut off by an added hyperplane using this Gomory approach such that this
kind of algorithm converges very slowly. However, one can prove that the
algorithm ends after a finite amount of iterations is performed in a certain
way.

2.3 Branch & Bound

Most combinatorial optimization problems, i. e., optimization problems in
which the variables must take values from a discrete set of values, are not
given as linear problems. If the simplex algorithm or other algorithms for
some special problems cannot be applied (e. g., because too many variables
must be introduced to formulate the problem in a linear way such that the
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system size is too large for the memory or the calculation time needed),
the only way to arrive at the optimum solution to the proposed problem in
a mathematically proved way consists in searching for this optimum through
the set of feasible solutions. The simplest search strategy is an exact enumer-
ation, i. e., all possible configurations σ are visited, their corresponding cost
values H(σ) are calculated, and the configuration σ0 with the minimum cost
value is returned as the result of this search. However, this approach can only
be used for usually very small system sizes, as the calculation time needed
increases exponentially with system size.

root layer

splitting according to 1st property

second layer

splitting according to 2nd property

third layer

splitting according to 3rd property

fourth layer

splitting according to 4th property

final layer

Fig. 2.2. Schematic search tree for the branch & bound method: the configurations
are ordered as the leaves on top of a search tree that splits into various branches
for each considered property of the configurations

The time for this search process can be drastically reduced if the search
process is performed in a more intelligent way by creating an appropriate
search tree: starting at a root node, the tree divides into two or more branches,
which again split into several branches, which again and again split until the
tree ends in the single leaves that are formed by the configurations, as shown
in Fig. 2.2. The branching is performed in such a way that the leaves of one
subbranch have one or more properties in common that the configurations of
all other subbranches at this branching point do not have. At each branching
layer, the splitting of the individual branches is usually performed according
to the same property of the configurations. For example, such a splitting at
a layer a can mean that a certain variable xi is set to one of its possible values
vi1, . . . , vin; these values are used instead of the variable already at the nodes
in the next layer a+ 1. Usually, not just one branch is split into subbranches



2.3 Branch & Bound 23

from layer a to a+ 1 according to the possible values of the variable xi, but
all branches are split to the possible values of exactly this variable between
layers a and a + 1. However, it might be that the variable can have, e. g.,
five possible values in one branch and only three possible values in another
branch if the number of possible values of the variable xi depends on the
values of other variables that had been set before. In such a case, one does
not get a symmetric search tree.

Till now, the search process has only been ordered according to the prop-
erties used for the branching process. The nodes at the branching points
already contain information about the properties of all configurations of all
outgoing subbranches, such that it is often possible to estimate a lower bound
for the cost function values of all these configurations by examining only the
node at the branching point. Sometimes some (rather) good solution of the
proposed optimization problem is already known; otherwise some heuristic
is applied in order to achieve a good solution in a short time. At the very
least, the objective function of the first configuration of the search process
is calculated. The objective function of such a configuration provides a first
upper bound for the optimum value. During the search process, better config-
urations might be found, such that this global upper bound can be stepwise
decreased as it is given by the optimum value found so far. If the global up-
per bound is smaller than the local lower bound at a specific branching node,
then it is impossible for any configuration in one of the subbranches going
out from this node to be the optimum configuration. Therefore, all of the out-
going subbranches can be “cut off.” As the configurations on them need not
be visited, the search process is sped up considerably. This branch & bound
method ends when the lower and upper bounds coincide at the optimum
configuration.

The speedup of this method strongly depends on the properties used for
branching and on the quality of the bounding functions, especially for the
lower bound. Sometimes even local upper bounds are introduced to guide the
search process as to which branch should be examined first. Above all, de-
tailed mathematical insight into the proposed optimization problem is needed
to determine appropriate branching properties and good lower-bound func-
tions. Sometimes it is better to work with a “wide tree”, i. e., a tree with many
branches going out from each node; for other cases, it is advantageous to work
with a “deep tree”, i. e., a tree that splits into only a few branches at each
node such that more branching layers are needed. A special case of a deep
tree is the binary tree in which each branch splits into two subbranches.

A further question of this search process relates to the bound functions
used. Elaborate bounding functions take some time to calculate the bounding
value. Therefore, one often must make some compromise between a simple
but fast bounding function that provides worse bounding values such that
the nodes in the next branching layer at least partially must be visited and
examined, whereas a better bounding function, which needs more calculation
time, would have been able to cut off all subbranches.
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The success of this exact branch & bound method furthermore depends
on the quality of already known good solutions: the best known solution
(usually created using good heuristics) serves as an upper bound for the
optimum value. However, parts of other good solutions can also be used for
local lower and upper bounds, if their properties agree with the properties of
the corresponding subbranch.

Summarizing, this exact branch & bound algorithm is an intelligent search
technique in which branches of the search tree can be cut off if the lower
bound function value for the subtree is larger than the global upper bound.
Therefore, the algorithm makes it possible to solve larger instances of a given
problem exactly than is possible with a complete search. However, the cal-
culation time of this algorithm still increases exponentially with the system
size such that the problem of not being able to solve an instance exactly is
simply shifted to larger instance sizes.

2.4 Branch & Cut

Currently the most powerful exact algorithm for problems that can be for-
mulated in a linear way without increasing the system size too much and in
which some or all of the variables can only take values from a discrete set is
the branch & cut algorithm, which combines the branch & bound algorithm
with the cutting plane idea from integer programming. Again the problem of
minimizing a linear cost function H(x) = d◦x+ϑ with the set of constraints
in the form Ax ≤ b, b ≥ 0, and x ≥ 0 is considered.

Let us first restrict ourselves to the case where all xi are only allowed
to take discrete values and let us consider only the feasible points inside
the polytope a formed by the inequality set Ax ≤ b and x ≥ 0. Then the
convex hull of all feasible points inside a forms a polytope c that is smaller
than the polytope a and that can be described by an inequality set Cx ≤ d
and x ≥ 0. (This inequality system can be derived with the Fourier–Motzkin
elimination or the double description method. See [158] or [211].) Determining
the convex hull of all feasible points inside polytope a leads to a new linear
optimization problem with the former cost function but with a new inequality
set, which restricts the search process for the desired optimum solution much
more strongly. For this reason and as polytope c is smaller than polytope a
and really bounded by the extreme discrete points among which the optimum
solution lies, the inequalities Cx ≤ d are called strong inequalities.

However, the number of these strong inequalities is usually much larger
than M . Furthermore, it usually takes too much calculation time to deter-
mine all strong inequalities, i. e., the boundaries of the convex hull of the
points. Therefore, this approach is seldom used. Instead, a sequence of con-
vex polytopes s0, s1, s2, . . . with a = s0 ⊃ s1 ⊃ s2 ⊃ · · · ⊃ c is constructed
by successively adding strong inequalities to the already existing set of in-
equalities, thus shrinking the original polytope a stepwise into c. For each
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step i, an optimization run with the simplex algorithm is performed that
searches for the optimum of the relaxed linear problem in polytope si. If
the optimum found meets all desired constraints not yet incorporated, then
the algorithm stops. Otherwise one or more strong inequalities are added to
matrix A and the algorithm is iterated. There is also another possibility in
this iteration: instead of trying a further simplex step, a branch & bound
step can be performed: one of the variables xi that is only allowed to take
some discrete values can be chosen for a branching step. For each branch, the
variable is set to one of its possible values. Thus, the optimization problem
can be partially rewritten by inserting the value of the variable. For each of
the newly created smaller optimization problems, a simplex run is performed.
This branching is especially useful if the number of possible values is very
small, e. g., if xi is a binary variable and can only take the values 0 and 1. Of
course, this algorithm can easily be generalized to problems in which some of
the variables are continuous. However, for such a continuous xi no branching
step in the above sense can be performed; instead one can split the interval
of possible values into subintervals.

To demonstrate the usage of this branch & cut algorithm, we first recon-
sider our problem of Fig. 2.1, for which we now want to achieve a solution
with x1 and x2 as integers. As the simplex algorithm ends with the solution
(x1, x2) = (2.5, 3.5), which is nonfeasible in this case, it is necessary to cut off
this solution by introducing at least one further hyperplane, which is defined
via an inequality and belongs to the convex hull of all integer solutions. If
we determine the convex hull of all integer solutions in Fig. 2.1, we find at
first glance that all of the inequalities that are already in the inequality set
are strong inequalities, i. e., are part of the convex hull, and that only the
inequality x2 ≤ 3 must be added to the inequality set in order to close the
convex hull. For this extended problem, again a simplex run is performed:

1 2
3 1 0 4
4 1 1 6 6
5 −1 1 1 1
6 0 1 3 3
−1 −2 0

−→

1 5
3 1 0 4 4
4 2 −1 5 5

2
2 −1 1 1
6 1 −1 2 2
−3 2 −2

−→

6 5
3 −1 1 2 2
4 −2 1 1 1
2 1 0 3
1 1 −1 2

3 −1 −8

−→

6 4
3 1 −1 1
5 −2 1 1
2 1 0 3
1 −1 1 3

1 1 −9

After three steps, we achieve the optimum integer solution (x1, x2) = (3, 3)
with the value −9. The slack variables have the values x3 = 1, x4 = 0, x5 = 1,
and x6 = 0.

Finally, we consider the solution to a famous old problem, the propositio
de lupo et capra et fasciculo cauli (the problem of the wolf, the goat, and
the bunch of cabbage) which was, among others, introduced around 800A.D.
by Flaccus Alcuinus of York, who was a royal advisor to Charlemagne at
the Frankish court and head of Charlemagne’s Palace School at Aachen. The
problem is stated as follows: Homo quidam debebat ultra fluvium transferre
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lupum et capram et fasciculum cauli, et non potuit aliam navem invenire,
nisi quae duos tantum ex ipsis ferre valebat. Praeceptum itaque ei fuerat, ut
omnia haec ultra omnino illaesa transferret. Dicat, qui potest, quomodo eos
illaesos ultra transferre potuit.

Thus, a man had to transfer a wolf, a goat, and a bunch of cabbages
across a river and he could not find another boat except one that could only
carry two of them. Thus, the constraint for him was how to transfer all these
without any damage. However, if the wolf stays alone with the goat, then
the wolf will kill and eat the goat. Similarly, the goat will eat the cabbage
if not supervised. However, the wolf is not interested in the cabbage. The
question is how to safely transfer all three across the river [6]. Of course,
the transfer should take a minimum amount of time. Alcuin himself provided
the solution to this problem No. 18: Simili namque tenore ducerem prius
capram et dimitterem foris lupum et caulum. Tum deinde venirem lupumque
ultra transferrem, lupoque foras misso rursus capram navi receptam ultra
reducerem, capraque foras missa caulum transveherem ultra, atque iterum
remigassem, capramque assumptam ultra duxissem. Sicque faciente facta erit
remigatio salubris absque voragine lacerationis.

Thus, Alcuin would take the goat across first and leave the wolf and the
cabbage. Then he would return and take the wolf across the river. Then, after
setting the wolf down on the other side, he would take the goat back across
the river to the original side. Then, with the goat on the other side, Alcuin
would take the cabbage across the river. Finally, he would go back for the
goat one more time and take it across the river. In this way, the wolf, the
goat, and the cabbage would all be transported across the river safely. This
is one of two possible optimum solutions. Alcuin arrived at this solution but
was not able to prove that his solution of crossing the river seven times was
optimal.

This proof was performed 1200 years later by Borndörfer, Grötschel, and
Löbel [25]. They first formulated the problem introducing vectors l(t), b(t),
and r(t) for the left bank of the river, the boat, and the right bank, respec-
tively, for each time step t. These vectors are triples of binary numbers for
the locations of the wolf at the first position, for the goat at the second,
and for the cabbage at the third position. Thus, in the beginning at time
t = 0, one obtains the initial vectors l(0) = (1, 1, 1), b(0) = (0, 0, 0), and
r(0) = (0, 0, 0). On the other end, there must be some final time tf at which
all three items must be on the right bank, r(tf ) = (1, 1, 1). Then one must
distinguish between even time steps at which the traveler starts out on the
the left bank and odd time steps in which he starts out on the opposite side:

l(t+ 1) = l(t) − b(t+ 1)
r(t+ 1) = r(t) + b(t+ 1)

}

if t ≥ 0 even ;

l(t+ 1) = l(t) + b(t+ 1)
r(t+ 1) = r(t) − b(t+ 1)

}

if t ≥ 0 odd .
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One must take care that the goat must not stay alone with the wolf or with
the cabbage. For example, at odd time steps, when the traveler is on the right
bank, vector l can only take one of the five values (0, 0, 0), (1, 0, 0), (0, 1, 0),
(0, 0, 1), or (1, 0, 1); the other three bit combinations are forbidden. From this,
one can estimate an upper bound T for the last time step tf : if there are only
five possible values for l for each odd time step, there can be a maximum of
only nine rowing steps, as otherwise some steps will be repeated, such that
T = 9.

Analogously, one must restrict the possible values for r(t) for the even
time steps when the traveler is at the left bank to the same values as l(t) for
the odd time steps. However, one must furthermore allow the desired final
value (1, 1, 1) for both odd and even time steps. Analogously, b(t) can only
take the values (1, 0, 0), (0, 1, 0), (0, 0, 1) for transporting one of the three
items and (0, 0, 0) for rowing an empty boat for all time steps.

Furthermore, the scientists introduced a cost function to be minimized,
namely, summing up the number of items remaining on the left bank over
the time steps:

H((l(t), b(t), r(t))0≤t≤T ) =
T∑

t=0

3∑

i=1

l(t, i) .

Thus, the Hamiltonian does not depend on all 3 × 3 × 10 = 90 variables but
only on the 30 describing the states on the left bank over the time period.

The solution by means of branch & cut starts with determing the convex
hull of all allowed vectors for l(t), b(t), and r(t). As can easily be checked, the
cost function above must be minimized subject to the following constraints,
if relaxing the linear integer problem to a linear problem [25]:

l(0) = (1, 1, 1) ,
b(0) = (0, 0, 0) ,
r(0) = (0, 0, 0) ;

l(t+ 1) = l(t) − b(t+ 1)
r(t+ 1) = r(t) + b(t+ 1)

}

if 0 ≤ t ≤ T even ,

l(t+ 1) = l(t) + b(t+ 1)
r(t+ 1) = r(t) − b(t+ 1)

}

if 0 ≤ t ≤ T odd ,

l(t, 1) + l(t, 2) ≤ 1
l(t, 2) + l(t, 3) ≤ 1

}

if 0 ≤ t ≤ T odd ,

− r(t, 1) + r(t, 2) + r(t, 3) ≤ 1
r(t, 1) + r(t, 2) − r(t, 3) ≤ 1

}

if 0 ≤ t ≤ T even ,

b(t, 1) + b(t, 2) + b(t, 3) ≤ 1 for all 0 ≤ t ≤ T ,
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r(T ) = (1, 1, 1) ,

0 ≤ l(t, i), b(t, i), r(t, i) ≤ 1 for all 0 ≤ t ≤ T, 1 ≤ i ≤ 3 .

However, in solving this relaxed linear problem one achieves the following
solution: the man first transports the goat to the right bank, returns, then
transfers half the wolf and half the cabbage from left to right, returns, and,
finally, transports the remaining halves of the wolf and of the cabbage to the
right. This solution, which only needs tf = 5 times of rowing, does not violate
any of the inequalities; however, the objective was to transfer all the items
to the other bank in good condition.

As mentioned above, there are now two ways to overcome the problem
of not achieving a desired integral solution: one can either add at least one
more equation or inequality, thus introducing one or more new hyperplanes
and cutting off the current solution. For this, it is necessary to determine—at
least partially—the convex hull of all integer solutions of the problem and to
select equations and inequalities that are not fulfilled by the current solution.
Adding the equation r(4, 1)+ r(4, 2)+ r(4, 3) = 1 and the inequality b(3, 2)+
b(4, 1) + b(4, 3) + b(5, 2) − b(6, 2) ≤ 0, one ends up at Alcuin’s solution [25],
which is thus proved to be optimal.

For this small problem, it is still a relatively easy task to determine the
convex hull of the 20 integral solutions, described by only 16 inequalities and
79 equations. In general, however, this approach requires too much compu-
tational effort as the number of inequalities increases exponentially. Further-
more, there is no guarantee of ending up at an integral optimum solution in
general [25].

Therefore, it is advantageous to work with the second possibility and
to introduce a branching step, splitting the problem into two subproblems:
the first wrong part of the solution was transporting half a wolf and half
a cabbage. Thus, one forces the traveler to leave either the wolf or the cabbage
behind in time step No. 3, i. e., either l(3, 1) = 1 or l(3, 1) = 0. Adding one of
these two equations to the relaxed problem leads to two relaxed subproblems
that are independently solved. The branch with the subproblem extended
with l(3, 1) = 0 actually ends up at an integer solution with a value of 12.
Thus this branch need not be considered any further. As all constraints are
met in this solution, the value 12 for this solution provides a global upper
bound for the branch & cut algorithm.

Following the other branch could lead to a better solution such that the
linear problem extended with l(3, 1) = 1 must also be solved. In this case,
one achieves a fractional solution with a value of 12. If one added further
restrictions in a cutting or branching step, one would end up at a solution
with a value not less than 12. Therefore, the value of 12 for this fractional
solution serves as a local lower bound for all solutions in this branch of
the search tree. But there is also the global upper bound of 12; thus lower
and upper bounds coincide here already. As a solution with a value of 12 has
already been found, one can stop the algorithm here. (Of course, if proceeding
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one could detect the other optimum solution.) All in all, the integer solution
of the first branch is optimal and, as it is equal to Alcuin’s solution, it is also
proved that Alcuin’s solution is optimal.

The art of using the branch & cut algorithm is to determine which are the
important strong inequalities to be added first and when a branching step or
a plane cutting step should be performed. For an example of an even more
difficult problem see [126].



3 Monte Carlo

3.1 Pseudorandom Numbers

As most of the algorithms we introduce later include some randomization in
their rules, we start with the question of how random events can be produced
on a computer. After all, a computer is a machine working off a sequence of
instructions in a deterministic way. A computer is therefore unable to produce
any real random event. However, there has long been the need for simulating
random events on a computer. (Think, e. g., of game simulations like roulette,
blackjack, or poker.)

Therefore, many algorithms have been developed that produce a sequence
of numbers that appears to be a sequence of random numbers. These so-called
pseudorandom numbers are used instead of real random numbers in order
to decide about the results of some sequence of events. For any unknowing
spectator, the sequence of pseudorandom events should look like real random
events.

As the city of Monte Carlo has been famous for decades for its casinos
with roulette tables and many other games with random results, algorithms
that make use of pseudorandom numbers are generally called Monte Carlo
(MC) algorithms. The name inspired by the casino at Monte Carlo was first
used by von Neumann and Ulam, when they used random numbers for simu-
lating nuclear reactions in developing the atomic bomb. Usually, one speaks
of random numbers instead of pseudorandom numbers.

It is worth mentioning here that the possible amount of generable pseudo-
random numbers is always finite. After a certain number of calls the sequence
of random numbers that has already been produced is repeated again. The
larger this sequence length is, the better the random number generator should
be. Random number generators always need at least one integer, an initial
value x0, called the seed, to get started. Different seeds do not usually lead
to different sequences of random numbers, but the random number generator
starts at different points in its finite sequence of random numbers.

The type of problem determines whether the knowledge of the seed, and
therefore of the random numbers, is important or not. Sometimes one keeps
a record of the seed in order to be able to reproduce the results of a MC
program. The seed may be either encoded in the program or otherwise saved.
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This is important, e. g., when trying to set new world records for some bench-
mark problems, because only if the seed is known can the result be repro-
duced, providing the proof that it was that program that generated the new
record. However, in programming an application like a poker game, one would
like to start every time with a new seed, one that cannot be controlled by
the players. Here often the exact time of day, perhaps including even the
milliseconds, is used as a seed.

Although “Monte Carlo” is commonly used to describe any randomized al-
gorithm, some researchers distinguish between MC and Las Vegas (LV) algo-
rithms. In contrast to MC algorithms, LV algorithms always lead to a correct
result, whereas MC algorithms lead to the correct result only with a certain
probability. A further difference is that MC algorithms have a deterministic
running time whereas the running time of LV algorithms varies according
to the random events. It it is also possible for a LV algorithm not to ter-
minate. A subset of these LV algorithms are the Macao algorithms, which
have a deterministic running time and which are guaranteed to terminate. In
summary, different random seeds often lead to different results for a MC algo-
rithm, such that its outcome is random, but a LV algorithm always produces
the same result. The seed only influences the way to get there and therefore
the running time [151].

3.2 Random Number Generation
and Random Number Tests

Various algorithms leading to random numbers and tests checking the quality
of such random numbers for their “randomness” have been developed. That
is, the tests compare the results of using pseudorandom numbers instead of
truly random numbers in the specific problems for which they are intended.
The so-called random number generators are distinguished in different classes:
“good” random numbers pass most of these elaborate tests. Some generators
produce random numbers of a low quality but with low computational over-
head. The resulting “quick and dirty” random numbers do not pass all tests
checking their randomness. However, they should pass at least some basic
tests to be useful for some MC techniques.

There are several ways to produce “quick and dirty” random numbers.
A common way is to use the linear congruential method [128]: starting from
the seed value x0 the following iterative rule is applied to produce a sequence
of random numbers:

xi+1 = (a× xi + b) mod c . (3.1)

The parameters a, b, c, which are integers, define the random number gen-
erator. Each generated random number only depends on its predecessor. As
the random numbers are calculated modulo the integer number c, they can
only take the values 0, 1, . . . , c−1. The basic sequence of the random number
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generator can therefore only have a length of up to c; after that the sequence
repeats. Therefore, the chosen parameter c must be rather large. (You can
also get longer sequences if you keep more previous states, see, e. g., the R250
random number generator [115].) One can also accelerate the speed of the
random number generator: as the modulo operation takes more time than
addition or multiplication, one wants to avoid performing this modulo oper-
ation. This can be done by making use of the fact that integers are stored in
a finite amount of bits on a computer: if one is added to the largest positive
integer that can be represented on a computer, then the smallest negative
number that can be represented is returned as the result. This overflow is
used for a natural type of the modulo operation. Working with signed in-
tegers of 32 bits, the largest positive number is 231 − 1 and the smallest
negative number is −231 such that c is effectively set to 232 and only the rule
xi+1 = a × xi + b is applied. Then the following values for a and b provide
some good quick and dirty random numbers:

• a = 1,664,525, b = 1,013,904,223
• a = 16,807, b = 0
• a = 65,539, b = 0
• a = 65,549, b = 0

In the multiplicative congruential cases where b = 0, only odd seed val-
ues shall be used; otherwise correlations are apparent even in the screen
pixel test. Some such random number generators are famous; for example,
75 = 16,807 is often called magic due to some of its properties. Throughout
this book, we use only random numbers generated with a = 1,664,525 and
b = 1,013,904,223.

From integer random numbers xi, uniformly distributed in the interval
[−231; 231 − 1], random numbers ri are derived by dividing by the largest
possible absolute random number (in this case 231) and taking the absolute
value:

ri = abs
(
xi × 4.656612 · 10−10

)
. (3.2)

These ri are uniformly distributed in the interval [0; 1].
Other methods also exist for producing random numbers very quickly,

some of them leading to fairly good random numbers, for example the
Kirkpatrick–Stoll random number generator [115].

More elaborate random number generators, which produce random num-
bers of a high quality, often use the basic generation methods, introduced
above, not just once but several times and in a combined way. However, it
takes more time to produce a sequence of random numbers using one of these
generators [166]. One must be careful when trying this because there are
ways of combining random number generators that lead to lower quality in
the resulting random numbers. See [166] on this.

Therefore, one has to weigh the necessity of such good random numbers.
For most purposes in optimization, the quick and dirty random numbers
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are quite sufficient. Furthermore, one must even be careful when using such
a mathematically proved good random number generator: it has been shown
that sometimes (e. g., if they are correlated with the proposed problem) these
lead to worse results than the quick and dirty generators [70].

To investigate the test routines of random numbers, let us consider here
only random numbers that are uniformly distributed in some interval. The
simplest test is the histogram test. In this test, the interval is divided into
a certain number of subintervals. A counter is assigned to each subinterval and
initialized with zero. Then a long sequence of random numbers is calculated.
For each random number the counter for the subinterval in which it lies is
incremented. For a large amount of random numbers, these counters should
exhibit roughly the same value, i. e., they should be roughly equal to the
overall number of random numbers divided by the number of subintervals, as
seen in Fig. 3.1.
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Fig. 3.1. Example of a histogram generated from 10,000 random numbers uni-
formly distributed in the unit interval. The unit interval is divided into 100 subin-
tervals, also called bins, with a width of 0.01 each. As the random numbers are
chosen uniformly, we expect to get on average 100 random numbers in each bin

However, even for very many random numbers, the heights of the his-
togram bars differ significantly. Actually they must differ with a certain vari-
ation if the random numbers are independent as well as random. Let us denote
the overall number of random numbers as N , the number of bins as Nb, the
probability that a random number gets sorted in bin No. i as pi, and the
expected number of random numbers in bin i as Nexp(i) = N × pi. As our
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random numbers are uniformly chosen, pi is given as pi = 1/Nb such that
Nexp = Nexp(i) ≡ N/Nb. The variations should be of order O(

√
N).

The χ2-test is a good means for determining whether the random numbers
are truly random: the normalized χ2-measure is given as

χ2 =
1

Nb − 1

Nb∑

i=1

(Ni −N × pi)2

N × pi
, (3.3)

with Ni being the actual number of random numbers falling in bin i in the
test. If Ni are identical toNexp, the normalized χ2-measure would give a value
of 0. But with the usual fluctuations, the normalized χ2-measure should have
a value of roughly 1. For our example in Fig. 3.1, we get χ2 = 0.909.

We performed many more tests for various values of Nb and Nexp. The
results are shown in Fig. 3.2. For example, we get χ2 = 1.0019697± 0.0045
for Nexp = 100 and Nb = 100, averaged over 1000 sequences. The minimum
value we find here is 0.687676768, and the maximum value is 1.7. Generally,
we get that χ2 is roughly 1, independent of the number of bins and the
expected number of counts per bin. Moreover, the variation of our normalized
χ2-measure around 1 decreases with an increasing number of bins. For the
precise values of the probability distribution of χ2 without our normalization
by 1/(Nb − 1), see [1]. It can also be evaluated in popular math packages,
such as Mathematica.

Now let us consider normalized χ2-values of distributions tampered with
by people thinking, e. g., that each bin should have the same number of
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Fig. 3.2. χ2-values for random numbers generated with a quick and dirty random
number generator: for various numbers Nb of bins and for various expected values
Nexp of counts per bin, we generated 1000 sequences containing Nb ×Nexp random
numbers each. The graphic shows the minimum, average, and maximum χ2-values
taken from the 1000 sequences each. The deviation of the minimum χ2-value and
the maximum χ2-value from the average χ2-value decreases with increasing Nb
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counts. As already mentioned, the ideal normalized χ2-value for large Nb is
1. If each bin had exactly the same number of counts, such that it was equal
to Nexp, then the nominator in Eq. (3.3) would vanish, such that χ2 = 0.
Thus, people showing you a “perfect” looking histogram with bins of the
same size created by an “excellent” newly invented random number generator
are simply trying to fool you. Then there are those who mess around with
histograms trying to reduce the visible amount of randomness in order to
impress their bosses, who do not have a clue as to what randomness is about.

There are approaches in which some people simply change Ni to Ni +
(Nexp(i) − Ni)/2, thus reducing the “distance” between the actual and the
desired value by a factor of 2. Applying this approach to the instance in
Fig. 3.1, χ2 decreases to 0.245. If the distance were further reduced, e. g.,
even by a factor of 4, then χ2 would be only 0.06 for this instance. But using
the numbers from our experiment of Fig. 3.2, the values of χ2 lie well outside
the range we encountered in 1000 trials. Thus, their likelihood of coming from
real independent random variables is less than one in 1000. In fact, much,
much less.

Another widely used way of tampering with histograms is setting some of
the histogram counts to their expected values. But if we, e. g., select randomly
half of the bins and set their counters Ni to the expected number Nexp = 100
for our example instance above, we get χ2 = 0.531; if we do this for even
three quarters of the bins, then we get χ2 = 0.276.

One could also think of other strategies to reduce the randomness in
a histogram, but most of this removing of true randomness can be detected
with the χ2-test, as shown above, as the value of χ2 is not roughly 1 then, as
it should be, as our results for thousands of runs in Fig. 3.2 show.

One might also wonder whether to add additional randomness to such
a histogram. This can be done, e. g., by changing Ni into Ni + 2(Nexp −
Ni). Applying this change to our histogram instance, we get χ2 = 2.026.
Thus, values much larger than 1 are achieved when adding randomness. It is
basically impossible to get such a large value of χ2 if the number of bins is
sufficiently large.

A more elaborate test, one that checks for correlations between the ran-
dom numbers, is the screen pixel test: the successive random numbers xi are
considered to be the coordinates of the points pj = (x2j−1, x2j). These points
are printed as pixels on the screen. If the pixels fill the screen completely and
smoothly, then also the requirement of the uniform distribution in the whole
interval is fulfilled. Furthermore, the pixels should not form any patterns
when printed on the screen, such that the correlation between successive ran-
dom numbers is not too large. One can proceed further and look in three and
even higher dimensions at pixels with the coordinates (xdj−d+1, . . . , xdj) [133],
with d denoting the number of dimensions. Looking from the right angle, one
finds that the random points lie in only a small amount of (hyper)planes
instead of being distributed randomly over the whole space. This Marsaglia
effect reveals bad instances of the multiplicative random number genera-
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tor. These three eye checks only show whether these basic requirements are
fulfilled, but such checks are, of course, no replacement for a real test of
“randomness”.

3.3 Transformation of Random Numbers

Nonuniform distributions of random numbers may be necessary. The simplest
case is a uniform distribution over a different random interval, say, [a; b].
In this case, the following linear transformation is applied to the random
numbers:

r̃i = a+ (b − a) × ri . (3.4)

The new random numbers r̃i are uniformly distributed in the interval [a; b].
Sometimes one wants to work with uniformly distributed integer random

numbers 1, . . . , N . For this purpose, the following rule is used: let ri again
be random numbers that are uniformly distributed in the interval [0; 1]; then
the integer random numbers ni are created according to

ni = [1 +N × ri] , (3.5)

with [x] denoting the Gaussian brackets, which simply take the integer part
of x. One must be careful when applying this rule, as ri could be exactly 1,
so that ni = N + 1. In this marginal case, either a new random number is
calculated or ni is simply set to one of the integer numbers in its range. Of
course, if the real-valued random numbers ri are derived from integer-value
random numbers xi, as in Sect. 3.2, it is faster to turn the xi directly into
the ni by

ni = |xi modN | + 1 . (3.6)

However, if N is rather large, then an error occurs: simply assume that N is 2
3

of the maximum possible random number. Then the first half of the numbers
are generated twice as often as the second half of the numbers.

So far, we have only generated uniformly distributed random numbers.
But often also other distributions are needed. For generating random numbers
that are distributed in a different way, one usually starts out with a random
number generator as discussed above that creates random numbers ri that are
uniformly distributed in the unit interval [0; 1]. Now if one needs a distribution
of the random numbers according to some distribution function P , which for
simplicity we assume to lie in the range between 0 and 1, there is always the
possibility of using the von Neumann rejection principle: first, one determines
the interval in which the desired random numbers will be found; let this
interval be [a; b]. Then the random numbers ri are transformed in a linear
way, as discussed above, such that they are uniformly distributed in the
interval [a; b]; one sets r̃i = a + (b − a) × ri. Then one chooses a second
random number si for each r̃i; these si are also uniformly distributed in the
interval [0; 1]. Now there are two cases, either si ≤ P (r̃i) or si > P (r̃i). As
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the si are uniformly distributed in the range [0; 1], the case si ≤ P (r̃i) occurs
with the exact probability P (r̃i). Thus, the von Neumann rejection principle
works as follows. Create pairs (ri, si) of random numbers. Then, if required,
transform the ri into r̃i. For each i, determine whether si ≤ P (r̃i). If this
is the case, then keep r̃i; otherwise delete it from the sequence of random
numbers. The remaining r̃i are then distributed according to the distribution
function P .

The von Neumann method can be used for creating any desired proba-
bility distribution. However, it often consumes a lot of computing time for
generating random numbers that are thrown away later on, especially if the
desired distribution peaks in some areas of the interval and nearly vanishes
in other areas. Furthermore, it converges rather slowly toward the desired
distribution function. Therefore, other techniques for creating a certain dis-
tribution must be given preference.

In another widely used approach, uniformly distributed random numbers
are transformed directly into random numbers that are distributed accord-
ing to the desired distribution function P . Let (ri) be a set of uniformly
distributed random numbers. Then the task is to transform this set into
a set (si) of random numbers distributed according to the probability dis-
tribution P . Here one makes use of the fundamental transformation law of
probabilities [166], according to which one gets

|dr| = |P (s)ds| . (3.7)

This equation can be transformed into

P (s) =
∣
∣
∣
∣
dr
ds

∣
∣
∣
∣ . (3.8)

Now we want to derive the transformation for the widely used exponential
distribution

P (s) = exp(−s) . (3.9)

Thus, one gets r(s) = exp(−s), i. e., s(r) = − ln(r). Therefore, one can trans-
form the random numbers ri, which are uniformly distributed in the unit
interval, into the random numbers si = − ln(ri), which are exponentially
distributed over the interval [0; +∞[. One has only to address the fact that
the random number generator for the ri might create ri = 0. This random
number is dropped, and another random number ri is then generated, from
which the si can be derived.

Another widely used distribution of random numbers is the Gaussian or
normal distribution. The Gaussian probability distribution P is given by the
formula

P (x) =
1√
2πσ

exp
(

− (x− μ)2

2σ2

)

. (3.10)

A simple way of generating such a distribution would be to generate first
a set of random numbers (ri)i=1,...,N that are uniformly distributed in the
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interval [μ − ασ;μ + ασ]. α has to be chosen large enough such that P (μ+
ασ) is sufficiently small. Usually, α is chosen to be ≥ 3. Then a second
set of random numbers (si)i=1,...,N is generated; these random numbers are
uniformly distributed in the interval [0; 1/

√
2πσ]. Now the following rule is

applied: if si ≤ P (ri), then the random number ri is accepted, otherwise it
is rejected. The remaining accepted random numbers are roughly Gaussian
distributed. However, the tails of a real Gaussian distribution are missing in
this distribution. Therefore, one has to find some compromise: if α is chosen
very large, then most of the random numbers are rejected. However, the tails
are at least partially represented. If α is small, then the tails are completely
missing but little calculation time is wasted for calculating random numbers
that are rejected afterwards. As was already mentioned, other techniques for
creating a certain distribution must be given preference.

For the Gaussian distribution, a very simple approach based on the cen-
tral limit theorem can be used for getting quick and dirty Gaussian random
numbers: according to the central limit theorem, the sum over several prob-
ability distributions (which are either bounded or have a finite variance) al-
ways tends toward the Gaussian distribution. Therefore, summing up several
uniformly distributed random numbers leads to Gaussian random numbers:

gi = −N
2

+
N∑

j=1

ri,j . (3.11)

N/2 has to be subtracted as 1
2 is the expectation value of a [0; 1] uniformly

distributed random number, such that the resulting gis are centered at 0.
The larger N is, the better is the approximation to the Gaussian distribution.
A natural choice is N = 12, as then the standard deviation of the resulting
Gaussian distribution is 1: the expectation value of a uniformly distributed
random number ri in the interval [0; 1] is 〈ri〉 = 1

2 , 〈r2i 〉 = 1
3 , 〈rirj〉 = 1

4 for
i �= j. Therefore,

σ2(gi) =
〈(

−6 +
∑12

j=1 ri,j

)2
〉

−
〈
−6 +

∑12
j=1 ri,j

〉2

=
〈(∑12

j=1 ri,j

)2
〉

− 12
〈∑12

j=1 ri,j

〉
+ 36 − 0

=
〈
(ri,1 + ri,2 + . . .+ ri,12)

2
〉
− 12 × 6 + 36

= 12
〈
ri,j

2
〉

+ 2 × (11 + 10 + . . .+ 1) × 〈ri,j × ri,k �=j〉 − 36

= 12 × 1
3 + 2 × 11×12

2 × 1
4 − 36

= 4 + 33 − 36 = 1 .

(3.12)
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Note that the disadvantage of summing up only 12 uniformly distributed
random numbers is that only Gaussian random numbers in the interval [−6; 6]
can be obtained. Beyond that, the tails of the Gaussian distribution are
completely missing.

There is another method leading to very good Gaussian random numbers
with zero mean and unit variance, the Box–Muller method: the trick of this
method consists of creating two Gaussian random numbers a and b from two
uniformly distributed random numbers u and v in the interval [0; 1] at the
same time. Let

f(x, y) =
1
2π

exp
(

−x
2 + y2

2

)

(3.13)

be the density distribution and

�2 = x2 + y2 , tan(ϕ) =
y

x
(3.14)

be the transformation to polar coordinates. Then the relation between the
area elements is given by

dxdy = �d�dϕ . (3.15)

The local distribution has to be equal for both coordinate systems:

f(x, y)dxdy = f(�, ϕ)d�dϕ (3.16)

such that

f(�, ϕ) =
1
2π
� exp

(

−�
2

2

)

. (3.17)

The goal is to generate the radius � according to the distribution � exp(−�2/2)
by using the first random number u and ϕ being homogenously distributed
in [0; 2π] by using the second random number v. Therefore,

F (�) =
1
2π

∫ 2π

0

dϕ
∫ �

0

�′ exp

(

−�
′2

2

)

d�′ = 1 − exp
(

−�
2

2

)

(3.18)

can be equalized with some uniformly distributed random number z in the
interval [0; 1]. The radius � is therefore given by

� =
√
−2 ln(1 − z) . (3.19)

u = 1 − z is also a uniformly distributed random number from the unit
interval. Let v be the second uniformly distributed random number and set
ϕ = 2πv. With the relations x = � cos(ϕ) and y = � sin(ϕ), one obtains the
two Gaussian distributed random numbers

a = cos(2πv)
√

−2 ln(u) (3.20)

and
b = sin(2πv)

√
−2 ln(u) . (3.21)
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However, this method of calculating Gaussian distributed random numbers
is very time consuming, as the functions natural logarithm, sine, cosine, and
the square root must be calculated. Furthermore, it is recommended that v
should not depend strongly on u, as then a and b are not truly independently
normally distributed.

Of course, this distribution can simply be transferred to a Gaussian dis-
tribution with another mean value μ or another standard deviation σ.

The Box–Muller method was improved by Marsaglia and Bray in 1964
[134]. Their improved method, which eliminates the calculation of the sine
and the cosine, has become known as the polar method. As in the Box–Muller
method, first two uniformly distributed random numbers u and v are chosen.
Then they are linearly transformed to the interval [−1; 1]:

ũ = 2u− 1 and ṽ = 2v − 1 . (3.22)

Then
w = ũ2 + ṽ2 (3.23)

is calculated. If w > 1, then the algorithm jumps back to its start. Otherwise,
let

t =

√
−2 lnw
w

. (3.24)

Then the Gaussian random numbers a and b are given by

a = t× ũ and b = t× ṽ . (3.25)

The savings from eliminating the calculation of one sine and one cosine is
balanced by having to apply a rejection rule such that two new random
numbers might have to be chosen. Note that in contrast to the Box–Muller
method, in which u was used to calculate the radius and v was used to
determine the phase, here u and v are used together. The rejection principle
is applied in order to accept only those pairs of (u, v) for which this trick can
be used, namely, those inside the unit circle.

Finally, we compare the four methods for creating Gaussian distributed
random numbers. Table 3.1 shows the calculation times of the various meth-
ods. It turns out that the rejection method is the slowest method, although
only α = 3 was used for creating the random numbers, whereas the polar
method is the fastest method.

Table 3.1. Comparison of calculation times of four methods creating Gaussian
random numbers: in each case, an array containing 1 million Gaussian distributed
random numbers was created 100 times. The times are given for a 400-MHz Pen-
tium II

Method Calculation time

Rejection method 200 s
Summing up 12 81 s
Box–Muller method 74 s
Polar method 55 s
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3.4 Example: Calculation of π with MC

A famous example for the usage of the MC technique is the calculation of
the number π by means of MC. Figure 3.3 shows the geometry used for this
calculation: one shoots randomly into a square of edge length r and counts
the hits in the quarter circle of a radius r. The position of the random point,
i. e., both its x- and y-coordinates, is determined by two successive calls of
a random number generator. It is simply checked with x2 + y2 ≤ r2 to see
whether the point is inside the quarter circle or not. The area of the square
is given by r2, and the area of the quarter circle is given by 1

4πr
2. Therefore,

the ratio of the number of hits divided by the number of shots approximates
1
4π, if the number of shots is chosen large enough.

  r

Fig. 3.3. A quarter circle in a square

Table 3.2. For each number of shots, 100 runs were performed. The minimum and
maximum approximations for π for the corresponding number of shots are given,
as are the mean value and the error bar of these approximations

Shots πmin πmax πmean ± Δπ

10 1.6 4.0 3.148 ± 0.06
100 2.64 3.40 3.1408 ± 0.015

1000 3.032 3.284 3.14484 ± 0.0052
10,000 3.1044 3.1852 3.143668 ± 0.0016

100,000 3.12500 3.15344 3.1415816 ± 0.00057
1,000,000 3.138464 3.14534 3.1415648 ± 0.00015

10,000,000 3.1408864 3.142138 3.14159355 ± 0.000023

Table 3.2 shows results for various numbers of shots. As can be easily
seen, it is much better to calculate π with the formula

π = 4 × arctan(1) (3.26)

or to memorize the first 15 digits of π. These can be remembered as the
lengths of the words in the sentence “Now I want a drink: alcoholic, of course,
after the heavy lectures involving quantum mechanics!”



4 Overview of Optimization Heuristics

4.1 Necessity of Heuristics

After reading Chap. 2, one might ask why this book does not end after that
chapter, as every simple as well as every complex problem can be solved by
some exact optimization algorithm. However, depending on the particular
problem and on the size of the problem, it may take a large amount of cal-
culation time to reach the global optimum solution. Often years of research
time must be invested in order to improve these general approaches and to
tailor them for the proposed problem such that the optimum solution can be
achieved after weeks or months of calculation time. Furthermore, in real-life
problems, further constraints often appear that were not mentioned or not
clear at the beginning of the research or that appear due to new requirements
in the company or due to new laws. In this case, often a completely new al-
gorithmic structure must be developed, and most of the previous research
might end in the waste basket. Additionally, due to this tailoring and cus-
tomizing of the algorithm to the proposed problem, it is often the case that
the algorithm cannot simply be applied to another problem that is identical
to the first problem but has other parameter values, as the calculation time
might be too long.

Therefore, it is very often necessary to use heuristic algorithms instead of
exact algorithms. These heuristic algorithms do not usually guarantee reach-
ing the global optimum of the problem, giving instead a locally optimum
solution, which may be the global optimum, but most of the time is slightly
worse. Whether or not a difference of 1% or less between the qualities of
a near-optimum solution and the global optimum can be accepted depends
on the business at hand. Usually, such a heuristic can be tuned to lead to
even better results. However, this tuning can be done in minutes, hours, or
days, not the weeks or months that may be required for development of new
exact methods. Sometimes it is even impossible to speak of a global opti-
mum solution for a business decision, as there are disturbances from the
world outside like traffic jams and uncertainties in the data. Then the us-
age of heuristics is even more justified, as they lead rather quickly to such
a quasioptimum solution. Besides the advantage of only needing a relatively
small amount of calculation time, many of these algorithms are very easy
and fast to implement and to tune after one has gotten some feeling about
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the interaction between the algorithm and the proposed problem. Additional
constraints can usually be implemented rather easily. A heuristic algorithm
can also be transferred to other identical problems with other parameter val-
ues by adjusting some parameters of the heuristics. Often such adjustments
can be made automatically, as we will show later.

Of course, mathematicians are not happy with these heuristics as they
do not provide any proof of having reached the global optimum solution.
You may also hear that many heuristics have funny names, and already for
this reason heuristics are not to be trusted. Yet, these same mathematicians
often use heuristics as a source of bounds for their exact algorithms and to
speed up the search process. Therefore, there is nobody really claiming that
heuristics are not useful and there is nobody in the business of optimization
who does not need to make use of heuristic algorithms.

4.2 Construction Heuristics

Suppose one has a problem to solve optimally and one does not know any
algorithm for solving this problem. The natural way to solve this problem,
then, is the same way as children put a puzzle together. One determines the
single pieces of the problem, starts with a tabula rasa, and includes step by
step all parts of the system in an at least locally optimal way. This approach
can easily be transferred to a computer algorithm, which puts one piece after
the other into the system until a solution for the complete problem is reached
at the end. From the point of view of the individual pieces, each piece looks
in an egoistic manner for the best possible place in the already existing torso
system. This approach usually leads to rather good solutions.

Of course, such egoistic construction heuristics are not or only partly
able to use synergy effects between different parts of the system. Therefore,
global approaches try to keep the whole system in view and not only to use
but also to control the egoistic tendencies of the individual parts. Mostly,
all parts of the system are introduced in the system already at the start
of the construction heuristics. For that reason, the system usually has to
be extended by some auxiliary variables in order to meet the constraints of
the problem. According to some set of rules, these auxiliary variables are
removed, with the sequence and the way of their removal being determined
by the size of the improvements according to some objective function.

In order to clarify this approach, let us consider a production problem
in the chemical industry: some products have to be made in several steps in
a production system with several production lines and finite storage having
finite capacities. In this storage, either the preproducts or some intermediate
products can be stored. The production process can continue only if the num-
ber of preproducts or intermediate products in the storage is sufficiently large.
But there may not be an overflow of this storage. When creating a solution
with such a construction heuristic, one might want to add some production
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lines or storage in order to get a feasible solution at the beginning. Then
one will try to reduce the number of these nonexisting production elements,
which are the auxiliary variables in this system, until they vanish at last.

4.3 Markovian Improvement Heuristics

Heuristics that try to make improvements by changing the actual configura-
tion step by step with a sequence of moves are widely used. Each configura-
tion σ has a certain set of neighboring configurations (τi) to which the search
process can jump from the configuration σ by applying one of the possible
moves. The set (τi) is called the neighborhood N (σ) of the configuration σ.
Depending on the implemented move set, different neighborhood structures
are possible. Usually, moves are used that change the configurations only
slightly, a principle which is called a local search. The set of configurations to-
gether with the neighborhood structure between them constitutes the search
space of the proposed problem. If the cost function values of the individual
configurations are drawn up in an extra dimension and if this extra dimension
is coupled to the search space, one gets the so-called energy landscape of the
system to be optimized. By applying a series of moves in a random way, one
starts a Monte Carlo (MC) process, in which a MC walker moves through
this energy landscape, climbing up hills and walking down valleys. The task
is to lead the walker in an optimum way.

Often only gradient methods are used, i. e., one searches in the local sur-
roundings of the actual configuration according to a gradient rule, which
determines the width of the step and the kind of change due to the largest
possible improvement. This type of search is usually called steepest descent,
as such a change applied to σ leads to the best neighboring configuration
in N (σ), whose energy difference is largest. Mostly, the whole configuration
or one of its variables is used for the change. Sometimes, a different system
is created and leads to the optimization of the system until all requirements
for a feasible solution are fulfilled, an approach that is used by, e. g., neural
networks.

By contrast, the greedy algorithm chooses a neighboring configuration at
random and accepts it in a greedy way if it is better than or at least as
good as the current solution. (Note that some authors call the method that
we call steepest descent the greedy algorithm. Other authors distinguish two
scenarios for the greedy algorithm, the “first improvement scenario” with
a neighboring configuration, which is better than σ, chosen at random and
the “best improvement scenario” with a complete search through the neigh-
borhood of σ for the best neighboring solution.) Methods like steepest descent
and the greedy algorithm usually do not lead to the global optimum solution
in the energy landscape, i. e., to the configuration σglobal optimum with

H(σglobal optimum) ≤ H(σ) (4.1)
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for all configurations σ in the configuration space, but only to a local mini-
mum configuration σlocal minimum with

H(σlocal minimum) ≤ H(σ) (4.2)

for all configurations σ neighboring σlocal minimum, i. e., σ ∈ N (σlocal minimum).
Some related algorithms, like simulated annealing (SA), threshold accept-

ing, and the great deluge algorithm, also allow for deteriorations. The prob-
ability with which a deterioration of a certain size is accepted is governed by
some control parameter, which is changed stepwise during the optimization
run, until only improvements are accepted at the end. The hope is not to get
stuck in bad local minima, as may occur with simpler optimization heuristics.

There are also other algorithms that change the energy values H(σ) of
the configurations σ, thus deforming the energy landscape. Mostly, they only
allow for improvements in either a Steepest Descent or greedy-type way. The
ansatz is to remove barriers in the energy landscape that a greedy method
in the original landscape cannot overcome and thus to arrive at better local
minima or even the global optimum.

As these algorithms jump from a configuration σ to a configuration τ and
do not use any knowledge of formerly visited configurations for the decision
on whether to accept or reject this move, these algorithms belong to the
class of Markovian processes that create a new state only depending on the
previous state and on some random event. Therefore, we review this type of
improvement heuristic under the title Markovian improvement heuristics.

4.4 Set-Based Improvement Heuristics

Whereas SA and related algorithms have in common that a new configu-
ration is created from the current one without using further information,
genetic algorithms (GAs) and evolution strategies (ESs) use a large set of
configurations as individuals in one or more populations. GAs use—besides
moves that change single individuals and that are called mutations in this
context—mainly different types of crossover operators that create children
from parental configurations, whereas ESs concentrate on mutations that
change a member of the population. In both types of algorithms, which are
incidentally closely related to each other, new configurations are always cre-
ated. According to Darwin’s principle of natural selection, only the individ-
uals with the higher fitness, i. e., with the lower cost function value for the
minimization problem, survive. The best individuals usually get more chances
to reproduce than worse individuals. Various implementations of these algo-
rithms differ only in the choice of mutations and of crossover operators and in
addition in the selection of those configurations that are allowed to reproduce
themselves, to have offspring with a suitable partner, or that must commit
suicide.
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Tabu search (TS), on the other hand, stores information about previously
visited configurations in a tabu list and therefore also works on a set of
configurations. TS is a memory-based search strategy by which the system to
be optimized is led away from the parts of the search space that have already
been investigated. This can be achieved by forbidding solutions that were
visited formerly or by forbidding structures common to former configurations
such that they are no longer allowed. These solutions or structures are stored
in a tabu list that is updated after each move according to a specific rule set.
These rules attempt to guarantee that the optimization run does not lead to
a solution that was already visited formerly, that the tabu list size does not
diverge, and that a good solution is reached at the end.

Thus, TS is basically a gradient-descent search with memory. The memory
preserves a number of previously visited states along with a number of states
that might be considered unwanted. This information is stored in a tabu
list. The definition of a state, the area around it, and the length of the tabu
list are critical design parameters. In addition to these tabu parameters, two
extra parameters are often used: aspiration and diversification. Aspiration is
used when all the neighboring states of the current state are also included in
the tabu list. In that case, the tabu obstacle is overridden by selecting a new
state. Diversification adds randomness to this otherwise deterministic search.
If the tabu search is not converging, the search is reset randomly.



5 Implementation of Constraints

5.1 Moves, Constraints, Deadlines

Most practical optimization problems are significantly complicated by con-
straints—limitations on the allowed values of the degrees of freedom of the
system. If the optimization requires assigning locations to objects, then ei-
ther constraints typically are boundaries outside which the locations will be
invalid, or the requirements that certain pairs of objects will not be permitted
to overlap. If the degrees of freedom include the times at which events occur,
then deadlines or precedence relationships form the most common temporal
constraints. The simplest of these are easily expressed as linear inequalities.
When coupled with a sufficiently simple description of the problem’s objective
function as a linear or perhaps quadratic function of the arguments, exact
methods of solution may be available. These are, of course, the techniques of
linear programming and quadratic programming, respectively.

But the objective function may be nonlinear in some more complex way.
It may be the result of a table lookup, introducing discontinuities or nonan-
alyticities, or it may involve a complex and costly calculation each time it is
evaluated for a new configuration and not permit numerical differentiation.
In those cases, heuristics organized around local rearrangement moves, in
which only a few degrees of freedom change at each step, are appealing. The
single most important step in developing such heuristics is usually the choice
of a set of moves with which to explore the design space of the problem and
with which to improve upon reasonable trial solutions.

5.2 Incorporation into the Configurations

Most complex optimization problems suffer from one or more constraints that
have to be considered in the optimization process in order to achieve a feasible
solution. Two classes of constraints are distinguished: hard constraints have
to be met without fail; soft constraints may be violated, but the degree of
violation shall be as small as possible.

The best way to deal with a constraint is to integrate it into the configura-
tions and to allow only for moves which turn a feasible configuration into an
other feasible configuration. Then if we start out satisfying the constraint(s),
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each subsequent configuration satisfies the constraint automatically. Still the
moves between the configurations have to be general and powerful enough
that each feasible state can be reached from any initial configuration in a ran-
dom walk. There must not be any moves leading to a forbidden configuration.

This approach is highly advantageous especially for hard constraints, as
they are fulfilled automatically. It is sometimes called a restriction to feasible
configurations.

5.3 Consideration of Feasible Solutions Only

If such an integration of a constraint is not possible, other ways of dealing
with the constraint have to be chosen. If feasible solutions can be found rather
easily, then the method of choice often consists of starting the optimization
run at a feasible solution and only accepting new solutions if they are likewise
feasible. Therefore, moves leading to configurations in which a hard constraint
is not met or a soft constraint violated too much are rejected.

This approach seldom leads to good results because often the set of fea-
sible configurations is split into many islands in the energy landscape, such
that the search by the Monte Carlo walker for a good solution is restricted
to the island containing the initial configuration. Therefore, he/she can find
the best local minimum inside this island but fails to reach better solutions
or even the global optimum on other islands.

5.4 Penalty Functions

A way out of this dilemma is provided by the principle of the penalty func-
tions [155, 110]. A solution that was forbidden according to the approach
above is no longer forbidden by some kind of barrier function, but it is “pun-
ished”. The size of the penalty depends on the extent of the violation of the
constraints. The nonfeasible solutions are thus lifted up in the energy land-
scape as the penalties are added to their energies. As the Monte Carlo walker
searches for a (quasi) optimum configuration, he is more likely to end up in
a feasible solution, in which all constraints are met, such that it can be used
in practice.

The Hamiltonian H therefore not only contains the real costs H0 but also
some additional pseudocosts Hi = λi × fi, i ≥ 1, consisting of Lagrange
multipliers λi > 0 and penalty functions fi. The penalty functions and the
Lagrange multipliers, which are used to balance the impact of the additional
terms, have to be chosen in such a way that all fi are zero at the end of the
optimization run, i. e., that all constraints are met.

The penalty terms can have various forms (Fig. 5.1): if the constraint is
met, the penalty is usually 0. If it is violated, the penalty increases linearly
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Fig. 5.1. The most common penalty functions are either linear or quadratic with
the degree of violation of the constraint. If the constraint is met (here symbolic in
the interval [0; 1]), then the penalty vanishes; otherwise it increases monotonously

or quadratically with or without an additional offset. This offset is some-
times used to avoid small violations of a constraint. Summarizing, the more
constraints of a configuration are violated, the more that configuration is
punished.

Of course, one can imagine other forms of a penalty function, even some
special-purpose penalty functions. Usually, the standard forms mentioned
above do a good job as they do not rise too much with the amount of violation;
thus they are penalty but not barrier functions. The Monte Carlo walker
is able to walk on a path containing some nonfeasible solutions. However,
sometimes one faces a problem in which some constraints can hardly be
met or for which one has very detailed desires for what a good solution
will look like. One has to be careful when incorporating a large number of
sophisticated penalty functions because they may lead to a totally frustrated
system in which the Monte Carlo walker is unable to find any feasible solution.
If a solution is found, it might not be at all what is expected or desired.
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6.1 Parallelization Models and Computer Architectures

In this chapter, the main parallelization strategies used for optimization are
introduced. Each of these strategies can be implemented in one of the two
major parallelization models: either one can use the cubix model, in which
there is exactly one program which is loaded on all used processors. The
other extreme is the master-slave model in which a host program, the so-
called master, starts the other nodes, which are called slaves. Usually, each
slave gets the same program, whereas the master often has a special program
with completely different tasks. The master-slave model may extend from
simply starting the slaves and collecting their results to the total control
of the slaves. This model is also called the farm model due to the picture
of a farm with a main house, in which the owner of the farm, the master,
lives, and with the huts of the workers, the slaves. Furthermore, a tree model,
which is an extended master-slave model, is used. Again there is a master
who starts some slaves, but now the slaves themselves also start slaves. This
feudal model can be repeated in several iterations. Often a binary tree is built
in which each branch splits into two subbranches.

Parallel calculation can be done on a network of workstations or per-
sonal computers, but also on special parallel computers with a large num-
ber of processors. The topology of the network between the processors is
usually a lattice architecture or a special tree topology. A simple lattice
architecture is the hypercube. One can imagine each processor being lo-
cated at a corner of a d-dimensional hypercube. Therefore, the hypercube
contains 2d processors. This architecture is advantageous if each proces-
sor mainly communicates with its d neighboring processors; the commu-
nication to more distinct processors takes d − 1 hops at a maximum. In
more complicated lattice architectures, more than two processors are in
each row and each column of the lattice. Therefore, one usually needs
more hops to deliver information to a distinct processor, at a maximum
(l − 1) × d hops, with l being the number of processors in each row or col-
umn. If the borders of the lattice are connected, such that a d-dimensional
torus is formed, there are at a maximum only [d × l/2] hops. This ar-
chitecture is better suited for those parallel programs in which an area
is divided analogously to the lattice structure of the parallel computer.
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Due to the most important applications, usually 2D and 3D lattices are
used.

In the 1D case, such a lattice architecture is identical to the standard
tree without branching, on which all processors are located in an open chain.
If this chain is closed by introducing a connection between the first and
the last processor, one gets the token ring model, in which all processors
are logically located on a circle and in which each processor can directly
talk to only its left and right neighbor. The maximum number of hops for
transferring the information between two processors is [l/2]. Mostly, a tree
topology contains regular branchings; for example, in the case of the binary
tree each parental processor is connected with two son processors. Except
for the ancestor and the offspring of the last generation, each of the 2d − 1
processors (assuming d generations) is connected to three neighbors, whereas
the ancestor has only two connections and the youngest offspring only one
connection. Furthermore, there are group models; for example, processors of
different generations in the binary tree can be composed to a logical group
in order to solve a partial problem.

Generally, one has to consider for each problem which parallelization
model is most suitable for the given problem; then one must choose the best
possible machine architecture that is available for carrying out the produc-
tion runs. Furthermore, only information exchanges that are really necessary
between the single processors should be performed.

6.2 Running Several Copies

The simplest approach to parallelizing a stochastic algorithm, which is sadly
the most widely used type of algorithm, is simply to start the same program
on each node and to use a different seed (e. g., the number of the node) for
the initialization of the random number generator such that a set of different
solutions is created. These solutions can be used for obtaining some statistics
on the problem. However, often only the best solution is selected and returned
as output of this so-called parallel algorithm. Even parallel computers, which
are designed for allowing a large number of communications between the
single processors, are often abused by this type of parallelization.

6.3 Divide et Impera

If a problem is so large that it cannot run on a single processor due to
its requirement of storage or due to the calculation time needed, then the
parallelization strategy “divide & conquer” is applied, by which this problem
is divided and distributed over p processors such that it becomes calculable.

This division is especially not difficult if the problem can be split into
partial problems that are completely independent of each other. The standard
example for this case is the multiplication of a matrix with a vector that can
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be split into the multiplication of each row of the matrix with the vector.
However, usually some communication between the processors is necessary.
If for example some area is divided into stripes, then one has to make sure to
send messages with changes at the borders to the “neighboring” processors
if they are involved. One example for this scenario is a cellular automaton,
which consists of a lattice of identical cells: each state of a cell is given as
a discrete value out of a finite number of values. The system is evolved over
several time steps. In each time step, a parallel update of all cells is performed.
The new state of a cell usually only depends on its previous state and the
previous states of the neighboring cells. Such a cellular automaton can easily
be split up over several processors. The new states of the cells at the borders
must be transmitted to the neighboring processors.

Therefore, the total time for running a parallel program consists not only
of the calculation time but additionally of the communication time, which is
the sum of the latency, i. e., the time needed for establishing the connection
between two processors, and the transfer time, which depends linearly on
the number of bytes to send. Furthermore, there is often the problem that
some part of the program code cannot be parallelized completely such that
there remains a part that would take some fraction α of the calculation time
in a serial program, which has to be calculated by one processor in a serial
way or by all processors identically. In this context, two definitions are very
useful: the speedup S(p) is defined as

S(p) =
C1

Cp
, (6.1)

with Ci being the calculation time on i processors. The speedup measures the
acceleration achieved by splitting the problem on p processors. The efficiency

E(p) =
S(p)
p

≤ 1 (6.2)

denotes how efficient the parallelization strategy is in contrast to a serial
program.

Amdahl’s Law
S(p) =

1

α+
1 − α

p

≤ 1
α

(6.3)

shows whether a parallelization makes sense and how many processors would
be optimal. α should be as small as possible. However, the time for communi-
cation is not considered in this formula. An often used extension of Amdahl’s
Law considers the communication time as being proportional to the number
of processors p [195]. Let therefore α be again the fraction for the serial part
and β the fraction for the communication time in the overall time. Then the
speedup is given by

S(p) =
1

α+ pβ +
1 − α− β

p

. (6.4)
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Therefore, the speedup can decrease for large numbers of processors p. The
position of the maximum value, along with the optimum processor number,
is determined by β, and the amount of the speedup is determined both by α
and β.

6.4 Information Exchange

However, the divide et impera method is of no use for many optimization
problems: due to strong correlations between parts of the system that do
not neighbor each other, this approach often leads to a counterproductive
divide-and-lose effect. Therefore, besides this method, which is sometimes
necessary for solving a problem of a larger size, the best use of a parallel
computer is to exchange information between the single processors in order
to save calculation time or to improve the results. Depending on the under-
lying optimization algorithm, there are different bits of information that can
be transferred during the optimization run: using simulated annealing and
related algorithms, some information can be exchanged for determining the
value of the control parameter in the next optimization step or the best-so-far
solution can be transmitted to all processors. Some of these approaches are
summarized by the term multichain Monte Carlo algorithms, or (MC)2. There
are also different versions of (MC)n algorithms with n ≥ 3, e. g., a Metropolis
coupled multichain MC algorithm. [Note that the term (MC)2 is also used
as an abbreviation for Markov chain Monte Carlo.] Working with genetic al-
gorithms, migration processes can be simulated: a parallel implementation is
ideal for dividing up all individuals among several subpopulations, with each
of these simulated on one processor. After some time, some individuals are
moved to another subpopulation. Whether the fitnesses of these indivuals are
low (thus simulating the pressure in the time of the emigration of nations on
weaker tribes to find new land) or high (thus simulating the expansion of
a militarily superior tribe) is determined in different ways. A parallelization
of tabu search allows for a parallel update of the tabu list. But there is an
information exchange not only during the optimization run; information can
also be exchanged after the end of an optimization run in order to obtain
more insight into the proposed problem and in order to use this information
for further parallel optimization runs.

In this context, the traditional definitions of speedup and efficiency are
no longer applicable. Only problem-specific parameters can be defined with
which the gain of a parallelization can be measured. This gain can consist of
the improvement of the results that was possible due to the parallelization
or of the savings of calculation time for achieving results that are at least as
good as results from serial runs.
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In the business of optimization, mostly one has to deal with problems that
cannot be divided into separate subproblems, as then synergy effects are lost
such that the composition of optimum results of subproblems is worse than
the optimum solution of the whole problem. Therefore, we will concentrate
on information-exchange strategies later in the book and give a few examples
of them.
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7.1 General Outline of Construction Heuristics

Construction heuristics or augmentation heuristics are usually the fastest
way to achieve feasible solutions for a proposed problem. Such solutions are
usually not as good as solutions provided by other heuristics. Because of
that, construction heuristics are mainly used if a reasonably good solution
to a problem has to be found promptly or to provide initial solutions for
improvement heuristics, which will be introduced in the next chapter. Con-
struction heuristics may also be used inside improvement heuristics, as we
will see later.

Generally, a construction heuristic can be split into different phases, start-
ing with an initialization phase, continuing with a loop over selection and
placement phases until some conditions are met like, e. g., having achieved
a proper solution for the proposed problem, and sometimes concluding with
a cleaning phase:

• The first phase is the initialization phase:
– Some construction heuristics start with a tabula rasa, i. e., with an empty

blackboard. This is the same approach as solving a jigsaw puzzle. Closely
related to this approach is the idea of starting with exactly one piece of
the problem, which might be specially selected, like a corner piece.

– Another initialization method consists of starting with the optimum so-
lution of a small subsystem of the problem. Again the parts of the sub-
system might already be specially selected such that the construction
heuristics start with the final result of another heuristic or an exact
algorithm for the subsystems.

– It is also possible to introduce all pieces into the system at the very
beginning. To meet all the problem’s constraints, the system usually has
to be extended at least in one dimension or further dimensions have to
be added.

• Next is the selection phase: If starting with a tabula rasa or a small sub-
system, the question occurs as to which part or parts of the system will be
introduced in this step of the algorithm. In some heuristics, the selection is
done randomly; other heuristics have a rule set for selecting an appropriate
piece. If all items were already inserted at the beginning, the question is
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where to change the solution in order to reduce the length in the additional
dimensions.

• Connected to that is the placement phase: the selected items have to be
placed somewhere in the system according to some rules.

• The selection and the placement phases are repeated until all parts are
introduced in the system or until the additional dimensions can be removed.

• Sometimes there is a cleaning phase at the end of the construction heuris-
tics by which the already achieved solution shall be improved according to
some rules.

7.2 Insertion Heuristics

Now the insertion heuristics that start with a tabula rasa, one piece, or a small
subsystem will be described more thoroughly. If starting with a tabula rasa,
a piece is selected either randomly or according to its relevance or according
to some rule set and placed in the system. If there is already one piece, often
some nearest-neighbor strategy is used for the selection phase. In order to
be able to apply this strategy, a neighborhood relation or even a quantified
ordered neighborhood measure must exist or has to be defined between the
individual pieces of the problem. The “nearest” item is introduced next in the
system. One can even start with two items that are as far apart as possible.

Now there is often already a subsystem that might be a complete solution
for a smaller instance of the considered optimization problem. If the nearest
neighbor strategy is applied again, the question arises as to whether only the
neighborhood of the first piece, only the neighborhood of the second piece,
the neighborhoods of both pieces, or the neighborhood of the connection
between the two pieces will be considered. The various insertion heuristics
differ mainly in this point. Some definitions of a neighborhood lead in the next
few steps to better results than others, but in the end the last remaining items
might have to be introduced in some awkward way, whereas other insertion
heuristics that are not as good in the intermediate stage of construction pay
back at the end of the algorithm.

There are also geometric insertion heuristics: the pieces can be successively
inserted from top to bottom, from left to right, from the center of the system
to the borders of the system, or vice versa. If the algorithm starts, for example,
at the center or at the borders of the system, then it can make use of the
neighborhood relation and introduce all pieces due to their “distance” to the
center or it can introduce them in a clockwise or counterclockwise manner.
Of course, such heuristics can only be applied to problems that exhibit some
geometry at all.
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7.3 Savings Heuristics

As already mentioned above, there is a different type of construction heuristic
in which all parts of the system are already introduced at the beginning. One
standard example for this approach is the savings algorithm for the vehicle
routing problem, which was developed by Clarke and Wright [36]. Therefore,
we shall describe all of these heuristics under the label savings heuristics.

The main idea of these algorithms is that after introducing all of the items
independently of each other, the items are rearranged and merged in such
a way that the quality of the solution increases. Usually, a rearrangement is
chosen that leads to the largest savings. Instead of this approach, a randomly
chosen rearrangement is simply accepted if it leads to some savings.

7.4 More Intelligent Ways of Construction

Till now, only those construction heuristics were mentioned in which the
individual pieces, once they are selected and placed in the system, stay put.
However, sometimes it is advantageous for an item to retreat from its good
insertion and either to be removed from the system, such that it has to be
introduced again later, or to be moved to another place in the system in order
to allow a better overall solution. Various types of backtracking methods can
be combined with the heuristics described above. Of course, unrestricted
backtracking guarantees that the optimum solution will be achieved, but this
can only be achieved with exponential costs in the system size such that
a backtracking here is usually only used in one to three iterations in order
to achieve the greatest improvements at minimum additional computational
costs.

For some problems, one can make use of deeper insight into the problem
if creating a construction heuristic. One can make use of geometric proper-
ties, start with subsystems that are already optimally solved, add optimally
solved subsystems, or restrict the heuristic to a smaller amount of insertion or
savings possibilities because of some exact or heuristic estimations of upper
or lower bounds.

However, one has to be careful when extending the rule set. As we will
show later, sometimes it is better to leave some space for random choices of
the heuristic and not provide a too strict rule set. A good balance must be
found between some degree of randomness and some otherwise stiff rule set.
This holds true also for improvement heuristics.
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8.1 Constructing a Markov Chain

Autoregressive processes of the order n (abbreviated AR[n]) are given by

Xt = α1Xt−1 + α2Xt−2 + . . .+ αnXt−n + εt . (8.1)

The system evolves therefore in a way that the state Xt in time t depends
in a linear way on the states at the n previous time steps and some random
element εt at time t. The special AR[1]-case of the autoregressive processes,

Xt = αXt−1 + εt , (8.2)

is also called a Markov process. Each Markov process therefore depends only
on the previous state in time. Starting at some initial state X0 at time t = 0,
a Markov chain is built by successively applying formula (8.2).

Analogously, a Markovian improvement heuristic starts at some initial
configuration, which might be random or already preoptimized as a result of,
e. g., some construction heuristic, and constructs a Markov chain by changing
the configuration successively. Thus, one starts at an initial configuration σ0.
Then one changes this configuration according to a set of rules into another
configuation σ1. Now the question is whether to accept or reject the tentative
new configuration σ1. If the move σ0 → σ1 is accepted, then one keeps the
new configuration σ1; otherwise one sets σ1 ≡ σ0. Then one changes the
configuration σ1 into some configuration σ2 and again decides whether to
accept or reject this move σ1 → σ2. Iterating this approach, one constructs
a sequence of configurations σi by applying moves σi−1 → σi. As each move
only depends on two configurations, i. e., the current configuration and the
tentative new configuration, and as the past configurations are forgotten,
one constructs a Markov process when applying an iterative improvement
heuristic.

There are usually many ways to change a configuration. The various pos-
sibilities for changing a configuration are implemented in one or more move
routines. A move is a description of how a configuration can be changed.
Usually, these move routines contain some random elements, such that the
number of configurations τ that can be reached by starting from configura-
tion σ and applying a move σ → τ is rather large.
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Not every move need be accepted. Each improvement heuristic includes
some rule according to which a tentative new configuration τ is accepted or
not if compared to the actual configuration σ. If the move is accepted, the
new configuration is τ , from which we move in the next time step. If it is
rejected, σ remains the actual configuration and a new move is applied to it
in the next time step. The various Markovian improvement heuristics mainly
differ in the choice of the acceptance rule. This choice is completely defined
by a transition probability function p(σ → τ).

8.2 Trivial Acceptance Functions

The most trivial acceptance rule is used in the random walk (RW). In a RW,
one of the neighboring configurations τ of the current configuration σ is cho-
sen at random. Each move from a configuration σ to a neighboring config-
uration τ is accepted such that the transition probability function is simply
given by

p(σ → τ) = 1 . (8.3)

The RW is mainly used in cases where there are no large structures in the
energy landscape (which might be otherwise used by a more elaborate op-
timization technique). As a result, one can only hope to pick up a good
solution while walking around at random. This is especially the case if the
energy landscape is shaped like a golf course, i. e., if there are only a few
isolated states of a high quality, and there is no sign of their existence in
their neighborhood.

If one deals otherwise with a nicely shaped energy landscape that con-
tains no other local minimum than the global optimum, the best choice is to
use a greedy algorithm, which accepts only those moves that lead to either
a better or an equally good configuration. As in the RW, a configuration τ
that is a neighbor of the current configuration σ is chosen at random. Let

ΔH = H(τ) −H(σ) (8.4)

be the difference between the energies of two participating configurations;
then the transition probability is simply given by

p(σ → τ) =
{ 1 if ΔH ≤ 0

0 otherwise
(8.5)

such that each move that leads to a better or equally good configuration
is accepted, but each move leading to a worse configuration is rejected. If
a move is rejected, the system remains in the present configuration σ.

Sometimes one finds in the literature slightly changed acceptance rules
for the greedy algorithm: either only improvements are accepted, i. e.,

p(σ → τ) =
{ 1 if ΔH < 0

0 otherwise
, (8.6)
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or the case ΔH = 0 is accepted with a specific probability between 0 and 1,
usually 0.5. According to our experience [186], acceptance rule (8.5) leads to
better results than not accepting every ΔH = 0-move, if the construction of
the moves exhibits enough randomness. If it does not, then sometimes one
might end up in an endless loop between equally good solutions if using (8.5)
such that one has to accept this so-called “trivial” type of move with a specific
probability only in order to introduce additional randomness into the system.

There exist some problems that can be solved with this greedy algorithm
optimally, but usually complex problems have energy landscapes that exhibit
a large number of local minima and extended hill and valley structures. Here
the greedy algorithm ofen ends up in a bad local minimum, which lies close
to the starting point of the optimization run. Therefore, one has to use more
elaborate transition probabilities that also accept some deteriorations and
that enable the Monte Carlo walker to climb over barriers in the energy
landscape.

8.3 Introduction of a Control Parameter

Since the RW and the greedy are thus not suitable to deal with complex
energy landscapes, one has to think of more elaborate transition probabilities
p. These transition probabilities should allow for deteriorations; however, they
shall lead the Monte Carlo walker to a (quasi) optimum solution at the end
of the optimization run.

Not every deterioration can be accepted, as the algorithm would then be
identical to the RW. Furthermore, large deteriorations should not be accepted
with the same probability as small deteriorations. Therefore, the transition
probability should be a function of the energy difference ΔH.

The possible energy differences might be of different orders of magnitude
if the energy landscape is multifractal such that there are high mountains and
deep valleys on a large scale, but zooming in one finds a similar mountain-
valley structure. This multifractality might be repeated in several steps of
zooming in. At the beginning of the optimization run, one is mostly con-
cerned about the largest-scale barriers and wants the Monte Carlo walker
to be able to climb over these barriers in order to get to a deep wide val-
ley. Then, however, the Monte Carlo walker should stay in this valley with
a large probability and search more locally for a nice subvalley by climbing
over barriers of the next smallest order of magnitude. Then an ever stronger
restriction should be applied, such that the Monte Carlo walker searches in-
side the subvalley only. Finally, at the end of the optimization run, the greedy
approach would be preferable in order to let the system climb down the local
valley and to let it get stuck at a nearby (quasi) optimum solution.

Obviously, some transition from the RW mode to the greedy mode is
necessary in order to fulfill these wishes. For that purpose, a control pa-
rameter has to be introduced that governs the transition: at high values of
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the control parameter, the system accepts (nearly) every deterioration and is
therefore in the RW mode, such that the Monte Carlo walker visits unordered
high-energy configurations. Reducing the control parameter, more and more
deteriorations are rejected, such that the Monte Carlo walker is driven down-
wards in the energy landscape toward better configurations. As the control
parameter reaches its final value, for example zero, only improvements are
allowed, such that the Monte Carlo walker climbs down the local valley and
gets stuck in a (quasi) optimum solution. In a physical context, such a con-
trol parameter is the temperature T : decreasing the temperature, a physical
system loses energy to a large extent and is transferred from a high-energy
unordered regime to a low-energy ordered configuration.

Besides such a global control parameter, one might wish to work locally
with another control parameter. This local control parameter might be use-
ful because there are different orders of magnitude of the energy differences
in some local area and in the remaining part of the system. This approach
can even be extended to defining several local control parameters for vari-
ous parts of the system. But a local control parameter can also be used in
a different way: while the global control parameter remains constant, the
local control parameter governing a small area of the system might be de-
creased from a large value to zero, such that a complete optimization run is
performed locally. The result of this local optimization can be accepted or
rejected according to the global control parameter.

8.4 Heat Bath Approach

Till now, we have only considered the standard approach making a trial move
from a current solution σ to a neighboring, tentative new solution τ . The move
is either accepted, such that the system jumps from σ to τ , or rejected, in
which case the system stays in σ.

In contrast, the heat bath approach works according to the following
recipe: all neighboring configurations τi of the current solution σ are consid-
ered (or at least a specific subset of them, in which at least one of the variables
of σ is changed). The transition probabilities p(σ → τi) are calculated for all
of these. Let P be their sum:

P =
NN(σ)∑

i=1

p(σ → τi) , (8.7)

with NN(σ) being the number of the neighboring configurations. A uniformly
distributed random number r between 0 and 1 is generated. Then that con-
figuration τĩ is chosen as the new configuration, for which the following ex-
pression holds true:

ĩ−1∑

i=1

p(σ → τi) < r × P ≤
ĩ∑

i=1

p(σ → τi) . (8.8)
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This heat bath approach has the advantage that the system always jumps
to a new configuration, such that the dynamics is faster than that of the
standard Markovian approach. However, there is the disadvantage that if the
system is already in a local optimum, the heat bath approach forces it to get
out of it if there are at least very small transition probabilities to neighboring
configurations. Furthermore, if there are many ways to get to a worse con-
figuration and only a few that lead to a better configuration, there is a large
probability that this approach will choose one of the worse ways. In such
a case, the standard approach would be preferable where the system stays in
the current solution with the usually very large probability 1 − p. There is
another problem that occurs if the algorithm is in a quasigreedy mode: if the
transition probabilities of all of the neighboring configurations investigated
are zero, then the system must remain in the current configuration. However,
if all possible neighbors are taken into account, this scenario marks the end
of the algorithm, and the system is frozen in a local optimum.

According to our experience, this heat bath approach leads to worse re-
sults than the classic approach of randomly selecting one neighboring con-
figuration and checking whether the move will be performed or whether the
Monte Carlo walker should stay with the current configuration. In the heat
bath approach, the Monte Carlo walker always has to leave his/her current so-
lution. If now all neighboring solutions are far worse than the current solution,
the Monte Carlo walker stays with a high probability with the current solution
in the classic approach, whereas the move to one of the much worse configu-
rations must be performed if using the heat bath approach. This problem can
be solved partially by extending the neighborhood of the actual configuration
with the actual configuration itself such that there is a comparatively large
addend to P for staying in the actual configuration. However, if the number
of neighboring configurations is very large, the weight of this addend relative
to the sum over the transition probabilities to the worse neighbors might be
smaller than the probability of staying in the classic approach.
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9.1 Classic Local Search Approach

Now the question arises of how best to define a move between various config-
urations. A first approach would be to let the system jump from the current
configuration to any other randomly chosen configuration, as this approach
provides the largest degree of freedom to the system. This type of move might
be appropriate when using the random walk (RW). However, using the greedy
algorithm, the acceptance rate, i. e., the number of accepted moves divided
by the overall number of move trials, may soon be very small: most randomly
built configurations have a much larger cost function value than the rather
good solutions that we hope to reach. Furthermore, for complex problems,
the number of these rather good solutions is extremely small compared to
the overall number of configurations. Therefore, if some rather good solution
has been found, there will be a long series of move trials until the system is
able to jump to a better configuration. It would be simpler and even faster
to perform an exact enumeration of the whole system by means of some in-
telligent search heuristics. Furthermore, the overall number of configurations
for a larger-size problem is usually so large that a computer cannot visit all
of them during the lifetime of the programmer.

Therefore, one is not interested in visiting all configurations. Instead one
wants to get the Monte Carlo walker quickly to good solutions. In the classic
local search approach, one expects a configuration that is rather similar to an-
other good solution to be of roughly the same quality. Therefore, one chooses
so-called small moves, which change the actual configuration only slightly.
This way, one finds better solutions than the current one with a much larger
probability than by moving around at random.

The question that remains is how to define the similarity between different
configurations of a specific problem. Usually it is rather trivial to see whether
or not two solutions are similar to each other, and we can define measures that
quantify the similarity between two randomly selected configurations. The
most common measure, sometimes called the Hamming distance, is simply
the number of degrees of freedom that must change in a move.
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9.2 Problems of the Local Search Approach

However, this local search approach inherits a problem: if the greedy algo-
rithm is used in combination with this local search approach, the system soon
gets stuck in a high-lying local minimum if the energy landscape is complex
and contains many local minima. Furthermore, the resulting configuration
strongly depends on the initial state at which the optimization process was
started, as the Monte Carlo walker simply climbs down the local valley as far
as possible. These problems can be partially overcome by the use of a control
parameter allowing uphill moves. However, at the end of the optimization run,
when the control parameter is already rather small, the system is no longer
able to leave a bad local valley in a finite amount of time. In summary, if one
implements the smallest move possible that performs the smallest possible
change on a configuration, one then has to invest much more time in the
development of a control parameter and a strategy for its use.

Secondly, one always has to ensure that the implemented move or moves
lead to an ergodic system. Ergodicity simply means that, starting at a ran-
domly chosen configuration and using the RW acceptance criterion, every
other configuration must be reachable. If the system is continuous, then the
algorithm must be able to get arbitrarily near any configuration in an arbi-
trarily large amount of time.

Finding ergodic moves is usually possible; however, one has to work on
not getting stuck in order to get really good results.

9.3 Larger Moves

Often the local search approach either has to be abandoned or at least weak-
ened to get very good solutions. An obvious idea for weakening the local
search approach is simply to implement moves that change a configuration
slightly more than the smallest possible moves, to take bigger steps. Often,
these “next larger moves” can be composed by successively applying two or
three smaller moves, but sometimes the next larger move can only be de-
scribed as a long sequence of smaller moves. One might argue that the con-
figuration that might be reached with this next larger move could therefore
have been reached by applying the corresponding sequence of smaller moves.
However, the sequence might have broken when one of the smaller moves is
rejected. So, by implementing not only the smallest but also the next larger
moves, the neighborhood of a configuration is enlarged. Depending on the
considered problem, the number of neighbors may at least double, even gain
an order of magnitude or more, as we will see later.

This approach can be extended by not only implementing the smallest
move(s) and the next larger move(s), but also the next next larger move(s),
and so on. Summarizing, one can define a move of size s that can be composed
by moves of sizes 1, . . . , s − 1. However, this weakening of the local search
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approach should not be extended too far: simply imagine reaching a large
amount of configurations within one move with the number of these configu-
rations being comparable to the overall number of configurations. Then one
has returned to the random approach mentioned above. Usually, one restricts
oneself to moves of size s = 1, 2, and, at a maximum, 3 to 5. Sometimes,
some special cases of larger moves turn out to be very effective. Usually, they
get special names in this case and are implemented together with the smaller
moves.

If therefore several move routines are implemented, there is always the
question as to which move to choose. Usually, there is a general move func-
tion that calls one of the various move routines with some probability. The
probabilities can be chosen equal and constant during the optimization pro-
cess as a first simple approach. However, usually move routines of larger sizes
s should be called more often than move routines of smaller sizes, as the
larger s is, the more improbable it is at an already rather good solution that
the move routine will lead to a better solution. However, the acceptance of
one larger move might lead to further improvements by smaller moves that
would not have been possible without the acceptance of the larger move. This
behavior is summarized in the saying that after a large improvement there
might be a rain of small improvements.

9.4 Jumping Between Different Move Sizes

There are also other approaches to working with moves of different sizes in
combination with the greedy algorithm or an algorithm in a mode similar
to the greedy: first of all, moves of size s = 1 are applied to the system, for
some time or until no further improvement can be found. Then the various
approaches differ:

• Some of them then apply moves of size s = 2 to the system.
– After one such move trial is accepted, some heuristics switch immediately

back to moves of size s = 1 and search for improvements. If, finally, no
more improvements are found, they switch back to size s = 2 and repeat
this approach until no further improvement by a move of size s = 2 is
found. Then they recursively perform the same procedure with moves of
larger sizes, only differing in how and whether they switch from a larger s
back to either
• s− 1 or
• s = 1.

– Other heuristics stay longer in the s = 2 mode and search for a fixed
time or until no further improvement is known to exist. Then they switch
• either back to s = 1, then
· if improvements are found there, again to s = 2,
· otherwise to s = 3,
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• or forward to s = 3.
Again this behavior is recursively repeated.

• Other approaches then apply both moves of sizes s = 1 and s = 2, then
moves of sizes s = 1, 2, and 3, and so on.

Usually, these approaches are considered improvement heuristics, as they try
to improve the current configuration. Sometimes, however, they are classified
as construction heuristics or as the cleaning phase of a construction heuristic.
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10.1 The Philosophy of Building One’s Own Castle

The classic local search approach sometimes fails to find (quasi) optimum
solutions for very complex problems when the system cannot leave a bad
local minimum because of the small size of the move and the small size of
the neighborhood related to it. The view of the global system is lost such
that synergy between different parts of the system cannot be used during the
optimization process. Therefore, a new view has to be found that considers
the whole system as a unit and not as a composition of local elements.

To relate this to everyday life, think of local search as the small changes
one makes in order to get home or to work faster, to work more efficiently, to
get a tastier meal by adding some pepper, and so on. However, life also offers
more complex problems. If one thinks of building one’s own castle, one would
surely not use small moves, such as changing slightly the color of a brick
in the wall. Instead, one would consider moving a tower to another point
and changing its appearance completely or adding a second drawbridge. One
would therefore apply moves of a large size, which always lead to a rather
good solution. Furthermore, if one considered the tastes of various wines, one
would find that changing the chemical composition slightly might lead to
a dramatic change in taste. Very complex optimization problems are some-
times like this—the local search approach must fail for them.

10.2 Outline of Approach

All in all, the system must be changed not locally but over a macroscopic
scale. The question arises as to how this can be achieved. On the one hand,
one should not use the local search approach. On the other hand, the system
will not be destroyed completely, because then construction heuristics have
to be applied in order to start over. Therefore, the approach can only be
to destroy a large part of the system, then reintroduce the removed items in
a specific way, and, finally, ask the underlying improvement heuristic whether
this move will be accepted. Such a large move therefore consists of two parts,
a destruction, which is called ruin, and a rebuild routine, which is called
recreate [194]. The destroyed part of the system will be large enough such
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that the impact of the “bomb” that is thrown on the system will be noticeable
not only locally but in the whole system. On the other hand, it should be
small enough so that at least a small basis of the system, a skeleton, remains
with which an efficient recreate can be performed. Both parts of the move
must influence the whole system. Usually, some percentage P can be defined
as the maximum percentage of items that are removed from the system by
the ruin method. Each ruin & recreate (R & R) move starts by generating
a random number in the interval [0;P ] in order to determine the fraction of
the system to be removed.

However, not every possible ruin and not every possible recreate method
is suited for creating optimum or quasioptimum results. For each specific
problem, one must look at the whole system from various viewpoints, think
in a global manner, and then introduce a few large moves to reach the op-
timum. As an example of a bad recreate, consider the possibility that each
item that was removed from the system is reintroduced in a random way. At
first glance, this seems to be a good choice, as it recalls the way in which
configurations were changed by small moves; furthermore, the system seems
to achieve a large degree of freedom of movement. However, moves contain-
ing such a recreate part will seldom lead to important improvements. The
acceptance rate of such moves vanishes already when the control parameter
is of medium size, much earlier than if using small-sized moves, as here the
size of the possible deteriorations is much larger.

Therefore, one must pay attention to which possibilities are used for a ruin
and which for a recreate method and how these two routines are combined
in a move. Both the ruin and the recreate parts will at least partially be of
algorithmic character and partially work with rules that leave room for ran-
dom choices. The moves will inherit a mixture between a certain degree of
randomness and a proposed set of strict rules. Furthermore, after various pos-
sibilities for ruins and recreates have been found, under some circumstances
only relatively few combinations of ruins and recreates are suitable, i. e., one
has to find pairs of ruins and recreates that can work together well. Let us
exemplify this with the result of a historic bad R & R move (this story is
still told with a sad smile by the guides who lead tourists through the castle
of Heidelberg): elector Duke Friedrich V, who reigned the Palatinate from
1610 to 1632, had some moats and furthermore a valley behind the castle of
Heidelberg filled in, thereby reducing the fortifications of the castle, in order
to have enough space for creating the famous castle garden Hortus Palatinus,
a present to his beloved wife Elisabeth. In the Thirty Years War (1618–1648),
the French general Tilly was able to capture the castle in 1622: before this
change, the only way up to the castle on the mountain was from the Neckar
valley, on which the cannons of the castle were aimed. One can still imagine
this by looking at Fig. 10.1. But Tilly’s troops climbed the back side of the
Königsstuhl mountain and walked over the top of the mountain, down to
and through the Hortus Palatinus, and inside the castle. In the Palatine wars
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Fig. 10.1. The castle of Heidelberg, the former capital of Palatinate [83]

of 1688/89 and 1693, the castle was again captured, looted, set on fire, and
blown up, so that only ruins are left.

After this historical excursion, let us return to some standard possibili-
ties for ruins: first of all, one could imagine selecting items from the system
randomly and removing them. A skeleton system remains that is the initial
point for the recreate routine. This type of a ruin has an impact on all parts
of the system and is not local at all. Even more than 50% of the whole system
can be removed for some problems. There is also the possibility of making
use of some neighborhood or similarity relation between the individual items
of the system. First, one item c is randomly selected and removed from the
system. Then all items that are in some relationship to c are removed. This
ruin type might have a more local impact, such that only 1 to 20% of the
system, depending on the problem, should be removed.

There are also several possibilities for a recreate: a standard way to devise
a recreate would be to take a suitable construction heuristic of the insertion
type and alter it in such a way that it recreates only the destroyed part, leav-
ing the remaining system unchanged [194]. One can compare this approach
somewhat with the work of an archaeologist, anthropologist, or paleontolo-
gist, who has a half-complete skeleton and a box full of bones in front of him
and has to put them together like the pieces of a mosaic. There is also another
approach that can be used, i. e., starting a local optimization run based on
an improvement heuristic, but only on the ruined part of the system, such
that the remaining part of the system stays constant. This can be done very
nicely using the local control parameter approach mentioned in Sect. 8.3.



76 10 Ruin & Recreate

10.3 Discussion of Ruin & Recreate

Looking closer at moves of the R & R type, one finds that their neighborhood
structure is not symmetric as is usually the case with small moves. Most
often, either there is no move leading back from the new configuration to the
previous one or, due to the large amount of possibilities, returning to it it is
quite improbable.

Furthermore, R & R has the property that it leads from a bad configura-
tion to a much better one very fast, sometimes by only applying one move.
Especially in the case where only one item is removed from the system, the
recreate part of the move leads to either a better solution or at least back
to the current solution. In this special case and similarly if only removing
a small number of items from the system, control parameters have no effect,
or only a small one, as the move does not lead to worse configurations, such
that one ends up in the greedy mode. Connected to this is the fact that the
recreate part leads to a system that can only move through a subset of the
configuration space [a random walk (RW) using these moves is no longer
a real RW]; therefore, the ergodicity condition is violated such that one has
to take special care when choosing R & R routines for getting an ergodicity
at least in the set of (quasi) optimum solutions. However, R & R moves have
the advantage that they create a much larger neighborhood than moves of
a small size s, and it is a neighborhood between locally optimum solutions
when considering the former energy landscape formed by small moves.

Additionally, the question arises as to whether this approach is not too
slow. The answer is that, first of all, one does not start at a random configu-
ration at the beginning, as is mostly done when using small moves. Instead,
one can easily start with a preoptimized solution, which is created by throw-
ing a bomb on the whole system, removing all items, and calling the recreate
routine. Therefore, one does not have to climb down step by step from the
range of random configurations to the range of rather good solutions. Instead,
the system can concentrate on finding the last percentages of improvement.
Then, if working with a control parameter, the range of change for this control
parameter can be much smaller, as the large moves can easily jump over the
barriers of the energy landscape of the small moves. Furthermore, as a large
move leads to larger changes, one does not have to call the move routine as
often as if working with small moves.

Finally, it must be mentioned that this R & R approach is implicitly suited
for parallel enablement: most of the time will be spent on the recreate process
such that a few R & R moves can be performed in parallel. Furthermore, when
working with improvement heuristics, several runs can be performed and the
best result chosen.
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10.4 Ruin & Recreate as a Self-Contained
Optimization Algorithm

R & R can also be used as a self-contained optimization algorithm, as it in-
herits a control parameter, namely, the maximum percentage P up to which
a system is allowed to be destroyed. By this percentage, the maximum num-
ber of items that may be removed and then reintroduced by the recreate
part is given. This percentage can now be used as a control parameter when
working, for example, with the RW as the underlying optimization heuristic:
initially, the percentage P is set to 100% such that a ruin part is allowed to
destroy up to the whole system. At the end, only one item will be removed
from the system and reinserted in the best possible way by the recreate part
of the move such that here the RW and greedy modes coincide. By decreas-
ing P , a transition is performed from the range of the rather good solutions,
which can be created by construction heuristics or improvement heuristics,
to achieve better and better solutions, until hopefully the algorithm stops at
the global optimum.



11 Simulated Annealing

11.1 Physical and Historical Background

Annealing is a family of techniques for creating metals with desireable me-
chanical properties. It is an ancient technique: even in the Bronze and Iron
ages, swordsmiths and other artisans had learned that the ductility of a metal
tool and the hardness of its cutting edges were strongly affected by heat treat-
ment. These might involve heating the tool to a temperature below the melt-
ing temperature of the alloy but high enough so that the crystalline grains
that make up the substance begin to change their shape. After a period of
such heating the metal can be slowly cooled, resulting in a softer, more duc-
tile material, or rapidly quenched to a lower temperature, resulting in uneven
cooling with a harder surface layer. Considerable skill is needed to develop
the annealing schedule of temperatures and times to which the tool should
be subjected, and of course the chemical composition of the alloys being used
also needs careful control, but still the method has developed independently
in many different cultures and remains in use today.

An extreme form of annealing came into fashion with the need to obtain
very pure single-crystal semiconductors, first for making individual transis-
tors and subsequently for refining the wafers out of which VLSI chips are
made. In this method, called zone refining, a boule or cylindrical slab of very
pure Si or Ge is suspended in a ring-shaped heater and a narrow band within
the cylinder is heated to just above its melting point. This barely molten
zone is passed very slowly through the cylinder, from one end to the other.
As the Si melts it extracts impurities from the surrounding crystal, and as
it recrystallizes these impurities are expelled from the reforming crystal, re-
maining in the molten zone. The result is a dramatic decrease in impurity
concentrations, with most of them segregated in one end of the cylinder.

While neither process is exactly comparable to the problem we have set
ourselves of finding optimal solutions to complex problems, there are defi-
nite analogies between annealing and optimization. Annealing thus provides
a fruitful metaphor to use in seeking new and powerful heuristics for problem
solving. Note that with metals the important changes take place at tem-
peratures high enough that significant rearrangements of the structure are
possible in relatively short times. Once the materials have undergone the
hoped-for medium-scale rearrangements, cooling from temperatures at which
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significant rearrangements no longer occur to temperatures at which one can
hold the tool in one’s hand safely can proceed rapidly. We shall see that this,
too, has its parallel in optimization heuristics through a process that has
come to be called simulated annealing (SA).

SA emerged simultaneously in the work of at least three authors known to
us and undoubtedly was obvious to others as well. The optimizers to whom
this was obvious were physicists exposed to computer simulation of small
molecules or of magnetic systems evolving while coupled to a thermal bath
that provides a source of energy fluctuations. These included one of us (S.K.),
C. Daniel Gelatt [110], Ken Wilson (private comm.), and Vlado Cerny [32].
Others who must have employed the technique in some form include Nick
Metropolis and Stanislaus Ulam. However, the main thrust of work in the
applied mathematics of optimization at that time (mid to late 1970s) was on
improving the strength and rapidity of convergence of optimization searches
in problems with a single minimum but very complex attraction basins. The
idea of searching stochastically, and the view that interesting large-scale prob-
lems are likely to have many minima of essentially equal quality, was not
accepted in the mathematics or operations research literature (and is still
rare).

Gelatt and S.K., working at IBM, had studied for some years the hard
optimization problems that occur in computer-aided design of computer
components—placement of circuits, routing of wires, and the like. Since these
always seem to involve tradeoffs between incompatible objectives, like high-
speed, low-power consumption, and the constraints of limited space for wires
and restricted freedom to location-specific components, Gelatt and S.K. found
it perfectly reasonable to proceed with techniques that were being employed
(by S.K.) at the same time to study spin glasses. Spin glasses are disor-
dered magnetic systems in which frustration effects occur due to a mixture
of ferromagnetic and antiferromagnetic interactions. Ferromagnetic interac-
tions cause the elementary spins to prefer to align parallel with one another;
antiferromagnetic interactions insist on the opposite. Naturally, the spins be-
come “frustrated” while attempting to find the best compromise between
these conflicting demands. The term “frustration” for this situation became
an accepted technical term.

Spin glasses got their name because at low temperatures, the actual mate-
rials exhibited very sluggish changes in their magnetic ordering, just as actual
glasses do not freeze at a well-defined temperature but instead get steadily
more viscous as the temperature is lowered. Experiments on spin glasses in
the 1970s often explored the different states that the material could reach
at a given temperature by different thermal sequences of slow cooling with
and without applied magnetic fields. Computer experiments, performed in
simulation by one of us (S.K.), used annealing cycles to explore these states
in simple model spin glass systems.

Wilson was writing a compiler for high-performance VLIW (very long
instruction word) computing and needed to optimally pack parts of computer
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instructions together to use the fewest machine cycles. Cerny was interested
in solving the traveling salesman problem (TSP), or at least in achieving
better solutions than existing heuristics could accomplish. They all found it
perfectly natural to add noise to increase the power and flexibility of the local
rearrangement search that was appropriate to each problem and chose the
Metropolis framework as a natural and easy-to-control way to introduce this
noise. Gelatt and S.K. were blessed with mathematician colleagues who found
this whole approach counterintuitive, inelegant, and vaguely disrespectful of
the algorithm gods. They demanded explanations. So Gelatt and S.K. started
thinking more conscientiously about why this was a sound overall approach,
why it did guarantee a solution even if that solution might be costly, and how
it could be framed so generally that it would appear obvious and applicable
to a very wide range of problems. The result of their efforts to convince their
colleagues was the long article in the journal Science [110] (and a popular
colloquium talk that S.K. gave very widely).

11.2 Derivation of Simulated Annealing

SA is the classic algorithm in physics for finding low-energy or even optimum
configurations for complex physical problems that cannot be solved analyti-
cally. It simulates the cooling process of a physical system, taking advantage
of the fact that if this cooling procedure is performed slowly enough, the sys-
tem will end up in the optimum state (e. g., a flawless crystal). On the other
hand, it only reaches a less desirable local minimum in the energy landscape
(e. g., a crystal with many defects) if the system is rapidly quenched down.
Therefore, starting at a very high temperature, a series of temperature steps
is performed between which the temperature is slowly reduced. With de-
creasing temperature, the system undergoes a transition from a high-energy,
unordered regime to a (relatively) low-energy, (at least partially) ordered
regime. The optimization process ends when the system is frozen in a (quasi)
optimum state at a low temperature. Depending on the temperature range
considered and on the problem, a sharp transition at (at least) one temper-
ature can often be observed: the system changes its behavior completely at
this so-called critical or Curie temperature TC. Examples of this are melting
and boiling temperatures and the Curie temperature at which some materials
become ferromagnetic.

A sequence of moves is performed at each temperature step. The question
arises as to how to choose a transition probability according to this physical
background. Metropolis et al. [137] first proposed to choose successive states
not by means of a random walk in a search space Γ but by another Markov
process in which each new state σi+1 is reached from the previous, neighbor-
ing state σi by a move with a certain transition probability p(σi → σi+1).

Metropolis et al. [137] considered classical physical systems whose canon-
ical equilibrium distribution is given by the Boltzmann distribution. The
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probability of the system being in a state σ is therefore given as

πequ(σ) =
1
Z

exp
(

−H(σ)
kBT

)

, (11.1)

with the energy function H, Boltzmann constant kB = 1.3807 · 10−23 J/K,
temperature T , and partition sum

Z =
∑

σ∈Γ

exp
(

−H(σ)
kBT

)

. (11.2)

Instead of the temperature, one often uses the inverse temperature β =
1/(kT ) in formulas. Metropolis et al. observed that it is possible to choose
the transition probability p in such a way that even if starting at any arbi-
trary distribution, in the limit i → ∞ the distribution of the states, which
are created in this Markov process, tends toward the desired Boltzmann dis-
tribution for any fixed temperature T > 0. If the system has already reached
a stationary equilibrium, the master equation

πequ(σ)
∑

τ∈Γ

p(σ → τ) =
∑

τ∈Γ

πequ(τ)p(τ → σ) ∀σ (11.3)

is fulfilled, i. e., dπequ(σ) = 0, and therefore πequ(σ) = const. A sufficient
condition for fulfilling the master equation is the stricter principle of detailed
balance. It assumes that there exists an equilibrium between each pair (σ, τ)
of configurations. Let Nequ(σ → τ) be the expected number of Monte Carlo
walkers that move from state σ to state τ in equilibrium and Nequ(τ → σ)
the number that move in the opposite direction. A detailed balance demands
Nequ(σ → τ) = Nequ(τ → σ). The amount Nequ(σ → τ) can be written as
the product of the amount Nequ(σ) being in σ and the transition probability
p(σ → τ). Dividing Nequ(σ) and Nequ(τ) by

∑
υ Nequ(υ), one receives the

common form of the detailed balance equation:

πequ(σ)p(σ → τ) = πequ(τ)p(τ → σ) . (11.4)

Detailed balance is a sufficient but not a necessary condition for fulfilling the
master equation. Inserting Eq. (11.1) into Eq. (11.4), one gets the combined
condition that the ratio between the transition probabilities for the move
σ → τ and for its inverse move τ → σ only depend on the temperature T
and the energy difference ΔH between the two participating configurations
but not on the actual values of their energies or other parameters:

p(σ → τ)
p(τ → σ)

= exp
(

− ΔH
kBT

)

. (11.5)

Obviously, the transition probability p(σ → τ) has not been uniquely defined
yet; there is still some arbitrariness in the explicit choice of p [23]. Most often,
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one chooses either the Metropolis criterion

p(σ → τ) = min
{

1, exp
(

− ΔH
kBT

)}

=

{

exp
(

− ΔH
kBT

)

if ΔH > 0 ,

1 otherwise
(11.6)

(here the larger of the two transition probabilities is simply set to 1) or the
heat bath condition

p(σ → τ) =
1

1 + exp
(

ΔH
kBT

) , (11.7)

which is often also written in the form

p(σ → τ) =
1
2

(

1 − tanh
(

ΔH
2kBT

))

(11.8)

and obtained by the ansatz

p(σ → τ) =
πequ(τ)

πequ(σ) + πequ(τ)
. (11.9)

These ansatzes fulfills the condition of detailed balance as easily can be shown.
A series of states σ → τ → υ → . . . created with one of these transi-

tion probabilities tends toward the Boltzmann equilibrium distribution. This
can be checked by the following argument [23]. Assume that the system is
not in equilibrium such that the states occur according to some probability
distribution π �= πequ. The probability π(σ) changes in time according to

dπ(σ) =
∑

��=σ

dπ�(σ) = −π(σ)×
∑

��=σ

p(σ → �)+
∑

��=σ

π(�)×p(�→ σ) . (11.10)

If this probability distribution was stationary, then dπ(σ) = 0 for all configu-
rations σ. Now consider a pair (σ, τ) of states and let—without restriction—
H(σ) < H(τ). Using the Metropolis criterion, one gets the transition prob-
abilities p(σ → τ) = exp(−ΔH/(kBT )) and p(τ → σ) = 1. Therefore, one
gets

dπτ (σ) = −π(σ) × p(σ → τ) + π(τ) × p(τ → σ)

= π(σ) ×
(

− exp(−ΔH/(kBT )) +
π(τ)
π(σ)

× 1
)

= π(σ) ×
(
π(τ)
π(σ)

− πequ(τ)
πequ(σ)

)

.

(11.11)

Now, if π(τ)/π(σ) > πequ(τ)/πequ(σ), then there is some probability transfer
from τ to σ; if it is smaller, then the reverse is true. Therefore, a simulation
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working with the Metropolis criterion at a fixed temperature leads the system
to the Boltzmann equilibrium. The same holds true if using the heat bath
criterion.

Using the Metropolis criterion, the proposed new state is always accepted
if it is either better than or as good as the actual state. It is still accepted
with a certain probability if it is worse. Comparing the Metropolis criterion
with the heat bath condition, one finds that the Metropolis criterion leads
to a faster dynamics, as pMetropolis is larger than pheat bath for all energy
differences. As a result, the Metropolis criterion is used more often. The
heat bath condition is often used for cases in which one does not want to
accept every trivial move (i. e., a move with an energy difference ΔH = 0).
Sometimes the dynamics is also slowed down by a certain factor by which the
transition probabilities pMetropolis and pheat bath are divided. In simulations,
the Boltzmann constant k is usually set to 1, so that the temperature is only
a control parameter in the same unit as the energy.

The question of whether a certain move is actually accepted or not, when
the derived transition probability only provides a probability value for ac-
cepting the move, is decided by means of a rendom number generator. If
the random number returned by the generator is smaller than the transition
probability, then the move is accepted, otherwise it is rejected.

SA fulfills the requirement of ergodicity. According to Ehrenfest, a system
is called ergodic if the trajectory in the phase space Γ passes arbitrarily near
to each point in Γ as time approaches infinity. If Γ is discrete, then the phase
space trajectory actually touches each point in Γ . Ergodicity is especially
important for the calculation of the expectation values of observables. Only
if the condition of ergodicity is fulfilled will the average taken over several
independent simulations give the same results as a time average.

Since its introduction by S.K. et al. [110] SA has become one of the stan-
dard tools for finding quasioptimum configurations of complex problems not
only in physics but also in computational chemistry, biology, and even op-
erations research. In such fields the cost or objective function of the given
problem to be minimized is simply considered as the Hamiltonian of a clas-
sical physical system; then both the energy and the temperature are mea-
sured in dollars or euros. SA has often even produced optimum results for
NP-complete problems, for which the calculation time for finding the opti-
mum solution with exact methods increases exponentially with system size.
A prominent example of these problems is the TSP, which will be discussed
later.
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11.3 Thermal Expectation Values

The thermal expectation value of an observable A, according to the Boltz-
mann distribution, is defined in a discrete system as

〈A〉 =
∑

σ∈Γ

A(σ)πequ(σ) =

∑

σ∈Γ

A(σ) exp
(

−H(σ)
kBT

)

∑

σ∈Γ

exp
(

−H(σ)
kBT

) . (11.12)

The expression in the denominator is simply the partition function Z [see
also Eq. (11.2)]. In particular, the expectation value of the Hamiltonian H is
given by

〈H〉 =
1
Z

∑

σ∈Γ

H(σ) exp
(

−H(σ)
kBT

)

. (11.13)

Formally, 〈H〉 can be expressed as the logarithmic derivative of Z with respect
to the inverse temperature β = 1/(kBT ):

− ∂

∂β
lnZ = − 1

Z

∑

σ∈Γ

∂

∂β
exp (−βH(σ))

=
1
Z

∑

σ∈Γ

H(σ) exp (−βH(σ)) = 〈H〉 .
(11.14)

The specific heat C, which plays a main role in considering an optimization
process from a physical point of view, is defined as the derivative of the
expectation value of the Hamiltionian with respect to the temperature T :

C =
∂〈H〉
∂T

. (11.15)

It can be rewritten as

C =
1
Z2

Z
1

kBT 2

∑

σ∈Γ

H2(σ) exp
(

−H(σ)
kBT

)

− 1
Z2

∑

σ∈Γ

H(σ) exp
(

−H(σ)
kBT

)
1

kBT 2

∑

σ∈Γ

H(σ) exp
(

−H(σ)
kBT

)
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=
1

kBT 2

{
1
Z

∑

σ∈Γ

H2(σ) exp
(

−H(σ)
kBT

)

− 1
Z2

(
∑

σ∈Γ

H(σ) exp
(

−H(σ)
kBT

))2⎫⎬

⎭

=
1

kBT 2

{
〈H2〉 − 〈H〉2

}

=
1

kBT 2
Var(H) ,

(11.16)

to give a numerically more stable form. The specific heat usually exhibits
a wide peak at a so-called freezing temperature Tf that indicates the tempera-
ture ranges in which most rearrangements of the system take place. Therefore,
the specific heat is sometimes used for distributing the available calculation
time over various temperature ranges. Note that the terms specific heat and
heat capacity usually denote the same observable in the field of optimization.

One often considers composed Hamiltonians looking like

H = H0 + H1 + H2 + · · · , (11.17)

with H0 being the Hamiltonian part of the basic problem and the further Hi,
i ≥ 1, being additional perturbations, external forces, or penalty terms. Such
terms are often of the form

Hi = −λNM , (11.18)

with the system size N , a flexible control parameter (Lagrange parameter) λ,
which steers, e. g., the strength of the external force, and M being a function
that might also be an interesting observable of the problem. Let us consider
the Ising model, which is a classic model for studying spin interactions and
therefore the basics of magnetism. Its Hamiltonian is given as

H = H0 + H1

= −
∑

〈i,j〉
JijSiSj − HNM .

(11.19)

The spins Si can only take the values +1 and −1, which are considered as
the directions “up” and “down”. The first term of the Hamiltonian considers
the interactions between the spins. Jij is the interaction matrix between
these spins. The term 〈i, j〉 below the sum sign denotes that there is only
an interaction between neighboring spins. Let us now consider the purely
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ferromagnetic case: here all entries in Jij are positive. In order to minimize
their energy, the spins are in parallel to each other; there are only the two
ground states “all up” and “all down”, which are degenerate with each other,
i. e., they have the same energy value, if there is no H1. This second part of the
Hamiltonian, which is often called the Zeeman term, describes the influence
of an externally applied magnetic field on the N spins of the system. The
absolute value of H denotes as a Lagrange parameter the strength of the
magnetic field, its sign the direction of the field. As the magnetization M is
given by

M =
1
N

N∑

i=1

Si , (11.20)

one sees that the magnetic field couples directly to the spins, trying to force
each of them in its direction. The “answer” of the system to this external
field can be calculated by means of the susceptibility

χ =
∂〈M〉
∂H

, (11.21)

which can be rewritten

χ =
∂

∂H

{
1
Z

∑

σ∈Γ

M(σ) exp [−βH0(σ) + βHNM(σ)]

}

=
βN

Z

∑

σ∈Γ

M2(σ) exp (−βH(σ))

−βN
Z2

(
∑

σ∈Γ

M(σ) exp (−βH(σ))

)2

=
N

kBT

{
〈M2〉 − 〈M〉2

}

=
N

kBT
Var(M) .

(11.22)

This structure is also used for the susceptibilities of other parts of the Hamil-
tonian, replacing the magnetic field H by the corresponding Lagrange muli-
plier λ. The susceptibilities usually exhibit a sharp peak in a narrow tem-
perature range in which the system tries to optimize itself according to the
external field. If a system contains more than one such additional field, the
Lagrange multipliers of the additional terms in the Hamiltonian should be
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adjusted in such a way that the corresponding Hi are all minimized to their
minimum possible value. This can often be achieved by choosing the La-
grange multipliers in such a way that the peaks of the susceptibilities are in
the same temperature range. The reason for this is that it has been shown
that the results are better if the system tries to optimize itself according to
all requirements at the same time. On the contrary, if it would optimize itself
first according to the first term, then according to the second term, and so on,
then it would often destroy the formerly found good adjustment according to
a previous field, such that the results get worse. Furthermore, a previous field
could restrict the system to a part of the energy landscape in which there
are no good solutions for adjusting to the new field such that there cannot
be a good compensation between the two fields.

If a continuous system instead of a discrete one is considered, the sums
have to be replaced by integrals over the phase space coordinates. The results,
however, stay the same.

11.4 Inverse Simulated Annealing

There is a further approach involving a different use of SA, the so-called
inverse simulated annealing. It is used for continuous problems in which each
state consists of some continuous variables xi. These variables can only take
values in specific intervals, xi ∈ [ai; bi]. The dynamics of the system is speeded
up by performing only moves that set a variable to its expectation value.
Therefore, in performing a move, first one of the variables xi is chosen at
random. Then the integral

I(xi) =

∫ xi

a

exp (−βH(. . . , x′i, . . .)) dx′i
∫ bi

ai

exp (−βH(. . . , x′i, . . .)) dx′i

(11.23)

is calculated and a uniformly distributed random number r between 0 and 1
is chosen. Then the variable xi is set to xi := I−1(r).

Using this kind of move, the system converges rather fast to the equilib-
rium distribution. Of course, it is necessary for the application of this method
that the integral be solvable and invertable. This method can even be used
for problems in which (some of) the variables xi can only take some discrete
values in an interval. In this case, the single variables are “softened” such
that they can take every value between their minimum and maximum values.
Usually, one finds that the variable freezes in one of its extreme values at the
end of the optimization run such that this approach is justified.
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Related to Simulated Annealing

12.1 Threshold Accepting

An algorithm closely related to simulated annealing (SA) was proposed by
Dueck and Scheuer [53, 54] and independently by Moscato [150]. This algo-
rithm, which was called threshold accepting (TA) by Dueck and Scheuer, is
given by the following deterministic transition probability:

p(σ → τ) =
{

1 if ΔH ≤ Th ,
0 otherwise .

(12.1)

A move is therefore accepted if it leads to either a better or equally good
solution or to a solution that is maximally a given threshold worse than
the actual solution. The threshold Th, up to which a move is accepted in
TA, takes the role of the temperature T in (SA): this pseudotemperature is
lowered gradually from a large initial value to zero, leading the system from
a high-energy unordered regime to a low-energy ordered state.

TA has no physical analogy. Furthermore, it does not fulfill the condition
of ergodicity as not every configuration in the phase space can be reached.
Summarizing, the system cannot converge to a thermal equilibrium, so TA
has to be considered a nonequilibrium algorithm in a strict physical sense.
The largest difference between SA and TA can be observed at small systems
inheriting energy landscapes containing some “golf holes”, i. e., states that
have a much lower energy than all of their neighbors, as shown in Fig. 12.1.

If the golf hole is so deep compared to all of its neighbors that the energy
difference is larger than the threshold, then the system cannot leave the
golf hole anymore. It is stuck in it. Therefore, it cannot find a better local
optimum, much less the global optimum. If the system size gets larger, the
density of such golf holes decreases, as the system has more ways to travel
through an energy landscape of a higher dimension. It is less likely to get
stuck in a golf hole, thus finding better solutions.

As SA needs a very large amount of time to really reach equilibrium, one
should invest all calculation time available in one single run. Contrarily, as TA
converges faster than SA [53] but is not ergodic, several short optimization
runs should be performed instead of one long one. One then chooses the best
result.
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Th

Fig. 12.1. Golf hole in energy landscape: often one finds in the energy landscape of
small or specially constructed problems so-called “golf holes”. These are configura-
tions that have a much smaller energy than all of their neighboring configurations.
Furthermore, there is no special evidence for them in their neighborhood. With
TA, the system gets stuck in deep golf holes if the threshold is smaller than the en-
ergy difference between the golf hole state and all of its neighboring configurations.
Contrarily, SA is able to leave golf holes, although the time for leaving it is rather
large. The time is proportional to exp(Δ/(kBT )), with Δ being the smallest of the
absolute energy differences between the golf hole and its neighboring states. When
dealing with energy functions to be maximized, a similar problem occurs, but the
problem of the golf holes is replaced by the problem of the so-called sugar loaves

TA can be considered as the simplest approximation of SA, fulfilling the
following requirements:

• The transition probability p only depends on the energy difference ΔH and
a further control parameter T . It is a piecewise steady and monotonous
function in both parameters:

p = p(ΔH, T ) . (12.2)

• Comparing only the Metropolis criterion and the TA transition probability,
one can furthermore state that the limiting values are conserved:

p(ΔH ≤ 0, T ) = 1 , (12.3)

lim
ΔH→+∞

p(ΔH, T ) = 0 . (12.4)

• Their integrals can be identified:
As indicated in Fig. 12.2, the integrals over the transition probabilities of
Metropolis,

ISA =

∞∫

0

exp
(

−ΔH
kBT

)

d(ΔH) =

∞∫

0

kBT exp(−x)dx = kBT , (12.5)
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p(σ → τ)

ΔH

SA

TA

Fig. 12.2. Transition probabilities for SA (Metropolis criterion) and TA as function
of energy difference ΔH for fixed temperature T and threshold Th, respectively

and of TA,

ITA =

∞∫

0

Θ(Th− ΔH)d(ΔH) =

Th∫

0

dx = Th , (12.6)

will be equalized with each other: By setting ISA = ITA, TA can be under-
stood as the “−1”st approximation of SA, as their integrals are identified.
Thus, one gets a connection between the temperature and the threshold.
Of course, the calculation above assumes the energy differences are uni-
formly distributed and continuous between 0 and ∞. Therefore, the equiv-
alence above holds true only for a somewhat ideal system. However, this
equivalence is still approximately fulfilled in a real combinatoric optimiza-
tion problem with a maximum energy difference and only a finite number
of energy differences. In particular, the critical temperature and the crit-
ical threshold between the unordered high-energy regime and the ordered
low-energy regime of a system are in the same order of magnitude.

In light of the above thoughts, TA seems to be the obvious choice for an
approximation of SA. It is even faster than SA as there is no need for calcu-
lating an exponential value and a random number between 0 and 1, as there
is no continuous probability between 0 and 1 but only the two discrete values
of 0 (rejection) and 1 (acceptance).

12.2 The Steady-State Equilibrium
Characteristics of TA

The transition probability of TA [Eq. (12.1)] violates the condition of detailed
balance for each system consisting of at least three nondegenerate states. Let
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us consider a system consisting of the three states σ1, σ2, and σ3 with the
properties

H(σ1) < H(σ2) < H(σ3),
H(σ2) − H(σ1) < Th ,
H(σ3) − H(σ2) < Th ,
H(σ3) − H(σ1) > Th .

(12.7)

These properties lead to the following transition probabilities:

p(σ1 → σ2) = 1 , p(σ2 → σ1) = 1 ,
p(σ2 → σ3) = 1 , p(σ3 → σ2) = 1 ,
p(σ1 → σ3) = 0 , p(σ3 → σ1) = 1 .

(12.8)

If detailed balance is fulfilled, then the following equations must hold true:

πequ(σ1)p(σ1 → σ2) = πequ(σ2)p(σ2 → σ1)
⇒ πequ(σ1) = πequ(σ2) ,

πequ(σ2)p(σ2 → σ3) = πequ(σ3)p(σ3 → σ2)
⇒ πequ(σ2) = πequ(σ3) ,

πequ(σ1)p(σ1 → σ3) = πequ(σ3)p(σ3 → σ1)
⇒ πequ(σ3) = 0 .

(12.9)

⇒ πequ(σ1) = πequ(σ2) = πequ(σ3) = 0 . (12.10)

Obviously, this disagrees with the normalization of the probabilities:
∑

i

πequ(σi) = 1 . (12.11)

Therefore, detailed balance is not fulfilled.
The next question that arises is whether the master equation is fulfilled

for TA. Let us again consider our three-state system (σ1, σ2, σ3) with

H(σ1) ≤ H(σ2) ≤ H(σ3) (12.12)

in the case of TA. The master equation leads, in combination with the ac-
ceptance rule of TA and the energetic order of the states independently of
the size of the threshold and the energy values, to the following simplified
equations:

πequ(σ1)(p(σ1 → σ2) + p(σ1 → σ3)) = πequ(σ2) + πequ(σ3) ,
πequ(σ2)(1 + p(σ2 → σ3)) = πequ(σ1)p(σ1 → σ2) + πequ(σ3) ,
πequ(σ3) · 2 = πequ(σ1)p(σ1 → σ3) + πequ(σ2)

·p(σ2 → σ3) .
(12.13)
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There are only five scenarios, depending on the relative energies of the states
and of the size of the threshold:

Scenario A:

H(σ2) −H(σ1) < Th ,
H(σ3) −H(σ2) < Th ,
H(σ3) −H(σ1) > Th .

H(σ1)

H(σ2)

H(σ3)

H

Th

Th

From Eq. (12.13) it follows that

π(σ1) = π(σ2) + π(σ3) ,
2 · π(σ2) = π(σ1) + π(σ3) ,
2 · π(σ3) = π(σ2) ,

and, with the normalization of the sum of all probabilities to one, that

π(σ1) =
1
2
, π(σ2) =

1
3
, π(σ3) =

1
6
.

The following results are achieved for these other scenarios:

Scenario B:

H(σ1) < H(σ2) < H(σ3) ,

H(σ2) −H(σ1) < Th ,
H(σ3) −H(σ2) < Th ,
H(σ3) −H(σ1) < Th .

H(σ1)

H(σ2)

H(σ3)

H

Th

One gets the following probabilities:

2 · π(σ1) = π(σ2) + π(σ3)
2 · π(σ2) = π(σ1) + π(σ3)
2 · π(σ3) = π(σ1) + π(σ2)

⎫
⎬

⎭
=⇒ π(σ1) = π(σ2) = π(σ3) = 1

3 .

Scenario C:

H(σ1) < H(σ2) < H(σ3) ,

H(σ2) −H(σ1) > Th ,
H(σ3) −H(σ2) > Th ,
H(σ3) −H(σ1) > Th .

H(σ1)

H(σ2)

H(σ3)

H

Th

Th
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One gets the following probabilities:

0 = π(σ2) + π(σ3)
π(σ2) = π(σ3)

2 · π(σ3) = 0

⎫
⎬

⎭
=⇒ π(σ2) = π(σ3) = 0, π(σ1) = 1 .

Scenario D:

H(σ1) < H(σ2) < H(σ3) ,

H(σ2) −H(σ1) > Th ,
H(σ3) −H(σ2) < Th ,
H(σ3) −H(σ1) > Th .

H(σ1)

H(σ2)

H(σ3)

H

Th

Th

One gets the following probabilities:

0 = π(σ2) + π(σ3)
2 · π(σ2) = π(σ3)
2 · π(σ3) = π(σ2)

⎫
⎬

⎭
=⇒ π(σ2) = π(σ3) = 0 , π(σ1) = 1 .

Scenario E:

H(σ1) < H(σ2) < H(σ3) ,

H(σ2) −H(σ1) < Th ,
H(σ3) −H(σ2) > Th ,
H(σ3) −H(σ1) > Th .

H(σ1)

H(σ2)

H(σ3)

H

Th

Th

One gets the following probabilities:

π(σ1) = π(σ2) + π(σ3)
π(σ2) = π(σ1) + π(σ3)

2 · π(σ3) = 0

⎫
⎬

⎭
=⇒ π(σ1) = π(σ2) = 1

2 , π(σ3) = 0 .

Summarizing, equilibrium distributions can be found for all scenarios
without contradictions. Detailed balance is violated, but the master equa-
tion can still be fulfilled such that there can be some sort of steady state.
Such nontrivial equilibrium probability distributions can also be found for all
other combinatoric systems as the application of the master equation of a sys-
tem with N states leads to N equations with N variables, which is always
solvable in a nontrivial way.
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An equilibrium probability distribution can be determined in several ways,
e. g., by simulations. However, this time we do not consider the standard
Monte Carlo simulation in which one Monte Carlo walker starts at a random
configuration and tries to find a way through the energy landscape. Instead,
one can also determine this distribution in a direct manner by calculating the
transition probability matrix (p(σ → τ)) explicitly. These transition proba-
bilities have to be normalized such that

∑

τ

p(σ → τ) = 1 ∀σ . (12.14)

Starting with a uniform distribution, in which all of the N states have the
same weight π = 1

N , the following step has to be repeated again and again:

πnew(σ) =
∑

τ

πold(τ)p(τ → σ) (12.15)

until the probability distribution (π(σ)) does not change anymore. Then the
equilibrium probability distribution (πequ(σ)) is reached.

Let us consider as an example the problem of the energy ladder with
N equidistant steps. Each of these steps is a configuration. As the steps
are numbered consecutively, we can simply set H(σ) = σ, and the energy
difference between neighboring steps is 1. We want to use a move allowing us
to climb to both neighboring steps but also to jump to the two next nearest
steps. One of these four steps is chosen randomly if a move is tried [57]. The
temperature and the threshold are set to 3

2 , so that the Monte Carlo walker
cannot jump to the next highest step if the basic algorithm is TA. As Fig. 12.3
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Fig. 12.3. Equilibrium distribution of energy ladder problem consisting of N = 100
steps for SA and TA



96 12 Threshold Accepting and Other Algorithms Related to SA

shows, an exponential decrease in the probability function with exp(−σ/a) is
achieved for both SA and TA. There are only some small deviations from this
exponential curve for the steps at the top and at the bottom of the ladder
due to the smaller number of neighbors. For SA one finds a = 1.5 ≡ T as
expected; however, a = 1.14 is the result for TA. Therefore, the probability
distribution converges to a Boltzmann-like distribution for this problem with
the parameters as mentioned above for TA. Summarizing, one can state that
it is justified to assume that the dynamics of TA is rather similar to that of
SA as long as the system is ergodic.

However, for TA, there is no analytic expression similar to those on which
one can rely when working with SA. One cannot write down a partition sum
for this algorithm, as no equilibrium distribution function of this nonequilib-
rium algorithm is known a priori. However, one still calculates the expectation
values of the observables and the derived measures specific heat and suscep-
tibility as in SA, only replacing the temperature T by the threshold Th.

12.3 Methods Based on the Tsallis Statistics

Tsallis and Stariolo [210] introduced a method based on the generalized Tsal-
lis entropy

Sq = k

1 −
∑

σ

πq(σ)

q − 1
(12.16)

for each real number q. If the Tsallis entropy is maximized with respect to
the normalization constraint

∑

σ

π(σ) = 1 (12.17)

and the constraint

〈H〉 =
∑

σ

H(σ)πq(σ) = const. , (12.18)

then the generalized probability for the system being in the state σ is given
by

π(σ) =

(
1 − (1 − q)H(σ)

kT

)
1

1 − q

Zq
, (12.19)

with Zq being the generalized partition sum

Zq =
∑

σ

(

1 − (1 − q)
H(σ)
kT

) q

1 − q
. (12.20)
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Note that in this generalization of the statistical mechanics, the expectation
value of an observable M is given by

〈M〉 =
∑

σ

M(σ)πq(σ) . (12.21)

Thus, also the detailed balance condition must be written as

πq(σ)p(σ → τ) = πq(τ)p(τ → σ) . (12.22)

Like the Boltzmann constant kB in SA, the constant k is set to 1 in simula-
tions.

In the limit q → 1, the Boltzmann–Gibbs statistics are revealed, and Sq

recovers the Shannon or information entropy

S1 = lim
q→1

Sq = k lim
q→1

1 −
∑

σ

π(σ) exp((q − 1) ln(π(σ)))

q − 1

= −k
∑

σ

π(σ) ln(π(σ)) . (12.23)

Tsallis and Stariolo proposed the following generalized acceptance prob-
ability:

p(σ → τ) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

1 if ΔH ≤ 0 ,

1

(

1 + (q − 1)
ΔH
kT

) 1
q − 1

otherwise . (12.24)

This transition probability shows the same T → 0 behavior as SA and also
converges to some equilibrium distribution. However, this distribution is quite
different from (12.19).

Penna also made an ansatz to generalize the Metropolis acceptance prob-
ability to the Tsallis statistics in order to solve a traveling salesman prob-
lem [163, 117]. His ansatz is given by

p(σ → τ) = min

⎧
⎪⎨

⎪⎩
1,
(

1 − (1 − q)
ΔH
kT

) 1
1 − q

⎫
⎪⎬

⎪⎭
(12.25)

and provides a quality of the results similar to SA. The temperature range
between the high-energy and the low-energy regimes becomes narrower for
decreasing q such that Penna suggests showing preference for negative values
of q. This acceptance rule does not fulfill the condition of detailed balance;
furthermore, the distribution of the states does not converge to the Tsallis
equilibrium distribution. It is simply motivated by the formulas for the Tsallis
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statistics and by the transition to the Metropolis criterion for q → 1, which
can be easily checked by rewriting the acceptance probability function as the
exponential of a logarithm

(
1 − (1 − q)ΔH

kT

)
1

1 − q = exp
(

1
1 − q

ln
(

1 − (1 − q)
ΔH
kT

))

→ exp

⎛

⎜
⎝
−(1 − q)

ΔH
kT

1 − q

⎞

⎟
⎠ = exp

(

−ΔH
kT

)
(12.26)

for q → 1. Thus, the Penna criterion is a generalization of the Metropolis
criterion (11.6). Similarly, the Tsallis–Stariolo criterion is a generalization
of the heat bath condition (11.7).

Investigating the Penna criterion even closer, one finds that one has to be
careful when using it in its original form. Figure 12.4 shows the curves of the
Penna acceptance probability function for three q-parameters with 0 < q < 1.
The Penna criterion is equal to 1 for ΔH ≤ 0 for all values of q and T . It
vanishes for

ΔH =
kT

1 − q
. (12.27)

As Fig. 12.4 shows, the function can increase afterwards again to 1 if 1/(1−q)
is an even number, as for q = 0.5 and q = 0.9. Here at

ΔH =
2kT
1 − q

, (12.28)

the term 1 − (1 − q)ΔH/(kT ) equals −1.
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Fig. 12.4. Penna acceptance probability function for various parameters q and two
temperatures T = 2 and T = 1
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Thus, one should use the Penna criterion in the following form when
working with 0 < q < 1:

p(σ → τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if ΔH ≤ 0

0 if ΔH ≥ kT

1 − q
,

(

1 − (1 − q)
ΔH
kT

) 1
1 − q otherwise .

(12.29)

Analogously, one runs into problems if q ≤ 0: in this case, the Penna function
is negative or not defined for ΔH > kT/(1−q). Here also the criterion (12.29)
should be used. As this criterion contains a zero probability if the energy
difference exceeds some threshold value, this algorithm inherits the properties
of TA, i. e., the Monte Carlo walker is not able to leave deep golf holes and
both ergodicity and detailed balance are violated.

Otherwise, if q > 1, one does not face any problems for ΔH ≥ 0: in this
regime, the functions are nicely decreasing with an increasing ΔH. Here one
must be careful for ΔH < 0 and to modify the criterion as follows in order
not to get negative probabilities:

p(σ → τ) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if ΔH ≤ 0 ,

(

1 − (1 − q)
ΔH
kT

) 1
1 − q otherwise .

(12.30)

A special case occurs for q = 0: in this case, the acceptance probability
reduces to

p(σ → τ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if ΔH ≤ 0 ,

0 if ΔH ≥ kT ,

1 − ΔH
kT

otherwise .

(12.31)

This acceptance probability function was formerly sometimes used as a linear
approximation of the Metropolis criterion in order to save calculation time.

Other Tsallis-inspired acceptance functions were subsequently generated.
For example, Andricioaei and Straub [9, 10] developed from the generalized
acceptance function

p(σ → τ) = min
{

1,
(
π(τ)
π(σ)

)q}

(12.32)

the following transition rule:

p(σ → τ) = min

⎧
⎪⎪⎨

⎪⎪⎩

1,

⎛

⎜
⎝

1 − (1 − q)
H(τ)
kT

1 − (1 − q)
H(σ)
kT

⎞

⎟
⎠

q
1−q

⎫
⎪⎪⎬

⎪⎪⎭

. (12.33)
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This transition probability fulfills the criterion of detailed balance. Further-
more, it can be shown that it leads to the Tsallis equilibrium probability
[Eq. (12.19)]. Furthermore, Andricioaei and Straub consider the parameter q
not to be constant but to be a monotonous function q(T ) [9] such that the
parameter q decreases with decreasing T and

lim
T→0

q(T ) = 1 (12.34)

such that this transition probability converges like the Metropolis criterion
to the greedy acceptance probability. If the temperature T is decreased ex-
ponentially, q will as well be decreased exponentially from an appropriate
starting value q0, e. g., q0 = 2.

In contrast to the TA acceptance function and the Penna criterion, this
Andricioaei–Straub criterion has the disadvantage that one really must com-
pute the new energy value H(τ) and not only the energy difference ΔH, which
is for many problems much faster to compute.

12.4 The Great Deluge Algorithm

The great deluge algorithm (GDA), which was introduced by Dueck [51],
performs a random walk through a subset ΓT of the configuration space Γ .
All of the energy values of the configurations in ΓT are smaller than a certain
level T . The transition probability is given by

p(σ → τ) =
{

1 if H(τ) ≤ T ,
0 otherwise .

(12.35)

Therefore, the GDA accepts with probability 1 every configuration whose en-
ergy is smaller than the level T . T assumes the part of the temperature here.
In contrast to the other algorithms discussed above, the transition probabil-
ity does not depend upon the energy difference but only on the energy of the
tentative new configuration. The level T is stepwise decreasing until the sys-
tem gets stuck in a local minimum. This algorithm recalls the Great Deluge
or Flood legend in the Bible and is named after the same. If one wants to find
the maximum in the energy landscape, the water level must rise gradually
and the Monte Carlo walker is only allowed to stay on dry configurations [52].
Simply imagine that the rain starts pouring heavily out of the dark clouds
in the color picture of the Monument Valley, such that the walker in this
landscape is forced to climb up some mountain. In contrast to the story in
the Bible, there is no Noah building an ark that is able to float on the water.
When looking for the minimum in the energy landscape, however, another
picture is to be preferred: a fish looks for the deepest configuration while the
water level is decreasing, such that we can also speak in this case of a great
drought algorithm (GDA).
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The condition of detailed balance is fulfilled when using the GDA if the
basic equilibrium distribution is considered as

π(σ) =

⎧
⎨

⎩

1
|ΓT |

if σ ∈ ΓT ,

0 otherwise .

(12.36)

At a certain T , the subset ΓT will be split into several islands between which
no allowed moves exist. In contrast, the whole configuration space stays con-
nected for all temperatures T > 0, working with SA. There, one can always
find a way between two randomly chosen configurations. The condition of
ergodicity is violated by the GDA, as configurations above the water level
and also on other islands can no longer be reached. Therefore, there is no
thermal equilibrium with the GDA.

One might wonder—considering the picture of a valley-hill landscape par-
tially flooded by water—why this GDA can lead to rather good results, as the
allowed configuration space splits into subsets, such that one might end up
on an island that does not contain any good configurations. On the surface
of the earth, the movement would be restricted to one of the continents or is-
lands; one might walk through Australia in order to end up at Mount Everest.
However, this picture is only partially true. The energy landscape of a large
complex optimization problem is high-dimensional, so that each state has
a large number of neighbors. The Monte Carlo walker has many directions
in which he/she can avoid the rising water, so the algorithm mostly leads
to rather good results. The quality of the results depends on the structure
of the energy landscape, on whether there are high passes between various
quasioptimum configurations, and on whether ΓT still percolates when T is
already rather small.

Alternatively, one can interprete the GDA in a microcanonical way [120]:
in the microcanonical ensemble, a thin energy shell [Hmax−ΔH,Hmax] is con-
sidered. In the thermodynamic limit, the dependence upon the thickness ΔH
of the shell vanishes such that the GDA and a microcanonical algorithm
correspond to each other.

The main disadvantage of the GDA is its slow convergence. As with SA,
there is a proof showing that the global optimum of a given problem can be
achieved with the GDA in an infinite amount of time. However, in practice
one usually has to speed up the algorithm. Then the problem arises that the
Monte Carlo walker is above the water level and he/she is not able to get
below if this level is decreased too much, as the energies of all the neighboring
configurations are also larger than T . Therefore, the following acceptance
function is applied for a more rapid GDA:

p(σ → τ) =

{
1 if H(τ) ≤ T ,
1 if ΔH ≤ 0 ,
0 otherwise .

(12.37)
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This acceptance probability is a combination of the acceptance probability of
the GDA and of the greedy algorithm. The Monte Carlo walker, when below
the water level, can perform a restricted random walk below this level. By
contrast, when above the level, the walker is allowed to perform greedy moves
and therefore to climb downhill until he/she reaches the water level again.

Working with the GDA, the partition function of a continuous system can
be written as

Z =
∫

Γ

Θ (T −H(σ)) dσ (12.38)

and of a discrete system as

Z =
∑

σ∈Γ

Θ (T −H(σ)) = |ΓT | . (12.39)

The expectation value of an observable A is therefore given by

〈A〉 =

∫

Γ

A(σ)Θ(T −H(σ))dσ

∫

Γ

Θ(T −H(σ))dσ
(12.40)

for the continuous system and by

〈A〉 =

∑

σ∈Γ

A(σ)Θ(T −H(σ))

∑

σ∈Γ

Θ(T −H(σ))
(12.41)

for the discrete system. The expectation value is therefore the arithmetic
mean value averaged over all configurations in ΓT .

As the decrease of T in the GDA leads, just as the decrease of the tem-
perature T in SA, to a decrease in energy, a parameter like the specific heat
can also be defined here:

C =
∂〈H〉
∂T . (12.42)
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13.1 Search Space Smoothing

Simulated annealing (SA) and related optimization algorithms use a temper-
aturelike control parameter by which the system to be optimized is led from
an unordered high-energy regime to an ordered low-energy configuration. All
these control parameters have in common that they allow not only for im-
provements but also for some deteriorations during the optimization runs,
either with a certain probability or to a certain extent. Therefore, they give
the Monte Carlo walker the possibility to climb over barriers in the energy
landscape and by that means to escape bad local minima. One can imagine
that the Monte Carlo walker is fed with sufficient energy to climb such that
he can climb over the barriers and pull himself/herself out of a deep hole like
Baron Münchhausen; then the additional energy is removed from him/her
gradually.

A different way not to get trapped in bad local minima would be to in-
troduce additional moves and thereby to create a larger neighborhood for
each configuration such that more ways exist to walk around an energy bar-
rier. This means in the picture of the lower-dimensional neighborhood that
there are ways through mountains such that the Monte Carlo walker is able
to tunnel through barriers. But increasing the number of ways through the
energy landscape also increases the possibility of missing the global optimum
if a fixed number of move trials is used.

But there is also a third way one could imagine, namely, to smooth the
energy landscape in such a way that the Monte Carlo walker can easily jump
over barriers or, better, to remove the energy barriers completely. An ideal
way of smoothing would mean that the number of minima is reduced to one,
such that only the global optimum is left. There are generally four ways to
smooth the energy landscape:

• The cost function H can be changed for every state σ and can be smoothed
by some function f such that each state gets a new objective value f(H(σ)).

• On the other hand, one could apply the smoothing function f to the energy
differences ΔH = H(τ)−H(σ) between pairs of neighboring configurations
(σ, τ), so that the smoothed energy difference between these configurations
is given as f(ΔH).
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• If the Hamiltonian of the system is more complex and is given by, e. g.,
H(σ) =

∑
i Hi(σ) (i. e., if the whole Hamiltonian H consists of various

terms, e. g., penalty or correlation terms), then it could be necessary to
smooth the different addends to the Hamiltonian with different smooth-
ing functions fi. This could lead to the Hamiltonian

∑
i fi(Hi(σ)) for the

smoothed system.
• Similarly, the energy difference ΔH can also be replaced by, e. g.,

∑
i fi

(ΔHi) if the Hamiltonian is composed of various terms.

Although this approach will smooth the energy landscape, it has been com-
mon to use the (strictly speaking) false term search space smoothing (SSS).
However, the situation is not as easy as Fig. 13.1 suggests: if one were able to
smooth the energy landscape in this way, one would already know it perfectly.
If one knew it perfectly, one could spare the optimization run, as one would

local minimum

initial configuration

global optimum

search space coordinate

original energy landscape

smoothed energy landscape

en
er

gy

Fig. 13.1. Motivation for SSS: the graphics shows a schematic cut through the
energy landscape of a simple problem. If the greedy was used as a local search
algorithm in the original, i. e., unsmoothed, energy landscape, the Monte Carlo
walker would get stuck in a local minimum near the starting point of his walk.
Even if using more elaborate optimization algorithms like SA, TA, and GDA, one
cannot be quite sure to end up at the global optimum at the end of the optimization
run. However, if the energy landscape is smoothed in a way that only one minimum,
identical to the global optimum, remains, the global optimum is always reached,
independently of the initial configuration
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know the global optimum already. In general, however, one has to deal with
problems for which one does not know the energy landscape and therefore
one does not know a priori where the energy barriers lie. The only way out
of this dilemma is to try to smooth the energy landscape in an indirect way.
This smoothing has to be done by a nonlinear formula; a linear formula f
would preserve the general appearance of the energy landscape, and so it
would only resize it in its height, but microscopic energy barriers are also
a problem for a Monte Carlo walker who can change the height of his/her
position only microscopically. An example of a nonmonotonous smoothing
function, which would decrease very high energy barriers rather nicely, is the
logarithm. However, applying f(x) = ln(x) to all objective values of the in-
dividual configurations would only decrease the heights of the barriers, but
it would not remove them.

Therefore, one must split the Hamiltonian into many parts and apply
a smoothing function fi to each of these parts i. In the most simple way,
the smoothing function is the same for all parts i. However, when smoothing
the individual addends of the Hamiltonian separately by a nonlinear function
like the logarithm, a further problem occurs, as the following example shows.
Let σ be a local minimum and τ a neighboring configuration of σ. If these
neighboring configurations only differ in one part, such that their cost func-
tion only differs in one addend, everything is fine as long as the smoothing
function f is strictly monotonously increasing with the addend: let aσ be the
addend for the configuration σ and aτ be the addend for τ . As aσ < aτ ,
therefore f(aσ) < f(aτ ). However, a difficulty occurs if neighboring configu-
rations differ at least in two addends from the Hamiltonian: let us consider
an example in which the configurations σ and τ differ in exactly two addends.
Let us denote the values of these addends as aσ and bσ for the configuration
σ and as aτ and bτ for the configuration τ . Of course, aσ + bσ < aτ + bτ .
However, it is not necessarily the case that f(aσ) + f(bσ) < f(aτ ) + f(bτ ).
As an example, let us again use the logarithm as a smoothing function and
choose aσ = e3, bσ = e3, aτ = e4, and bτ = e. It is e3 + e3 < e4 + e1, but it
is 3 + 3 > 4 + 1. Therefore, in the smoothed landscape σ is no longer a local
minimum. This type of transfer of local minima to other configurations can
also happen for every other nonlinear smoothing formula. Even the global
optimum might be displaced.

Therefore, one cannot simply perform an optimization run in the smoothed
energy landscape, as the system will usually end up in a configuration that is
a local minimum or even the global optimum in the smoothed landscape but
not a minimum in the original energy landscape. The way to overcome this
problem is to introduce a smoothness-control parameter α [76] by which the
smoothness of the changed energy landscape can be governed: as Fig. 13.2
shows, the optimization run starts at a, for example, very large value of the
smoothness-control parameter, at which the energy landscape hopefully only
contains one local minimum, which is therefore the global optimum. At this
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Fig. 13.2. Introduction of a smoothness control parameter: the smoothness of the
energy landscape is reduced step by step by reducing some smoothness control
parameter α until the original energy landscape is retrieved at the end for α =
αorig. After the optimum solution has been found for the smoothed landscape,
this solution must be adapted in each desmoothing step such that the optimum,
or at least a rather good solution, is achieved at the end (graphics constructed
analogously to graphics in [76])

large value of α, a greedy optimization run is performed in order to let the
system jump into the global optimum of this smoothed energy landscape. Af-
ter that, the smoothness-control parameter is reduced by some small amount
such that the energy landscape is slightly desmoothed. This might lead to
some displacement of the minimum of the energy landscape. Therefore, a new
greedy optimization run must be performed in order to get from the former
minimum in the energy landscape to the minimum of the new energy land-
scape. Then α is decreased again and a further greedy optimization run is
performed in the again slightly desmoothed energy landscape. This approach
is iterated until some final value of α = αorig is reached that restores the
original energy landscape.

Of course, the desmoothing steps must be very small so that one may
trust in a guidance effect by which the optimum solution for the smoothed
landscape is transferred step by step to the optimum or at least a quasiopti-
mum configuration in the original landscape. By changing α too drastically,
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one might be moved far away from the former valley and therefore be caught
in some bad local minimum. There is some analogy here between SA, in
which the temperature has to be decreased slowly, and this guidance effect,
which occurs only if the smoothness-control parameter is decreased slightly.
Otherwise, one also finds here some quenching effect.

This analogy has been stressed further: both types of optimization heuris-
tics, SA and relatives and SSS, rely heavily on a control parameter; further-
more, a greedy run is performed on the original energy landscape at the end of
the optimization run. Therefore, the question naturally arises as to whether
this SSS approach could be combined with SA or other algorithms related
to it. Of course it makes no sense at all performing a complete optimization
run with, e. g., SA at each α step because at large values of T , the system
jumps out of the local valley in which it was already caught at small α and
performs a quasi-random walk (RW) such that the guidance effect of SSS is
lost. However, using the greedy, i. e., the T = 0, case of SA and its relatives
must be considered the extreme on the other side.

Probably the most natural way of combining SSS with a more elaborate
acceptance function is to use the great deluge algorithm (GDA): at each step
of α, the water level T is set to the new value of the initial configuration of
the new α step [186]. Now the Monte Carlo walker is restricted to the valley
where he/she is already caught, but can search for the best local minimum
inside this valley as there might be more than one possible local minimum
between which new energy barriers might have arisen. Therefore, at each α
step a GDA optimization run is performed, with a starting value equal to the
energy of the initial configuration.

The SSS approach of removing energy barriers between neighboring local
optima strongly resembles a chemical catalytic process by which reactions
are enabled that would not happen in the absence of the catalyst. These
reactions also take place at very low temperatures. Therefore, the approach
combining SA and related algorithms with SSS would be to work with a very
small and constant value of the control parameter T at which the system
would be (nearly) frozen in the original energy landscape. However, due to
the smoothing process, the energy differences between neighboring configu-
rations can be much smaller in the smoothed energy landscape than in the
original energy landscape. Therefore, the optimization process might start in
a (quasi)-RW mode at large α. For each α step, a single optimization run
shall be performed. The moves shall be accepted with the acceptance prob-
ability using the small value of T . With decreasing α, the energy differences
get larger such that both a SSS and a SA/TA transition are performed by
reducing α. However, when working, e. g., with threshold accepting, it is not
necessary to choose Th < min{ΔH|ΔH > 0}, i. e., smaller than the smallest
possible energy difference in the original system. Although the system does
not freeze completely, one gets roughly the same process in the simulation.
The original SSS is by the way a special case, that is, the T = 0 case of this
combined method.
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13.2 Ant Lion Heuristics
and Activation Relaxation Technique

The ant lion (Fig. 13.3) is an insect with an interesting behavior: in order to
obtain food, which mainly consists of ants, it alters the landscape by making
funnels. If an ant or another small insect comes by, it often gets trapped
in one of these funnels. Additionally, the ant lion throws sand to the insect
in order to increase the probability that the insect will sink into its funnel.
Figure 13.4 shows such a landscape of ant lion funnels.

In summary, ant lions alter the landscape by introducing appropriate lo-
cal minima in order to maximize their food. This approach is also used as
an optimization algorithm, the so-called ant lion algorithm [205], which is
mostly used for problems in which an objective function can only partially
be written down, either because it is too difficult to quantify all constraints
or because it is simply impossible. Therefore, one starts several independent
optimization runs based on a restricted Hamiltonian H, each of them lead-
ing to some solution. Then the individual solutions are analyzed. If one likes
a specific solution due to fulfilling some constraints that are not represented
in the Hamiltonian, then one would like to make the corresponding funnel

Fig. 13.3. An ant lion [92]

Fig. 13.4. Landscape with holes formed by ant lions [92]
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in which this local minimum solution sits deeper, just like an ant lion. Simi-
larly, if one does not like a given solution, one would like to make the funnel
less deep. Thus it is not a good idea to simply change the overall objec-
tive value of a local minimum, as then the surrounding funnel would stay
unchanged.

There are several ways to solve this problem: by checking all neighboring
configurations of a “good” local minimum, one might be able to find out what
makes this local minimum good, so that the addend to the Hamiltonian of
a certain part of the configuration is changed. A second choice consists of
comparing several good local minima; in this way one might find that some
of them exhibit common parts. Again the values for these common parts
are changed. On the other hand, when comparing “bad” solutions and their
neighborhood, one will also find some structures that make these solutions
bad. The corresponding addends are then increased. If now some further op-
timization runs are performed in this changed landscape, one will hopefully
no longer end up in one of the former “bad” solutions and one might be led
to “good” solutions that contain the parts one likes. However, the problem
usually arises that not only are some local valleys filled up or turned into
a hill, such that the system is less likely to get stuck there, and other lo-
cal valleys deepened, but additional valley-hill structures occur leading to
a rougher landscape than before. However, these new local minima might
exhibit several nice structures and might therefore be a superposition of the
individual changed addends for the “good” properties. However, it could also
happen that the combination of several good properties does not lead to any
good solution. This is strongly system dependent.

Another prominent example of algorithms that change the energy land-
scape in a constructive way is the activation relaxation technique (ART) [15,
152, 153, 208], which performs moves between local minima in the energy
landscape of a continuous problem using the conjugate gradient method.
These moves are accepted according to the Metropolis criterion. This method
is intended to overcome the difficulty of SA to climb over barriers in the en-
ergy landscape at low temperatures.

Thus, this algorithm starts at a randomly created configuration and moves
to a local minimum nearby with the Conjugate Gradient method. Other
methods searching for local minima could be used instead. The idea is now
to leave this local minimum and get to another local minimum by following
a path of minimum energy. Therefore, the highest possible point in this path
must be a saddle point of minimum order, usually of order 1. The construction
of this path leading from one local minimum to another consists of three parts:

• Leaving the so-called harmonic area around the current local minimum,
• Propagating the system to a saddle point nearby, and
• Relaxing the system in a new local minimum in the energy landscape.

For the initial local minimum, a local search method is performed using the
force field F = −∇H. In order to escape the current local minimum, first
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a small move is performed at random. Then one continues with the force field

F̃ = F − G (13.1)

with
G = (1 + α)(F ·Δr)Δr (13.2)

with
Δr = r(σcurrent) − r(σlast local minimum) . (13.3)

Thus, that part of the force field leading to the last local minimum is removed.
The control parameter α determines how fast the system propagates toward
the saddle point. There are several ways to develop adaptive formulas for α,
e. g.,

α = − α0

1 + Δr
, (13.4)

with α0 = 0.15 [15, 208]. Thus, the more the system has already moved
from the optimum, the faster it can move. One performs conjugate gradient
steps iteratively with the force field F̃ , which changes after each step until F
decreases again. Due to the finite step size of the moves, one will not touch
the saddle point accurately. But one can check whether or not the local valley
of the last local minimum has already been left: if F · Δr < 0, then one is
still in the local valley and thus in the attractor region of the former local
minimum. Thus, one verifies with the condition F · Δr > 0 that the saddle
point has already been trespassed. In order to ensure that the system does not
fall back in the previous local minimum, one adds some conjugate gradient
steps with the modified force field and then relaxes the system in a new local
minimum by applying the conjugate gradient method based on the original
force field F . The new local minimum is then accepted with the Metropolis
criterion

p(σold local minimum → σnew local minimum) = min{1, exp(−ΔH/(kBT ))} ,
(13.5)

with ΔH being the energy difference between these two local minima. If this
move is accepted, one performs a new move trial starting from the new local
minimum. Otherwise, one tries a new move starting from the previous local
minimum.

Please note that individual local minima are not found in a process with
moves chosen at random but with an elaborate construction heuristic. Just
as with ruin & recreate, the individual states do not occur according to their
Boltzmann weights. Thus, although the Metropolis criterion is applied, no
thermal euqilibrium is reached. Furthermore, when investigating the saddle
points more closely, one finds that many of them are not first order but of
a higher order. Up to half of the assumed saddle points are in reality local
minima.

There are various ways to apply this method to combinatorial optimiza-
tion problems with a discrete energy landscape. Starting at a random initial
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configuration, one would first perform a greedy run or the steepest descent
method in order to reach a local minimum. Then one performs a few moves
in the RW mode in order to leave the local minimum and the area around
it. Then one switches back to the greedy mode and only accepts moves that
do not increase the energy and do not increase the overlap to the previous
local minimum, in order not to end up at the old local minimum again. This
restriction is then removed again after a few moves so that the greedy search
can lead to a true local minimum. Of course, one will do this in accordance
with how one defines a Hamiltonian

H̃(σ) = H(σ) + λO(σ, σold local minimum) , (13.6)

with O(σ, σold local minimum) being the overlap between the current configura-
tion σ and the old local minimum. If the greedy method then leads too often
to the previous local minimum, then the number of moves in the RW mode
must be enlarged.

This ART algorithm can be extended for both continuous and discrete
problems in such a way that several former local minima get part of the force
field or of the Hamiltonian in order to avoid them all.

13.3 Noising or Permutation of System Parts

Noising or perturbation heuristics also belong to the class of energy-land-
scape-changing algorithms but are derived from a completely different ap-
proach [206, 34, 39]: usually, one expects that if one changes an instance of
a given optimization problem slightly, then the optimum solution for this
changed instance should be roughly the same as for the original instance.
Analogously, local minima in the energy landscape will either be the same or
only slightly displaced. The extent of these changes depending on the size of
the changes in the input parameters can be measured by observables like the
sensitivity that are used in the analysis of computational problems in order
to find out how stable a solution is if some input parameters of the problem
instance are changed slightly.

From this point of view the idea arises to move from the given instance
to a slightly changed instance of the proposed problem. The outline is rather
similar to the SSS techniques but with a different starting point: here one
starts with the original problem instance, and therefore in the original energy
landscape, and performs an optimization run leading to a local optimum so-
lution. Then the problem instance is slightly perturbed such that one now
transfers the local optimum solution for the original problem to a configu-
ration of the perturbed problem instance. There, this configuration is not
necessarily a local optimum solution, so that an optimization run is per-
formed with the greedy algorithm in order to reach a local optimum of the
perturbed problem instance. Now the various approaches differ:
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• One can either return to the original problem instance by transferring
the solution of the perturbed instance to a configuration of the original
instance. There, the current configuration might again not be locally opti-
mal, so that a greedy optimization run is performed. After that, one either
returns to the former perturbed instance or creates another perturbed in-
stance. This scheme is iterated several times.

• On the other hand, one can also jump directly to another instance that
was also created by slightly perturbing the original instance. Therefore,
the local optimum solution of the first perturbed instance is transferred to
a configuration of the second perturbed instance. This configuration serves
as a starting point for a greedy optimization run, which is performed on
this second performed instance. Also, at this point the scheme is iterated
several times.

In the end, one usually returns to the original instance and performs a final
greedy optimization run there. Various implementations of these algorithms
furthermore differ in the amount of noise added to the original instance.
Usually, this amount is decreased in some way in order only to consider
instances more similar to the original instance. Note that this amount serves
therefore as a control parameter like the smoothness-control parameter α of
SSS or the temperature T of SA. Note again the close relation between these
control parameters.

There are usually several ways of perturbing a problem instance, depend-
ing on the underlying problem: one might think of, e. g., displacing some parts
of the problem, changing the size of the parts, and removing some parts of
the instance or, on the other hand, introducing further parts in the instance.

13.4 Weight Annealing

Closely related to these permutation heuristics is another approach called
weight annealing [156]: here one assigns weights wi to the different parts
of the problem. These weights are introduced into the cost function H of
the problem, leading to a cost function Hw. In this way, the impact of the
individual parts on the cost function is reweighted by the weight vector w.
There are various reasons for introducing such weights:

• One wants to represent the importance of some parts for the whole system.
According to some subjective perception or objective a priori considera-
tions, it might be that some parts have to be solved in a better way than
other parts of the problem.

• After having already performed several optimization runs on the specific
problem instance, one finds out that some parts are not solved or not solved
very well. Therefore, one wants to give some further weight to these parts
so that they are considered by the optimization process in a better way.
These approaches can be summarized in the term a posteriori approaches.
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• The easiest way, however, is a random approach, which simply assigns
random weights to the individual parts of the system. This approach is
essentially identical to the perturbation method of the last section.

By adding or multiplying this further weight, one wants to favor configura-
tions in which the corresponding part of the problem is solved (rather) well.
As the optimization process looks for the optimum in the energy landscape, it
is then more probable that the final configuration will contain a better-solved
part.

However, from this picture we see already the dangers of this approach: if
a weight for a certain part is rather large compared to other weights, then the
optimization process might concentrate too much on solving this part cor-
rectly, thus leading to an overall worse solution. The energy landscape might
in this case look like a rather flat landscape, but containing a canyon system.
Therefore, one must always check the final configuration to see whether it is
good for the original cost function H.

Instead of assigning weights only once, performing an optimization run
based on the weighted Hamiltonian Hw, and printing the result, one could
also think of changing the weights in various steps: one might either start at
weights according to one’s own a priori considerations or with each weight
wi = 1. After the first optimization run, one checks which parts of the system
were solved rather badly. According to the importance of the individual parts
and of the difference between the desired local solution and the current one,
one changes the weights, so that those parts that are to be solved in a better
way get a relatively larger weight. This approach is iterated several times or
until the weights no longer change. According to the underlying optimiza-
tion algorithm, one starts either with the final configuration of the previous
iteration or with a random solution in the current reweighting iteration.

This approach can be used in different ways:

• It can be used like the perturbation approach of the last section. Therefore,
the weights should converge to 1 for all parts.

• One can use it to solve some parts of a problem better than they are solved
when using the original cost function.

• One can use it to find out which parts of a system are more or less important
than other parts. Therefore, one is interested also in the final values of the
weights in order to find a good cost function for the considered problem.
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14.1 Simple Sampling

Usually, one cannot sum over all states σ ∈ Γ in a simulation, especially if
considering an NP-complete problem, for which the size of Γ increases expo-
nentially with the system size. Therefore, the calculation of the expectation
value 〈A〉 of an observable A is restricted to its estimation by calculating
a mean value Ā, averaging over some number of configurations. In the sim-
plest approach (simple sampling), M configurations are randomly chosen and
their values for the observable and their energies calculated. The average over
the measurements leads to

Ā =

M∑

i=1

A(σi)πequ(σi)

M∑

i=1

πequ(σi)

, (14.1)

with πequ(σ) being the probability of the state σ for occurring in equilibrium.
For a classic physical system, πequ is the Boltzmann distribution function.
As M approaches infinity, Ā converges to 〈A〉.

This sampling method fails in those cases where the weights of the various
configurations strongly differ, especially if there are only a few configurations
with a large weight. If the overall number of configurations is rather large
compared to the number of these “important” configurations, then these
important configurations, which would give a large addend to the sum due to
their large weight, are sampled only with a small probability. This can lead
to completely false estimates of the real expectation value. Therefore, some
biased sampling or importance sampling is preferable.

14.2 Biased Sampling

In biased sampling, the states over which the mean value is averaged are
no longer randomly chosen. Instead, they are chosen according to some dis-
tribution function π(σi). The possible values of π(σi) are between 0 and 1.
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The process of choosing states can be done according to the von Neumann
rejection principle; as in simple sampling, first a configuration σi is randomly
chosen and its weight π(σi) calculated. Then a uniformly distributed random
number between 0 and 1 is calculated. If this random number is smaller than
or equals the weight π(σi), then the state σi is accepted for the calculation
of the average. This way of finding configurations for the averaging pro-
cess is limited to problems where configurations with weights significantly
larger than zero can be found easily by random selection. Otherwise, it is
preferable to perform a Markov process with acceptance probabilities lead-
ing to the distribution π. After the probability distribution converges to π,
one can start taking configurations for the averaging. Most important, one
should not take a successive sequence of configurations, as successive con-
figurations are usually strongly correlated with each other. One has to take
the correlation time of the process into account, which gives the number of
time steps one has to wait before taking another—reasonably independent—
configuration.

This distribution function π will of course include some knowledge about
the real distribution function πequ and will approximate it. In particular, it
should be small where πequ is small and large where πequ is large. The mean
value when configurations are chosen with bias is given by

Ā =

M∑

i=1

A(σi)πequ(σi)/π(σi)

M∑

i=1

πequ(σi)/π(σi)

. (14.2)

The best guess distribution function π would be the original equilibrium dis-
tribution function πequ. However, sometimes it is better to work with a biased
function if it is too time consuming or otherwise too difficult to generate a dis-
tribution according to πequ. If it was already too time consuming to generate
an approximate distribution, one restricts oneself to simple sampling.

14.3 Importance Sampling

Importance sampling is a special case of biased sampling, in which the cho-
sen distribution π is identical to the desired distribution πequ. The expres-
sion (14.2) reduces to

Ā =

M∑

i=1

A(σi)

M
, (14.3)

an arithmetic average over the values of the chosen configurations for the
observable A.
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Simulated annealing generates states distributed according to the Boltz-
mann distribution. In estimating the expectation value of some observable,
one must wait at each new temperature until so many move trials have been
performed that the system is in equilibrium again. Then one takes one mea-
surement. After the first measurement one must again perform several move
trials before taking the second measurement in order to ensure that these
measurements are independent of each other. After taking a certain number
of measurements, one can proceed with the next temperature step. Finally,
one has a curve in a temperature-mean value diagram.

14.4 Parallel Sampling

Till now, only one Markov chain has been used for retrieving various samples
of an observable in order to approximate its expectation value. This approach
is usually sufficient, because if the system is ergodic, the time average over
samples chosen from one Markov chain is identical to the ensemble average
from samples selected from independent Markov chains. However, sometimes
a parallel approach is advantageous or even necessary in which samples are
derived in parallel from different Markov chains. The reasons for this include
the following:

• One wants to save calculation time by using a parallel computer: in this
case, at the beginning of each temperature step, one must wait until so
many move trials have been performed that the system is in equilibrium
again. Then one takes one measurement from each ensemble member. The
expectation value is simply the mean value of these measurements if the
Monte Carlo chain was created just as for the importance sampling method.
After that the temperature is decreased again. In this way, one gets inde-
pendent measurements from independent Markov chains. In contrast, if
working with one Markov chain only, one would have to wait before taking
the second measurement in order to get uncorrelated configurations.

• When dealing with quantum systems in which the ground state is usually
given as an overlap over several (quasi) optimum configurations, it is nec-
essary to work with this parallel approach in order to get correct values for
the energy and other observables.

• Sometimes the low-temperature behavior of the proposed system is of in-
terest. As each simulation is performed in a finite time only, the system is
not really ergodic anymore. It cannot leave the local valley at low temper-
atures in a reasonable amount of time. Therefore, the average is taken over
a large ensemble of Monte Carlo walkers, each of them trapped in some
local valley.

• Working with threshold accepting (TA) and the great deluge algorithm
(GDA), one must consider the fact that neither algorithm is ergodic, so that
the time average is not identical to the ensemble average. Only the ensemble
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average can be used for getting reliable estimates of the expectation value
of some observables.
As we are only interested in finding optima, this does not really matter to
us. Although TA and the GDA are nonequilibrium algorithms, we simply
adopt Eq. (14.3) for calculating mean values of the observables of interest
by using the time average and use the threshold Th and the level T instead
of the temperature T in Eq. (11.16) for the specific heat and Eq. (11.22)
for the susceptibility.



15 Cooling Techniques

15.1 Standard Cooling Schedules

Using the theory of Markov processes, several authors (see, e. g., [64, 142,
78, 65]) have proved the general existence of cooling schedules for simulated
annealing (SA) with which the simulation ends up in the global optimum of
the considered problem, however, after an infinite amount of time. Geman
and Geman [65] showed for the classical case that it is necessary and suffi-
cient for having a probability of one of ending in a global optimum that the
temperature decreases like

T =
a

b+ log(t)
, (15.1)

with a and b being positive constants that depend on the specific problem.
t is the time elapsed since the start of the simulation and is usually measured
in Monte Carlo steps. There are also cooling functions T (t) for the other algo-
rithms introduced in the previous chapters that lead to the globally optimum
solution for some specific problem.

In practical applications, the available amount of time to produce a solu-
tion is finite. Therefore, faster ways of cooling the system down were devel-
oped that could be applied generally and that lead to very good solutions.
These empirically found cooling schedules let the temperature decrease much
faster to zero. However, they do not guarantee a convergence to the global
optimum of the problem. Mostly two main cooling schedules are used:

• Linear/arithmetic cooling:

T = a− b× t , (15.2)

where a is the initial temperature and b is the decrement by which the
temperature is decreased. Usually, b is chosen in the interval [0.01; 0.2].
The initial temperature strongly depends on the problem considered.

• Exponential cooling:
T = a× bt . (15.3)

Again a is the initial temperature and b is a cooling factor, usually in
the interval [0.8; 0.999]. In the literature, this cooling schedule is called by
many names: “logarithmic”, “geometric”, or “exponential”. We refer to it
as exponential cooling.
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The best cooling schedule will depend on the problem and the computing re-
sources available (see, e. g., [207], where an optimal annealing schedule with
a fixed number of steps was created for a particular problem). Much more
complex cooling schedules than Eqs. (15.2) and (15.3) have been employed,
with the decrease in temperature adapting to evidence of rapid or slow equili-
bration. The temperature need not even decrease monotonically. An example
of these approaches is the following consideration for SA. One considers the
relative weight WT (σ) of a configuration σ in relation to the weight of the
ground state configuration with minimum energy H0, i. e.,

WT (σ) =
πequ(σ)
πequ(σ0)

= exp
(

−H(σ) −H0

kBT

)

(15.4)

and demands that WT (σ) not change too much if the temperature T is de-
creased from a value Tk to a new value Tk+1; thus, one demands

1
1 + δ

<
WTk

(σ)
WTk+1(σ)

< 1 + δ , (15.5)

with some small constant δ > 0. For Tk+1 < Tk, the left inequality is always
fulfilled. Solving the right inequality for Tk+1, one gets

Tk+1 >
Tk

1 +
Tk log(1 + δ)
H(σ) −H0

. (15.6)

Of course, one will not check how to fulfill this inequality for all states σ.
Instead, one considers either the thermal average at temperature Tk and
replaces the deviation H(σ)−H0 in the last formula by 〈H〉Tk

−H0. However,
usually the optimum value for a specific problem instance is not known.
In these cases, one considers the variance VarTk

(H) and approximates the
mean deviation from the minimum energy value with 3

√
VarTk

(H), as the
individual configurations are supposed to occur according to the Gaussian
distribution, in which 99.7% of all occurrences are within three times of the
standard deviation range around the mean value. Thus, the formula reduces
in its applicable version to

Tk+1 >
Tk

1 +
Tk log(1 + δ)
3
√

VarTk
(H)

. (15.7)

But if there is no time for implementing and testing such a tuned cooling
schedule, which is usually based on additional measurements that also require
calculation time, the two schedules of linear and exponential cooling are the
obvious choice. To choose between them, consider the characteristics of the
specific heat: if C(T ) is more or less symmetric when plotted on a linear
temperature scale, then linear cooling is preferable. If, however, the peak
only becomes rather symmetric when plotted against log(T ), then the system
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organizes itself over several orders of magnitude in temperature, and the
exponential schedule is preferred.

It is rather straightforward to find a proper initial value of the tempera-
ture. At the beginning of the optimization run, a random walk is performed
and |ΔH|max, the largest absolute value of the energy differences occurring
between successive configurations, is saved. Then, if using SA, the initial
value of the temperature is chosen in such a way that the acceptance rate
of all moves exceeds a chosen value, e. g., it should be at least 90% at the
beginning. Then the rule of thumb

Tinitial = −|ΔH|max

ln(0.9)
≈ 10 × |ΔH|max (15.8)

is applied. It is even simpler with threshold accepting:

Thinitial = |ΔH|max . (15.9)

In contrast, the maximum occurring energy value Hmax has to be saved when
using the great deluge algorithm (GDA). One simply sets

Tinitial = Hmax . (15.10)

Instead of the maximum energy difference (or the maximum energy in the
case of the GDA), often the mean value of the measurements is considered
because the choice above might lead to too large initial temperatures and
therefore some waste of calculation time. However, if the various moves used
show different ranges of energy differences, then the problem occurs that if
the initial temperature is chosen too small, the system might explore only
a restricted area of the energy landscape.

Of course, other possibilities for choosing the initial value of the tem-
perature are imaginable. In summary, if one starts at too low temperatures,
the problem arises that the quality of the results decreases as the system is
restricted to the local valley of the initial configuration. The Monte Carlo
walker can only climb down to the local minimum and fails to reach better
solutions for which he/she would have to leave the local valley and climb
over barriers. Alternatively, too much calculation time might be wasted at
high temperatures if the initial temperature was chosen too large. Therefore,
sometimes the following procedure is chosen: a rather fast run with an ini-
tial temperature chosen as described above is performed. The decrease in the
energy and the progression of the specific heat are plotted vs. the tempera-
ture T . Then a smaller initial temperature is chosen for the production runs.
Besides guessing intuitively a good value for the initial temperature, one can
set the initial temperature in the range of the peak of the specific heat C:
let τ be the temperature at which C is maximum and Δτ be the width of
the peak. Then one usually chooses the initial temperature as

Tinitial = τ ± Δτ . (15.11)
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The three points (τ − Δτ, 0), (τ, Cmax), and (τ + Δτ, 0) in the specific heat
vs. temperature diagram form a “magic triangle”, which indicates both the
temperature range in which most rearrangements of the system take place
and nearly the whole amount of energy the system loses while being cooled
down. The final temperature has to be chosen in such a way that the system
is really frozen or only trivial moves with ΔH = 0 are accepted. Therefore,
the acceptance rate of the nontrivial moves has to vanish at the end of the
optimization run. However, there is no good criterion for how long one has
to wait to be absolutely sure that no nontrivial move would no longer be
accepted, as this depends on the underlying energy landscape. (Of course,
all possible moves from the actual solution to neighboring configurations
could be considered. However, how many neighbors a configuration exhibits
depends on the move set and the size of the system. The number of neighbors
might be so large that it is impossible to check them all in order to prove that
a certain state is really a local minimum in the energy landscape.) Therefore,
one usually performs a few greedy steps at the end of each optimization run,
which last long enough to be quite sure to be in a local minimum. One simply
sets T = 0, Th = 0, and T = “best result so far”.

15.2 Nonmonotonic Cooling Schedules

So far, we have only considered monotonic cooling schedules by which the
control parameter, e. g., the temperature is not increased during the opti-
mization run. This approach is motivated by the physical picture of a molten
metal block: if it is cooled down very fast, i. e., quenched down, then only
a polycrystalline structure can develop, in contrast to the nice results one
gets if the melting is cooled down very slowly.

This physical picture can be extended even further by looking at the
work of a blacksmith in former times: after cooling down the molten metal
rather fast in a special form, the blacksmith treats it with a certain iterated
reheating-cooling down strategy: first of all, the metal is reheated, but only up
to a certain temperature at which it, e. g., glows red but does not start to melt.
While the block cools down again, the blacksmith works on the block in order
to improve it. Sometimes he also quenches the block down again with, e. g.,
water. Usually, he only works on the block during the cooling-down phase and
not during the reheating phase. Due to this special treatment, the blacksmith
can perform larger structural rearrangements on the considered block without
having to melt his already partially completed work and therefore to start
again. The temperature up to which the block is reheated usually determines
the amount by which the block can be changed.

This approach can be transferred to SA and related optimization algo-
rithms in various ways in order to get an optimum cooling schedule. However,
it is usually impossible to determine an optimum cooling schedule, which
is an optimization problem on its own, but there are still many ways to
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develop nonmonotonic cooling schedules that perform well if one considers
the basic finding of Romeo and Sangiovanni–Vincentelli [173] that a result
nearly as good as the global optimum can only be reached if there is always
a probability large enough for leaving any configuration, i. e., also any local
optimum.

Strenski and Kirkpatrick showed in their early work [207] on this subject,
in which they optimized the annealing schedule for a very simple problem us-
ing a fixed number of iterations, that if the amount of calculation time avail-
able is very small, then the optimum annealing schedule is nonmonotonic:
their results for various systems indicate that after starting at a random so-
lution, one should proceed with the greedy algorithm, i. e., the T = 0 mode
of SA and its relatives. By this approach, the system is quenched down in the
fastest possible way, until it freezes in a local optimum. After that the system
is reheated up to a certain problem-dependent temperature. At this temper-
ature, the system is able to cross smaller barriers in the energy landscape
and therefore to leave a local valley in order to get to a better local optimum.
Depending on the calculation time available, the system should either imme-
diately switch to the greedy mode again in order to get stuck in a better local
optimum nearby or go through a more or less pronounced cooling procedure
(this “more or less” depends on the computing time available), which mono-
tonically decreases the control parameter from the reheating temperature and
ends up in the greedy mode.

Another approach is called bouncing [114, 190]: after a first conventional
optimization run, in which the control parameter is reduced monotonically
from a large initial value T0 to 0, such that the system is transferred from
a random configuration to a locally optimum solution, the final configuration
is used as the initial configuration of a further optimization run. This second
optimization run starts at a value TB < T0 of the control parameter in order
to correspond to the blacksmiths approach, who holds the metal block in
the fire while not working on it. (This approach could be called an inverse
quench.) Now the system is again at least partially able to move through the
energy landscape. The amount of rearrangement possible is determined by the
value of the bouncing temperature TB. In this bouncing iteration, a standard
optimization run is performed, i. e., the control parameter is decreased step
by step from TB to 0. Then the new final configuration is used as the initial
configuration for the next bouncing iteration in which the control parameter
is again reduced from TB to 0. This approach is iterated several times.

The main advantage of this bouncing approach compared to the mono-
tonic cooling approach is that the standard monotonic optimization run starts
at a totally random system, whereas the bouncing scheme can start from pre-
optimized solutions in the bouncing iterations. These preoptimized solutions
already inherit some structure, i. e., some information about the system. The
question is now up to which value TB of the control parameter will the system
be reheated, i. e., which TB is appropriate for the cooling process TB ≥ T ≥ 0?
On the one hand, local information will be kept and only a small number of
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structures shall be destroyed. On the other hand, the optimization process
will be able to leave a bad local optimum and get to a better one.

One can distinguish three regimes for TB:

• Bouncing as “slightly warming up”:
After the first conventional cooling process, the reheating is done only
very slightly, i. e., in a temperature range below the critical temperature
TC, at which the ordering transition of the system happens. This critical
temperature can be determined for systems for which an order parameter
can be defined. In that case, one can measure the susceptibility, which
peaks at the critical temperature.
In this regime, the energy values of the final configurations of successive
bouncing iterations first decrease monotonically and then stay nearly con-
stant [190]. Only seldom does the system jump to a worse solution, and
then it is able to jump back in the next bouncing iteration. In this regime,
bouncing more than ten iterations under the same external constraints
seldom gives any further significant improvement.

• Bouncing up to the maximum of the specific heat:
The system is reheated nearly to the freezing temperature Tf , i. e., TC <
TB < Tf . This temperature range corresponds to a partially ordered phase
of the system. A transition to the totally unordered range is not performed,
similar to the approach of the blacksmith, who reheats the metal block in
order to perform some structural rearrangements but does not melt it. The
results of previous reheating iterations of the considered item do not get
lost completely.
In this temperature regime, the energy values of the final configurations
of successive bouncing iterations also decrease monotonically, but only on
average: there are now large fluctuations; sometimes a bouncing iteration
leads to an improvement, sometimes it leads to a deterioration. But all in
all, in this regime, it is possible to arrive at much better solutions than in
the small TB regime. The system is able to climb also over larger barriers
in the energy landscape and therefore to leave a suboptimal local area.
Generally, the optimum TB value depends on the calculation time spent in
each bouncing iteration: if the amount of calculation time is increased, the
system has a greater ability to climb over barriers such that a smaller TB

value can be used than if spending less calculation time in order to get the
same number of improvements [190].

• Bouncing above Tf :
Finally, one can also consider the behavior of a bouncing process with
TB > Tf : the system melts such that no qualitative change of the results
compared to a standard monotonically cooled optimization can exist, as
the system is kicked up into the unordered high-energy regime.

Summarizing, one must work along these lines: one performs a conventional
optimization run in which the specific heat C and, if possible, the susceptibil-
ity χ are measured during the cooling process. The peak of the specific heat
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marks the freezing temperature Tf , the peak of the susceptibility the critical
temperature TC. One can define a gain that can be achieved with bouncing
by

gi =
〈H0〉E − 〈Hi〉E
〈H0〉E −Hopt

, (15.12)

with i being the number of the bouncing iteration and 〈Hi〉E the ensemble
average of the energy values of the final configurations of the bouncing iter-
ation i (where i = 0 denotes the initial monotonically cooled optimization
run). This gain gi is normalized in such a way that it vanishes if no improve-
ments can be achieved and that it reaches a value of 1 if the optimum is
reached.

The extent of this gain gi depends on the value of TB; it is largest for TB

slightly smaller than Tf if only a small amount of calculation time is used in
each bouncing iteration. When spending more calculation time, one should
reduce this TB. If TB > Tf , then there is no gain at all. Similarly, the gain
vanishes in the limit TB → 0 as expected as the Monte Carlo walker is stuck
in the local valley in the energy landscape, and cannot leave. A lower bound
for TB is the critical temperature TC and also the width τ of the peak of
the specific heat, such that one should not choose a TB smaller than TC or
smaller than Tf − τ/2.

However, the question remains why this bouncing approach works: the
algorithm works with random moves that could also lead to deterioration.
However, the algorithm obviously can make use of the information stored
in the initial configuration, i. e., the final result of the previous optimization
run. By not melting the system, many structures of the previous solution
are retained—they need not be found again—such that the optimization run
has some preoptimized background on which it works, which leads to better
solutions if TB is chosen correctly.

A further explanation for the success of this bouncing idea can be obtained
by measuring the Hamming distance between successive results of bouncing
iterations: first of all, one must consider the mean Hamming distance between
quasioptimum solutions produced by independent optimization runs. Then
one will find that there are really three TB regimes that can be distinguished
also in the Hamming distance graphics: if TB > Tf , then the Hamming dis-
tance between successive results of bouncing iterations is of the same size
as that of independent results. On the contrary, if TB is very small, the
Hamming distance is (nearly) zero, as successive bouncing iterations lead to
(roughly) the same result. One should therefore plot the graphic Hamming
distance vs. bouncing iteration number for TB = Tf and TB = TC and choose
a TB in such a way that the curve in this graphic is between these extreme
curves but nearer to the curve for TB = Tf , e. g., the distance to the curve for
TB = TC should be one to three times larger than the distance to the curve
for TB = Tf [190].
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Instead of using a fixed value for TB, one can also think of a variable TB.
One can even go so far as to introduce a cooling schedule for TB; for example,
one could use the same type of cooling schedulte for TB as for the control
parameter itself, thus bouncing the system more and more gently, such that
it is at first enabled to climb over larger barriers in the energy landscape and
then only able to cross smaller barriers. This approach also leads to (quasi)
optimum results [190].

There are also other opportunities to bounce: for example, one can per-
form a conventional optimization run, in which the control parameter is de-
creased monotonically. However, after a certain number of control parameter
steps, one or more greedy steps are introduced in order to quench the system
in a local optimum. After these greedy steps, the conventional optimization
run is continued at the next value of the control parameter. After one or
more additional control parameter steps, again some greedy steps are per-
formed, and the system is again led to a local optimum. This approach is
repeated until the value of the control parameter is so small that the system
is mostly in the greedy mode. At the end of the optimization run, the best
local optimum solution found is returned as the result of the optimization
procedure.

15.3 Ensemble Based Schedules

There are also ways to find either good or fast cooling schedules by using
parallel computers. In this case, usually the same instance of a problem is
treated simultaneously on several processors. The number of the processor or
the process number often serves as a seed for the random number generator,
such that all processors start with different initial solutions or depart from
a common initial solution in different directions.

These schedules have to avoid wasting too much calculation time in large
values of the control parameter, in which the system performs a quasi-RW. On
the other hand, the schedule should not start at too small values and should
not decrease the control parameter too fast in important ranges as then only
bad results will be achieved. The ensemble based simulated annealing (EBSA)
approach tries to fulfill these requirements: if the system to be optimized is
equilibrated at a certain temperature, then the energy values of the successive
configurations fluctuate in a certain range around the mean value of the
energy at this temperature. If the temperature T is decreased, then the energy
values decrease until they oscillate around the new and smaller mean value
of the energy at this smaller temperature. This decrease in the energy values
of the successive configurations does not occur monotonically, but it is quite
noisy. If the temperature is only decreased very slightly, it is hard to detect
this decrease in an energy value vs. time diagram. However, if one averages
over many optimization runs, then the fluctuations during the decrease of
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the mean energy cancel out, such that one usually gets a strongly monotonic
decreasing curve until the new equilibrium value is reached. Small oscillations
remain in the equilibrium phase, as the number of parallel optimization runs
is finite. This property of such an averaging is used on parallel computers
for determining for an ensemble of optimization runs whether the proposed
amount of calculation time was sufficient to reach the equilibrium at the new
temperature.

Therefore, EBSA starts on an ensemble of p processors with one SA step,
using different initial configurations at a large value of the temperature. At
the end of this step, the ensemble average 〈H0〉E over the energy values of
the p configurations is calculated. Then the following steps are iterated in
a loop (i denotes the number of the iteration):

• The p slaves perform one SA step at the current value of the temperature T .
• Then they send the energy values of their final configurations to the master

processor.
• This master processor calculates the new ensemble average 〈Hi+1〉E and

the corresponding variance VarE(Hi+1).
• If the condition

〈Hi+1〉E − 〈Hi〉E ≥ γ

(
VarE(Hi+1)

p− 1

)ν

(15.13)

(containing two parameters γ and ν) is fulfilled (often a > sign is used
instead of ≥ in the literature, but according to our experience ≥ is better),
then the temperature is decreased; otherwise the old value of the control
parameter is kept.

• The master processor overwrites the old ensemble average with the new
one and sends the temperature value back to the slaves.

This way, the communication time between the master and the slaves can
be kept to a minimum. Even the decision to finish the run can be easily
transferred from the master to the slaves, i. e., by sending a negative value
for the control parameter from the master to the slave processors, by which
the slaves can identify the end of the simulation, at which they simply have
to send their final configuration to the master, which chooses the best of
these.

The main parameter of this parallel approach is the factor γ, which can
be chosen in various ways:

• γ → −∞
In this case, one gets the so-called exponential cooling scheme, because
Eq. (15.13) reduces to

〈Hi+1〉E ≥ −∞ . (15.14)
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This condition is always fulfilled, leading to an automatic decrease of the
control parameter after each step.

• γ = 0
Here one speaks of the simple adaptive cooling scheme. Equation (15.13)
is simplified to

〈Hi+1〉E ≥ 〈Hi〉E . (15.15)

The current value of the temperature is kept constant as long as the en-
semble average of the energy decreases in a monotonic way and is then
decreased if this average increases or stays the same.

• γ > 0
This case is called the weakened adaptive scheme. For this scheme, only
small values for γ, e. g., γ = 0.5, are used. If one looks again at a simplified
version of Eq. (15.13),

〈Hi+1〉E ≥ 〈Hi〉E + ε , (15.16)

with

ε = γ

(
VarE(Hi+1)

p− 1

)ν

≥ 0 , (15.17)

then one finds that the temperature is decreased only if the deterioration
of the ensemble average of the energy values exhibits this ε.
This approach must be used instead of the adaptive cooling scheme if
the number p of available processors is rather small, e. g., p < 100, as in
this case the fluctuations during the decrease of the energy are too large,
such that the system thinks that it is already equilibrated at the new
temperature whereas there was only a fluctuation. This would lead to too
rapid a decrease in the temperature. However, one must be careful in the
choice of ν in this case: in the literature, ν is usually chosen as 1. However,
how large the ensemble variance can become depends on the problem. If
it is too large, then the condition is never fulfilled and the algorithm is in
an endless loop at some value of the control parameter. For every problem,
the appropriateness of the ν value has to be tested. For example, ν = 1

2 is
a good value for the traveling salesman problem, for which ν = 1 already
leads to endless loops at rather high values of the control parameter.

Summarizing, the basic thought of this ensemble based approach is to let
the ensemble average of the energy values drop again and again at a fixed
temperature. If it does not decrease any further, then the system is believed
to have reached equilibrium at the given new temperature. Therefore, the
temperature can be decreased again. At the end of the optimization run, all
ensemble members get stuck as the control parameter is very small.

This ensemble based approach is defined in the context of the equilibrium
properties of SA. However, this approach can also be transferred to other
control strategies: for example, ensemble based threshold accepting (EBTA)
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works in the same way as EBSA. The temperature is simply replaced by the
threshold. Analogously, this approach can be transferred to the temperature
in the Tsallis-based methods or to the water level in the GDA.

The bouncing approach is also suited for parallel enablement. For exam-
ple, one could simply use the best configuration of bouncing iteration i as an
input for the next iteration on all p processors. But one could also define an
ensemble based bouncing (EBB): in this case, the bouncing temperature TB,
up to which the temperature T is increased at the beginning of each bouncing
iteration, is not held constant but decreased according to the ensemble based
rule, i. e., if using the adaptive scheme, TB is decreased if 〈Hi+1〉E ≥ 〈Hi〉E.
However, here the ensemble average 〈Hi〉E is the average over the energies
of the final configurations of bouncing iteration i. Note that in contrast to
EBSA and EBTA, it is not the temperature and the threshold that are de-
creased inside a bouncing iteration but the bouncing start temperature TB is
decreased according to the ensemble-based rule. Of course, it is also possible
to use the ensemble-based approach twice for this bouncing approach: first,
it is used for decreasing TB, but secondly one can also decrease the control
parameter inside a bouncing iteration according to the ensemble-based rules.
This combines EBB and EBSA/EBTA.

It is also interesting to combine the ensemble-based approach with search
space smoothing (SSS). Let us use the greedy algorithm as the underlying
local search technique inside SSS. As therefore no energy deteriorations are
allowed during one α step, the adaptive rule (15.15) of EBSA and EBTA
is modified as follows: if 〈Hi+1〉E = 〈Hi〉E, then decrease α, otherwise keep
the current value of α. However, the question arises as to which Hamiltonian
will be used in this case, such that one can define three different rules for
ensemble based search space smoothing (EBSSS):

• “Smoothed” rule:
The smoothed Hamiltonian Hα is used for calculating the ensemble average
〈Hα

i 〉E. After changing α, the smoothed Hamiltonian changes, such that
sometimes ensemble averages of different Hamiltonians are compared with
each other.

• “Original” rule:
The ensemble average is calculated with the original Hamiltonian H0.

• “Both” rule:
One can also consider both Hamiltonians and must therefore change
the condition above: α is decreased only if both 〈Hα

i+1〉E = 〈Hα
i 〉E and

〈H0
i+1〉E = 〈H0

i 〉E.
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15.4 Simulated Tempering and Parallel Tempering

Simulated tempering (ST) was introduced by Marinari and Parisi [132]. It
works like SA, i. e., the simulation starts with an initial configuration and
applies a series of moves that are accepted or rejected according to the
Metropolis criterion. In contrast to SA, ST does not automatically change
the temperature according to a proposed cooling schedule. Instead, the tem-
perature is also seen as a configuration variable and is changed according
to the Metropolis criterion. One considers a set of M temperatures Ti with
T1 < T2 < · · · < TM , which play the role of the various temperatures in SA.
Thus, T1 must be chosen so small that the system is already frozen, whereas
TM has to be large enough so that the system can explore the whole config-
uration space. One wants to apply a move Ti → Tj . The question is now how
to choose an appropriate transition probability.

For this purpose, one extends the configuration space by a further dimen-
sion, in which a variable i takes the discrete values 1, 2, . . . ,M , denoting the
individual temperature steps. The configuration in this joint configuration
space has to be considered as a pair (σ, i) ∈ Γ × {1, . . . ,M}, with σ being
the configuration of the original space Γ and i a number between 1 and M .
Then one considers the partition sum of this joint system, for which a new
parameter gi is introduced:

Z(Ti) =
∑

σ∈Γ

exp(−βiH(σ) + gi) , (15.18)

with βi = 1/(kBTi). The gi parameters are a function of parameter i and
thus of the corresponding temperature Ti. They have to be chosen in a way
such that

Z(Ti) = const = Z , (15.19)

i. e., such that the partition sum of the joint system does not depend on the
temperature value Ti, as this dependency will cancel out with the dependency
of gi. The equilibrium probability for the state (σ, i) is thus given by

π(σ, i) =
1
Z

exp
(

−H(σ)
kBTi

+ gi

)

. (15.20)

There are now two types of moves:

• First, one can apply as usual a move σ → τ , which is now the move
(σ, i) → (τ, i). The detailed balance condition leads to

p((σ, i) → (τ, i))
p((τ, i) → (σ, i))

=
π(τ, i)
π(σ, i)

= exp
(

−H(τ) −H(σ)
kBTi

)

. (15.21)

Thus, this move type can be accepted with the Metropolis criterion as
usual at the given temperature Ti.
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• Secondly, one can apply a move to change the temperature Ti → Tj . Ap-
plying detailed balance leads to

p((σ, i) → (σ, j))
p((σ, j) → (σ, i))

=
π(σ, j)
π(σ, i)

=
exp (−H(σ)/(kBTj) + gj)
exp (−H(σ)/(kBTi) + gi)

= exp(−(βj − βi)H(σ) + (gj − gi)) .

(15.22)

Thus, the transition probability can be chosen in a Metropolis-like criterion
as

p((σ, i) → (σ, j)) =

⎧
⎨

⎩

1 if Δ ≤ 0 ,

exp(−Δ) otherwise ,
(15.23)

with
Δ = (βj − βi)H(σ) − (gj − gi) . (15.24)

As the acceptance probability decreases exponentially with the difference
between the inverse temperatures βi and βj , one usually only chooses moves
Ti → Tj=i±1, i. e., to the neighboring temperature values.

• Of course, these two moves can also be combined in one move (σ, i) → (τ, j).
One can derive a Metropolis-like criterion as (15.23) but with

Δ = (βjH(τ) − βiH(σ)) − (gj − gi) . (15.25)

Usually, however, one only uses the two moves above.

However, the main question still remains as to how to choose the gi parame-
ters. They are not a priori known and are usually determined by iterations of
simulations that can be rather difficult for complex systems. One of the sim-
plest approaches is first to determine the thermal expectation values 〈H〉(Ti)
for each temperature by an ordinary SA run. Then the differences gi±1 − gi

are given by the differences 〈H〉(Ti±1) − 〈H〉(Ti).
Thus, the outline of ST is as follows:

1. First, determine the gi parameters.
2. Then start the simulation at some temperature Ti, preferably a large one.
3. Perform a few Monte Carlo sweeps at the given temperature Ti.
4. Then, try a move Ti → Ti±1 with the transition probability Eq. (15.23).
5. If some final condition is not fulfilled, return to step 3.

Note that in contrast to SA, the system of ST does not need any time to
equilibrate at the new temperature as the temperature is also changed with
a Metropolis-like criterion.
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A related method to overcome the difficulty of determining the gi pa-
rameters is the replica-exchange method (REM) [98, 99], which is also called
parallel tempering (PT) [41]. It was developed as an extension of ST. Again
a set of M temperatures Ti with T1 < T2 < · · · < TM is considered.
In contrast to SA and ST, one has M different Markov chains, one at
each temperature Ti. At each of these constant temperatures, a simulation
as with SA at the corresponding temperature Ti is performed; thus each
move is accepted according to the Metropolis criterion. The most important
point of PT is that these simulations are performed independently of each
other.

Thus, after some time, one has M configurations σi. The probability π(σ)
is given by the usual Boltzmann weight exp(−H(σi)/(kBTi))/Z(Ti). In con-
trast to ST, PT considers not the joint configuration space Γ × {1, . . . ,M}
but the configuration space Γ ×Γ × · · · ×Γ = ΓM . The probability P of the
product state S = σ1×σ2×· · ·×σM is given as the product of the Boltzmann
weights of the single states due to the independence of the simulations, i. e.,

P(S) = P(σ1, σ2, . . . , σM )

=
M∏

i=1

πequ(σi)

=
exp(−H(σ1)/(kBT1))

Z(T1)
× · · · × exp(−H(σM )/(kBTM ))

Z(TM )

(15.26)

with Z(Ti) being the partition sum at the temperature Ti.
The new point of PT now is that it introduces a varied type of the move of

ST to change the temperature: the temperatures at which two configurations
σi and σj are exchanged by exchanging these two configurations between the
corresponding Markov chains at the temperatures Ti and Tj. This means:
after having applied a sequence of moves in process 1 at temperature T1 with
the final configuration σ1, a sequence of moves in process 2 at T2 with the
final σ2, and analogously in the other processes, one randomly selects two
processes i and j and wants to move the configuration σi to process j while
shifting the configuration σj to process i. The question is now with what
probability this move

S1 = (σ1, . . . , σi, . . . , σj , . . . , σM )
→ S2 = (σ1, . . . , σj , . . . , σi, . . . , σM ) (15.27)

will be accepted. Of course, again the detailed balance condition will be
fulfilled, such that

P(S1) × p(S1 → S2) = P(S2) × p(S2 → S1) . (15.28)
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Thus, one gets the relation

p(S1 → S2)
p(S2 → S1)

=
P(S2)
P(S1)

=
πequ(σj , Ti) × πequ(σi, Tj)
πequ(σi, Ti) × πequ(σj , Tj)

=
exp(−H(σj)/(kBTi)) × exp(−H(σi)/(kBTj))
exp(−H(σi)/(kBTi)) × exp(−H(σj)/(kBTj))

= exp(−ΔH/(kBTi)) × exp(ΔH/(kBTj))

= exp(−βiΔH) × exp(βjΔH)

= exp(−(βi − βj)(H(σj) −H(σi)))

= exp(−Δβ × ΔH) ,

(15.29)

with ΔH = H(σj) −H(σi) and Δβ = βi − βj .
As in the derivation of the Metropolis criterion, there is some arbitrariness

in the explicit choice of the transition probability. Here one can use a Metro-
polis-like acceptance criterion:

p(S1 → S2) =

⎧
⎨

⎩

1 if Δβ × ΔH ≤ 0 ,

exp(−Δβ × ΔH) otherwise .
(15.30)

Thus, if σj is better than σi, i. e., if H(σj) < H(σi), these two configurations
are always exchanged if βi > βj and thus if Ti < Tj. The energetically lower
configuration is thus with larger probability put to the smaller temperature
and thus cooled down. The various temperatures Ti can stay constant all the
time as the cooling can be achieved by the PT exchange mechanism, but one
can also lower the M temperatures Ti during the simulation run.

Usually, a restriction similar to the one in ST is applied to this exchange
process: as the transition probability decreases exponentially with the dif-
ference between the inverse temperatures, only exchanges of configurations
are performed between neighboring temperature pairs (Ti, Ti+1) [98]. The in-
dividual temperature values have to be distributed in such a way that the
smallest temperature is in a range where the system is already frozen, whereas
the highest temperature should be well above the peak of the specific heat.

Like the problem of determining a good cooling schedule for the ordinary
SA, one now has, both for ST and PT, the problem of what temperatures to
use. Good results can be achieved by concentrating the temperature values
around the peak of the specific heat of the problem.

There are various elaborate ways to determine these temperature values.
An iterative way was proposed, e. g., by Kerler and Rehberg [109]: first, they
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fix a minimum β1 and a maximum βM . Then they start with βi, which
are equally distributed between these marginal values and measure the stay
time τi at each βi, which is the time between two accepted exchange moves
at the corresponding βi. The time for β1 and βM is divided by two, as these
processes have only one neighboring process. Next they calculate the auxiliary
variables

ai = (βi+1 − βi)/(τi+1 + τi) (15.31)

and their sum A =
∑
ai. Then they set the βi to new values,

βnew
i =

⎧
⎨

⎩

β1 if i = 1 ,

βnew
i−1 +

ai−1

A
(βM − β1) otherwise .

(15.32)

This procedure is iteratively repeated until the values of βi have converged
to some fixed points.

The individual implementations of these algorithms differ not only in the
techniques for choosing these inverse temperature values but also in whether
the individual values are kept constant during the optimization run or de-
creased. A cooling schedule for these temperature values can be either rather
simple, e. g., the temperatures can be decreased exponentially, but they can
also make use of acceptance criteria like those above [98].

The advantage of PT compared with ST is that there are no parameters
gi that have to be determined either beforehand or during the simulation pro-
cess. Furthermore, one can explore the configuration space in one run much
more thoroughly as there are several Markov chains. However, simulating M
Monte Carlo walkers walking around obviously costs M times the compute
effort of simulating only one. However, this is not necessarily a disadvantage
as PT is very well suited for parallel enablement: the single processes can be
run on the single nodes without interaction, except for the exchange moves
that are sometimes performed.



16 Estimation of Calculation Time Needed

16.1 Exponentially Growing Space Size

The main aim in optimization is to find the ground state or at least a qua-
sioptimum state of very low energy. A major aspect of reaching this aim is the
question of how much time is needed to either achieve the global optimum
solution (and in addition to prove that it is really globally optimal) when
working with an exact algorithm, or to achieve a solution of at least a certain
quality when working with a heuristic algorithm.

With NP-complete problems, one finds that the overall number of con-
figurations in the configuration space explodes exponentially with the sys-
tem size N , e. g., the number of configurations might be proportional to 2N

or to N !, which is roughly given by N ! ≈ exp(N ln(N) − N) according to
Stirling’s formula. Furthermore, the number of quasioptimum solutions can
be exponentially small compared with this overall number of solutions (for
a heuristic proof see, e. g., [186]). Therefore, the time it takes to achieve the
global optimum increases exponentially for an exact search algorithm, at least
in the worst case.

16.2 Polynomial Approach

However, it has been shown already for several problems that one can reduce
the calculation time needed if one does not rely on a proof for the global
optimality of a solution. Then the calculation time needed is a polynomial
function of the system size, with the parameters of the polynomial depending
on the probability with which the optimizer wants to get a result of at least
a required quality [180].

16.3 Grest Hypothesis

For simulated annealing and the great deluge algorithm there exist proofs
that they converge to the ground state if some constraints are met, but only
after an infinite amount of time [122]. There is also a construction of a finite
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nonmonotonic cooling schedule for a specific class of problems, leading to the
global optimum with threshold accepting. In practice, however, one performs
an optimization run and receives a solution not knowing how good or bad it
is if the true optimum is unknown.

Generally, there is no analytic criterion proving that the solution found is
the global optimum. However, in simulations of spin glasses, a relation was
found between the calculation time used and the mean deviation of the solu-
tion to the true optimum [71]. This difference between the mean value 〈H〉t
of energies of final configurations of optimization runs taking a time of t
and the energy value of the ground state H(σopt) depends as follows on the
calculation time t:

〈H〉t −H(σopt) ∝
1

(ln t)ζ
with ζ ≈ 1 . (16.1)

This Grest hypothesis has not yet been proved generally but has also been
shown to be valid for other NP-complete problems (see, e. g., [168, 100]) and
can therefore be generally used as an approximation for how much the quality
of the results can be increased if all of the available computation time is used
and what the true ground state energy is [77].



17 Weakening the Pure Markovian Approach

17.1 Saving the Best-So-Far Solution
and Spinoffs at Good Solutions

So far, we have only considered a pure Markovian approach, i. e., a tentative
new configuration is either accepted or rejected by considering the value of
a control parameter and by considering the current configuration. No infor-
mation about previously visited configurations or other information about the
former past is used. However, this pure Markovian approach exhibits some
disadvantages: sometimes it happens that the optimization run is in a good
local valley but leaves this valley before reaching good solutions. After that
the optimization run might end up in a not so deep valley. Of course, it is
impossible to find out how deep each local valley is during the Monte Carlo
walk through the energy landscape. However, there are some approaches that
are still based on the Markov chain approach but that try to keep informa-
tion about formerly visited good configurations in order to end up at better
solutions or to speed up the optimization process.

The simplest of these approaches is to always save the best configuration
visited so far. Therefore, at each move that is accepted it is checked whether
the energy value of the new configuration is smaller than the energy value of
the best solution so far. In this case, the “best-so-far solution” is overwrit-
ten by the new solution. Depending on the considered problem, this can be
very time consuming, such that the “save the best solution” routine is some-
times only called at already rather small values of the control parameter,
at which these configurations are really pretty good already, and new “best
configurations” come along only rarely.

Often the optimization run ends by taking the best-so-far solution and
performing some greedy steps on it in order to get quite safely to the bottom
of the local valley. However, there are also more complicated ways of using
the best-so-far solution.

An additional approach that can be used on these best-so-far solutions is
to make a spinoff every time a new best solution is detected. This means that,
besides the current optimization process, further processes are started with
these best-so-far solutions as initial configurations of these optimization pro-
cesses. In the simplest approach, a greedy run is performed in order to quench
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down each best-so-far solution to a locally optimum solution. However, one
could also think of using the Bouncing technique described in Sect. 15.2. The
best-so-far solution serves as an input solution, either only for the first bounc-
ing iteration or even for all bouncing iterations. If new best-so-far solutions
are found in these bouncing iterations, more spinoff processes are started. Of
course, this approach will not be effective if all processes run on one processor
at the same time. Ideally, it is used on a large workstation cluster with load
balancing, when one can easily detect whether a spinoff process has already
finished its work, so that the processor is free for a new process.

17.2 Record-to-Record Travel

Dueck altered the threshold accepting (TA) algorithm, described in 12.1, by
comparing the tentative new configuration τ not with the current configura-
tion σ but with the best-so-far solution σ̂ [51]. In this record-to-record travel
(R2R) algorithm, a threshold Th is used much like in TA, but the acceptance
criterion is given as

p(σ → τ) =
{

1 if H(τ) −H(σ̂) ≤ Th ,
0 otherwise ,

(17.1)

so the difference H(τ) −H(σ̂) is used instead of the energy difference of the
successive configurations as in Eq. (12.1). It is claimed that this approach
converges more rapidly to a good solution than TA [51].

Although this approach reminds one of the TA algorithm due to its ac-
ceptance criterion, it is more related to the great deluge algorithm (GDA),
described in Sect. 12.4. The sum of the energy of the best-so-far solution and
the threshold, H(σ̂)+Th, serve as a water level T for the system, above which
no configuration can be accepted. While TA at a small threshold might still
be able to climb up an energy barrier in several steps, this is impossible with
the R2R algorithm, as the comparison is always performed with a configura-
tion at the bottom. If the threshold Th is already rather small, only seldom
can a solution better than the best-so-far solution be found, so that the de-
crease in the water level is mainly governed by the decrease in the threshold.
Without knowledge of any bounds for a good or even the optimum solution
of the proposed optimization problem, this R2R algorithm might be superior
to the GDA, as it is able to concentrate the calculation time automatically
to more important parts of the cooling schedule. This effect can be strength-
ened in the following way: if a new best-so-far solution σ̂new is found, the
threshold Th is set to

Th = (σ̂old − σ̂new) + Th (17.2)

in order to keep the water level constant in this case. The next value of
the threshold is then determined according to the prescription in its cooling
schedule.
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Of course, this R2R approach of using the best-so-far solution instead of
the current one for comparison with the tentative new solution can be trans-
ferred to algorithms with transition probabilities similar to TA, like simulated
annealing (SA), in which the Metropolis criterion [Eq. (11.6)] and the heat
bath condition [Eq. (11.7)] can be changed accordingly, or to the transition
probabilities based on the Tsallis statistics. However, this R2R approach has
the same disadvantage as the GDA in that it is necessary to compute the
whole energy of the tentative new solution. In contrast, often much calcu-
lation time can be saved by calculating the energy difference between the
current and the tentative new configuration locally when using SA, TA, or
one of the acceptance probabilities that are based on the Tsallis statistics.

17.3 Stochastic Tunneling

Another algorithm that makes use of the best-so-far energy value and for
which good results are reported is the stochastic tunneling (STUN) method.
This approach belongs to the class of algorithms that change the energy
landscape, but, in contrast to algorithms like search space smoothing (SSS),
it tries to smooth the energy landscape directly: as already mentioned in
Sect. 13.1, SSS smooths the energy landscape in an indirect way by smooth-
ing the values of terms that are added up in the Hamiltonian. Contrarily,
STUN changes the cost function values of all configurations directly by some
smoothing function in which the cost function value of the best solution found
so far plays a dominant role. Of course, such a smoothing function must be
strictly monotonous such that local minima remain locally minimum. The
outline of the smoothed energy landscape depends strongly on the best con-
figuration found so far, as shown in Fig. 17.1.

17.4 Changing the Cooling Schedule
Due to Intermediate Results

Instead of changing the acceptance criterion, one can also make use of this
best-so-far solution for developing an adaptive cooling schedule.

If one achieves configurations that are much worse than the best-so-far
solution, one can interpret this in two different ways:

• Obviously, the system wants to climb up some energy barriers in order to
get to better solutions. In this case, one should make the situation for the
system easier by increasing the control parameter. This increase could be
done in a rather simple approach by simply adding some fixed amount to
the control parameter or multiplying a factor to it, but it could also be done
in an adaptive way by comparing the last configurations with the best-so-
far solution and by determining a new value for the control parameter in an
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Fig. 17.1. Motivation for STUN: consider a simple toy model, in which each con-
figuration is simply given as a real number σ. The cost function for this problem,
which is to be minimized, will be H(σ) = σ2 − 3 cos(4σ). This simple function
has, of course, many local minima. The greedy algorithm, which only allows for
improvements, would roll down the hill from the starting configuration to the next
local minimum. Also other improvement algorithms would often fail to reach the
global optimum, as there is not that standard structure in the energy landscape,
that is, there are barriers of tremendous height, then barriers that are also large,
but much smaller in height than the barriers of the giant class, and so on. Here the
heights of the barriers are comparable for several neighboring local minima. As in-
troduced by the inventors of STUN[215, 79], one replaces the original cost function
H(σ) with the altered cost function H(σ,Hbsf) = 1− exp(−γ× (H(σ)−Hbsf)). As
can be nicely seen at the curves for γ = 0.3 and various values of Hbsf , the local
minima and maxima stay at the same configurations, but the shape of the energy
landscape is changed to a large extent: local minima that are deeper than Hbsf are
deepened in the transformed energy landscape in order to drive the search process
in one of these deeper valleys. On the other hand, the structures lying above Hbsf

are smoothed out
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elaborate way, making use of this comparison. So, generally, this approach
favors more freedom for the system by increasing the control parameter if
the energy difference between the last configurations visited and the best-
so-far solution gets larger.

• On the other hand, one could also argue in the opposite way: the system
seems to have too much freedom if it moves to configurations much worse
than the best-so-far solution. Therefore, it needs a push to descend to
better solutions. This can be done by reducing the control parameter in
a stronger way than usual.

Both philosophies of modifying the cooling schedule in response to the energy
difference between the last configurations visited and the best-so-far solution
have their merits. The authors’ experience suggests that the superiority of
one or the other of these philosophies depends on the specific problem to
which it is being applied.

But there are also other methods to use previous configurations to de-
termine the next control-parameter values. For example, the values for the
mean energy and the specific heat can be measured at the current value of
the control parameter. A new value for the control parameter is determined
depending on these results. One approach that works analogously to these
approaches has already been discussed in Sect. 15.3.

Another approach to a possibly nonmonotonic cooling schedule is accep-
tance simulated annealing (ASA), which was developed by Markus Puchta
[167]: starting from the random walk, i. e., from the initial temperature
T = ∞, one always stores the energy differences ΔHi with 1 ≤ i ≤ m of
the last m moves that led to an improvement. Let ΔH be the mean value of
these negative energy differences. After every new improvement found, the
new ΔHi is added to the list of energy differences, the oldest entry in the
list is deleted if the list already contains m entries, and the mean value is
updated. Then the temperature of the system is set to

T =
ΔH

log(p)
, (17.3)

with p being the probability with which a move leading to a deterioration
of size |ΔH| will be accepted. Instead of decreasing the temperature T , the
probability p is decreased from an initial value ≤ 1 to a final value slightly
larger than 0. This ASA technique has the advantage over the original SA
algorithm that one does not need to determine both the start and end values
for the cooling schedule for every new system. Nevertheless, one must still
determine an appropriate cooling schedule for the probability p at least once.



18 Neural Networks

Homo sapiens sapiens and other animals have delevoped very complex brains
during the evolutionary process. For centuries, the brain and the nerves in
general have been investigated. Now, besides the general scientific interest,
the aim is to understand this biological network in such a way that an artificial
neural network (NN) of roughly the same or even a better quality can be
created on a computer system. To date, this goal is far from being met.
However, there are many implementations of artificial NNs that, while very
small compared to their biological counterparts, have partially proved to work
rather well. As the literature on NNs is vast (see, e. g., [8, 81, 86, 119, 172,
179, 191, 216]), and as we are only interested in using them for optimization
purposes, we will give here only a short introduction to NNs in order to have
the key ingredients for putting them to our own uses.

Please note that this approach to create an artificial NN represents
methodogically a completely different ansatz from the artificial intelligence
(AI) approach: in the school of AI, the aim is to create some intelligent sys-
tem by proposing a very complex rule set such that the system reacts in the
desired way or is able to solve the desired task or is even able to behave like
a human only because of this rule set. (One could consider the construction
heuristics as AI systems creating a good solution to a given problem.) In the
NN approach, however, the aim is to create a natural intelligence system,
i. e., some artificial system that learns like a biological creature from exam-
ples and that is able to generalize what it has learned such that it can also
give correct answers to questions that it did not learn beforehand.

18.1 Biological Motivation

All in all, a human being has roughly 1011 neurons. Each of them is con-
nected with on average 103 to 104 other neurons [125]. Sensory processing,
the processing of information received from outside the network, and motor
control, the creation and distribution of commands to the muscles, is not
done sequentially as in a conventional computer, but in a highly parallel way.
The complexity of the brain mechanisms is thus given by this huge number
of connections.
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Fig. 18.1. Schematic picture of a neuron: like every cell, a neuron consists of a cell
body called a soma. Furthermore, it has extensions called dendrites that collect the
signals of other neurons. Additinally, a neuron also has a long string called an axon
that splits and ends in the synapses. These synapses are connected to the dendrites
of other neurons. Thus, if a neuron fires, the electrical peak moves from the soma
via the axon to the synapses, which then influence neurons with which they are
connected. The influence of neuron b on neuron a is of a certain size Jab

A neuron, shown schematically in Fig. 18.1, consists of a cell body called
a soma. Furthermore, it contains many so-called dendrites, which are protu-
berances of the cell membrane. Furthermore, each neuron has a long “tail”
called an axon that can even be 1m long. This axon splits into 103 to 104

parts that end in so-called synapses. These synapses are connected to the
dendrites of other neurons.

Due to the semipermeable membrane of the neuron, which acts differently
on sodium, potassium, and chloride ions, which are partially allowed to pass
through ion channels in the membrane, there is usually a negative potential on
the surface of a neuron called the rest potential. However, if there is a strong
external influence or even several of them (for example, by preceptors or by
other firing neurons) and if this influence is larger than a certain threshold,
then the sodium channels open and the membrane potential becomes positive.
This positive action potential runs over the surface of the neuron via the axon
to the synapses—the neuron fires. After that, the neuron returns to its rest
potential. When the action potential reaches the synapses, the synapses emit
some transmitter molecules, which influence the neurons to which they are
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connected. There are two types of influences: roughly 85% of all synapses
are excitatory, i. e., the firing of one neuron encourages the second to fire as
well, but 15% are inhibitory, i. e., the firing of the first neuron suppresses the
tendency of the second neuron to fire.

18.2 Artificial Neural Networks

Artificial NNs are computer algorithms that somehow simulate a brain, but,
of course, in a strongly simplified way. They are used for two purposes: they
can either lead to a better understanding of brain functions, the evolution of
the brain, and brain illnesses. On the other hand, they can also be used as
new approaches for solving complex problems.

The first question to be answered with regard to the creation of an artifi-
cial NN is whether the real biological behavior has to be emulated completely
on a computer. First, these biological processes are not completely known and
understood, so that a complete emulation is impossible. Furthermore, as the
action potential always looks the same, one breaks down a biological neuron
to some variable Si that can have two states: either the neuron fires or does
not fire. Computer scientists thus write

Si =

{ 1 if the neuron i fires ,

0 otherwise .
(18.1)

They simply imagine the neuron as an information bit. (Of course, there are
also implementations of NNs in which the neurons can take more than two
values, e. g., continuous values between 0 and 1, values from a discrete set
of numbers, or any integer or real value.) For physicists, however, the most
prominent two-state system is the Ising system, in which each spin Si can
take the values −1 and +1, so that they usually write

Si =

{+1 if the neuron i fires ,

−1 otherwise .
(18.2)

Furthermore, the synapses are represented as weight values: Jji = Jj←i de-
notes the size of the influence of neuron i on neuron j. If Jji is positive, then
the synapse of neuron i that is connected to a dendrite of neuron j is excita-
tory, otherwise it is inhibitory. Thus, one adds up all influences by adding up
these weight values. Analogously, the threshold that these influences have to
exceed in order to make neuron j fire is also represented as some real value θj .
Whether neuron j fires or not is then represented as some function gj of these
parameters, i. e.,

Sj = gj

(
∑

i

JjiSi − θj

)

. (18.3)
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Often the threshold θj is set to zero. This can always be done by introducing
an additional neuron k that always fires, i. e., Sk ≡ 1, and that is connected
to neuron j via the weight Jjk = −θj.

The function gj determines whether neuron j will fire or not. Often some
deterministic functions are used like the slightly altered signum function,
g(x) = 1 if x > 0 and g(x) = −1 otherwise, by physicists and the slightly
altered Heaviside function, g(x) = 1 if x > 0 and g(x) = 0 otherwise, by
computer scientists. Using such a function allows one to determine exactly
whether the neuron fires. However, often also functions with some proba-
bilistic elements are chosen, like the hyperbolic tangent function. Then the
neuron fires with a probability which depends on external influences and
its threshold value. Another approach adds some random number to the
sum of the influences in order to randomize the firing process of the neu-
ron.

However, the various implementations of NNs differ not only in this func-
tion g, which is mostly the same for all neurons, but much more in their
architectures. Each NN contains input neurons and one or more output neu-
rons. There may also be further hidden neurons, i. e., neurons that are neither
input nor output neurons and that are thus hidden in the network. The main
distinction between various NNs is whether the network contains some feed-
back. In this case, the output of a neuron, which is sent to other neurons as
the input in the next step, influences its own future input, as this is the output
of the other neurons that it had influenced before. Such networks contain-
ing loops of neurons influencing their successive neurons are called recurrent
networks. NNs without feedback are called feedforward networks. In feedfor-
ward networks, the neurons can be written to be organized in single layers.
Each layer of neurons then influences only the neurons in the next layer. Of
course, the dynamics of such a network always reaches a stationary state.
In contrast, recurrent networks do not necessarily reach such a stationary
state.

Each NN must first learn some examples before it can be put to actual
use. Learning mostly means that the weights Jij are changed (sometimes the
values of the neurons are also/instead changed) so that information about
the example is stored in a distributed way in the NN. Three questions arise
when working on a specific architecture with a specific learning rule:

• What can the NN learn? Is it really able to solve the proposed problem?
• How much can be stored? If the number of learned examples exceeds the

capacity of the NN, then the answers the NN gives might be random.
• Is the NN able to generalize what it has learned, i. e., is it able to detect the

rule behind the examples, or does it simply learn the examples by heart?

There are two types of learning algorithms: in the supervised learning, the
NN gets not only the input of the example to be learned but also the desired
output. Thus, it readjusts its weights if its actual output differs from the
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desired output. Related to this, the reinforcement learning technique simply
informs the NN whether its output was correct or not, but not about the
output itself. In applications using an unsupervised learning process, the
learning rule only depends on the activities of the neuron; the network must
learn in a self-organized way. An example of this is Hebb’s learning rule [82]:
if a firing neuron a influences a neuron b to fire, then the coupling Jba between
them is enlarged.

Thus, each NN is described by three parts, the properties of the individual
neuron, the network architecture, and the learning rule. There is no general
criterion regarding which NN is best suited for a given problem. One must
find a good NN empirically.

Probably the simplest NN is a double layer perceptron. One layer of this
feedforward network contains the input neurons. These are connected to the
output neurons in the second layer. But there are no connections between the
neurons in the input layer and no connections between the neurons in the
output layer, either [174, 175]. Thus, each output neuron gets only inputs of
the input neurons, so that the network can be split into several perceptrons
with each of them containing the input neurons and one output neuron.
Let Si = ±1 be the values of the N input neurons and ζ the value of the
output neuron. The N weights then simply form a vector J , such that one
writes

ζ = g

(
N∑

i=1

JiSi

)

= sgn (J ◦ S) (18.4)

using the signum function. The supervised learning rule is applied as follows.
After an initialization of the Ji with random numbers or with zeroes, some
pattern Sν is presented to the perceptron. If its output ζν is identical to the
desired output zν , then the weights Ji do not need to be adjusted. Otherwise,
the weights Ji are changed via the rule

Jnew
i = Jold

i + η × (zν − ζν) × Sν
i , (18.5)

with η being the so-called learning rate that determines how strongly the
pattern is stored in the interactions. Of course, η has to be chosen between 0
and 1. Then the next pattern is learned in the same way, and so on, until
all patterns are used in the learning process. It might be that one or more
previously learned patterns are then partially not correctly represented, so
that they have to be learned again. η is gradually reduced during the iterative
application of this learning process.

This perceptron by Rosenblatt is not able to work correctly on all prob-
lems. Instead, one can only treat problems with it in which the good patterns
with zν = 1 are separated by an N − 1-dimensional hyperplane from the bad
patterns with zν = −1 (or zν = 0) in the N -dimensional space containing all
possible patterns. Applying the learning rule above, this hyperplane is sim-
ply turned and shifted. As Fig. 18.2 shows, the perceptron can, e. g., learn
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Fig. 18.2. Learning three logical operators with a perceptron. Top row: results for
a logical AND (left), a logical OR (middle), and a logical XOR (= exclusive OR,
right) of two logical input variables being either 0 (= false) or 1 (= true). In the
case of the AND, one gets only true as a result if both input variables are true. For
the OR, one gets true if at least one of the two input variables is true. For the XOR,
one gets true if exactly one of the two input variables is true. In the cases of both
AND and OR, one can draw a line between the solution points that are true (filled
squares) and those that are false (crosses). But it is impossible to draw such a line
in the XOR case. Below these graphics, some corresponding perceptrons are shown
that have learned these rules: the output neuron always has a threshold θ = 1. The
input neurons S1 and S2 are connected via the weights J1 and J2, respectively, to
the output neuron. As one can easily check for both the AND and the OR rule, the
standard perceptron with only one input layer of neurons and one output neuron
can solve all inputs correctly. For the case of the XOR, it is necessary to introduce
at least one further hidden neuron. It would be impossible for a perceptron without
hidden neurons to learn the XOR rule. The input neurons are also connected to
the hidden neuron H, which also has a threshold of 1. It fires only if both input
variables are true, thus forcing the output neuron ζ not to fire. Please note that the
trick here is that the hidden neuron has to learn the AND rule and that the output
neuron is connected with the input neurons as in the OR rule. Furthermore, the
hidden neuron H is connected with a strong negative weight to the output neuron.
A negative weight always inserts some NOT boolean operator. Summarizing, due
to the strength of this connection, the output neuron has learned the XOR rule as
(S1 OR S2) AND (NOT (S1 AND S2))
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the AND rule and also the OR rule, as in both cases one can draw one line
between the points leading to an overall true and the points leading to an
overall false. But it is unable to learn the XOR rule, as Minsky and Papert
demonstrated [140]. However, this difficulty can be overcome by introducing
further hidden layers of neurons: thus, the input layer is directly connected
to neurons in the first hidden layer; these are then connected to neurons in
a second hidden layer, and so on, until the neurons of the last hidden layer are
connected to the neurons in the output layer. For many-layer perceptrons,
often the error backpropagation algorithm is used for learning: Here, first of
all, an applied pattern is propagated through the layers of the network to
the output neurons. If the outputs of one or more of these output neurons
differ from the desired output values, then the error is calculated backwards,
starting with the errors of the output neurons, then the errors of the neurons
in the last hidden layer based on the errors of the neurons in the output layer,
then the errors of the neurons in the second last hidden layer based on the
errors of the neurons in the last hidden layer, and so on. The weights are
then changed similar to the learning rule for the original perceptron.

It was shown that the introduction of two additional hidden layers is suf-
ficient for any separation of the individual input patterns [43]. However, the
question remains, for this and also for any other NN, of how many neurons
and what architecture is optimal for first solving the desired task at all and
second for the maximum learning velocity. Too many neurons lead to overfit-
ting, i. e., the individual examples are simply learned by heart, but the NN
cannot generalize what it has learned. On the other hand, a too small number
of neurons makes it impossible for the NN to understand the basic rule as
well.

As this perceptron example already demonstrates, some basic biological
properties are strongly violated: a connection can change its sign, in contrast
to biological synapses, which stay either excitatory or inhibitory. Summariz-
ing, in this business of NNs, one uses some findings of biology to build up
an artificial network but neglects many other findings. In the following sec-
tions, two examples of recurrent networks that are also used for optimization
purposes are introduced.

18.3 The Hopfield Model

The Hopfield network consists of N binary neurons S1, . . . , SN , which can
only take the values +1 and −1 (again in the physicists’ language). Each
neuron is connected with all neurons except itself, such that there are N ×
(N − 1)/2 links between the neurons in this completely connected layer of
neurons. Each neuron serves as an input and as an output neuron. A real
number Jij is associated to each connection Si ↔ Sj . This strength of the
connection is symmetric, i. e., Jij = Jji. (Of course, this is in contradiction to
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findings for biological systems, in which there is usually Jij �= Jji.) As there
is no self interaction in the Hopfield model, one sets Jii = 0.

This type of network is mainly used for storing several patterns that will
be recognized later. A possible application is that it will recognize the ZIP
code of cities from handwritten numbers on envelopes based on some stored
handwriting styles. For each number, a few example patterns are stored.
These overall p patterns ξα are given as bitstrings, e. g., ξα

i = +1 if the
pattern α is black in area i or −1 if it is white there. Hebb’s learning rule is
applied in the following way:

Jij =
1
N

p∑

α=1

ξα
i ξ

α
j (18.6)

and
Jii = 0 . (18.7)

Thus the information about the patterns is stored in a distributed way as
in a real biological network. Please note that Hebb’s learning rule is altered
here: the connection between two neurons becomes not only stronger if they
both do fire at the same time but also if they both do not fire at the same
time.

The network should be able to recognize a learned pattern. Furthermore,
if a slightly altered pattern is presented to the Hopfield network, then the net-
work should be able to reconstruct the original pattern and thus to recognize
the original pattern behind the proposed altered pattern. At the beginning of
this recognition algorithm at time t = 0, a pattern vector S(0) is presented
to the network, i. e., all spins are initially set to the proposed input values.
In the successive time steps, the following rule is iteratively applied to each
neuron (usually in a parallel update of all neurons in the synchronous Hop-
field network, sometimes in a random sequential update in the asynchronous
Hopfield network):

Si(t+ 1) = sgn

⎛

⎝
N∑

j=1

JijSj(t)

⎞

⎠ . (18.8)

In the case where the right side is exactly zero, Si(t + 1) is randomly set to
either +1 or −1. After a finite number of time steps, S is converged to one
of the stored patterns ξα.

Let us first consider the special case that only one pattern ξ is learned.
Then the coupling values are given as Jij = ξiξj/N for i �= j and Jii = 0. If
S(0) = ξ, then
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Si(1) = sgn

(
N∑

j=1

Jijξj

)

= sgn

⎛

⎝
N∑

j=1
j �=i

1
N
ξiξjξj

⎞

⎠

= sgn

⎛

⎜
⎝

1
N
ξi

N∑

j=1
j �=i

1

⎞

⎟
⎠

= sgn
(
N − 1
N

ξi

)

= ξi ,

(18.9)
i. e., S(1) = ξ, the pattern is stable in this iteration and is therefore recog-
nized. Usually, only large NNs with large N are considered. Thus, mostly the
small difference due to Jii is omitted in a theoretical analysis [149].

Let us now consider the case where a pattern S is presented to the Hopfield
Network that is nearly identical to the stored pattern ξ but some of the entries
are changed, i. e., Si(0) = ξi for n out of N entries and Si(0) = −ξi for the
remaining N − n entries. Then

Si(1) = sgn

(
N∑

j=1

1
N
ξiξjSj(0)

)

= sgn

⎛

⎜
⎝

1
N

N∑

j=1
Sj(0)=ξj

ξiξjξj −
1
N

N∑

j=1
Sj(0)=−ξj

ξiξjξj

⎞

⎟
⎠

= sgn
(
n

N
ξi −

N − n

N
ξi

)

= sgn
(

2n−N

N
ξi

)

=
{
ξi if n > N/2 ,
−ξi if n < N/2 ,

(18.10)

i. e., the proposed input pattern converges to the stored pattern ξ if less than
half of the bits were changed, otherwise it converges to −ξ if more than
half of the bits were changed. Therefore, if a pattern ξ is stored in a Hopfield
network, then both this pattern and its inverse pattern −ξ serve as attractors
in this network.

Let us now move to the general case where several patterns are stored
in the network according to Eq. (18.6). The question is whether a stored
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pattern ξα can be recognized if given as an input in the NN:

Si(1) = sgn

(
N∑

j=1

JijSj(0)

)

= sgn

(
N∑

j=1

Jijξ
α
j

)

= sgn

⎛

⎝ 1
N

N∑

j=1

p∑

β=1

ξβ
i ξ

β
j ξ

α
j

⎞

⎠

= sgn

⎛

⎜
⎝

1
N

N∑

j=1

ξα
i ξ

α
j ξ

α
j +

1
N

N∑

j=1

p∑

β=1
β �=α

ξβ
i ξ

β
j ξ

α
j

⎞

⎟
⎠

= sgn (ξα
i + hα

i ) ,
(18.11)

with the term

hα
i =

1
N

N∑

j=1

p∑

β=1
β �=α

ξβ
i ξ

β
j ξ

α
j . (18.12)

As ξα
i would be the correct output, the term ξα

i is called the signal term
whereas hα

i is called the error term [121]. If the patterns are strongly corre-
lated, then |hα

i | can be of size p − 1. For uncorrelated patterns, |hα
i | � 1,

such that Si(1) = ξα
i , i. e., the pattern is recognized. Analogously, a slightly

changed pattern converges to the corresponding stored pattern. However,
this holds true only for a number p of patterns that is small compared to
the number N of neurons. If the stored patterns are uncorrelated, then the
normalized storage capacity p/N can only reach values up to ≈ 0.14.

Usually, the corrupted pattern does not converge to the original pattern
in one step if more than one pattern is stored. Thus, the Hopfield rule has
to be applied several times. Furthermore, the pattern might not converge
to its original form completely, so that the final pattern S̃ of the Hopfield
procedure must be compared with all stored patterns and equated to that
one for which the Hamming distance is minimal, i. e., the overlap

O(S̃, ξα) =

∣
∣
∣
∣
∣

1
N

N∑

i=1

S̃iξ
α
i

∣
∣
∣
∣
∣

(18.13)

is maximal. Sometimes the synchronous Hopfield Network, in which all spins
are updated in parallel, does not stay constant at some final pattern but
finally jumps between two patterns. Then one checks the overlaps between
these patterns and the stored patterns in order to find the best solution.
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From the point of view of optimization, this NN searches for the ground
state of an energy landscape formed by the spin glass Hamiltonian

H = −1
2

∑

i,j

JijSiSj . (18.14)

Each neuron can be associated with a spin of the corresponding spin glass
problem, and the considered move class of choosing one neuron randomly
and applying the Hopfield update rule of Eq. (18.8) can be associated with
a single spin flip performed by a greedy algorithm. The parallel update rule
of applying Hopfield’s rule to all spins simultaneously can be considered as
a collective spin flip. The task of the spin glass problem is to find the unknown
ground state of a spin glass instance with a given interaction matrix J . On
the other hand, the minima of the energy landscape of the NN are known to
be the stored patterns (if they are not too correlated and if not too many of
them are stored), the task here is to define an appropriate interaction matrix
based on the known ground states, so that one speaks of the Hopfield model
being an inverse spin glass problem.

Each flip of a spin Sk according to instruction (18.8) leads to a decrease
in the energy

H = −1
2

∑

i,j

JijSiSj = −1
2

∑

i,j
�=k

JijSiSj − Sk

∑

i
�=k

JikSi , (18.15)

as Sk takes the sign of the sum
∑

i JkiSi if the Hopfield rule is applied.
Analogously, if there are additionally local magnetic fields Hi attached to
each spin Si, such that the Hamiltonian is given as

H = −1
2

∑

i,j

JijSiSj −
∑

i

HiSi , (18.16)

then the update rule must be extended to

Si(t+ 1) = sgn

⎛

⎝Hi +
N∑

j=1

JijSj(t)

⎞

⎠ . (18.17)

These local magnetic fields Hi can be interpreted in the NN language as the
negatives of the thresholds θi, which have to be overcome while stimulating
a neuron to fire.

Storing a new pattern ξα means deforming the energy landscape and in-
troducing two new local minima for ξα and −ξα due to the Ising degeneracy
of the Hamiltonian. However, if this new pattern is correlated with already
stored patterns, then further local minima are created that might even be-
come deeper than the minima of the original patterns.
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The “Hopfield algorithm” is nothing more than a greedy algorithm that
intends to move a slightly changed pattern to the nearest local minimum in
which the corresponding unchanged pattern, which serves as an attractor,
lies. With an increasing number of stored patterns, the probability increases
that this local search process will fail and end up at either another stored
pattern or a superposition of stored patterns. Even worse, the stored pattern
might not form a local minimum anymore, such that it can no longer be
recognized.

The question arises as to how this NN can be used as an optimization
algorithm as it proposes that the patterns, i. e., the good solutions, are already
known and are used to create the energy landscape in which they form the
local minima. However, one can really make use of this model in the following
ways:

• If several good solutions for a proposed optimization problem are already
known, then an energy landscape can be formed by them in which one
searches for the global minimum, which is hopefully a configuration with
a smaller energy than the energies of the stored configurations and which
is also a solution of the proposed problem. The search process can be
performed with the Hopfield approach, but preferably with a nongreedy
optimization algorithm, as it is important to get, not to a local minimum
near the starting point of the search, but to the global optimum.

• The proposed optimization problem can be formulated in a way like the
Hopfield model, i. e., in this description, it consists of neuronlike vari-
ables Si, an interaction matrix J between these variables, and a Hamil-
tonian of the form of Eq. (18.14). It is not necessary that there be patterns
of any meaning; simply a matrix J is needed. Then the Hopfield algorithm
can be applied for finding a solution. Furthermore, if a rather good solution
is already found but one wishes to get a similar but energetically better
solution, then one can make use of this Hopfield model.

18.4 Kohonen Networks

Kohonen invented many NNs. Thus, there are various types of networks nowa-
days called Kohonen networks, e. g., vector quantization algorithms with un-
supervised and supervised learning rules, in which some so-called codebook
vectors are used to classify a set of proposed input vectors. Mostly, how-
ever, so-called self-organizing maps (SOMs) are meant if the term Kohonen
network is used.

These SOMs belong to the class of networks with an unsupervised learning
rule. Here the main aspect of the NN lies in the topology of the individual
neurons, i. e., in the neighborhood relation between the neurons. The aim is
that similar input values are represented by neighboring neurons such that
the space of possible input values is mapped topologically correctly onto
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the neuron space. This idea is biologically inspired e. g., from the so-called
sensoric maps in the brain.

Although the cerebral cortex is strongly connected with its 104 synapses
per neuron, there are bounded areas for certain tasks like the visual cortex and
the somatosensoric cortex. Within such an area, there are again subareas that
are responsible for some subparts, e. g., the somatosensoric cortex is divided
into several subareas, like, e. g., an area for feeling with the right arm that
is neighboring the area for feeling with the right hand. As the feeling with
the hand is more important, this subarea for the hand is larger than that for
the arm. However, the basic topology of the body is completely and correctly
mapped into the brain, so that the neighborhoods are preserved. Analogously,
neighboring parts of the field of vision are mapped onto neighboring parts of
the visual cortex.

A Kohonen network thus consists of N neurons represented by N weight
vectors S1, . . . ,SN in the input space. Furthermore, these neurons are con-
nected with each other within the set of neurons N such that there is a topol-
ogy given. This topology is described via a metric dN (i, j), where i and j are
neurons and dN (i, j) is the distance between them. A topology has to be
chosen appropriate to the topology of the proposed optimization problem,
e. g., a line, a circle, or a grid in some higher dimension.

Furthermore, there is a distance metric d defined on the input space,
which is often the Euclidean distance. If a stimulus ξ is presented to the
Kohonen network, then that neuron i whose weight vector Si is closest to
the stimulus ξ is activated; in mathematical terms

i = argminj∈N {d(Sj , ξ)} . (18.18)

According to Kohonen, the learning process is not restricted to this activated
neuron. Also those neurons j in the neighborhood of neuron i are influenced
by this stimulus ξ, with the size of the influence being defined by a func-
tion h(dN (j, i), ra), which usually decreases with increasing distance dN (j, i).
This function h is called the activation profile. The parameter ra is called the
activation radius and defines the size of the neighborhood that learns (sig-
nificantly) together with the activated neuron. Function h is normalized in
such a way that h(0, ra) = 1 and h(∞, ra) = 0. Common forms of function h
are the Gaussian bell

h(dN (j, i), ra) = exp
(

−dN (j, i)2

2r2a

)

(18.19)

and the 0-1-function

h(dN (j, i), ra) =

{
1 if dN (j, i) ≤ ra ,

0 otherwise .
(18.20)

Learning in this network then means that the weight vectors Sj are
adapted to the stimulus according to the learning rule
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Snew
j = Sold

j + η · h(dN (j, i), ra) ·
(
ξ − Sold

j

)
, (18.21)

with η being the learning rate, a real number between 0 and 1.
According to [172] and [164], the learning rate η, which is decreased in

time, has to fulfill the requirements
∫ ∞

0

η(t)dt = ∞ (18.22)

such that the learning rate does not decrease too fast, and

lim
t→∞

η(t) = 0 (18.23)

such that the system arrives at a stationary state. Analogously, ra must be
decreased in time: at the beginning, when ra is large, then a large group
of neurons learns significantly together with the activated neuron, whereas
in the end, the learning neighborhood consists just of the closest neighbors.
There are also extensions of the Kohonen network in which the explicit time
dependence of ra and η is overcome by a learning-situation-dependent adap-
tive control by the network itself [80].



19 Genetic Algorithms

and Evolution Strategies

19.1 Charles Darwin’s Natural Selection

When on board H.M.S. Beagle, as naturalist, I was much struck with certain
facts in the distribution of the inhabitants of South America, and in the geo-
logical relations of the present to the past inhabitants of that continent. These
facts seemed to me to throw some light on the origin of species—that mystery
of mysteries, as it has been called by one of our greatest philosophers.

With these words the introduction to the famous work by Charles Darwin
on the origin of species begins [45]. Darwin was not the first and only one in
his time to introduce the idea that species can change during the long time
span of evolution. For example, the economist and theologian Malthus de-
rived a mathematically based formulation of the development of populations
long before Darwin [131]. He starts out with two postulates: first, that food
is necessary for the existence of man. The second postulate is that the pas-
sion between the sexes is necessary and remains nearly in its present state.
From these two postulates he derives the notion that the size of a population
increases at a geometric rate (exponentially in time), as long as there are no
restrictions for this growth, like a lack of food supply. On the other hand,
subsistence increases only at an arithmetic rate. Therefore, individuals are
engaged in a struggle for survival.

Darwin’s work is not only based on the work of his predecessors and on
theoretical models and philosophical thoughts. His journey to South Amer-
ica enabled him to present some real-world examples that he relied on when
formulating his own evolutionary theory. According to Darwin, the discrep-
ancy detected by Malthus leads to a “selection pressure” by which the size of
a population decreases again and then stays virtually constant. As nearly all
beings produce more offspring than survive, most offspring die before they
are themselves able to reproduce.

Furthermore, Darwin states that members of a given species are rather
similar to each other but never completely identical. Each individual is thus
unique. There are always some small differences among individual members
of a species. For some species, these differences might be more pronounced
than for other species. Individuals pass on their special properties to their
offspring.
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Combining these two points, those variations that are seen to work well in
the struggle for survival will be found in succeeding generations with a larger
probability. In this way the species will change in iterative generations.

In conclusion, certain individuals of a species are better adapted than oth-
ers to the influences on their lives from their surroundings. These influences
are first of all climate, plants and prey for consumption, enemies that see,
e. g., them as prey, but also things like a species-specific ideal of beauty, which
seems to be important not only for mankind. Incidentally, according to some
recent findings, the subjective feeling of beauty is nothing more than some
instinct that the beautiful seeming counterpart is healthy and has many vari-
ations besides than itself, such that a common offspring would have a good
fitness. There are, of course, other concepts as well. Nature can be quite inven-
tive in devising strategems that prove attractive. The males of many species
put considerable effort into impressing the females of their species, e. g., some
male birds show off while dancing. Apes and humans bring presents such as
branches and diamonds, thus signaling to their female counterparts that the
males would care for them also around the time of delivery and for raising
common offspring. Male spiders of some species perform a drumming solo,
although female spiders finding them attractive eat them after mating.

Those individuals that are better adapted survive longer and have a larger
probability to mate, thus passing on their variations to the next generation.
This insight is summarized in the term natural selection.

19.2 Mutations and Crossovers

In nature, there are two general ways to produce offspring. In the first way,
an individual splits into two identical halves and produces a scion. All in
all, the individual clones itself such that there are two individuals with the
same properties. However, during this type of reproduction, some small er-
rors might occur, such that the two individuals are not entirely identical.
The other possibility for producing offspring is that two individuals of one
(or two related) species mate with each other and have offspring together.
Their common offspring exhibit mostly a mix of their parents’ traits. Here,
too, some small errors might occur in the process of producing offspring so
that the offspring also exhibit traits the parents do not have and do not have
stored in their genes, either. Sometimes the set of species is split into two
subsets of so-called low-level species such as those that only reproduce by
cloning themselves and high-level species that produce offspring by mating.
But there are also species like polyps and perhaps even some snakes (this is
currently under research) that can reproduce both by cloning and mating.
Interestingly, some bacteria species usually reproduce in a sexual way. How-
ever, if the environment changes dramatically, then individuals start to prefer
cloning instead of mating because the possible number of offspring individu-
als is much larger in this case such that the probability of survival of at least
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one individual, and thus of the local colony, increases. But also, the strategy
to mate very often and to produce many generations with a large number of
offspring in a rather short time can help a population to survive, as demon-
strated by the example of the rabbit colonies in Australia that were nearly
exterminated by some illness a few years ago. However, some offspring were
ultimately immune to this illness so that the rabbit population in Australia
did not die out but rebounded to its former population size in a rather short
time.

Thus, new traits or new combinations of traits of individuals are brought
about by two natural approaches, namely, mutations, the small random
changes that occur with a small probability, and crossovers, by which in-
dividuals with a completely new mix of traits can be created as a common
offspring of two individuals of usually different sexes. Combined with Dar-
win’s natural selection, those mutations and mixings of traits that are advan-
tageous will make their possessors stronger in the struggle for life such that
they have a greater probability of passing on their mutations or mixings to
the next generation. Iterating this, the whole species will change during the
process of evolution and can also split into several species, especially if ex-
ternal influences on various colonies of this species are spatially different. Of
course, such natural selection processes can be modified, e. g., by breeding:
those animals with traits that humans like get more chances to reproduce
than other animals, such that these traits are passed on to many individuals
in the next generation.

The Augustinian abbott Gregor Mendel performed many breeding exper-
iments on the color of peas. In his “Untersuchungen über Pflanzenhybride”
published in 1865, he published three laws found in his breeding experiments.
But he found that his laws dictated that the single traits of two individuals
could not be mixed randomly in a crossover. Furthermore, it can be concluded
from the probabilities he found in his experiments that the information about
each trait is stored twice. There are two possibilities for an individual to ex-
hibit a specific trait:

• Either the information about this trait is stored identically twice in the
trait. Then one speaks of homozygous storage of this trait.

• On the other hand, it might be the case that an individual shows a specific
trait, although the information about it is stored only once. But the second
storage field is filled with different information about a different manifes-
tation of this trait, also known as the phenotype. As the actual phenotype
corresponds to, e. g., the first information, the first information is called
the dominant one, as it overwrote the second one, which is therefore said
to be recessive.

• Such an occurrence of two different pieces of information about the same
property can instead lead to an intermediate development of this property
that is between those phenotypes that are described by each of the two
bits of information. An example are flowers of the same species, one with
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the trait to develop red blooms and one with the trait to develop white
blooms. If their traits are mixed, the offspring individuals develop pink
blooms. Besides the color, the size of the individual can also be determined
in this way.

Based on these findings, Mendel stated three laws:

• The uniformity law says that when crossing two homozygous parents that
differ in some of their traits, all their children will look the same and show
exactly the same traits, and thus the offspring will be uniform.

• The splitting law says that when crossing offspring with each other, their
offspring will not be uniform but will show different traits occurring with
probabilities that can be easily derived from the fact that the information
about a given trait is stored twice and is either working in the dominant–
recessive way or in the intermediate way.

• The recombination law states that different properties are transferred to
the next generation independently of each other.

As we now know, information about traits is stored in the chromosomes of
the cell nucleus. These chromosomes consist of two halves called chromatides.
If one cell splits into two, each chromosome breaks into two halves. These
two halves move in different directions, so that each of the two cells to be
created gets one of the two chromatides of each chromosome. Each of these
chromatides is then completed by some biochemical process to a full chro-
mosome. This splitting and completing process might not be error free, so
that mutations can occur. On the other hand, in the process of creating new
individuals by two members of a species, the chromosomes are again split
into two halves, but additionally parts of these chromatides are exchanged in
so-called crossover processes so that individual traits are remixed.

A further finding is that the evolution of a particular species cannot be
considered independently of the evolution of all other species. Instead, one
finds that one has to take coevolution into account. There are examples of
individuals from strongly different species that live together and also have
developed together during the evolutionary process as this symbiosis is advan-
tageous for both sides. A standard example of coevolution is the development
of plants who need insects or other animals for transporting pollen to other
individuals of their species. The plants provide nectar for the insects, which
get attached to the pollen while drinking the nectar. On the next bloom, they
attach the pollen they unwillingly gathered in its stigma, thus initializing the
reproduction process. But coevolution is mostly a fight between a prey and
its predator. For example, both the cheetah and the gazelle have evolved the
ability to run at high speeds, the cheetah to hunt the gazelle, the gazelle to
escape the cheetah. However, often a positive symbiosis is also needed for sur-
vival. A standard example here are lichen, which consist of algae and fungi.
In this symbiosis, the fungi provide water and minerals, which are dissolved
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from the ground by the fungi, for the algae, which in turn produce oxygen
and carbohydrates by photosynthesis. These are in turn needed by the fungi
for survival. Thus, lichen can occupy land in which no other species can sur-
vive. Another type of connection between individuals of different species is
the parasite/host connection. Here at least one species suffers a disadvan-
tage because another species tries to make long-time use of it. Thus the first
species develops defense strategies against the parasite and the parasite tries
to break this defense.

19.3 Application to Optimization Problems

There are two related types of optimization heuristics that make use of Dar-
win’s principle of natural selection, namely, the German school of evolution
strategies (ESs) associated with Rechenberg [169] and the American school of
genetic algorithms (GAs) associated with Holland [87]. The various heuristics
do not fully imitate the evolutionary process in nature but use three key in-
gredients based on the biological findings mentioned above, namely, Darwin’s
principle of natural selection, to establish an artificial population of individ-
uals that can produce offspring by applying the concepts of (a) mutations,
(b) crossovers, and (c) selection pressure.

The applications of these two schools differ mainly in the coding of the in-
dividuals: the individuals are mostly coded as bitstrings in the GAs, whereas
they are mostly coded as a set of real numbers in the ESs. One can refer
to these approaches as a wide coding in the case of the GAs, which is even
close to the quadruple coding of nature, and as a short coding in the case
of the ESs. Both approaches have their advantages and disadvantages: the
bitstring approach of the GAs is mostly preferable for combinatorial opti-
mization problems, whereas the real-number approach of the ESs is better
for continuous problems. In the bitstring approach, it might often be harder
to define appropriate mutation and crossover operators, especially if one has
to end up at a feasible configuration. A further disadvantage of this bitstring
approach is that often several bits together form a gene, whereas a gene can
often be stored as one real number in the ES approach.

The application of mutations differs naturally strongly between these two
approaches:

• The bits of a single individual that is coded as a bitstring b = (b1, . . . , bN )
in a GA with the bits bi = 0, 1 can be changed in various ways that are
often inspired by their natural counterparts:
– A randomly selected bit bi can be switched, i. e., bi = 1 − bi, or set

randomly to either 0 or 1.
– Several randomly chosen bits or a sequence of bits can be switched at

the same time.
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– A partial sequence of the bitstring can be turned around, so that the
original bitstring

(b1, . . . , bi−1, bi, bi+1, . . . , bj−1, bj , bj+1, . . . , bN)

is turned into:

(b1, . . . , bi−1, bj , bj−1, . . . , bi+1, bi, bj+1, . . . , bN ).

– One bit bi can be moved to another place in the bitstring, so that the
bit configuration

(b1, . . . , bi−1, bi+1, . . . , bj, bi, bj+1, . . . , bN)

is achieved.
– Several randomly chosen bits or a sequence of bits can be moved to

another place in the bitstring.
Thus, there are generally two types of bit mutations, bit-switching and
bit-shifting mutations. According to the meaning of the bits and their im-
pacts on the fitness of the individuals, they might be chosen with different
probabilities for applying mutation operators to them.

• In the ESs, in which the property i of an individual is coded as a real
number pi, this property is changed by simply adding a random number ri
to it, i. e., pnew

i = pold
i +ri. As small mutations are preferred, often Gaussian

distributed random numbers with zero mean and some variance σ2
i are

used. σi is decreased during the optimization run to put more emphasis on
the small mutations at the end and thus to enlarge the probability for an
offspring individual to survive. These parameters σi need not be identical
for all traits. Often the parameters are adaptively changed to keep the
average acceptance rates for mutations at a desirable value, typically ≈ 0.2.
Rechenberg states that there is an “evolution window” around this value:
larger “revolting” mutations would almost never lead to any improvement.
Thus, one would lose calculation time if one were always trying these and
failing to survive with such a mutation. Small “archconservative” mutations
lead to a stagnation or at least to a very slow velocity of the search process,
too, so that the optimum width σi has to be of some intermediate value.

Also the crossover operators, i. e., the rule sets to create one or two chil-
dren individuals c and d from two parental individuals p and q, differ in
these two approaches:

• The crossover operators mostly used in GAs are inspired by the breaking
and recombining of chromatides:
– In the one-point crossover, the bitstrings p and q that are given to their

children c and d break after some position i such that c and d get the
following bitstrings:

c = (p1, . . . , pi, qi+1, . . . , qN ),

d = (q1, . . . , qi, pi+1, . . . , pN ).
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– In the two-point crossover, the bitstrings break after positions i and j
such that the child configurations contain an exchanged subsequence:

c = (p1, . . . , pi, qi+1, . . . , qj , pj+1, . . . , pN),

d = (q1, . . . , qi, pi+1, . . . , pj , qj+1, . . . , qN ).

– Of course, also higher-order point crossover operators can be introduced.
Even a random bitstring r can be created such that ci = pi and di = qi
if ri = 1 and ci = qi and di = pi if ri = 0.

– Also, strategies simulating dominant–recessive and intermediate scenar-
ios can be applied. However, the genes stored in the bitstring have to
be examined closely and then it has to be determined whether a gene is
dominant.

One often has to be especially mindful of the problem that some bits form
a gene together such that positions i and j may not be chosen completely
at random but only after the ends of some genes.

• For ESs, the crossover operators are similar to the above: children inherit
the real numbers of their parents. One can again perform one-point, two-
point, and random crossovers with these values. Also, dominant–recessive
and intermediate strategies of nature can be simulated easily: if, according
to some criterion, a real value for one specific property is dominant over
the other value, then both children might inherit the dominant value. In
the intermediate approach, the child gets, e. g., the mean value of the real
numbers of its parents.

However, often it is necessary to choose a coding other than bitstrings or
real numbers for the individuals of the proposed optimization problem. This
is mostly done in order to incorporate some constraints of the problem in the
individuals. Thus, the mutation and crossover operators must lead to new
individuals that do not violate these constraints either. As these mutations
correspond to the moves used in the iterative improvement heuristics like
greedy and simulated annealing, one can in fact take the move routine from
such a program and simply copy it in a GA program. Thus, if one already
knows good mutations from the Markovian approach, only new crossover
operators have to be developed.

The remaining question is how Darwin’s principle of natural selection is
applied to the population of individuals:

• Rechenberg and others introduced several types of ESs [169, 192]:
– The simplest ES is the (1 + 1) ES. Here one starts with a single individ-

ual σ, which is then cloned. The clone τ is mutated slightly. Then the
fitness values of σ and τ are compared with each other. The individual
with the better fitness survives. One iterates this approach of cloning
the current individual, mutating the clone, and selecting the better in-
dividual until no further improvement can be found.
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This approach is exactly the same as the greedy approach in which one
also starts with a random configuration on which a series of move trials
is applied and then accepted if they lead to an improvement. Thus, the
(1 + 1) ES is a common iterative Markovian improvement heuristic and
is identical to the greedy algorithm.

– The (μ + λ)-ES is a generalization of the (1 + 1) ES. Here one starts
out with μ individuals at the beginning, which produce λ individuals
as offspring. Then the population consists of μ + λ individuals, from
which the μ best are able to survive. Again this approach where μ in-
dividuals create λ individuals and then the μ best of μ + λ individuals
survive is iterated. Mostly, λ is chosen to be larger than μ. An indi-
vidual can thus produce more than one offspring. Note that the fitness
of the best individual in each generation does not decrease. Thus, good
individuals have the chance to live over many generations of the evo-
lutionary process. This can be advantageous if an individual represents
a very good solution to the considered optimization problem. However,
this approach can also lead to the problem that the evolutionary process
gets stuck in some high-lying local minimum of the energy landscape, as
a long-living individual generates many clones via successive iterations,
which are nearly identical to it, such that the search process gets stuck
in some local valley.

– In order to overcome this problem, the (μ, λ) ES, which works the same
as the (μ+λ) ES, only selects the best μ individuals to survive from the
λ offspring individuals. Here λ has to be larger than μ in order to apply
a selection pressure. Furthermore, here each individual lives only for one
generation, whereas an individual could theoretically live forever in the
(μ+λ) ES. The fitness of the best individual can also decrease here such
that the best-so-far individual should always be stored and then printed
as the final output of the (μ, λ) ES. For this ES, the selection pressure
is given by the ratio λ/μ. The larger this ratio, the larger the pressure
on individuals.
As the (μ + λ) ES and the (μ, λ) ES are closely related to each other,
one sometimes refers to them both as (μ#λ) ES. In both scenarios,
λ new individuals are created by a cloning and mutation process in
each generation. At the end of each generation step, μ individuals are
selected to survive. Within this (μ#λ) ES one can also invent a scenario
in which basically the (μ, λ) approach is used but in which also the best
parental individuals are able to survive. The numbers μ and λ are usually
constant. Sometimes population waves are simulated by changing λ (and
sometimes even μ) in time.

– There is no recombination between two or more individuals in the (μ#λ)
ES. These are introduced in the (μ/ρ#λ) ES. Here again λ new indi-
viduals are generated. But these are not mutations of single individuals.
Instead, the information stored in ρ individuals is used for creating a new
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individual. Usually, ρ is chosen to be 2, in accordance with biological sys-
tems. Also in accordance with biological systems, mainly two types of
crossovers are used:
• In the dominant–recessive recombination of genes, the individual traits

of the ρ individuals are either randomly chosen to be either dominant
or recessive or are already marked for that from the very beginning.
Then the offspring individual inherits the dominant traits.

• If some genes are to be combined in an intermediate way, often the
arithmetic mean value of the properties of the ρ parental individuals
can be chosen. The notation “/ρ” refers exactly to this scenario.

– This Rechenberg notation, which so far refers to the numbers of individ-
uals, can also be extended to systems with several subpopulations: the
term [α/β#γ(μ/ρ#λ)/n] ES refers to a system with an overall number
of α subpopulations. Individuals of β subpopulations are chosen in order
to create γ new subpopulations. Again the α best subpopulations sur-
vive. Each of the subpopulations is simulated with a (μ/ρ#λ) ES over n
generations in which there is no interaction between different subpopu-
lations. Thus, the α subpopulations evolve independently of each other
for n generation steps. After that a global remixing takes place.
This approach can also be iterated such that subpopulations of subpop-
ulations are remixed within a [. . . [. . . /m]/n] ES. Usually, one does not
consider more complicated scenarios [192].

• Scientists from the school of GAs faced the same problems and thus devel-
oped analogous approaches:
– The “general replacement” approach replaces the overall current popu-

lation completely by their offspring or the best individuals within the
offspring. Thus, it is the analogon to the (μ, λ) ES.

– The “elitism” approach allows the best individuals of the parental gen-
eration to survive together with the offspring.

– The “delete-n” approach replaces n randomly chosen individuals from
the current population by n offspring individuals. It can be combined
with the elitism approach so that it generally keeps the best individuals
of the parental generation.

Of course, more complicated scenarios can be introduced. For example, new
individuals might not take part in the mating process as they are in a “kinder-
garten.” These younger individuals are winnowed by the survival rules and
must age a bit before becoming parents of the next generation.

Other concepts of nature are also used in these simulation techniques.
For example, the above-mentioned coevolution is simulated by optimizing
both the proposed optimization problem and the optimization parameters
of the GA in order to get even better results. Thus, a coevolution of the
configurations of the proposed optimization problem, and of the optimization
algorithm itself, takes place.
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GAs and ESs can be combined with other algorithms to form hybrid algo-
rithms: for example, the temperature of simulated annealing can be inserted
in such an algorithm in order to govern the probability for mutations and
the selection pressure. With decreasing temperature, the probability or the
size of mutations decreases, thus freezing the genes in the population. Addi-
tionally, the individuals selected for survival might be selected according to
their Boltzmann weight. Thus, they are selected nearly at random at very
high temperatures, whereas only the fittest are able to survive at very low
temperatures.

19.4 Parallel Applications

GAs and ESs are very well suited for parallel enablement. The parallelization
can be performed in various ways: for some problems, the dominating part
of the calculation time might be spent calculating the fitness values of indi-
viduals. Then this calculation can be performed in parallel either for several
individuals at the same time or sometimes even for a single individual if,
e. g., its fitness depends on all other individuals. On the other hand, if the
creation of new individuals by mutations and crossovers takes most of the
calculation time, then one will perform several creation processes in parallel.
In both approaches, one gets a large speedup of the simulation compared to
the original sequential approach. Mostly, however, in parallel algorithms, the
overall population is split into subpopulations that evolve on one processor
each.

In the most trivial approach, the so-called island model, there are no in-
teractions between the subpopulations: the individual subpopulations evolve
independently of each other on one processor each. Thus, no communication
between the processors during the optimization run is required. At the end,
one simply takes the best solution of all subpopulations. The only merit of this
approach is that one can watch different evolution processes starting with,
e. g., identical initial populations at the same time and thus better under-
stand the outcome of some programmed properties of the evolution process.
The main disadvantage of this model is that each subpopulation can only
work with the genes of its own initial members. Due to this smaller variety,
if compared to the overall population, the evolution process converges much
faster to only one or a few related types of individuals. (One can compare
this approach with the greedy approach, which also searches only in a small
area in the energy landscape for a local minimum.)

In order to overcome this problem, connections between the subpopula-
tions have to be established. Via these connections, some of the individuals
move from their original subpopulations to other subpopulations. The vari-
ous implementations of these network models differ with respect to several
properties:
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• One of the main properties is the network graph itself. The subpopula-
tions can be fully connected or a connection exists with a predetermined
probability such that one gets a random network. However, also certain
topologies can be established like a closed ring of subpopulations or the
subpopulations might be placed on a regular lattice. Then individuals are,
e. g., only exchanged between neighboring subpopulations.

• The links between the subpopulations can be symmetric, such that indi-
viduals can be exchanged between the subpopulations, or unidirectional,
such that a connection carries only one-way traffic. For example, the pollen
flow model, in which the subpopulations are placed somewhere in the 2D
space, establishes a computer wind that drives individuals to other sub-
populations downwind. The more distant, then, a subpopulation, the fewer
individuals will be transferred to it.

• A further important property is the choice of the individuals that are to
be transferred to another subpopulation. One can, e. g., select the best
or the worst individuals or one can simply choose individuals at random.
But one can also select some members of a family of (nearly) identical
individuals in order to decrease the dominance of some individual type
within a subpopulation.

• A question correlated with this is how many individuals will be transferred
and when and how often such a transfer will take place. Here the simulation
possibilities are of course limited by the physical computer network.

• Of course, the transferred individuals must be integrated in their new sub-
populations in some way. Either they might be immune to the first selection
processes, such that they are able to survive and produce offspring at the
beginning, or the selection pressure in their new subpopulations might be
applied to them already after their arrivals, such that only good new indi-
viduals have the chance to survive in their new subpopulations.

• A further general property is whether this network is static or dynamic.
In the dynamic case, the number of individuals moving over some connec-
tions and also the existing connections themselves change in time, so that
migration processes can be rather nicely simulated. The various subpopula-
tions might exhibit different selection pressures such that they more or less
attract individuals from other subpopulations, thus altering the selection
pressures in the participating subpopulations, which in turn again changes
the number of individuals moving between these subpopulations.

There are so many possibilities for parallel genetic scenarios that one can
simulate almost all real-life migration processes, such as the above-mentioned
pollen distribution by wind or by animals and also the migration of herds or
nations. But also artificial civilizations with strange migration processes can
be invented: for example, in the commune model, each commune consists
of a set of households. The number of households remains constant. The
offspring are produced by a couple of individuals in each of these households.
When the offspring reach a certain age, they move to some singles bar or
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some marriage institute where they select another individual in order to form
a couple. Here selection processes take place as only the fittest individuals
manage to get a partner. In order to reproduce, however, they need to get
a household of their own. Here natural selection enters the picture for the
second time, so that only the fittest couples get a household for themselves.
The other couples go to the bus or train station, move to other towns, and try
to get a household there [69]. This model serves as an example, illustrating
what scenarios are possible for parallel applications.



20 Optimization Algorithms

Inspired by Social Animals

20.1 Inspiration by the Behavior of Animals

Besides the field of genetics and evolution, from which genetic optimization
algorithms were developed, other aspects of biology can inspire optimization
algorithms.

One of the most interesting fields of biology is behavioral biology. The
question is always why a certain animal behaves under specific circumstances
in some special way in relation to other members of its own species or also
in relation to members of other species. Usually, it is quite obvious that
the animal acts in a way that is advantageous for it. However, sometimes
it seems that the animal would only have disadvantages from its behavior,
and it takes intensive research to find out where the advantages lie. Often
a behavior that at first sight seems unselfish gets its reward only after some
time has passed. Of course, we humans have to wonder whether this is the
origin of our morality.

Therefore, animals living together in complex social structures with other
members of their own kind are studied, in part, to answer the question of
whether mankind is unique or at least special. Biologists are also interested in
the self-organization of much simpler groups of animals like a flock of birds.
It is also an interesting subject to study the complex states of insects as these
are extremely simple-minded animals. Insights in these areas can lead to new
types of optimization heuristics, as the following examples will show.

20.2 Ant Colony Optimization

Ants are very interesting insects: although they have only limited individual
capabilities, they behave in a rather complex way when part of a collective.
For example, although they are almost blind, they manage to find the shortest
distance between their colony and their food. For this purpose, they commu-
nicate with each other on a chemical channel by the use of pheromones. Each
ant automatically leaves some pheromone on its trail, thus marking its path.
While an isolated ant moves essentially at random, a group of ants can make
use of these pheromones: when a second ant detects the pheromone trail of the
first ant, it follows it with a high probability, thus leaving its own pheromone
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on the path, such that the path is even more attractive to a third ant. This
leads to an autocatalytic behavior: the more ants follow the trail, the stronger
and therefore more attractive the trail becomes. If now some obstacle is put
asymmetrically on the path of the ants, the first ants arriving at the obstacle
will randomly select whether they go to the left or to the right in order to get
around this obstacle and to follow the old path afterwards. Therefore, roughly
50% of the ants will turn to the left and 50% to the right, thus distributing
their pheromones in equal amounts on both paths. However, those ants that
had chosen the shorter way arrive earlier at the other side of the obstacle so
that there suddenly is more pheromone on one of the two paths. Therefore,
the ants coming from the other side will with a larger probability now follow
the shorter path instead of choosing the longer path. This initially somewhat
small asymmetry will increase until finally all ants choose the shorter path.
Furthermore, the pheromones evaporate over time, so that longer paths lose
their attraction to ants also in this way.

This principle is used in the ant colony optimization (ACO) algorithm for
finding (quasi) optimum solutions for given optimization problems [40]. To
enable the application of an ant algorithm, the optimization problem consid-
ered must be split, in either a natural or artificial way, into several objects
that interact with each other. Imagine these objects as flowers on a meadow,
between which the ants must find the shortest way. The interactions between
the objects correspond to the distances between the locations of the flowers
on the meadow. But also note that such a set of objects can be very different
from a set of locations. Often the optimization problem must be reformulated
in a rather artificial way, such that some variables like flowers and the dis-
tances between them can be defined. Several ants are placed on each item at
the beginning of the optimization run. Then they check the interactions with
the other items. After that they select some interaction that must be fulfilled.
In their choice, they consider both the strength of the interaction and the
amount of pheromones with which the interaction is already marked. While
fulfilling the interaction, they create a pheromone trail between the items,
which changes the interaction between them. The proposed rules in [40] sug-
gest making a compromise between the “visibility” of the original interaction,
which is, e. g., given by its strength, and the trail intensity, which governs the
desire of the ants. The first point can be considered as making use of the
intelligence of individual ants, which will choose the best locally optimum
way if only referring to the “visibility”. The second point makes use of the
group intelligence of the ants, thus making this approach a global optimiza-
tion algorithm.

The various ant algorithms differ in the amount of pheromone placed by
a single ant on the trail: in the ant-density model, each ant puts an equal
amount of pheromone on each interaction, which the optimization process
fulfills. In the ant-quantity model, the smaller the amount, the worse the lo-
cal use of this interaction for the overall system. For these two algorithms,
the amount of pheromones is updated after each time step, i. e., after some
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interaction has been fulfilled. In contrast, the ant-cycle algorithm allows each
ant first to complete its generation of a full solution to the proposed opti-
mization problem. Then the various solutions are evaluated. The higher the
quality of the overall solution, the more pheromone the ant is allowed to put
equally distributed on all fulfilled interactions of its solution. Therefore, at
each time step the amount of pheromone on each interaction is determined:
it is given by the fraction of the previous amount of pheromone that has not
yet evaporated plus the new pheromone of all ants added according to one
of the rules mentioned above and in [40].

When the algorithm concludes, all ants should have decided on one com-
mon configuration, which should correspond to a (quasi) optimum solution
of the optimization problem considered.

20.3 Particle Swarm Optimization

Another approach to optimization is derived from a general view of bird flock-
ing and fish schooling. Obviously, it is advantageous for individuals to belong
to a group although they must compete for food items. This disadvantage
seems to be outweighed by some profit for the individuals that consists of the
previous discoveries of all other members of the group. This suggests that
social sharing of information offers an evolutionary advantage. Based on this
theory, Kennedy and Eberhart introduced a new optimization method called
particle swarm optimization (PSO) [107, 108] and bird flock model: each in-
dividual or particle is assumed to move around in a multidimensional space.
Each individual i memorizes a certain point P i in this space, where its fitness
is maximal. Sharing the information means now that the other individuals,
at least those in the neighborhood, get the information about the optimum
point of that individual i. The movement of the individual i is influenced by
the following factors at each time step:

• Generally, the previous velocity vector vi of the individual i is used as an
initialization for the new velocity vector. This influence of the previous
velocity is sometimes enlarged or shortened by a stiffness factor ω.

• Then each individual i would like to return to its own optimum point, so
that there is a trend to change the movement toward this optimum point:
let Xi be the current position of the individual i; then a term proportional
to scognition× (P i −Xi) is added to its velocity vi, with scognition denoting
the strength of this trend.

• Secondly, there is also a trend to follow the best neighboring individual
n(i) to its optimum point P n(i), so that an analogous term is added to vi.

• Thirdly, each individual would like to follow the overall best individual g
to its optimum point P g, so that a term proportional to ssocial×(P g−Xi)
is added to vi.
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• In order to achieve good results for some problems, it is necessary to in-
troduce some randomness, which is called the craziness of the individuals
in [107]. A random movement vector R is therefore also added to vi.

The new position of the individual i is then determined by Xi = Xi + vi.
The size of each influence is at each move determined by means of a random
number generator, which weighs the individual influences with factors in the
interval [0; 1] or [0; 2], the latter in order to simulate the flocking of birds,
which circulate around their common target before landing there.

This full model can be reduced by omitting some terms, e. g., usually ei-
ther the local best or the global best individual is considered. Furthermore, if
dropping the social component, one gets the cognition-only model, whereas
dropping the cognition component defines the social-only model. Further-
more, there is a selfless model, in which the best individual does not follow
itself as a best individual but follows the second best individual of the group
or in the neighborhood [106].

In their original publication [107], the inventors of this method showed
that the tendency of each individual to approach its own “nostalgia” point P i

and the tendency to approach the best-so-far point P g should be of roughly
the same size: a dominating tendency toward P i (scognition � ssocial) leads to
excessive wandering by isolated individuals, while the reverse results in the
flock rushing fast toward a bad local minimum.

This PSO approach has till now mainly been used for finding the global
optimum of nonlinear functions and for optimizing the weights of neural
networks. The birds and fish are placed on random positions in the energy
landscape of the proposed optimization problem and move to other locations
according to the rules above.

20.4 Fighting and Ranking

The struggle for survival, which is fundamental to Darwin’s natural selection
and which is used in genetic algorithms (GAs), can result in individuals
of a species forming a group if it is advantageous for them to do so. The
advantage can lie in hunting together and thus getting more food or getting
food more easily than by hunting alone. But then the question arises of how
to distribute the prey. Of course, each individual knows that the more it gets,
the larger its probability is of surviving when hunting conditions deteriorate.
Furthermore, if there are two genders, there is the wish to have as many
offspring as possible with as many individuals of the other gender as possible.
These two factors lead to fights within the group. However, these fights cost
energy, can lead to injuries, and might also hurt or kill one’s own offspring,
such that the probability of surviving decreases with an increasing number
of fights.

In order not to descend into constant fighting, all individuals of a group
must respect some sort of hierarchy, according to which the food is distributed
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in shares of different sizes and quality and according to which the mating
chances are regulated. Such a “contract” within a group might even be ad-
vantageous for those individuals that get a smaller share, as, e. g., stronger
individuals that get a larger share have more energy to protect the whole
group if it is attacked. Of course, the smaller share has to be sufficient for
survival. If one or more individuals of a group becomes dissatisfied with the
hierarchy, new fights break out and a new hierarchy is established.

Due to this hierarchy, a ranking between the individuals of the group
is established. Such a ranking often remains constant for a long period of
time, so that social relationships of a complex kind can develop within the
constraints of the overlying ranking. This ranking is often reflected in the
seating arrangements of a group: usually, the β-male will not be found at the
side of the α-male. Instead, both are surrounded by their supporters, with
the club of the β-male usually much smaller than that of the α-male. It even
happens that the β-male and the γ-males form a coalition against the α-male
and its supporters, with the intention to take over.

The general development and features of ranking can be very well simu-
lated on a computer. However, this behavior can also be used for an optimiza-
tion algorithm: each individual again represents a configuration of the pro-
posed optimization algorithm. In a fight, the individual who exhibits greater
fitness, i. e., the lower cost function value, wins with a higher probability.
This probability difference should be proportional to the difference in these
values between the two fighters. Then there are several possibilities:

• Each win is recognized by the right to produce one offspring, which is
either nearly identical to the winner except for one or more mutations or
which is produced by performing a crossover operation with a mate. In this
case, the algorithm becomes a hybrid algorithm with elements of GAs, so
that Darwin’s principle of natural selection must be introduced in order to
impose some limits on the size of the society.

• The winner could also adopt good local parts of the loser’s configuration.
This approach would correspond to what happened in ancient times, as
one militarily strong civilization captured a militarily weaker but cultur-
ally more progressive nation. In this way, Egypt was able to retain its iden-
tity over thousands of years, although it was captured several times. The
conquerors adopted Egyptian culture. Analogously, the Romans adopted
Greek philosophy after capturing Greece. Furthermore, Greek became the
lingua franca in the eastern part of the Roman empire, and knowledge of
Greek became a symbol of higher education in ancient Rome. Although the
Greeks and the Egyptians lost their respective wars and were no longer free
when first occupied, their cultures were able to survive.



21 Optimization Algorithms

Based on Multiagent Systems

21.1 Motivation

In the last chapter, we introduced algorithms that are based on insights
into the complex behaviors of animals living in large communities. Among
the genetic algorithms (GAs), populations of individuals are considered on
which an evolution process is started. These and other algorithms have in
common that there are some “beings” that are mainly given as configurations
of the considered optimization problems. Furthermore, some optimization
problems can be split in a natural way, for example, the vehicle routing
problem (VRP), in which several truck drivers perform a closed tour and
serve their customers can be considered as “beings”, each representing a part
of the whole configuration. In computer science, where researchers have found
related similarities between different “beings” of various problems, one uses
the term “agents” for these beings. Thus, an agent can be everything, an ant
in the ant colony optimization problem, an individual in a GA, a single part
of a configuration, etc. This agent concept or this language of speaking about
agents is very general.

Thus, first of all, one has an agent with more or less elaborate individual
properties and capabilities. But furthermore, there are interactions between
the individual agents. For example, an ant uses pheromones to disseminate
information to the whole group of ants, an individual in a GA selects an-
other individual for generating child configurations, and so on. Generalizing
these concepts, we have multiagent systems consisting of a number of agents
with individual properties and capabilities and of interactions between these
agents.

The most prominent examples of multiagent systems are financial mar-
kets: Every day, new exchange rates between various currencies, stock prices,
and oil and gold prices, among prices for many other goods, are determined
at markets by means of trading: one person offers something to sell at a cer-
tain price, and another person offers to buy something at some price. In the
end, a price for a good or some exchange rate is determined. The exchange
of the currencies is then carried out according to the determined exchange
rate; analogously, goods are sold according to set prices.

This trading scenario has been simulated in various ways in order to
understand the development of the prices and mechanisms of markets. Of
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course, the final aim of these simulations is usually to anticipate exchange
rates and prices. However, one can also make use of a simulated trading
ansatz for optimization as Bachem et al. showed in their approach, which
was originally developed for VRPs [13, 14].

21.2 Simulated Trading

A system must be divided into various parts in some natural way correspond-
ing to the properties of the system. These parts of the system are considered
as agents who try to get rid of items that are “expensive” to handle and to
get “cheaper” ones instead so as to increase profits, by which the system is
indirectly optimized.

The algorithm consists of two phases: in the sell-and-buy phase, each agent
checks for the best trading possibilities, also regarding previous actions. First,
all the put-orders are given to the central stock market with offers stating the
price at which the items are to be sold. These prices can be given, e. g., by the
improvements the agents make by removing these items from their parts of
the system. The central stock market provides a public selling list consisting
of all these sell orders. The individual agents can then decide which items
on the selling list they want to provide buy orders for. Again they determine
prices by estimating the benefits or costs for introducing an item in their
local part of the system. Based on these orders, the stock market constructs
a so-called trading graph consisting of feasible orders.

In the second phase of the algorithm, the trading-matching-search phase,
the trading graph is searched for a maximum weighted trading matching
between pairs of sell and buy orders. According to the matching found, items
are shifted to the new owners, i. e., they are removed from their current
system section and transferred into another system section.

This algorithm can be implemented in various ways: a simple approach
would be for each agent to give only one order, that is, half of the agents give
a sell order, the other half a buy order. Whether an agent buys or sells can
be determined either randomly or by assigning desired values for buying or
selling to individual agents. These desired values can depend on the number
of items an agent serves or the maximum values for the savings by removing
an item or the costs for inserting one. More difficult approaches would allow
for selling and buying a sequence or a bunch of items or even for providing
several simultaneous sell and buy orders for each agent.

Individual agents can follow various strategies: they might want to get
a maximum profit as fast as possible. In this case, they will select the optimum
order, i. e., they will offer that item for sale for which they obtain the largest
savings for removing it and offer to buy that item for which the costs of
insertion are smallest. However, this greedy behavior leads to worse results
than in a probabilistic strategy in which probability values are assigned to
all possible orders one agent can make according to their quality. The quality
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of a sell order is usually given by the size of the savings for removing the
corresponding item, i. e., the larger the savings, the better the order. The
actual sell order the agent gives is selected in a randomized way according to
these probabilities. Analogously, the buy order a buying agent gives should
not be the best possible one, i.e, the one with minimum costs for inserting
an item. It should also be chosen in a probabilistic way considering the costs
of the insertions. The smaller the costs are, the larger the probability for the
buy order should be.

Therefore, promising actions are taken more often and getting stuck in
a static situation is prevented. These probabilities can be changed during the
optimization run, e. g., by introducing a temperaturelike control parameter,
which leads to random orders at the beginning and a greedy behavior at the
end.

But also the behavior of the stock market can be changed: instead of
finding the best matching between buy and sell orders, it is sufficient to
work with any matching that improves the current solution. Furthermore,
one can also allow deteriorations during the simulation process, with the size
or probability of the deteriorations determined by some control parameter as
in simulated annealing (SA) or threshold accepting.

Furthermore, one can weaken the exactness of the stock market: for ex-
ample, some item could be sold to several agents such that it is inserted into
various parts of the system several times, or it could be removed from the
system completely if, e. g., one agent sells it but no other agent buys it. Of
course, one must end up at a feasible solution at the end of the optimization
run, so that one must add a penalty for such items left at the stock market,
thus decreasing the costs for reinserting them into the system. Analogously,
one must make agents get rid of items inserted several times into the system.

As each agent can develop buy and sell orders independently of all other
agents, this algorithm is well suited for parallel enablement. An obvious par-
allel approach would be that each agent is run on one processor. Furthermore,
one processor is dedicated to the simulation of the stock market. However,
this type of parallelization is very poor, as all agent processes have to wait
until the stock market process has gathered its selling list and even more until
it has determined the matching of the orders. If there are many agents, this
matching might take even more time than the determination of the orders
by the agents.

Therefore, it is advantageous to parallelize the stock market itself: each
part of the stock market that is now run on a single processor serves some
partition of agents that are in some sense related to each other. This rela-
tionship can, e. g., be given by the neighborhood of the system parts they
represent. Thus, each processor handles some related agents that (partially)
give their sell orders and handles a partial stock market that summarizes the
orders of these agents in a local selling list. Then those agents that are located
on this processor can give their buy orders, if they want to give any, due to
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this local selling list, so that a local trading graph can be built. In conclusion,
trading is done only between agents located on the same processor.

However, this partitioning of the agents onto the stock market parts must
be changed dynamically; otherwise some useful trading possibilities might be
prohibited.

21.3 Selfish vs. Global Optimization

The simulated trading algorithm as described above is only one example of
the various possibilities for optimizing a proposed optimization problem by
using a multiagent approach. Generally, several agents are introduced. Often,
each of these agents is supposed to be responsible for a part of the system
and to try to optimize it in the best possible way. Thus, each agent can be
equipped with a selfish behavior: he/she tries to optimize his/her local part,
regardless of whether the outcome of his/her moves improves or worsens the
local parts of the other agents.

This selfish approach has some advantages over optimization methods
like the standard greedy algorithm, which tries to arrive at an overall good
solution by accepting only changes that lead to an improvement of the whole
system:

• First, each agent can find out more easily how to improve his local part as
he/she does not need to consider the whole system.

• The time for calculating such a local energy difference ΔHlocal is much
shorter than the calculation time for the energy difference ΔH of the overall
system. Thus, the decision of whether to accept or reject such a change can
be made much faster [188].

• From the outside, one obtains a deeper insight into how the system is
optimized as one can have a better view at the moves of the agents as
these are local when compared to the global system.

All in all, this selfish optimization approach by using a multiagent system
saves calculation time and provides deeper insight into how the system is
optimized. If none of the agents and none of the pairs of groups of interact-
ing agents can find any improvements, the optimization run has ended at
a configuration known as a Nash equilibrium.

However, this selfish approach also has some disadvantages when com-
pared with global optimization approaches like the greedy algorithm or more
elaborate techniques.

• As already mentioned, an agent that just now improves his/her part of
the system might worsen the parts of other agents. When it is their turn
to optimize their parts, they might in turn worsen the part of the first
agent. Thus, this selfish optimization approach might not lead to a Nash
equilibrium in the end but might cycle between various configurations and
might never lead to really good configurations.
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• Furthermore, as each agent only considers his/her local part, long-range
interactions with other parts may be suppressed or even completely ne-
glected. Even if the agents do a good job on their parts of the system,
the optimization process will often not end up at a good local or even
the global minimum as the global minimum is often not the sum of local
minima if considering complex problems due to the existence of long-range
interactions between the parts of a complex problem.

Therefore, this selfish approach might lead to worse results than the standard
global approach and might not even be applicable.

21.4 Introduction of a Social Temperature

In the last section, agents were described as selfish beings. In real life, when
a person is very selfish, we usually say that this person is cold and egotistic,
whereas if we find just the contrary, namely an altruistic behavior, we speak
of a warm person.

It was already shown that if the agents of a multiagent system do not
always act in a completely selfish way, then one arrives at better solutions.
The simulated trading algorithm makes use of this insight by assigning prob-
abilities to the individual orders an agent can make: of course, the larger the
gain for a particular order, the larger the probability that this order will then
be used. However, other orders, which are worse from the point of view of
the individual agent, can be chosen with specific probabilities.

This probability concept can be altered by introducing a social temper-
ature: we can assign a social temperature to a multiagent system that then
governs the behaviors of the individual agents: high temperatures are associ-
ated with heaven and cold temperatures with hell. We can even assign social
temperatures Ti to each agent i: if Ti is large, agent i can be considered an
angel; if Ti is small, then agent i behaves like a small devil, agents with inter-
mediate Ti act like normal people: they have their interests in mind but also
know that they should not destroy the work of the other agents completely.

There are various ways to use this social temperature concept in order
to make the behavior of an agent less selfish: as stated above, one could
govern with this temperature the extent to which an agent considers, e. g.,
neighboring agents when making its decision. Here the cost functions of these
neighboring agents are added to the cost function of the agent, but only in
a reweighted form. The weight of these cost functions is determined by the
social temperature. Another approach is that the individual agents retain
their local cost functions. When they want to change their local parts, they do
this in a less selfish way in the sense that they not only accept improvements
but also deteriorations with some probability. For example, the Metropolis
criterion min{1, exp(−ΔHlocal/(kBTi))} can be used as an acceptance rule
for the moves the agents make.
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Often, only one social temperature T is assigned to the overall system.
Each agent of the multiagent system is thus at the same temperature. Fur-
thermore, this temperature is often decreased during the optimization run,
such that the individual agents become more and more selfish. This approach
recalls the SA algorithm, which analogously ends up with the greedy algo-
rithm at the end. Just as SA led to better results than the greedy algorithm
as it can climb over barriers in the energy landscape, this social temperature
approach is superior to the selfish approach, as barriers due to the selfish
decisions of the individual agents can be overcome. Often the same approach
as within SA is used: one starts with a high social temperature and decreases
this temperature gradually until all agents behave in a completely selfish way
at the end. One finds that one gets better results with this approach as with
an overall selfish approach. This finding is the analog to the finding that one
gets better results using SA than with the greedy algorithm.



22 Tabu Search

As there is already an excellent book about tabu search and the philosophy
behind it by its inventor Fred Glover and Manuel Laguna [67], we only sketch
here the general ideas and the important ingredients of tabu search.

22.1 Tabu

The Encyclopaedia Britannica [209] defines the word tabu as follows: taboo,
also spelled tabu, Tongan tabu, Maori tapu, the prohibition of an action or the
use of an object based on ritualistic distinctions of them either as being sacred
and consecrated or as being dangerous, unclean, and accursed. The term taboo
is of Polynesian origin and was first noted by Captain James Cook during
his visit to Tonga in 1771; he introduced the term into the English language,
. . . .

Based on this tabu paradigm, Fred Glover introduced a field of optimiza-
tion algorithms called tabu search: starting out at some initial configuration,
which is either random or preoptimized according to a specific rule set or
proposed in some other way, these algorithms apply a sequence of moves to
the system being optimized. Configurations that are either declared as tabu
on the whole or that contain properties declared as tabu are forbidden.

All these forbidden configurations or properties have to be stored in some
tabu list. The number of the items stored in the tabu list is usually called
the tabu list size (TLS). Initially, the tabu list is usually empty. Then the
tabu search algorithm searches in the neighborhood of the current configu-
ration for the best neighboring configuration, much like a steepest descent
algorithm. But in contrast to the steepest descent algorithm, the tabu search
algorithm does not get stuck in local minima as it accepts the minimum de-
terioration if the system is currently in a local minimum. Here a problem can
arise: the system might then jump back and forth all the time between the
local minimum configuration and its best neighboring configuration. Thus,
after perhaps several such 2-cycles, the local minimum configuration must
be declared as tabu: then the move leading back to it is forbidden and the
algorithm must then choose the best move among all possible allowed moves
leading to configurations not marked as tabu. Then the system can get to
other local minima in the energy landscape. But it could be that the local
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minimum now declared as tabu was already the global minimum. Therefore,
one must always store the best configuration that has been found so far and
return this best configuration as the result of the optimization run.

At every subsequent move, the tabu search algorithm goes through all con-
figurations in the neighborhood of the current configuration, checks whether
they are tabu, and then selects the best neighboring configuration that is
not marked as tabu as the new configuration. The number of configurations
that are declared as tabu increases in time. It takes more and more time to
evaluate whether any of the neighboring configurations are tabu, as each of
these has to be compared with every configuration stored in the tabu list for
identity. Thus, the requirements for both memory size and calculation time
increase with increasing TLS. Therefore, instead of using this explicit mem-
ory type in which complete configurations that have been declared as tabu
are stored, for many problems the attributive memory is used in which prop-
erties common to many visited configurations are marked as tabu. Avoiding
putting complete configurations on the tabu list, but extracting the essence
of what has now been explored, so that one can go and find fresh things
to try, saves both calculation time and computer memory. The tabu search
algorithm then moves on in its search for the optimum configuration in other
parts of the configuration space in which the configurations do not contain
these tabu properties.

22.2 Use of Memory

For some problems, this type of memory, in which more items are gradually
added to the tabu list, might be sufficient. However, for many other optimiza-
tion problems, one faces the problem that the number of properties stored in
the tabu list becomes so large that the tabu search algorithm is unable to get
to further good configurations, as the ways to them lead via configurations
that are forbidden due to tabu constraints. The system might even freeze at
some configuration if no further move is allowed.

In this case, usually a tabu tenure is introduced: items marked as tabu
lose this tabu stamp after some time; they become tabu-inactive and can
thus be again part of new configurations. Here the long-term memory is
replaced by a short-term memory. Very complex tabu search algorithms use
both long-term memory and short-term memories with various tabu tenures.
Here not only complete configurations or their properties are stored because
they were found either to be good or bad, but also information about choices
made in the past that have been proved to lead to good or bad results is
stored as well. Thus, these tabu search algorithms also incorporate some
learning methods by which the way through the configuration space can be
directed. One may therefore consider the tabu search algorithm an artificial
intelligence algorithm, as there is not only a memory but also a mechanism
for an excellent exploitation of the contents stored in it.
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22.3 Aspiration

A further concept of tabu search is aspiration. Sometimes one simply wants
to accept a configuration that is forbidden due to tabu constraints. Then
these tabu constraints can be overridden by some aspiration criterion: usu-
ally, aspiration is used if a move could lead to a configuration of very good
quality or with some desired properties if it did not contain some properties
marked as tabu. Then these tabu constraints are overridden by the aspiration
criterion.

For this purpose, usually some elite configurations are stored during the
optimization run. If the tentative new configuration is, e. g., better than any
of the stored elite configurations, then it should of course be accepted. Fur-
thermore, it might also be worth accepting if it contains several properties
that are part of various elite configurations, in the hope that by including
these properties one might get to even better configurations, as these prop-
erties are part of different elite configurations already.

22.4 Intensification and Diversification

Two key ingredients of tabu search are intensification and diversification.
The concept of intensification modifies choice rules for moves in order to
encourage move combinations and solution properties historically found to
be good. It may also initiate a return to regions in the configuration space
in which some stored elite solutions lie. These regions can then be searched
more thoroughly. But intensification also allows for direct jumps to these
elite configurations, such that the size of the neighborhood is enhanced by
the intensification concept. The concept of intensification is usually applied
when the tabu search optimization run has not found for some time any
configuration that is quite as good as one of the stored elite configura-
tions.

On the other hand, diversification encourages the system to examine un-
visited regions of the configuration space and thus to visit configurations that
might differ strongly from all configurations touched before. Intensification
and diversification are often used together: instead of jumping to one of the
stored elite configurations, the system jumps to a configuration that has been
created by changing one of the elite configurations in some significant way,
i. e., slightly enough to search the neighborhood of the elite configuration and
strongly enough so that the new configuration contains properties that are
not part of the elite configuration from which it was constructed.

Summarizing, Glover states that the use of memory within tabu search
is coupled to four principal dimensions—recency, frequency, quality, and
influence—that partially contradict each other [67]. Recency is governed by
the short-term memory, frequency by the intensification strategies, quality by
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the general approach to searching for the best configuration in the neighbor-
hood and also by the intensification strategies, and influence by aspiration,
intensification, and diversification strategies. One finds that all these strate-
gies that partially lead to contrary effects (like the pair tabu list–aspiration
and the pair intensification–diversification) must be outbalanced in an opti-
mum way in order to achieve optimum results.



23 Histogram Algorithms

Many algorithms make use of a histogram as an adaptive memory. Thus, they
count how often configurations or properties of configurations occurred during
an optimization run and store this information in some histogram in order
to make use of this information later on. These algorithms can therefore be
classified as algorithms that are closely related to tabu search or even as tabu
search implementations if defining tabu search in a wider scheme. However,
the background of these algorithms is mostly not in the tabu search field
but in statistical physics or smoothing techniques. In this chapter, we will
introduce a few of these algorithms.

23.1 Guided Local Search

Guided local search (GLS), which was invented by Voudouris and Tsang [212,
213, 214], is a method that can be classified as changing the energy landscape.
It is indeed closely related to methods like weight annealing, which was in-
troduced in Sect. 13.4. On the other hand, GLS uses an adaptive memory
structure like that used by tabu search.

GLS focuses on features or properties fi a solution σ does or doesn’t have.
For this purpose, indicator functions

Ii(σ) =
{ 1 if σ has the feature fi

0 otherwise
(23.1)

are introduced. Constraints on features are introduced by extending the orig-
inal cost function H with a set of penalty terms to

H̃(σ) = H(σ) + λ×
∑

i

piIi(σ) (23.2)

with a Lagrange multiplier λ, with which the size of the penalties compared
to the original cost function is controlled and with the penalties pi ≥ 0. The
penalties are initialized with zeroes at the beginning and are incremented
based on information collected during the GLS iterations.

Let us consider problems in which these features have assigned some
costs ci. These costs raise the value of the energy the configuration σ has
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if it contains the feature fi. For example, the Hamiltonian can be written
as

H(σ) =
∑

i

ciIi(σ) . (23.3)

Then the GLS algorithm proceeds as follows:

1. First, the penalty values are initialized with 0 such that H̃ = H. An
initial configuration called σ0 is generated and an iteration counter is
introduced with k = 0.

2. A conventional greedy or steepest descent algorithm starting from the
configuration σk and using the Hamiltonian H̃ is performed in order to get
into a local minimum in the energy landscape. Let the final configuration
of this run be σk+1.

3. A utility value ui is calculated for every feature:

ui = Ii(σk+1) × ci/(1 + pi) . (23.4)

4. The penalty values pi for those features fi for which ui is maximum are
increased.

5. k is incremented by 1.
6. If the maximum number of iterations is not exceeded, i. e., if k < kmax,

then the algorithm returns to step 2.

Now, initially the algorithm starts off with pi = 0 for all features. Thus, in
the first iteration, the algorithm works with the original Hamiltonian in the
original energy landscape. Then, after the first local optimization run, the
worst features that are part of the final configuration are punished, and λ or
a few λs are added to the Hamiltonian. Of course, the next local optimization
run, which starts from the final configuration of the previous optimization
run, will try to reduce the energy again so that these already punished fea-
tures might be removed from the solution.

Note that the construction of the utility values ui is rather elaborate: how
bad a feature is with respect to its costs ci, as well as how often it was already
punished with respect to penalties pi, is taken into account. Sometimes a bad
feature must be part of a solution if all alternatives are worse.

23.2 Multicanonical Algorithm

When introducing the multicanonical algorithm (MUCA) [19, 20], we must
first reconsider the physical formulas that led to the derivation of simulated
annealing (SA): we consider the problem to be optimized a classical physical
system, in which every state σ occurs in equilibrium with the probability
πequ(σ) = exp(−H(σ)/(kBT ))/Z according to the Boltzmann equilibrium
distribution (Chap. 11). In a SA run, usually the Metropolis criterion for
accepting a move is used in order to generate this Boltzmann distribution.
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In contrast, the MUCA is designed to generate a probability distribution
πmu(σ) in such a way that

πmu(σ) × n(H(σ)) = P (H(σ)) ≡ const (23.5)

for all temperatures, with n(H) being the density of states with the energy
H and P (H) being the probability of the energy H, which will be a constant.
Thus, the probability of a state is inversely proportional to the number of
states having the same energy:

πmu(σ) ∝ (n(H(σ)))−1
. (23.6)

As in SA, the detailed balance criterion should be fulfilled:

πmu(σ) × p(σ → τ) = πmu(τ) × p(τ → σ) . (23.7)

Combining these two criteria, one gets

p(σ → τ)
p(τ → σ)

=
πmu(τ)
πmu(σ)

=
n(H(σ))
n(H(τ))

. (23.8)

As in SA, some arbitrariness in the explicit choice of the transition probability
p remains. One choice would be a Metropolis-like criterion:

p(σ → τ) =

⎧
⎪⎨

⎪⎩

1 if n(H(σ)) ≥ n(H(τ)) ,

n(H(σ))
n(H(τ))

otherwise .
(23.9)

If this or another criterion based on the multicanonical distribution and on
detailed balance is applied to the system, then the system performs a ran-
dom walk (RW) in the energy space, as the probabilities for all energies are
identical. Note that this does not mean that the algorithm performs a RW in
the search space, as such a RW in the search space or energy landscape would
have to accept every tentative new configuration. Furthermore note that, in
contrast to SA, there is no control parameter like the temperature that is
an external variable applied to the system. Instead, some system-intrinsic
variable, namely the energy density of the states, is used.

However, this is the main problem of this algorithm: the energy density of
the states is often unknown a priori and thus must be measured either before
performing the multicanoncial optimization run or during the multicanonical
optimization run. Mostly, this is done using a histogram technique: one splits
the interval of all possible energies the configurations can have mostly into
parts of equal length either on a linear or on a logarithmic scale. Then one
initializes the counters Hi for each bin with some initial value. This can be
a value of 0 or 1 for all bins. But one can also start with other values if
one has a rough estimate of the shape of the energy density of the states.
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Starting from these initial values of the counters, one performs a simulation.
During this simulation, one increments the counter Hi for the energy interval
[Hi;Hi+1] if the energy H(τ) of the accepted new configuration τ lies between
these marginal values.

If one starts out by setting the initial values for the counters to 1 and
starting the multicanonical simulation from a random configuration, then one
replaces the energy density values n(H(σ)) and n(H(τ)) by the correspond-
ing current counter values H(σ) and H(τ). H(σ) denotes the counter for the
energy interval in which H(σ) lies. One might first increase the counter for
some interval, but if a move then leads to another energy interval, the system
jumps to this other energy interval and prefers it as long as its counter value
is smaller than the counter value for the first interval. Thus, some pressure is
performed on the system to gradually leave the range of the random config-
urations and to go either downwards to the optimum solution or upwards to
the worst solution. Of course, the widths of the bins influence this behavior,
the following situations arise:

• If the bins are not wide, then many bins are needed. In order to get a proper
distribution, one must take a number of measurements that is at least
proportional to the number of bins. Therefore, the more bins there are, the
more calculation time required by the simulation.

• However, all energy values within an energy interval are considered equal,
as there is only one counter for all of them. If the simulation reaches the
energy interval containing the unknown global optimum value, and if this
is very wide, then there is no pressure on the system to perform the last
necessary improvements in order to get into the global optimum. Instead,
within these intervals, the system performs a restricted RW.

Often this approach is rewritten in a way that resembles the notations
of SA and simulated tempering (ST). The multicanonical probability πmu is
written as

πmu(σ) =
1
Zmu

exp (−S(H(σ))) =
1
Zmu

exp (α(H(σ)) − β(H(σ)) ×H(σ)) ,

(23.10)
with Zmu being the multicanonical partition sum. S(H) is the so-called mi-
crocanonical entropy. Note that there is this parameter α(H), called here
the fugacity, similar to ST, but in contrast to ST it does not depend on T
but on the energy. Furthermore, in contrast to SA and ST, the inverse tem-
perature β is not a constant but a function of the energy and is therefore
called a microcanonical inverse temperature as one could thus say that there
is a temperature for each energy. The Metropolis-like acceptance criterion is
then written as

p(σ → τ) =

⎧
⎨

⎩

1 if Δ ≤ 0 ,

exp(−Δ) otherwise ,
(23.11)
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with

Δ = α(H(τ)) − α(H(σ)) + β(H(τ)) ×H(τ) − β(H(σ)) ×H(σ) . (23.12)

Some researchers prefer to work with these parameters, which have to be
derived from an estimate for the energy density n, which in turn has to be
measured first. Of course, there is the additional difficulty of deriving either
values α and β for all energy intervals or even better real continuous functions
α(H) and β(H). But if one can actually write down such functions of α and
β, then this approach is superior, as then one has continuously changing
functions instead of the intervals and thus generally a pressure on the system
to move to the extremes, as there the density of the states is smaller.

There are two possible approaches when working with the multicanonical
algorithm: as one continuously samples the histogram for the approximation
of the density n(H), one can of course use the current values of the histogram
as mentioned above. Mostly, however, one starts off with some initial values
for the weights π0

mu, which can, e. g., be set to 1 initially. In this first iteration,
one works with these weights while getting histogram values H(H). Then one
obtains an estimate for the weight values for the next iteration i+ 1 by

π̃i+1
mu (H) = c× πi

mu(H)
Ĥi(H)

(23.13)

with some constant c. As one wants to avoid a division through zero, one
uses slightly changed histogram values [18]

Ĥ(H) = max{ε,H(H)} (23.14)

with ε > 0 and ε� 1. When using this approach, one usually derives formulas
for how to change the values of α(H) and β(H) between successive iterations.
One way to derive a multicanonical recursion for these parameters is described
in [18]: the microcanonical entropy S(H) is given by definition as

β(H) =
∂S(H)
∂H . (23.15)

If the width of a bin is given by ΔH, this derivation is numerically given by

β(H) =
S(H + ΔH) − S(H)

ΔH . (23.16)

On the other hand, S(H) = β(H) ×H − α(H) holds such that

S(H) − S(H− ΔH) = β(H) ×H− β(H− ΔH) × (H− ΔH)
−α(H) + α(H− ΔH) . (23.17)

Inserting ΔHβ(H− ΔH) = S(H) − S(H− ΔH) yields

α(H− ΔH) = α(H) + (β(H− ΔH) − β(H)) ×H . (23.18)

Thus, if fixing α(Hmax) = 0, α(H) is determined once β(H) is given.
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The values for β(H) have to be determined in an iterative way: the values
βi+1(H) for iteration i + 1 have to be derived from the values βi(H) for
the previous iteration and the resulting histogram Ĥi(H) from the previous
iteration. From

π̃i+1
mu (H) = exp

(
−S̃i+1(H)

)
= c× πi

mu(H)
Ĥi(H)

(23.19)

(note that variables with a ˜. . . above denote that these variables are not the
final values but only first estimates) one gets

S̃i+1(H) = − log(c) + Si(H) + log
(
Ĥi(H)

)
. (23.20)

Combining this with β(H) = (S(H+ΔH)−S(H))/ΔH [see Eq. (23.16)], one
gets

β̃i+1(H) = βi(H) +
log
(
Ĥi(H + ΔH)

)
− log

(
Ĥi(H)

)

ΔH . (23.21)

The estimator of the variance of β̃i+1(H) is obtained from

Var
(
β̃i+1(H)

)
= Var

(
βi(H)

)

+
Var

(
log
(
Ĥi(H + ΔH)

))

ΔH +
Var

(
log
(
Ĥi(H)

))

ΔH .

(23.22)

As βi(H) is a fixed function used in the ith simulation, its variance is zero.
The variance of the histogram can be rewritten as

Var
(
log
(
Ĥi
))

=
(
log
(
Ĥi + ΔĤi

)
− log

(
Ĥi
))2

, (23.23)

where ΔĤi is the fluctuation of the histogram, which is known to grow with
the square root of the number of entries [18],

ΔĤi ∝
√
Ĥi , (23.24)

such that

Var
(
log
(
Ĥi
))

=

(

log

(

1 +
ΔĤi

Ĥi

))2

=

(

log

(

1 +
c′
√
Ĥi

Ĥi

))2

=

(

log

(

1 +
c′
√
Ĥi

))2

≈
(

c′
√
Ĥi

)2

=
c′2

Ĥi
.

(23.25)
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Hence

Var
(
β̃i+1(H)

)
=

c′2

Ĥi(H + ΔH)
+

c′2

Ĥi(H)

= c′2
Ĥi(H + ΔH) + Ĥi(H)
Ĥi(H + ΔH) × Ĥi(H)

(23.26)

holds, with c′ an unknown constant. Of course, the variance explodes when
there is zero statistics, i. e., Hi(H) = 0 or Hi(H + ΔH) = 0. The statistical
weight for β̃i+1(H) is inversely proportional to its variance and the overall
constant is irrelevant [18], so that one can choose the convenient weight factor

g̃i(H) =

⎧
⎪⎪⎨

⎪⎪⎩

0 if Hi(H) = 0
or Hi(H + ΔH) = 0

Ĥi(H + ΔH) × Ĥi(H)
Ĥi(H + ΔH) + Ĥi(H)

otherwise
(23.27)

for the impact of β̃i+1(H) on the utlimately chosen value of βi+1(H). Fur-
thermore, it must be borne in mind that the ith iteration was carried out
using βi(H). According to [18], it is now straightforward to combine β̃i+1(H)
and βi(H) by their respective statistical weights into the desired estimator

βi+1 = Gi(H)βi(H) + G̃i(H)β̃i+1(H) , (23.28)

where the normalized weights

G̃i(H) =
g̃i(H)

gi(H) + g̃i(H)
(23.29)

and
Gi(H) = 1 − G̃i(H) (23.30)

are determined by the recursion

gi+1(H) = gi(H) + g̃i(H) (23.31)

with the starting value
g0(H) = 0 . (23.32)

As in the other algorithm inspired by statistical physics, SA, one can show
that this algorithm leads to the global optimum. However, again the available
calculation time is finite. Unlike SA, in which the system freezes in a local
or the global minimum at the end, the MUCA never comes to such an end:
if the area around a local minimum has been explored to some extent, then
the algorithm tries to leave this valley again, as it is more desirable to go
to the next higher energy interval if this one has been less explored so far.
This method is of course very nice when it comes to overcoming barriers in
the energy landscape, but as the algorithm does not remain in the global
optimum, one must always store the “best so far” solution.
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23.3 MUCAREM and REMUCA

The MUCA can also be combined with other algorithms in order to get even
better simulation or optimization results. An example of such a combination
is the combination of the MUCA, which is a serial algorithm, with the par-
allel algorithm replica exchange method (REM), which is also called parallel
tempering (PT), to produce either REMUCA or MUCAREM [143, 144].

In the replica exchange multicanonical algorithm (REMUCA), the mul-
ticanonical weight factor is determined from a short PT simulation with the
multihistogram reweighting techniques. This weight factor is then used in
a long multicanonical production run with high statistics. In the MUCAREM,
the REMUCA algorithm is performed with a small number of replicas; thus
the process of determining the multicanonical weight factor is faster and sim-
pler than in the usual iterative determination.

23.4 Multicanonical Annealing

Based on [19, 20], Lee developed a method called multicanonical anneal-
ing [127]. MUCA allows one to sample the density of the states and thus the
entropy S(H) directly by imposing the appropriate detailed balance condi-
tion. The framework of the multicanonical annealing algorithm is based on
the feedback of information about the local entropy. After letting the system
run into a local minimum, the multicanonical annealing algorithm tries to
obtain some new information about the local entropy S near the local mini-
mum via a short sampling of the surrounding area, and the old value of S is
updated accordingly. Then the transition probability for a move is modified
according to the new value of S, such that the system is driven out of the
local minimum and is able to get to a new local minimum. This approach is
iterated until some convergence criterion is met.
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24.1 Comparing Different Good Solutions

If a stochastic optimization algorithm is used for finding a good or qua-
sioptimum solution for a proposed problem instance, then one usually re-
ceives different solutions depending on the initial conditions like the seed
for the random number generator. These different solutions sometimes differ
rather strongly in their quality. However, if one has a closer look at many
different solutions, one finds that they usually exhibit many common struc-
tures [181, 187, 182, 183, 184].

Obviously, these structures seem to be optimally solved, as each of the
optimization runs has independently led to these structures. Note that the
emphasis lies on the word “independently”. Let us draw a comparison with
a situation in everyday life: if a single person argues or claims something, we
will not believe him/her in all cases. However, if various sources deliver the
same information, then we are more likely to believe this information; the
larger the number of sources, the greater the likelihood of our believing it.
However, the insight of Albert Einstein that “common sense is the collection
of prejudices acquired by age eighteen” does not apply to our computational
results. In the real world, there are no real independencies; everybody is in
contact with other persons such that prejudices can spread and are even
passed on from one generation to the next. Furthermore, the human mind is
selective and weighs those experiences stronger that fit into already existing
schemes, such that prejudices remain rather stable. Here, however, we have no
such preexisting schemes and we have no information from external sources,
so that we can really trust that these structures are special to the problem
instance if no construction heuristics or other intelligence was used.

As we are generally trying to find a quasioptimum solution to a given
problem instance, these structures seem to be optimally solved, at least in
a local sense. If the number of compared solutions is large enough, one can
assume that these structures are part of any good solution and therefore also
part of the optimum solution to the problem.

If one performs further optimization runs, one will obtain further solu-
tions, again containing these structures. Therefore, some of the calculation
time seems them to be wasted when we already know these structures. The
system should therefore not spend any more calculation time for finding these
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optimum parts or trying to optimize parts that are already optimally solved.
This time would be better spent on parts for which it is obviously not so
easy to find out what the optimum solution does look like such that multiple
possibilities are provided for these parts in the various solutions. These pos-
sibilities must be considered in the further progress, such that they all must
be kept at least at first.

Therefore, a parallel algorithm should be implemented making use of
these common parts, which will be called the “backbones” of the system.
The searching for backbones (SfB) algorithm tries first to find such com-
mon structures and then to use this knowledge to obtain even better solu-
tions.

24.2 Determining the Backbone

Usually, it is rather easy to see the common structures in different solutions.
However, sometimes there is the problem that one finds various types of
common structures. For such a problem, one must find out whether all of these
types can or must be used for defining a backbone or which of these types
will be preferred. This selection can be performed by considering the type
of the problem: when facing, e. g., a sequencing problem, the type of useful
structures will usually be sequences; when facing a distribution problem, the
distributions will have to be detected.

On the other hand, there might also be problems in which no common
structures are apparent if comparing different solutions. However, a detailed
investigation of the problem and the various solutions often still leads to the
detection of common parts. When this is not the case, it is often because
one is dealing with a problem instance that is highly degenerate both in the
global optimum and in the local minima. In this case, the SfB algorithm is
hard to apply to the considered problem instance, because the degeneracy
keeps one from identifying the backbone by the superposition of multiple
solutions. However, such a guage ambiguity can be frozen out by picking
some initial conditions.

If one has determined common structures by eye or by an elaborate inves-
tigation of the solutions, the question arises as to how these structures can be
determined by a computer, which does not see this a priori. There are several
ways to do that. The method that can likely be used for any optimization
problem is to define an overlap matrix η in the following way [182, 183]: The
overlap ησ(i, j) between two system parts i and j according to the solution σ
is given by

ησ(i, j) =

{ 1 if i and j are related in the same way
to each other in all solutions ,

0 otherwise .
(24.1)
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One then sums up over the set (σk) of all p considered solutions and defines
the entry η(i, j) of the overlap matrix as

η(i, j) =

[
1
p

p∑

k=1

ησk(i, j)

]

, (24.2)

with the Gaussian brackets [x] denoting the integer part of x.
The considered type of relation can be kept rather simple. The relation

does not necessarily have to be symmetric, i. e., there could be the case where
η(i, j) �= η(j, i). Based on a simple relation that leads to this overlap matrix
η, one can define a more complicated relation by making the basic relation
transitive: if i is related to j and j is related to k, then i is related to k in this
complicated relation even if η(i, k) = 0. Using this complicated relation, one
can define the backbones of a system according to the considered solutions of
the problem: parts that are related to each other according to the transitive
relation form a backbone. If there are other parts that are also related to
each other according to this transitive relation but not related to the latter
parts, then they form another backbone, and so on.

Sometimes it might be the case that one has to work with more entries
in the overlap matrix or with several overlap matrices. The basic principle,
however, stays the same.

24.3 Outline of the SFB Algorithm

Thus the algorithm starts with the production of p solutions, the comparison
of these solutions, and the determination of the backbones. But now the
algorithm must make use of the existence of these backbones. Therefore,
further optimization runs are started in which these backbones must not be
destroyed as they are already optimally solved.

These new optimization runs, which are again performed independently of
each other, lead to further solutions. As the backbone parts were not allowed
to be changed, each new solution again contains the backbones already found.
These new solutions are now assumed to be of a higher quality than the old
solutions as the optimization processes were able to concentrate on parts that
are more difficult to solve as the easy-to-find backbones were held constant.
Therefore, the old solutions are discarded. However, their inheritance exists
in the set of backbones.

Then the new solutions are compared with each other. One will again
find common structures. Among these, the known backbones will be found.
However, one can now expect that even more common structures will be
found as the solutions are better. Therefore, a new set of backbones can be
built containing the former backbones but also new backbones. It might also
be that two or more backbones can be united to one larger backbone.

Then, this approach is repeated: again some optimization runs are per-
formed in which these new backbones are held constant. They lead in turn to
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new solutions that are again better and again contain more or larger common
structures than the solutions of the two previous iterations. This iteration is
performed until finally all parts of the system are in one backbone, i. e., until
all solutions are identical to each other.

Thus the outline of the SfB algorithm is as follows. As the SfB algorithm
is ideally suited for parallel enablement on workstation clusters and parallel
computers but can also be performed on a single computer, let us formulate
the outline of the SfB algorithm in the master-slave model.

1. The optimization program starts with the master sending the data of
the problem instance to the p slaves and the slaves performing their
optimization runs independently, each of which usually leads to a different
solution.

2. The slaves send their solutions to the master.
3. The master compares the p solutions and determines the backbones.
4. The master sends the information about the backbones back to the slaves.
5. If there is only one backbone containing the whole system, the algorithm

stops.
6. The slaves perform new optimization runs in which these backbones must

not be destroyed.
7. The algorithm jumps back to step 2.

Sometimes it is necessary to weaken the stop criterion in step 5: if the
considered problem instance has a degenerate ground state, it is rather im-
probable that all slaves will produce the same solution. In this case, it is
sufficient to demand that all solutions be of the same quality. However, the
convergence of the algorithm in building backbones can also be so slow that
one requires the algorithm to stop after a maximum number of iterations.

24.4 Discussion of the Algorithm

The main parameter of this algorithm is the number p of solutions used for
comparison. The number p is rather crucial as the following considerations
for extreme values show:

• If p is very small, then only a small number of solutions is compared in
order to determine common structures. In this case, one will find more
common structures than for a larger p. This small statistic leads to false
assumptions: one identifies some found structures as optimally solved back-
bones, although they are not optimally solved. As these backbones must
in turn not be destroyed in the next iterations of the algorithm, there is
no “undo” for this error. One will therefore end up at worse solutions than
if working with a larger p. p must therefore be large enough to provide
a good statistical significance.

• On the other hand, if working with a very large p, there are so many solu-
tions to compare that they exhibit so many differences that one will some-
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times find hardly any backbones. Only one or a small number of worse so-
lutions with fewer parts optimally solved prohibits the detection of further
backbones. Therefore, the second iteration starts with no or only a small
number of backbones. This convergence problem will then usually again
occur in the following iterations. In this case, it takes such a large number
of iterations for some problems that it is impossible to wait for the end of
the algorithm. One introduces, therefore, a maximum number of iterations
as an additional stopping criterion.

Therefore, one must make a compromise between a number of processors that
is on the one hand large enough for statistical evidence and on the other hand
small enough not to prevent convergence. Therefore, there is a medium-sized
optimum value for p.

Of course, there are ways out of this dilemma: for example, one can adap-
tively determine a good or even the optimum number p of processors, which
can also change for each iteration. This value can be determined according
to the convergence speed of the last few iterations. For some problems, it is
also possible to determine whether the introduction of a backbone was bad.
In this case, the backbone must be split into its individual components. Fur-
thermore, one knows that one has to increase p. A further way is only to use
a number p′ out of the p solutions for comparison and for determining the
backbones. The obvious approach to this is to simply use the best p′ out of
the p solutions.

Of further importance for the algorithm is the type of solutions that are
used as an input for the comparison. As already mentioned above, the un-
derlying local optimization procedures must guarantee that the whole con-
figuration space is sampled for good solutions. Therefore, one cannot use
a construction heuristic that leads either always to the same solution or only
to a small set of possible solutions or only to solutions of a certain type.
Analogously, one must be careful when working with the large ruin & recre-
ate moves. Also, any other intelligence inside the optimization process must
be tested for whether it guides the search for a good solution only in a certain
direction. One should also not only compare solutions that have been gener-
ated over several bouncing iterations as the overlap between these solutions
is usually larger than that between independently generated solutions as the
bouncing process depends on staying in a particular valley in the energy
landscape. Generally, small local moves are to be preferred, the basic serial
optimization algorithm should not contain too much intelligence (better no
intelligence at all), and the results of independent optimization runs should
be used for comparison.

Summarizing, SfB can be considered an algorithm that gradually reduces
the complexity of a problem: by finding common structures that are held
constant in subsequent iterations, first, the system size is reduced. Only those
parts that are more difficult to solve remain. The basic serial optimization
runs then work on problems that are smaller and that are often disconnected



198 24 Searching for Backbones

from each other by the extended backbones that have already been found.
Therefore, the global optimization task is partially reduced to several local
optimization problems.

One can also interpret the SfB algorithm in “other languages”: one can
first of all speak of an inverse tabu search as tabu search forbids structures
commonly found in different solutions whereas SfB wants to keep them. Fur-
thermore, one can give a genetic interpretation of the algorithm: in a crossover
operation of a genetic algorithm, two parental solutions produce some child
solutions containing properties of their parents. SfB marries not only two but
p solutions with each other. Subsequent optimization runs serve as crossover
operators to produce children that contain the properties of all of their par-
ents.



Part II

Applications



0 General Remarks

0.1 Dealing with a Proposed Optimization Problem

After the first theoretical part, in which an overview of optimization algo-
rithms was given, we now want to show how these algorithms can be applied
to a given problem. We will exemplify this with two principal examples, with
which we can clarify easily why we have done the application in this and not
in another way. In this way, the reader should get some feeling about how
to apply an algorithm to proposed problems. However, in practice, the work
starts already some levels deeper.

The first step in solving an optimization problem in practice is to find
out what exactly must be optimized. Usually, there are only a few people
in a company who can say something more about this problem, and often
the head of the company or one of the companys departments is not one
of them. In the case of larger companies, often several departments of the
company are part of the business processes to be optimized. Thus, one must
find the “experts” in these departments in order to get an overview of the
whole problem. Secondly, one must find out as much as possible about the real
costs occurring in the business processes. Often the company management is
not fully aware of those processes; sometimes, it does not know about them
at all. Furthermore, in the case of large companies, the existing knowledge
is spread over various departments that must compete with each other in
the way that each department manager tries to minimize his/her local costs,
regardless of whether a globally optimum solution is thereby achieved or
missed. Therefore, as an internal or external optimization consultant, one
can easily get caught in the middle of political considerations and rivalries
among individual managers.

Having resolved these questions, one is now able to model the problem
on a computer and to write down a cost function H for the problem in this
representation. This is the most important part of the work—how to represent
the problem on a computer. Usually, one should follow the advice “Keep it
simple!” Closely related to this is the notion that one should also find an
appropriate cost function representing all (important) cost factors within the
business processes and adding some penalty terms for constraints that should
not be violated. Again, the cost function should not be too elaborate, as then
the optimization process might lead to unexpected and undesired solutions.
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Roughly speaking, frustration within the system increases with the number
of addends in each cost function and with the complexity of the individual
addends. There is even a third part of the implementation that is also closely
related to these two parts, namely, the definition of moves for jumping from
one configuration to another. Initially, one should start with small, simple
moves that guarantee ergodicity in the random walk mode. Later on, one
can switch to more complicated moves of, e. g., the ruin & recreate (R & R)
type. Sometimes, one must even do this if one finds out in tests that it is
impossible to reach good solutions with these small moves. Therefore, after
writing a basic program with one or two small move routines, one usually
performs some test runs with the greedy algorithm to see if the program
works correctly and to try to obtain good results. Then one switches to more
elaborate algorithms and tries to tune these algorithms, using some of the
improvement tricks described in the first part, in order to get to (quasi)
optimum solutions and in order to achieve such solutions rather fast.

0.2 Programming Languages
and Parallelization Libraries

As stated above, once the problem is understood, it must be modeled on
a computer. This representation strongly depends on the programming lan-
guage used. Each language has its advantages and its disadvantages.

• The use of Fortran 77 and earlier versions of Fortran, like Fortran 66 and
Fortran IV, aims at really utilizing the full CPU power in order to achieve
solutions as fast as possible. Fortran compilers often produce the fastest
codes on various machines. Fortran is a programming language that is avail-
able on most modern supercomputers. Often it is the standard language
on such computers; other programming languages are still sometimes less
supported. A further advantage is that the standard numerical precision
is rather high if using double precision variables. Furthermore, when using
the IEEE standard, one obtains the same result on every machine as the
numerical precision of a real number is defined and the rounding is done
in the same way.
On the other hand, Fortran 77 has the disadvantage that the programmer
might get bogged down in a large number of variables and lose sight of
the big picture if the optimization problem is very complex as it contains
no opportunities to define structures or methods of object-orientated pro-
gramming (OOP). However, after some practice solving complex problems
with Fortran 77 programs, this no longer presents a problem, so that the
authors of this book prefer to use Fortran 77.

• Another widely used language in scientific computing is C. The code pro-
duced by C compilers is usually nearly as fast as that of Fortran compilers,
sometimes even faster. An advantage, compared to Fortran 77, is the pos-
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sibility of defining structures, i. e., combining several data into one block
of data. A further advantage of C is that it allows for hardware-near pro-
gramming, e. g., it presents opportunities to obtain further memory and to
exchange messages with other processes or even to start further processes.
However, C has the disadvantage that variable types are not uniquely de-
fined, e. g., one must find out for every new compiler and every new ma-
chine whether a double variable contains four or eight bytes. Therefore,
the results of C programs depend on the underlying computer.

• C++ and Fortran 90 (and newer Fortran dialects like Fortran 95) are OOP
languages based on C and Fortran 77, respectively. They therefore allow for
defining objects that represent objects of the real problem. These objects
are not only simple structures as in C, they are also able to exchange
messages with other objects. A further advantage of these languages is
that, due to the encapsulation of the information in the objects, it is more
easily possible to split the development of an optimization program between
a group of people. Each person only programs certain objects and can rely
on the fact that nobody else can do anything unexpected with these objects.
The interactions between the objects are strictly defined by interfaces.
Furthermore, it is claimed that old program code can be reused as more
elaborate objects may be derived from some basic objects.
However, according to the experience of this book’s authors, there are often
interaction problems within a group of programmers, so that the interfaces
between the individual objects must be altered repeatedly. Furthermore,
it is nearly impossible to determine a best OOP approach to a complex
problem a priori; this is often done by trial and error. Furthermore, it is
only seldom the case that old code from a project can be reused in the
next project in an unaltered form. Usually, one must change at least some
small sections of the code. Thus the degree to which the philosophy of
OOP gets fulfilled depends on the programming discipline of all members
of the group. Furthermore, compilers for these languages produce a slower
code than C and Fortran 77 compilers. One often finds that the program
becomes slower depending on the extent to which OOP methods have been
used: the more they are used, the slower the program becomes.

• Java is currently the standard language for OOP and contains standard
libraries for creating a graphical user interface (GUI) or for accessing
databases. Furthermore, it is the standard language for creating internet
applications, so-called applets, which run in any modern internet browser.
A test performed by one of the authors in 2001 showed that an optimiza-
tion program written in Java was more than 100 times slower than the
corresponding Fortran 77 program. Although nowadays Java has become
faster than before, we still cannot recommend the use of Jave for large
optimization problems in practice. On the other hand, one can of course
run applets or applications for very small instances of the proposed op-
timization problem and try to gain more insight into the behavior of the
optimization algorithm and the interaction between it and the problem.



204 0 General Remarks

Java allows for easy creation of a visually appealing GUI and for watching
intermediate results and the change of the current configuration during
the optimization run. (Of course, this can also be done using other pro-
gramming languages and linking external graphical libraries like Xlib, Xt,
Motif, pgplot, etc., or by combining it with a graphical interface created
with, e. g., Tcl/Tk.)

If a workstation cluster or even a parallel computer is available, then there
is also the question of which parallelization library to use. Currently there
is the standard library Message Passing Interface (MPI), which is available
for most parallel computers and also in a free version for workstation clus-
ters. Furthermore, there is a freeware library called Parallel Virtual Machine
(PVM), which has been installed on a large number of different systems.
Besides these standard libraries, each vendor of parallel computers delivers
his own parallel library. Although this parallel library might make the best
use of the parallel computer, we strongly recommend using MPI or PVM to
keep the program portable. Furthermore, most vendors these days deliver an
optimized version of MPI for their parallel computers.

0.3 Optimization Libraries

Of course, you, the reader of this book, might think of saving time and
not implementing the optimization algorithm yourself but downloading an
optimization library from the internet to do the work. There already exists
a small variety of free optimization libraries for download on the internet.
There are libraries for exact algorithms, like the simplex algorithm, in which
sometimes even results from current research are included. Each such library
requires you to represent the optimization problem in a specific way, as the
developers of the library had in mind. This might be the optimal way to solve
the problems that they worked on or some class of problems they wanted to
consider. However, this might not be the optimal way to solve your particular
problem.

Even worse is the situation with optimization libraries that use heuris-
tic algorithms. Sometimes, such libraries simply contain basic objects, which
contain hardly anything. Such a library can only serve as a starting point for
one’s own implementation; therefore, it is virtually useless. Secondly, there are
optimization libraries that were developed and tailored for a special problem
or for a class of problems. In this case, often the authors of the optimization
library claim that it can be used for any problem and will lead to quasiopti-
mum results. If one must solve a problem of the type for which the library was
written, it might lead to very good results. Otherwise, the situation might
be much worse. In any case, one should look through the source code of the
library in order to understand what it does exactly. For example, consider
a simulated annealing (SA) optimization library in which the authors fixed
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the values of the initial and final temperatures. These values might either
be much too large for your problem, so that the optimization process spends
most of the calculation time in the quasi-random-walk phase and does not
freeze at the end in a local minimum, or it might be too small, so that the
system is quenched down rapidly, as if with the greedy algorithm.

Thirdly, there are very elaborate libraries that were developed over the
course of several years for the optimization of several types of problems.
Such libraries, like the elaborate TopC library of the IBM Scientific Center
Heidelberg, contain many tricks to automatically find good parameters for
the problem instance to be solved. But they also contain many possibilities
for setting flags and other parameters, according to the wishes of the people
who had already used this library on their projects. (These wishes can even
go so far as to ask the developer of the library to make it possible to set
an additional flag such that the library beeps three times at the end of the
optimization run.) In this case, one first must read a long description of how
to make use of the library. Of course, only a few switches must be known in
order to be able to work with the library. But it is also good to learn about
the switches for experts in order to achieve quasioptimum results in a small
amount of time.

However, even when using such an optimization library much program-
ming work is left to be done: one must program the appearance of a con-
figuration of the problem, write down functions like the cost function or an
energy difference function, and implement various move routines. If the used
optimization library—again assume a SA library—only contains a small main
program consisting of a call for an initialization routine, a loop over several
temperature steps in which there is a loop calling a move routine several
times, and, finally, a routine for showing the end result, it is not worth using,
as these take up only a few programming lines.

Generally, we strongly recommend not using any optimization library at
first, as one should learn how to apply an optimization algorithm to a pro-
posed problem and get a feeling for how to improve results. Later on, one can
either write one’s own optimization library, collecting all of the tricks one has
found and does not want to implement over and over, or one can make use
of an elaborate optimization library, as one already has a feeling as to which
effects it might lead to if one of the library’s parameters is changed.

0.4 Difficulty of Comparing Various Algorithms

Finally, we want to issue a warning regarding the literature in the field of
optimization: one often reads about comparisons of different algorithms. Such
a comparison is often performed between algorithms of different optimization
schools, like the genetic algorithm (GA) school and the SA school. One usually
finds, for example, that the author of a paper entitled “Genetic algorithms
are better than simulated annealing” belongs to the GA school. Thus, he/she
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has much more experience in implementing and tuning GAs than with SA.
Therefore, his/her results and conclusions are not surprising.

Secondly, authors who want to introduce a new optimization algorithm
must usually prove that their algorithm is doing a good job. This proof can be
most easily done by comparing the achieved results with results from existing
standard optimization algorithms.

In both cases, often political considerations play a role: scientists must
write proposals in order to get money and therefore must prove that they
are doing a good job. In these times of increasingly intense competition for
funding, one must even prove that one is doing a better job than others.
Therefore, some scientists yield to the temptation to compare their tuned
algorithm to an untuned algorithm or by only considering problems for which
they know their algorithm is superior. In such comparisons, the authors also
take advantage of some specific features of their algorithms: for example,
some authors introduce a time limit by which the algorithms being compared
should return their final solutions. Of course, often this time limit is set in
such a way that it is advantageous to their algorithms. But if one allows, for
example, only a minimal amount of time of computing time for a very large
problem, then typically the greedy algorithm will turn out to be superior
to SA, as the greedy algorithm only allows for improvements whereas SA
must work its way down from high to low temperatures, thus losing time
initially. In some papers, the results of some specific computing times are
also compared to results from other papers for the same computing times,
although the computers were much slower formerly. Some authors try to find
out what can be generally achieved with their algorithm, investing a huge
amount of computing time, taking the best solution, and comparing it to
published results of other algorithms, for which much less computing time
was invested.

There is simply no one best optimization algorithm. If one wants to obtain
a solution as fast as possible, one must work with the fastest construction
heuristics, which try to meet the constraints but do not care if a good solution
is achieved. If one must obtain the optimum solution, regardless of the time
required for achieving it, then one uses an exact method, but of course only
if the system size is small enough such that one can obtain the solution in
one’s own lifetime. All types of heuristics mentioned in the first part of this
book lie between these two extremes.

In subsequent chapters, we will present the application of some algorithms
to specific problems and provide results, so that the reader may see what can
be obtained with these algorithms. We are both from the school of physical
optimization and therefore are more used to tuning algorithms related to SA
than, e. g., those related to GAs or tabu search. We are furthermore fully
aware of the fact that many algorithms have been slightly altered and im-
proved for some specific problems by a series of authors. However, this book
will only give a general overview of various stochastic optimization algorithms
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and can therefore only serve as an introduction to the implementation of these
algorithms for a given problem. Therefore, we will restrict ourselves to the
original flavors of some optimization methods or some special implementa-
tions we have heard and read about.

For some methods, we will show the extent to which the results can be
improved by tuning the algorithm. However, this book must also be kept
finite. Of course, one might consider, e. g., showing the results for SA com-
bined with a sophisticated bouncing scheme and with special R & R moves,
etc. This might not be helpful, as the question remains as to whether the
improvement was due to R & R or bouncing. Therefore, we will repeatedly
start from a basic optimization system and change this system only in one
step, like using R & R moves instead of small moves in order to learn about
the effects of using R & R moves. We will also introduce some variations
of existing algorithms. This is because, in part, these variations can lead to
a better understanding of the algorithm itself. Mostly, however, we want to
give the reader some hints of what ideas one can come up with while read-
ing other people’s descriptions of optimization algorithms. Sometimes these
variations lead to improvements; sometimes they unexpectedly worsen the
results, so that a closer look at the algorithm is necessary in order to explain
the new results.

Thus the first part of the book presented the philosophy behind various
optimization algorithms. This second part of the book is dedicated to the
implementation and adaption of these algorithms and the effects of clever
tricks one might think of.
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1 The Traveling Salesman Problem

1.1 The Task of the Traveling Salesman

The first problem to which we apply the algorithms described in the chapters
above is the traveling salesman problem (TSP). Nowadays it is sometimes,
in a politically correct way, called traveling salesperson problem in order to
emphasize that there are also traveling salesladies.

A set of N nodes that the traveling salesman must visit is given. These
nodes can be cities or, more exactly, the locations of customers. Generally, the
distances D(i, j) between the various pairs (i, j) of nodes are known to the
traveling salesman. Mostly, the distances are measured in units of length or of
time or most generally of money. Usually, the symmetric TSP is considered,
i. e., the distance from i to j is identical to the distance from j to i for all
pairs (i, j) of nodes.

The task of the traveling salesman is now to find the shortest tour through
the given set of nodes, touching each node exactly once and returning at the
end to the first node in the tour.

There are also other problems that can easily be mapped on the TSP such
that a node might have another meaning than spatial location or that the
meaning of a node is not important at all. We will discuss one such problem
in the next chapter.

1.2 Distance Metrics

Sometimes the values of the distances D(i, j) are given explicitly. However,
often the distances between nodes are calculated according to an Lp-metric,
i. e., the the distance between nodes i and j is given as

D(i, j) = (|xi − xj |p + |yi − yj|p)1/p
. (1.1)

The cases p = 2, p = 1, and sometimes p = ∞ are the ones most often
considered:

• Usually, the Euclidean metric or L2-metric is used: the distance between
nodes i and j is given as
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D(i, j) =
√

(xi − xj)
2 + (yi − yj)

2
. (1.2)

In some applications in which the heights of the nodes play a role, like in
Switzerland, also the third dimension is considered:

D(i, j) =
√

(xi − xj)
2 + (yi − yj)

2 + (zi − zj)
2 . (1.3)

• In some cities, like in New York or in Mannheim, the Manhattan or
L1-metric is preferable:

D(i, j) = |xi − xj | + |yi − yj | . (1.4)

• Sometimes the Tschebyscheff or L∞-metric is used:

D(i, j) = max {|xi − xj | , |yi − yj |} . (1.5)

1.3 The Dijkstra Algorithm

In practical applications of the TSP and derived problems, the traveling
salesman has a more complex task than the abstract task defined above
because he can neither know all distances exactly a priori nor approximate
them by using the straight lines between pairs of nodes. Of course, there are
approximations like multiplying the Euclidean distance between the nodes by
a constant factor. Such a factor can be derived from fractal considerations,
but we want to calculate the distances more exactly.

A digital map of the area in which the nodes of the TSP instance lie must
be used. A digital map contains a large set of nodes and the lengths of the
edges between them. The quality of the digital map is therefore given by the
exactness of the lengths and by the number of the nodes. Sometimes, only
nodes representing a splitting of important streets or the end of a street are
in such a digital map. Better maps also contain the small roads and nodes
denoting turns in these roads.

The real nodes of the TSP instance are then introduced in the digital map
used, either in a simple way such that a TSP node is mapped onto the nearest
node on the digital map or in a more elaborate way where it is mapped on
its real position, thus often dividing one edge into two edges. For calculating
the distances between these TSP nodes, the Dijkstra algorithm is used.

The Dijkstra algorithm [155] for calculating a distance matrix requires
only that the distances not be negative, which is clearly fulfilled due to the
positive street lengths. The Dijkstra algorithm is unable to detect negative
cycles, so, for example, the distance from A to D in Fig. 1.1 becomes smaller
the more often the triangle Δ(BCE) is traversed. Other algorithms like the
Ford–Bellmann algorithm are able to detect such negative cycles, but they
generally require more calculation time than the Dijkstra algorithm.
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A B

-1

C D

E

1 1 1

-1

Fig. 1.1. Negative cycle in a graph: the distance of A to D is, if the way leads only
over B and C, the length 3; the more often the triangle Δ(BCE) is traversed on the
way from A to D, the more often the distance is decremented by 1

Most algorithms for the calculation of distances use the Bellmann opti-
mality principle, according to which the subparts of shortest ways must be
minimal. This becomes clear with the following example: let us assume that
on the way from A to D via B and C one has two connections between B
and C, one via E and one via F. Of course, the connection between A and
D becomes shorter if the shorter connection between B and C is chosen. The
Bellmann optimality criterion forms from this apparent comparative sentence
the proof for the superlative sentence. It is also of crucial importance for the
Dijkstra algorithm.

Dijkstra’s distance matrix algorithm, which also works if one-way streets
exist, can be used efficiently both for calculating the distance of one node to
another node and for calculating a whole distance matrix. The latter case is
done by a loop over all nodes in which all distances from a chosen start node
to all other nodes are calculated. In this loop, the outline of the Dijkstra
algorithm is as follows:

First, the nodes are distributed among three sets. Set 1 contains all nodes
for which the distance from the initial node r is already known. Some upper
bound for the distance can be given for all nodes in set 2. Set 3 contains the
remaining nodes. In the initialization part of the algorithm, only the starting
point r is put in set 1 because the distance from it to itself is known to be 0.
All nodes that are directly connected to r by an edge, the neighbors of r, are
put in set 2. Set 3 contains the remaining nodes, as shown in Fig. 1.2.

After this initialization procedure, the algorithm starts by searching the
node s in set 2 that has the smallest preliminary value for the distanceD(r, s).
Therefore, s cannot be reached faster from r via a detour over nodes in set 2
or 3, as all distances are nonnegative. Therefore, the distance D(r, s) from r
to s is known already; it is equal to the length of the edge. Therefore, s is
moved from set 2 to set 1. However, one must consider not only s but also
the neighbors ti of s that are connected via edges with s.

One must distinguish the following cases for these neighbors ti:

• ti is in set 3:
Then a preliminary upper bound for the distance from r to ti can be
calculated, namely, D(r, ti) ≤ D(r, s) +D(s, ti). This distance is inscribed
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3

1

2

Fig. 1.2. Initialization of the Dijkstra algorithm: the points are distributed in three
sets. Only the starting point, from which one wants to know the distances to all
other nodes, is in set 1. All nodes with a direct connection to this starting point are
in set 2. For these nodes, one already knows a preliminary distance value, namely,
the length of the edge. The remaining nodes are in set 3. No estimation for the
distance to the initial node is given for them

3

1

2

Fig. 1.3. First step of the Dijkstra algorithm: here the nearest neighbor of the
starting point is already moved from set 2 to set 1. The neighbors of this nearest
neighbor that had been in set 3 are moved to set 2
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as a preliminary distance from r to ti. ti is transferred from set 3 to set 2,
as shown in Fig. 1.3.

• ti is in set 2:
Then there already exists another connection from r to ti. However, the dis-
tance from r via s to ti might be smaller than the previous distance bound.
Therefore one must check whether the old inscription for D(r, ti) is larger
than D(r, s) +D(s, ti) and then must be replaced by this smaller value.

• ti is already in set 1:
Then nothing need be done, as the distance from r to ti would become
larger when driving via the intermediate node s.

This step is repeated for all further nodes. The breaking condition of the
algorithm is that there is no longer any node in set 2. If set 3 contains at
least one node in this case, then there are nodes that cannot be reached from
r via the known edges. All distances to the reachable nodes have been cal-
culated. If the task only consists in determining the distance between two
nodes instead of calculating the full distance matrix, then there is a further
break condition that is usually fulfilled earlier, namely, that the destination
node is moved to set 1.

Mostly, one wants not only to know the distances between the nodes
but also the sequence of nodes via which one must pass in order to use the
shortest path from r to a node t. Conveniently, the sequence of these nodes
is not stored directly. Instead, for all nodes t a node s is stored that is the
last intermediate node on the way from r to t. By that approach, the way
from r to t can be reconstructed by going backward from t via s and further
intermediate nodes to r. This approach is also used for graphical output.

If one only wants to know the distance between two nodes, then the
algorithm is of the order O(N2), with N denoting the number of nodes, as
in the worst case N − 1 nodes must be transferred from set 2 to set 1 and as
in this case all neighbors ti of s must be updated that might also be N − 1
in the worst case. If a full distance matrix must be calculated, then one must
iterate over all starting nodes r. The calculation time is then proportional
to O(N3). Therefore, in this case, the faster algorithm by Dantzig is used.

The Dijkstra algorithm can be simplified further if one has integer street
lengths and an upper bound for the distances. The time for calculating a dis-
tance from r to t is then only of order O(M), with M denoting the number
of edges. As these are again of order O(N) in the case of real maps (mostly
there are not more than, say, ten streets originating at a node, such that one
has 10×N streets in the system), the algorithm is linear with the number of
nodes, i. e., of order O(N) [202].

1.4 Various Possible Codings

The simplest way to describe a configuration of an instance of the TSP is as
a permutation σ of the numbers 1, . . . , N . The meaning of, e. g., σ(3) = 7 is
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that the third node in the tour is the node with the number 7. The energy
function of this problem is simply the length of the configuration and in this
coding is given as

H(σ) = D(σ(N), σ(1)) +
N−1∑

i=1

D(σ(i), σ(i + 1)) . (1.6)

The first addend is needed to close the tour; it denotes the length between
the last node in the tour and the first node in the tour. The following addends
denote the lengths between all pairs of successive nodes in the tour. If the
distance matrix D is symmetric, one gets an at least two-fold degeneracy of
each energy level, as a tour is the same length after being turned around,
i. e., whether it is driven through clockwise or counterclockwise.

This permutation σ can be implemented in various ways. The standard
way of implementing it is by working with an array σ of N integers, with
σ(i) = j denoting that the node with number j is the ith node in the tour.
This is an implementation following strictly the definition. However, the per-
mutation of the nodes can also be implemented as a connected list of some
structure. Each structure contains at least a minimum information about the
node, i. e., the number of the node or its location, and additionally a pointer
to a further structure that is the successor of the current structure in the
connected list. In this way, a closed ring of such structures, each representing
a node of the TSP instance, results in a tour of the traveling salesman. In
contrast to the implementation as an array, this method has the disadvantage
that the individual structures might be distributed over the whole memory
such that the cache and its accelerator effects cannot be used. However, this
problem can also be overcome by simulating a connected list with an array l
of integers: l(i) = j denotes that the successor of node i is node j. If desired,
one can store more information about the individual nodes in a second ar-
ray containing the structures described above. Besides this single connected
list, one could also work with a double connected list, in which each struc-
ture contains both a pointer to its successor and a pointer to its predecessor.
The optimal implementation must be decided for each optimization method.
Changing some parameters of the optimization method could result in an-
other implementation becoming optimal.

Secondly, a configuation can be coded as an edge matrix η, which is also
called the adjacency matrix:

η(i, j) =
{

1 if j is the successor or the predecessor of i ,
0 otherwise .

(1.7)

Then the Hamiltonian is written as

H(η) =
N∑

i

N∑

j=i+1

D(i, j)η(i, j) . (1.8)
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However, not all possible edge matrices correspond to a feasible configuration
of a TSP. The constraints for a feasible edge matrix η can be written as

N∑

i=1

η(i, j) = 2 ∀ j ∧
N∑

j=1

η(i, j) = 2 ∀ i , (1.9)

plus the constraint that all nodes must be in one tour. This prohibition
of closed subtours can also be expressed with the edge matrix. Let V =
{1, . . . , N}; then

∑

i,j∈U

η(i, j) < 2|U | ∀U ⊂ V with U �= ∅ ∧ U �= V . (1.10)

This representation of the TSP is used if solving it with an exact algorithm
based on integer programming methods. The main problem when working
with such an edge matrix is the prohibition of subtours, as the number of
these subtour constraints increases exponentially with the number of nodes
in the tour. However, there is another possibility of an edge matrix for which
this problem is strongly simplified [58]: let

ηi,a =

{ 1 if node No. i is the ath
node in the tour ,

0 otherwise .
(1.11)

This edge matrix corresponds to an incidence matrix. Note that we use the
letters i, j, . . . for the “name numbers” of the nodes, which are given to them
at the beginning and which stay constant, and the letters a, b, . . . for the tour
positions of the nodes, which can change when a move is performed. Then
the length of the tour is given by

H0(η) =
∑

ija

D(i, j)ηi,aηj,a+1 (1.12)

with ηi,N+1 ≡ ηi,1 ∀ i. The constraints that each node is visited exactly once,
i. e., ∑

a

ηi,a = 1 ∀i , (1.13)

and that each stop in the tour contains exactly one node, i. e.,
∑

i

ηi,a = 1 ∀a , (1.14)

are considered by adding penalty functions. The system exhibits therefore
the Hamiltonian
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H(η) =
∑

ija

D(i, j)ηi,aηj,a+1

+ λ1

∑

i

(
∑

a

ηi,a − 1

)2

+ λ2

∑

a

(
∑

i

ηi,a − 1

)2

(1.15)

containing the Lagrange multipliers λ1 and λ2. Removing the constant terms
from this formula, one gets the effective Hamiltonian

Heff(η) =
∑

ija

D(i, j)ηi,aηj,a+1

+ λ

⎛

⎝
∑

ija

ηi,aηj,a +
∑

iab

ηi,aηi,b − 4
∑

ia

ηi,a

⎞

⎠ .

(1.16)

In this way, the TSP is mapped on a spin system in which the single spins
ηi,a are on a 2D lattice with periodic boundaries, can take the values 0 and 1,
and interact with all other spins in the same row, the same column, and the
next column.

There are of course still other possibilities for coding a configuration of
the TSP. Summarizing, usually the first coding mentioned is used due to its
simplicity, as it already contains all constraints. When working with this cod-
ing, mostly a 1D array is used, containing the numbers 1, . . . , N in that order
in which the corresponding nodes appear in the tour. Contrarily, sometimes
a single or a double connected list is used for storing the sequence of nodes.

1.5 Four Approaches to the TSP

Usually, one of the following four approaches is used for investigating the
quality of an algorithm for the TSP.

• Often TSP instances are used consisting of a fixed number of N randomly
placed nodes. Always several such instances are created and the average
of the results for the individual instances is taken. From these results the
behavior of the algorithm used is described for a TSP of size N . Then N is
increased step by step, and for each N a new average is taken, so that the
quality of the algorithm is investigated as a function of the system size.
Furthermore, this curve can be extrapolated to a TSP with an infinite
number of nodes.
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• The second method consists of putting the nodes on a square lattice with
n columns such that there are always N = n2 nodes. Here the quality of
the algorithm is also described for increasing n. In contrast to the first
method, here it is rather easy to determine the optimum length, which is
given by

Hopt(N) =
{
d ·N if n even
d · (N − 1 +

√
2) if n odd , (1.17)

with d being the lattice constant, i. e., the nearest neighbor distance on
the lattice. Furthermore, in contrast to the first method, problems with
a highly degenerate ground state are investigated.

• The third approach considers a TSP with randomly chosen values for the
entries in the distance matrix. This so-called random link TSP [31] is of
a more complex randomness than the TSP with randomly placed nodes,
as, e. g., the triangle inequality does not hold. For this type of TSP, only
the entries in the distance matrix, but not the locations of the nodes,
are given. Of course, the locations could be reconstructed in an N − 1-
dimensional space if D is symmetric. Furthermore, the aim is usually not
to solve a particular instance but to derive analytically some estimates for,
e. g., the optimum tour length, which is for higher dimensions except small
deviations identical to the optimum tour length of a Euclidean TSP with
randomly placed nodes.

• The first three approaches use only artificial instances, as nodes are never
purely randomly distributed or on a square lattice in practical applications
and as edge lengths are not purely random, either. Therefore, several groups
have published instances from practical applications. These instances have
been collected in some libraries, among them the TSPLIB95 by Gerhard
Reinelt [90]. Besides the data of the instances, also the optimum values are
given, such that these benchmark instances are a useful tool for investigat-
ing the quality of various algorithms. We will use this approach in this book.

1.6 Benchmark Instances

The benchmark instances in Reinelt’s TSPLIB95 cover different TSP sizes:
the smallest instances only have a few points, like the 16 locations of the
odyssey [74, 75] or the 127 beer gardens near Augsburg, a city in southern
Germany, which are useful for finding out whether a program works correctly.
Then there are medium-sized instances like 442 drilling holes on a computer
circuit, the 532 AT&T switch locations in the USA, the 535 airports through-
out the world, or 1379 nodes in the German state of Northrhine-Westfalia,
which are used for tuning algorithms, as it is not easy to find the optimum
solution for one of these problems. Finally, the library is extended step by
step with larger and larger instances, like the locations of 4461 nodes in
the former German Democratic Republic. A large instance consisting of the
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Fig. 1.4. Optimum solution to the BEER127 problem: the BEER127 problem
consists of the locations of 127 beer gardens near Augsburg, a city in southern
Germany. The optimum tour length is 118,293.52. . . in double precision

13,509 towns in the USA with at least 500 inhabitants was solved several
years ago [74, 75]. The largest instance solved exactly up to the end of the
year 2005 consists of 24,978 cities in Sweden [96].

We concentrate on medium-sized TSP instances as they predominate in
practice, whereas the large instances are simply enjoyable challenging prob-
lems and seldom occur in practical applications, and the small instances can
usually be solved manually. We want to provide results mainly for the famous
PCB442 problem, which is a very interesting problem, as it has a highly de-
generate ground state. An optimum solution to this problem is shown in
Fig. 1.6. The PCB442 problem was introduced by Grötschel in 1984. It was
first solved in 1987 by his student Holland [73]. The length of its ground state
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Fig. 1.5. Optimum solution to the LIN318 problem: the LIN318 problem consists
of 318 nodes and is also part of the TSPLIB95 [90]. Its optimum tour length is
42,042.535. . . in double precision. Note that it is not exactly the same problem as
the 318-node problem of Lin and Kernighan

is 50,783.547513735. . . milliinch, if a Euclidean real metric with 8-byte reals
is used. If all distances are rounded to integers, then the length of the ground
state is 50,778.

Furthermore, we will present results for the BEER127 problem, which was
introduced by Jünger and Reinelt and which is famous because most of the
127 beer gardens are located in the city of Augsburg and that there are only
a few beer gardens in the suburbs of Augsburg. Usually, it is possible to find
the optimum solution, which is shown in Fig. 1.4 and which has a length of
118,293.52. . . in double precision. For testing the effects of larger moves, we
like to use the LIN318 instance (Fig. 1.5). A further well-known test instance
are the 532 largest cities of the USA (Fig. 1.7). This instance was introduced
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Fig. 1.6. An optimum solution of the PCB442 problem: the PCB442 problem
consists of drilling 442 holes on a printed circuit board. The ground state of this
problem is highly degenerate. The optimum length is 50,783.5475. . .milliinch in
double precision

by Padberg and Rinaldi [159]. For this problem, a special pseudo-Euclidean
distance metric is used:

xd = x(i) - x(j)
yd = y(i) - y(j)
rij = sqrt( double( xd*xd + yd*yd )/10.0 )
tij = nint( rij )
if ( double( tij ) < rij ) then
D(i,j) = double( tij ) + 1

else
D(i,j) = double( tij )

endif
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Fig. 1.7. Optimum solution to the ATT532 problem: the ATT532 problem consists
of the 532 AT&T switch locations in the USA. For this problem, the special integer
ATT metric is used. The length of this configuration is given as 27,686 with this
pseudo-Euclidean metric

According to this metric, its optimum has a length of 27,686. In contrast to
the PCB442 problem, in which the distance to the nearest neighbors is the
same for most nodes, this instance exhibits large differences between these
nearest neighbor distances: on the east coast of the USA, these distances
are very short, in other areas they are comparatively very long. This re-
sults in this TSP instance being split into subproblems with different length
scales.

1.7 Bounds for the Optimum Solution

While seeking a TSP solution, there are some other, simpler problems that
we may wish to solve along the way. Some of these constructions have fast,
exact algorithms, and are useful in determining upper and lower bounds to
the length of the optimal TSP tour.

Let us consider a set of nodes. A spanning tree on these nodes is a set of
edges by which all nodes are thus connected so that one can get from every
node to any other node without a redundant edge. Therefore, each spanning
tree on N nodes contains N−1 edges. If one edge of a configuration of a TSP
instance is removed, then one gets a spanning tree. The number of edges that
are adjacent to some nodes is called the degree of the node. It can be shown



224 1 The Traveling Salesman Problem

that the number of nodes with an odd degree is even. The minimum spanning
tree (MST) is the spanning tree of shortest length.

Using the algorithm of Kruskal, the MST can be constructed in the fol-
lowing way: first all edges are sorted by length such that e1 is the shortest
and eM the longest length with M =

(
N
2

)
. Then the initialization proceeds

with an empty tree T = {}. An auxiliary variable i is introduced and set
to i = 1. While T does not connect all points, the following procedure is
iterated: as long as T ∪ {ei} does not contain any closed cycles, T is set to
T ∪ {ei} and i is incremented by 1. It can be shown that this algorithm is of
order O(N2 log(N)) [177]. The MST plays an important role in the computer
network field when a net topology with minimum wire length must be found.
The MST is both an optimum solution if the cost function is to minimize the
wire length and if the cost function is to minimize the delay time [177, 74].

The problem of organizing an even number of points in pairs so that
the sum of all connecting edges between each pair of nodes becomes min-
imal is called minimum weighted matching (MWM). This algorithm can
be mapped onto a linear optimization problem that can be solved by
the simplex algorithm. However, various implementations have an order
O
((

N
2

)5/2 (
log
(

N
2

))4)
or an order O

((
N
2

)3)
of calculation time, such that

often heuristics are used for larger instances to find a rather good MWM in
a short time [104].

The length of a MST is a lower bound for the optimum length of a TSP
instance, because if one edge is removed from an arbitrary solution of this
instance, a spanning tree without branching remains. This spanning tree is
at least as long as the MST. Similarly, the MWM can provide a lower bound:
each configuration, including the optimum one, of a TSP instance with an
even number of nodes can be split into two sets of edges by alternatively
putting the succeeding edges into these two sets. Therefore, each of these
sets contains a different matching of the nodes, both of which must be at
least as long as the MWM. Therefore, each solution for a TSP must be at
least twice as long as the MWM.

When doubling the MST, i. e., traversing each link in the MST twice,
one gets a roundtrip in which each node is visited at least once. Thus, two
times the length of the MST forms an upper bound for the length of an
optimal tour of the TSP. This bound can be tightened by removing from
the doubled MST those sites which are visited more than once until a tour
remains, which is a correct solution to the TSP. There are various heuristics
for this shortcutting. The Christofides heuristic guarantees a solution that is
not more than 50% longer than the optimum because the MWM is used: the
system is initialized by a simple MST, which is unified with a MWM between
the nodes of odd degree. (The degree of a node is defined as the number of
edges adjacent to this node.) In this way, every node has an even degree, so
that one ends again up with a TSP with some nodes visited more than once.
These can again be removed by shortcutting, such that a feasible solution
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for a TSP is achieved. The length of a configuration constructed in this way
would not be larger than the sum of the lengths of the MST and of the MWM.
This is again smaller than 3

2 times the optimum length of the TSP.
There are also more elaborate bounds on the optimum length of a TSP

instance. One widely recognized bound, even for large TSP instances, is the
Held–Karp bound [84, 85, 103]: for the calculation of the Held–Karp bound,
the second coding of the TSP mentioned in Sect. 1.3 is used; however, the
definition of the edge matrix (1.7), in which all entries η(i, j) can only take
the values 0 and 1, is replaced by the condition 0 ≤ η(i, j) ≤ 1. Thus,
a linear problem is created whose solution is the so-called Held–Karp bound,
a lower bound on the optimum solution of the TSP. This linear problem can
be solved in polynomial time with an altered simplex algorithm, despite the
fact that the number of subtour constraints increases exponentially with the
system size because there exists a polynomial-time “separation oracle” for
the subtour constraints [103]. The lower bounds are usually roughly 0.5 to
2% smaller than the optimum tour length of the corresponding TSP, even for
large TSP instances, and so it is widely used.

Besides knowing bounds for the optimum solution of a TSP, this knowl-
edge is also useful if working with, e. g., the great deluge algorithm, because
if one knows the depth at which the optimum configuration lies, one can tune
the algorithm and steer it.

1.8 The Misfit: A Frustration Measure

The misfit parameter was originally introduced by Kobe (see [118] and ref-
erences therein) for measuring the frustration in a spin glass system. The
misfit parameter compares the ground state energy H0 of the given instance
of a problem with the ground state energy Hid of an idealized instance. The
idealized instance is achieved by changing the original instance in such a way
that the local energies of the various parts of the system are minimized inde-
pendently of each other. Hid is simply the sum of these local energies. Due
to competing effects between the various parts of the system, H0 is usually
larger than Hid because not all local “wishes” can be fulfilled. Thus the misfit
is defined as

m =
H0 −Hid

Hid
. (1.18)

For a specific TSP instance, the local energy at each node is minimal if each
node i is connected with its two nearest neighbors n1(i) and n2(i). Thus, the
ground state energy Hid is given as

Hid =
1
2

N∑

i=1

D(n1(i), i) +D(i, n2(i)) . (1.19)
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The factor 1
2 is needed as for each node two edges are counted instead of one.

This formula holds also for the asymmetric TSP if n1(i) and n2(i) are chosen
appropriately.

Thus, the misfit measures how complicated the given instance is to solve
compared to an idealized instance. For example, the misfit vanishes if all
nodes are placed on a circle, which is surely a trivial instance. One can also
normalizethis misfit by introducing a second idealized scenario that represents
the worst case [118]. The formula for this normalized misfit parameter μ is
given by

μ =
H0 −Hid

best

Hid
worst −Hid

best

. (1.20)

For the TSP, the best-case scenario is given as above. Now a suitable worst-
case scenario must be determined. As a first approach, as was done above,
one can connect each node with the two furthest nodes. This leads to a com-
parison with the worst possible solution. However, this approach contradicts
the aim of finding the best possible solution. Thus a comparison with an-
other idealized scenario might be more useful: in this scenario, all distances
are equal and are thus given by the mean distance D̄ of the instance. D̄ is the
average over the lengths of all edges that can occur in a TSP configuration:

D̄ =
1

N(N − 1)

N∑

i,j=1
i�=j

D(i, j) . (1.21)

Note that the diagonal elements of the distance matrix never occur as edge
lengths as there is no edge from a node to itself in the tour. This type of
problem is also trivial as all possible configurations have the same length,
namely,

Hid
worst =

1
2

N∑

i=1

(D̄ + D̄) = N × D̄ . (1.22)

D̄ is calculated from the original instance. There might actually be an in-
stance in which all distances are equal. In this case, Hid

worst and Hid
best coincide.

As this problem is trivial, the misfit parameter μ can be set to 0.
Summarizing, it is not the size of an instance, i. e., the number of its nodes,

that determines how difficult the instance is to solve. A relatively small misfit
value μ for a given instance is a hint that the instance is a relatively easy one
compared to other instances.

1.9 Order Parameters for the TSP

The next question is how to define an order parameter ξ for the TSP. Nat-
urally, this order parameter ξ should refer to how well the problem instance
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is already ordered during an ongoing optimization process. Furthermore, it
should not be identical to the energy or depend directly on it.

A first approach for such an order parameter could be to consider the
area A that is included in the closed polygon of the current configuration.
This area can be easily calculated by

A(σ) =
1
2

∣
∣
∣
∣
∣

N∑

i=1

(xσ(i) · yσ(i+1) − xσ(i+1) · yσ(i))

∣
∣
∣
∣
∣
, (1.23)

with σ(N + 1) ≡ σ(1) [177]. At first glance, this seems to be a reasonable
approach: if minimizing the number of intersections in the tour, both the
length H is minimized and the absolute value of the signed surrounded area
A is maximized. Thus, the ratio

V(σ) =
A(σ)
A0

, (1.24)

with A0 being the included area in the ground state configuration, seems to
be a good definition of a normalized order parameter.

However, an order parameter should be maximal if the ground state is
reached. This constraint is violated for the included area, as the counterex-
ample in Fig. 1.8 shows. Thus, the size of the included area is not a good
order parameter for the TSP.

A further property by which a configuration can be compared with the
ground state or even projected on the ground state is the antisymmetric edge
matrix ησ with

Fig. 1.8. This TSP instance consists of eight nodes lying at the edge points of two
concentric squares. The interior square has an edge length of 1, the outer square
an edge length of 3. In the graphic on the left, the ground state with a length of
H0 = 8 + 4

√
2 = 13.6 . . . and an included area of A0 = 5 is shown. The graphic

on the right shows a quasioptimum configuration with H1 = 12 + 2
√

2 = 14.8 . . .
and A1 = 6. Comparing these two configurations, the longer solution has the larger
included area
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ησ(i, j) =

{+1 if j is successor of i in configuration σ ,
−1 if j is predecessor of i in configuration σ ,
0 otherwise .

(1.25)

Let ησ be the antisymmetric edge matrix corresponding to the configura-
tion σ, and let η0 analogously be the edge matrix of the ground state config-
uration. Then the edge projection order parameter ξ can be defined by

ξ(ησ) =
1
N

∣
∣
∣
∣
∣
∣

N∑

i=1

N∑

j=1

ησ(i, j)η0(i, j)

∣
∣
∣
∣
∣
∣

(1.26)

or more simply by

ξ(σ) =
1
N

∣
∣
∣
∣
∣

N∑

i=1

η0(σ(i), σ(i+ 1))

∣
∣
∣
∣
∣
, (1.27)

with σ(N + 1) ≡ σ(1).
If this order parameter ξ were not normalized it could take values be-

tween −1 and +1, as is the included area parameter. One must define order
parameters of this kind in such a way as to take the absolute value of some
sum over entries of an antisymmetric matrix. Furthermore, note that for both
order parameters knowledge about the ground state is needed.

When working with improvement heuristics, if the ground state of the
problem is not known, one studies “freezing order parameters” like the
Edwards–Anderson order parameter qEA for spin glasses, which measures
the mobility of a system. One could thus analogously derive such an order
parameter using the antisymmetric edge matrix ησ: let 〈η(i, j)〉 be

〈η(i, j)〉 =
∑

σ

ησ(i, j)π(σ) , (1.28)

with π(σ) the probability of the configuration σ, e. g., the Boltzmann weight
exp(−H(σ)/(kBT ))/Z when working with simulated annealing. Then qEA is
simply given as

qEA =
1

2N

N∑

i,j=1

〈η(i, j)〉2 , (1.29)

as 2N entries of 〈η(i, j)〉 are ±1 if the system is frozen and all other entries
of the matrix vanish.

But for this type of order parameter again one must have some basic
a priori knowledge about the system. A general way of studying the freezing
behavior without additional knowledge of the system is to investigate the
acceptance rates of the individual moves and the total acceptance rate, which
is a measure, applicable to every system, of whether the system is already
frozen in some local minimum. Note that these freezing order parameters
always tend to 1 if no further improvement can be found. The final value
does not depend on whether or not the ground state is reached in the end.
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1.10 Short History of TSP

The TSP was, as far as is known, first defined in an 1832 manual for the suc-
cessful traveling salesman [154, 193], Der Handlungsreisende – wie er sein soll
und was er zu thun hat, um Aufträge zu erhalten und eines glücklichen Er-
folgs in seinen Geschäften gewiß zu sein – von einem alten Commis-Voyageur
(The Traveling Salesman – How He Should Be and What He Must Do to Ob-
tain Orders and to Be Sure of Good Success in His Business – by an Old
Traveling Salesman).

In this handbook the problem is stated but not formulated in a mathemat-
ical way: Die Geschäfte führen die Handlungsreisenden bald hier, bald dort
hin, und es lassen sich nicht füglich Reisetouren angeben, die für alle vorkom-
mende Fälle passend sind; aber es kann durch eine zweckmäßige Wahl und
Eintheilung der Tour, manchmal so viel Zeit gewonnen werden, daß wir es
nicht glauben umgehen zu dürfen, auch hierüber einige Vorschriften zu geben.
Ein Jeder möge so viel davon benutzen, als er es seinem Zwecke für dienlich
hält; so viel glauben wir aber versichern zu dürfen, daß es nicht wohl thunlich
sein wird, die Touren durch Deutschland in Absicht der Entfernungen und,
worauf der Reisende hauptsächlich zu sehen hat, des Hin- und Herreisens, mit
mehr Oekonomie einzurichten. Die Hauptsache besteht immer darin: so viele
Orte wie möglich mitzunehmen, ohne den nämlichen Ort zweimal berühren zu
müssen. [Business brings the traveling salesman now here, then there, and no
travel routes can be properly indicated that are suitable for all cases occur-
ring; but sometimes, by an appropriate choice and arrangement of the tour, so
much time can be gained, that we don’t think we may avoid giving some rules
also on this. Everybody may use that much of it, as he takes it as useful for his
goal; so much of it however we think we may assure, that it will not be well fea-
sible to arrange the tours through Germany with more economy in view of the
distances and, which the traveler mainly must consider, of the trip back and
forth. The main point always consists of visiting as many places as possible,
without having to touch the same place twice (translation taken from [193]).]

The manual suggests five tours, four in Germany only, the fifth in Ger-
many and part of Switzerland, which might even be optimal considering street
layout in early-19th-century Europe. Whereas nowadays it is politically cor-
rect to speak of the traveling salesperson problem, the manual considers only
salesmen and warns about the risks of women in this business.

More books on traveling salesmen were published later, e. g., The Com-
mercial Traveller’s Guide Book, 1871, by Linus Pierpont Brockett, How to
Become a Commercial Traveller, 1893, The Tales of a Traveller, 1916, by
E. Cadwell, Simon S. Skidelsky, and Tips for Traveling Salesmen, 1927, by
Herbert N. Casson [93]. The TSP was reintroduced as the Botenproblem
(messenger problem) by Karl Menger in 1930 [193], in which the problem is
coded as a permutation of the cities. Besides a complete search through all
configurations, a heuristic for solving this problem is mentioned by Menger
with the remark that in general it does not lead to the shortest roundtrip.
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Furthermore, in the 1930s, the problem reappeared in mathematical circles
at Princeton University [93] and was posed by Hassler Whitney [193].

A breakthrough in the mathematical formulation of the TSP came in
1954, when Dantzig, Fulkerson, and Johnson coded the TSP with an edge
matrix and with linear constraints for the column and row sums of this matrix
(the so-called convex hull of the permutation matrix) and for the subtour
elimination. There, for the first time, it was mathematically proven that
a given tour for a problem instance was optimal.

In subsequent decades, ever larger instances were solved, as shown in
Fig. 1.9. Not only did computers become faster, but mathematicians were
also able to develop new algorithms and improve them. The best algorithm
so far for solving the TSP exactly is branch & cut. TSP instances with fewer
than 1,000 nodes can be solved exactly within a couple of seconds or min-
utes. The solution of the instance with 15,112 nodes, however, still took 22.6
CPU years. The calculation was performed on 110 distributed processors.
The benchmark instances that have been introduced in the last few years as
challenges contain up to 10,000,000 nodes. So far, exact methods have not
been able to provide optimum solutions for these huge instances. However,
some maximum gap to the real optimum can be determined: for some prob-
lems, it is known that the best solution found so far is at maximum less than
0.1% worse than the optimum configuration, which is mostly good enough
for practical applications.
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Fig. 1.9. Increase of the size of the TSP instances solved optimally in recent
decades: the first reported optimally solved problem was an instance containing 49
nodes, namely, cities chosen in the 48 coterminous states of the United States and
Washington, D.C., in 1954. The largest instances solved so far contain 15,112 nodes
(solved in 2001) and 24,978 nodes (solved in 2004). (data from [93])

For the problem of the real-life traveling salesman, this research is of
course no longer of any importance, e. g., no traveling salesman would be
able to perform a roundtrip through the World TSP, containing all 1,904,711
populated cities or towns in the GEOnet Names Server (Fig. 1.10), within his
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Fig. 1.10. “World TSP” containing all 1,904,711 populated cities or towns in the
GEOnet Names Server

lifetime. However, there are applications of the TSP in circuit boards, VLSI,
genome sequencing, and genetic engineering, for which one must deal with
thousands or even millions of nodes.

The question arises now as to why one should care about stochastic opti-
mization algorithms if the exact algorithms are able to deal with such large
problem instances. The reason for this is that, first of all, to perform their
work (faster), exact algorithms need the output of heuristic methods as an
input. Further, additional constraints are often introduced in practical ap-
plications, and these require developing new exact algorithms from scratch,
while we shall find that heuristics can often be extended simply. Furthermore,
the exact methods developed for extensions of the TSP (see next chapter)
are only able to deal with very small system sizes due to finite calculation
time and often then fail to solve the problems actually occurring in practice.
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2.1 Temporal Constraints

Although the traveling salesman problem (TSP) was introduced in the last
chapter in an idealized form, it has practical import. There are related prob-
lems of which the basic problem is a TSP, but that are extended with addi-
tional constraints. As these problems occur even more often in practice, we
will discuss them here.

The greatest simplification of the classic TSP is the distance matrix, which
is usually considered to be symmetric and time-independent. However, the
distance matrix is asymmetric in most real-life applications due to the exis-
tence of one-way streets. Thus, one has to deal with the asymmetric traveling
salesman problem (ATSP). This ATSP can easily be mapped on a symmetric
TSP [170]: for an instance of the ATSP with N points and the asymmetric
distance matrix DA, one defines an instance of a TSP with twice as many
points. Each point is simply doubled, such that there are instead of one point
with the index i now one point with the index i and a further point with
the index N + i. The entries of the symmetric distance matrix DS of the
corresponding symmetric TSP are given as follows:

DS(i, N + j) = DS(N + j, i) = DA(i, j) for all 1 ≤ i, j ≤ N and i �= j ,
DS(j,N + i) = DS(N + i, j) = DA(j, i) for all 1 ≤ i, j ≤ N and i �= j ,
DS(i, i) = 0 for all 1 ≤ i ≤ 2N ,
DS(i, N + i) = DS(N + i, i) = −M for all 1 ≤ i ≤ N .

(2.1)
M must be some sufficiently large number, e. g., M =

∑
i,j DA(i, j). Every

configuration of the ATSP with a length l can be transformed into a config-
uration of the symmetric TSP with the length l −NM . This is simply done
by replacing the edge (i, j) of the ATSP configuration by the edge (i, N + j)
and adding the edge (N + j, j) right after that. Furthermore, an optimum
configuration of the symmetric TSP contains all N edges with length −M
(this is of course only the case if M is large enough) such that the ATSP can
be solved by first finding the optimum configuration of the symmetric TSP
and then removing the edges with length −M . At first sight this transfor-
mation of an ATSP into a symmetric TSP looks rather elegant. However, it
is usually not used for practical applications as the system size is doubled.
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Instead, one alters the algorithms developed for the symmetric case in order
to deal with the asymmetries.

Even worse than the asymmetry problem, the entries in the distance ma-
trix are usually not constant in time due to varying traffic densities. The
traveling salesman can drive at the maximum velocity allowed if the traffic
density is light; however, he mostly has to drive at slower velocities. This
effect is most dramatic at rush hours in which all traffic might be stop and
go. However, rush hours are not noticed on all streets at the same intensity;
it usually affects traffic on streets in downtowns and on highways but not on
side streets in the suburbs. Therefore, the entries in the distance matrix vary
differently in time, so that one must deal with the time-dependent traveling
salesman problem (TdTSP), in which the traveling salesman is forced to find
a compromise between taking detours and waiting in traffic jams [17].

The Hamiltonian (1.6) of the original TSP can still be used if one considers
the entries of the distance matrix no longer as constants. However, there are
additional constraints: those that probably occur most often to a real travel-
ing salesman are time windows: he must arrive at the home of a customer i
within a time interval [tS(i); tE(i)]. Thus, with such problems the entries in
the distance matrix are measured in time units. Furthermore, a specific node
is fixed at which the traveling salesman starts his tour. Additionally, service
times τs(i) must be considered for each customer i. If the traveling salesman
arrives too late at a customer’s home, then the solution is, of course, not
feasible if the time window is a hard constraint. Also, if he arrives too early,
he might be asked to wait. However, he should not wait too long or too often
as then he will miss time windows of later customers and return too late
to the starting node. This extension of the TSP with time intervals for the
arrival time and for the service time is called the traveling salesman problem
with time windows (TSPTW), which was studied, e. g., in the asymmetric
ATSPTW case [11]. If additionally the entries in the distance matrix depend
on the time of day, then the problem is a TdTSPTW.

2.2 Vehicle Routing Problems

There are also other problems related to the TSP. Let us again start from the
standard TSP in which a lone traveling salesman performs a closed roundtrip
through a given set of nodes. If there is not just one but several traveling
salesmen starting from a central depot performing roundtrips, such that every
node is visited once by one of the traveling salesmen, and returning to the
depot, then this is a multiple traveling salesman problem (MTSP). If there
are no further constraints, this MTSP can be mapped on a standard TSP by
simply merging the tours of all traveling salesmen into one tour. If omitting
the intermediate visits at the depot in this tour, the length of this solution
can be reduced. Of course, the optimum solution for this TSP would usually
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not be this merged roundtrip but an even shorter tour. Thus, if there are no
constraints, it is optimal to work with one traveling salesman only.

However, usually there are additional constraints.

• Again, individual customers might demand time windows, such that it
becomes impossible for one traveling salesman to visit all of the customers
as different time windows at the same time of day cannot be fulfilled by
one person. Therefore, the individual tasks must be distributed among
several traveling salesmen, so that the time windows are fulfilled and the
overall tour length is as small as possible. Thus, a configuration is here
given not as a permutation σ of the numbers 1, . . . , N but as a tour plan
σ(i, j). Every row of this plan contains a tour of one of the M traveling
salesmen, starting and ending at the depot. The depot is usually denoted
as node No. 1. Let there be Nj entries for the tour of salesman j. Thus,
σ(1, j) ≡ σ(Nj , j) ≡ 1; furthermore, the salesman serves Nj −2 customers,
so that

∑M
j=1Nj = N −1+2M . This problem is, e. g., called a MTSPTW.

• More often, the constraint occurs that the customers want to get goods of
a certain amount of size or weight delivered or fetched. Thus, the traveling
salesman becomes a trucker driving a truck with a finite capacity. Due to
this restriction, it is usually again impossible for one traveling salesman
to fulfill all these demands. Therefore, there must again be several trucks,
and a tour plan for all these trucks has to be created.
In scientific investigations, usually a simplified version of this problem is
used called the (capacitated) vehicle routing problem, or (C)VRP. In this
problem type, all trucks start and end at the same depot. One considers
the fleet to be homogeneous, i. e., all trucks have the same capacity and
all other properties of the trucks are also identical. Additionally, there are
either only demands to deliver goods or only demands to pick up goods. The
goods are considered to be nonsplittable, i. e., it is impossible that one truck
takes half of the goods for a certain customer and another truck takes the
other half. These goods are of some abstract amount, and the capacity of
the trucks is also measured in this unit. For example, a problem is given in
such a way that a customer orders 25 units of a good and another customer
orders 10 units, and so on, and each truck has a capacity of 100 units.
The Hamiltonian of this problem is given as follows: first, the overall tour
length shall be as small as possible. If we denote the depot again as node
No. 1 and if the array vectors of the tour plan σ(i, j) contain as above the
tours of M trucks (starting and ending at the depot and containing Nj −2
customers), then the basic Hamiltonian measuring the overall tour length
is given as

H0(σ) =
M∑

j=1

Nj−1∑

i=1

D(σ(i, j), σ(i+ 1, j)) . (2.2)

Additionally, we constrain the trucks not to be overloaded. Let m(i) be the
amount to be delivered to or picked up from customer i and κ the capacity
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of a truck. Usually, a linear penalty function for trucks being overloaded is
sufficient:

H1(σ) =
M∑

j=1

⎛

⎝

⎛

⎝
Nj−1∑

i=2

m(σ(i, j))

⎞

⎠− κ+ γ

⎞

⎠×Θ

⎛

⎝

⎛

⎝
Nj−1∑

i=2

m(σ(i, j))

⎞

⎠− κ

⎞

⎠ ,

(2.3)
with the Heaviside function

Θ(x) =
{ 1 if x > 0 ,

0 otherwise .
(2.4)

Often it is useful to introduce an additional small offset γ > 0 such that
no small overloadings remain at the end of the optimization run. Thus, the
complete Hamiltonian is given as

H(σ) = H0(σ) + λH1(σ) , (2.5)

with λ > 0 denoting the Lagrange multiplier. λ determines how strongly the
penalty function H1 is weighted in relation to the basic Hamiltonian H0. If
λ is too small, then there might remain some overloadings in the resulting
configuration of the optimization run. The penalty function H1 must van-
ish at the end of the optimization run. On the other hand, if λ is increased
too much, then the probability of coming up with a feasible tour plan with
minimum length decreases again.
Several investigations were done on this VRP. As in the TSP, collections
of benchmark libraries with VRP instances exist; see, e. g., the collection
of Augerat [97].

• An additional problem often considered in science is the vehicle routing
problem with time windows (VRPTW), which is given as a combination
of the problems discussed above. It is based on the VRP, but additionally
individual customers want to be served in a given time interval.
If the time intervals for the arrival times are rather narrow, then they can
be treated as punctual time intervals. Let δ(i, k) be the temporal distance
between the arrival times of customers i and k, τs(i) the service time for
customer i, and D(i, k) the time for driving from customer i to customer k.
Then δ(i, k) should be equal to τs(i) +D(i, k). Thus, one could introduce
penalty terms for each customer σ(i, j) proportional to

(
δ(σ(i− 1, j), σ(i, j)) − τs(σ(i− 1, j)) − D(σ(i− 1, j), σ(i, j))

)2

+
(
δ(σ(i, j), σ(i+ 1, j)) − τs(σ(i, j)) − D(σ(i, j), σ(i+ 1, j))

)2
.

(2.6)
Another approach must be chosen if the time windows are more extended.
The arrival time tA of the traveling salesman has to be between the start
time tS and the end time tE of a customers time window. Thus, the arrival
times at the customers could be calculated according to
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tA(σ(i, j)) =
i∑

k=2

D(σ(k − 1, j), σ(k, j)) +
i∑

k=3

τs(σ(k − 1, j)) (2.7)

for 2 ≤ i ≤ Nj. Following this definition, one would have to ensure that the
traveling salesmen arrive neither too early nor too late at the customers’
homes and to define penalty functions for this constraint. However, then
there arises the problem that a salesman may detour to other customers
in order not to wait at a customer where he arrives early.
Therefore, it is advantageous to let the traveling salesman wait if he ar-
rives too early at a customer and only to punish him if he is too late [49].
This asymmetric approach results in another rule for calculating the arrival
times that has to be formulated in a recursive way, i. e.,

tA(σ(i, j)) = max
{
tS(σ(i, j)), t̃A(σ(i, j))

}
(2.8)

for i ≥ 3 with

t̃A(σ(i, j)) = tA(σ(i− 1, j)) + τs(σ(i− 1, j)) +D(σ(i− 1, j), σ(i, j)) (2.9)

and the starting condition tA(σ(2, j)) = max{tS(σ(2, j)), D(1, σ(2, j))}.
Thus, long detours are avoided, but a traveling salesman might wait
a rather long time for the time window of a particular customer. This
waiting time decreases automatically during the optimization process as
it is advantageous to drive to another customer instead of waiting all the
time. The penalty function for arriving too late can be coded in, e. g.,
a linear way as follows:

H2(σ) =
M∑

j=1

Nj∑

i=2

(tA(σ(i, j)) − tE(σ(i, j))) × Θ (tA(σ(i, j)) − tE(σ(i, j))) .

(2.10)
Due to the Heaviside function (2.4) there is a penalty only if a traveling
salesman arrives too late at a customer’s home. Note that this formula
also considers a time window for the depot within which each truck has to
return. The complete Hamiltonian of the VRPTW consists of

H(σ) = H0(σ) + λH1(σ) + μH2(σ) . (2.11)

The Lagrange parameters λ and μ must be chosen appropriately so that
both H1 and H2 vanish at the end of the optimization run and that there
is a good compromise between these competing objective functions during
the whole optimization run. Of course, one could introduce an additional
offset in Eq. (2.10) as in the penalty function for overloadings.

A library of VRPTW instances as described above was created by
Solomon [89], who distinguishes individual instances based on whether cus-
tomers are placed randomly (R-problems), are composed in clusters (C-prob-
lems), or consist of both random and clustered customers (RC-problems).
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Although these scientific problems inherit the most important aspects of the
corresponding real-life optimization problems, they are still rather abstract:
usually, a fleet of trucks is inhomogeneous. This inhomogeneity leads not only
to different capacities one must consider but also to different maximum ve-
locities, such that the temporal distance D(i, j) between two customers i and
j also depends on the truck that wants to serve these two customers. Further-
more, there is also often the restriction that not every truck can serve every
customer. Think, e. g., of a dairy problem in which the trucks have to collect
the milk from the farmers. Some trucks might not be able to reach a farm due
to the low quality of the roads or their tubes might be too short for pumping
the milk into the truck or they are otherwise inappropriate. Trucks may have
to be assigned to handle specific nodes. An additional problem occurring in
this type of problem is that some trucks have trailers with a second tank.
The capacity of this trailor is usually larger than the capacity of the truck
itself. The trailer is pulled by the truck from the depot to the first customers
in the tour, but usually not to all customers. Instead, it is parked in a special
parking place while the truck goes to a farm that it cannot reach with the
trailer. The truck drives a few loops around the trailer’s parking place and
pumps the milk from the truck into the trailer every time it returns to the
parking place. It might even be advantageous for a second truck to pump the
milk into the trailer of the first truck before continuing its tour. Thus, the
used part of the capacity of the trucks can change; furthermore, if a truck
goes with its trailer to a farm, then it could also pump the milk directly
into the trailer so that the capacities of the truck, the trailer, and the whole
“truck and trailer” system must be considered.

This capacity problem can be even worse if more than one good is trans-
ported. In some countries, one differentiates between A-milk and B-milk,
which have to be transported in different tanks such that the quality of the
A-milk is not affected. Analogously, oil companies also have trucks with sev-
eral chambers for, e. g., heating oil, gas, and diesel fuel. The capacities of
these chambers can usually be considered separately. But there might also
be a bridge that can only be crossed if the total weight of the truck does not
exceed a certain value. Furthermore, sometimes one must deal with a pickup
and delivery problem, i. e., some customers want to get goods delivered, other
want to provide goods; additionally, some customers want to get goods from
other customers [124]. Then the problem of overloading must be checked at
every single customer.

There is also the problem that there is often more than one depot from
which goods can be picked up or to where they can be delivered. Therefore,
a decision must be made as to which of the depots will be the traveling
salesmen’s starting-out point and which depots they will return to. This
problem also occurs for the parking places for the trailers if there are more
parking places available. The problem can be extended even more if not only
a list of possible depots is given but also if there is a demand for reducing the
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number of depots used. Then one must deal with a combination of a vehicle
routing problem and a localization problem.

The VRP is often also combined with a truck packing problem: individual
goods must be packed into the truck in such a way that the packing and
unpacking can be done rather fast and that no goods are in danger of being
damaged. (For example, a hat box below a cupboard is a bad idea.) Of course,
the goods must be packed closely in so that the spatial capacity of the truck
is used efficiently.

2.3 Probabilistic Models and Online Optimization

So far we have only considered the case where all customers are exactly known
in advance, together with the exact data for the amount of goods they are
receiving or shipping and their time windows. However, this is sometimes
not the case. The traveling salesman only has a list of possible customers
and knows from past experience that the probability that a given customer
will call to get goods picked up or delivered or for a traveling salesman to
pay him a visit. Potential applications include school-bus routing and waste
collection where the nodes are known but the amounts are unknown. Another
application are taxi companies for which there is a small probability for each
node being part of the tour.

This problem type has been investigated as an extension of the TSP
called the probabilistic traveling salesman problem (PTSP) [101], in which
each node i gets a probability p(i) with which it will actually be a part of
a tour. The individual probabilities are usually independent of each other.
But there is also the case that the probabilities are correlated between pairs
of customers. Furthermore, such extensions of the VRP resulting in a prob-
abilistic vehicle routing problem (PVRP) have been studied [102, 21]. There
are two different strategies for solving such problems:

• One starts with the problem that all customers who might call actually
want to be served, so that the traveling salesman or one of the trucks
must visit each of them. In the case of the PTSP, one creates a solution
for this TSP instance. In the case of the PVRP, one produces a solution
for this problem while assuming that the customers will ask for slightly
more goods than usual so as to be on the “safe side”.Then, according to
the application, the traveling salesman either drives the whole tour, asking
customers whether they want to be served, or skips some nodes from the
tour plan if it is known that a particular customer does not want to get
served. In the case of the PVRP, sometimes there might occur the problem
that one must perform an additional intermediate stop at the depot in
order to load or unload goods or to ask another truck to take some of the
orders. However, this should be the exception and not the rule.
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• The other strategy considers all possible instances of the given problem
together with their corresponding probabilities, which are given by the
probabilities for serving the customers. Thus, if these probabilities are in-
dependent of each other, one easily multiplies the probabilities p(i) for the
customers being served by the probabilities 1 − p(i) for the customers not
being served; the total tour length of an instance [124] and the mean tour
length over all instances can be calculated analogously. Furthermore, one
can study several instances, chosen either randomly or because of their
relatively large probability, and determine by comparing them what the
tour plan will look like in order to easily incorporate additional customers
or substitute assumed ones if necessary. An application of this problem is
a taxi company that needs to distribute its taxis over some area in order
to reach potential customers as fast as possible.

2.4 Supply Chain Management

These problems may arise in isolation or be embedded in much larger prob-
lems. These large problems should be optimized globally as otherwise synergy
effects might be lost.

In the field of supply chain management (SCM), many interlocking prob-
lems must be considered: first, one must determine what types of goods will
be produced, how many of them can be sold on the markets, what prices
for them can be demanded, how large the investment costs are, and whether
parts of the production will be outsourced to subcontractors from whom some
preproducts or intermediate products are bought. Secondly, one must solve
the location problem and optimize the factory for the production processes.
Then one must deal with stock-keeping problems, with the VRP for deliver-
ing the preproducts from the component suppliers to the factory, and with
the distribution problem of the preproducts inside the factory. Then come the
main production processes themselves, which must be supervised and con-
trolled. After that the products must be delivered to the customers, which
is again a VRP. Finally, one must determine what to do with the income,
whether the money should be reinvested or given partially as dividends and
employee awards [185].

All these problems put together result in the problem of SCM or advanced
planning and scheduling (APS). However, there are additional processes be-
sides vehicle routing that are related to the TSP. For example, the optimum
sequence in which the products are produced on the assembly line must be
found. Assembly line problems can be mapped on the TSP with additional
constraints if an array like a distance matrix can be defined [185, 189]. But
there are also many other applications that can be rewritten in a TSP-like
way. Some archeologists even mapped once the task to determine the chrono-
logical sequence of various gravesites in a graveyard onto a TSP with open
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end points. The “distance” between two gravesites was given by the diversity
between their respective contents.

Thus, we want to concentrate on the TSP in the following chapters as it is the
basis for many other problems. We will show how the algorithms that were
described in a general way in the first part of the book can be applied to the
TSP and we will sometimes give hints about how to incorporate additional
constraints.



3 Application of Construction Heuristics

to TSP

Many construction heuristics have been developed by several authors and
been altered and partially improved by other groups. It is impossible to men-
tion all of them in this book. We will only provide some examples here, each
of them standing for a certain type of construction heuristic.

3.1 Nearest Neighbor Heuristic

Probably the most natural way of constructing a solution for the TSP is the
nearest neighbor heuristic: it starts at an arbitrary node i, which becomes
the first node in the tour: σ(1) = i. Then that node j that is closest to
node i is selected to be the second node in the tour: σ(2) = j. After that the
neighborhood of j is considered: that node k that is closest to j and is not
identical to i becomes the third node in the tour: σ(3) = k. This approach is
repeated again: one checks the distances of all nodes except i and j, which
are already part of the tour, to node k and chooses the node l that is closest
to k, which becomes the fourth node of the tour: σ(4) = l. This algorithm is
iterated until the tour contains all nodes.

Therefore, the outline of this algorithm is as follows:

• Choose an arbitrary node i as the starting point of the tour—σ(1) = i—
and set a counter c denoting the number of nodes included in the tour
to 1.

• While not all points are included in the tour, i. e., while c < N , select

j ∈ {1, . . . , N}\{σ(1), . . . , σ(c)} ,

with D(j, σ(c)) minimal,
set c = c+ 1 and σ(c) = j.

At first glance, this seems to be a rather nice construction heuristic. In
particular, one can expect that at the very beginning (nearly) always the
shortest possible distances are chosen. Looking at Figs. 3.1 and 3.2, one finds
that this expectation is fulfilled. However, in the intermediate part of the
construction process, it is sometimes impossible to find nodes in the neigh-
borhood that have not yet been inserted, so that some longer edges must be
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Fig. 3.1. Solutions of the BEER127 instance created by the nearest neighbor
heuristic: a node in the center was used as the initial node for the heuristic in
the first three solutions. For the bottom right solution, the common final node of
the previous solutions was chosen as initial node. Note that the last line connecting
the last node with the first node is omitted to clarify the direction of the appending
steps of the algorithm

used. Even worse, the last remaining nodes can only be appended via rather
long edges.

Table 3.1 shows the results for this heuristic for five benchmark instances.
The results clearly show that this nearest neighbor heuristic has the disad-
vantage that the mean results are rather bad—20 to 30% worse than the
optimum configuration. Furthermore, whether the result is, e. g., “only” 15%
worse or even 35% worse depends on the starting node. As the graphics and
also further investigations by us show, there is no general criterion for deter-
mining which node should be chosen as the starting node for the heuristic,
e. g., there is no advantage from using a starting node in the center of the
area in which the nodes lie.
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Fig. 3.2. Solutions of the PCB442 instance created by the nearest neighbor heuris-
tic: a node at the bottom left edge serves as initial node for the solutions on top,
whereas a node in the lower middle part was chosen for the solutions at bottom. As
in Fig. 3.1, the last connection is omitted

Table 3.1. Results for the nearest neighbor heuristic: for each instance, each of the
nodes was once chosen as starting node of the heuristic. The mean value denotes
the average over N results

Instance Minimum Maximum Mean value ± error

BEER127 133,970.646 158,890.152 146,597.222 ± 397
LIN318 49,215.6125 58,862.7628 52,599.1611 ± 70.3
PCB442 58,124.402 69,843.9295 62,703.2979 ± 90.1
ATT532 33,151 37,928 34,982.7105 ± 37.2
NRW1379 68,326.8723 72,379.6559 70,342.8998 ± 21.0
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3.2 Insertion Heuristics

The nearest neighbor heuristic appends a new node at the end of the already
existing sequence of nodes in each step of the algorithm. However, one can
easily think of a variation improving this general approach to constructing
a configuration. The improvement would be that a new node might not only
be appended at the end but inserted somewhere inside the sequence. This
ansatz opens many possibilities for insertion heuristics.

Again one starts with a single node as the starting point of the roundtrip.
Of course, the individual nodes to be inserted will be inserted in a somehow
optimal way. But two questions arise at this point:

• In which order should the individual nodes that are not yet part of the
tour be inserted?

• Where is the optimum place to insert them?

Insertion heuristics differ in their answers to these questions.
A widely used insertion heuristic is the bestinsertion heuristic. Initially,

it selects three nodes randomly. The triangle through these nodes serves as
a starting tour of the algorithm. The other N − 3 nodes are put in a bag.
A counter c is set to 3. Then some node o inside the bag is chosen randomly to
be inserted into the tour. As the name of the heuristic implies, this insertion
will be done in the best possible way. Thus, one calculates for each edge of
the tour what it would cost to cut the edge and to insert the new node o
between the end points of the edge:

Δi,o =
{
D(σ(i), o) +D(o, σ(i+ 1)) −D(σ(i), σ(i+ 1)) for 1 ≤ i ≤ c− 1 ,
D(σ(c), o) +D(o, σ(1)) −D(σ(c), σ(1)) for i = c .

(3.1)
The new node is then inserted where the insertion costs Δi,o are minimal.
Thus let Δj,o = mini Δi,o; then o is inserted between σ(j) and σ(j + 1) in
the tour. The counter c is incremented by 1. This procedure is repeated until
all nodes are inserted in the tour.

Figure 3.3 shows how a solution is built using the bestinsertion heuristic.
One finds here, too, that the start and the intermediate part of the heuristic
seem to perform rather well. However, looking at the final result one finds
first of all that a solution could easily be improved locally in some areas.
Furthermore, the random choice of the nodes to be inserted seems sometimes
to guide the heuristic in a wrong way. The results for applying this heuristic to
various TSP instances are composed in Table 3.2. Clearly, the bestinsertion
heuristic leads to much better results than the nearest neighbor heuristic,
which was only able to append a new node at the end of the existing sequence
of nodes.

However, the question arises as to whether one could do it even better
with this insertion type of heuristic. A point of criticism of the bestinsertion
heuristic could be that the nodes to be inserted are selected in a random order.
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Fig. 3.3. Constructing a solution of the PCB442 instance using the bestinsertion
heuristic: the six pictures show various stages of one application of this algorithm,
from the initialization via intermediate stages to the final solution
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Table 3.2. Results for the bestinsertion heuristic: for each instance, the bestinser-
tion heuristic was performed 100,000 times

Instance Minimum Maximum Mean value ± error

BEER127 121,062.674 146,446.669 131,970.892 ± 10.2
LIN318 43,807.0156 49,595.9488 46,569.0740 ± 2.1
PCB442 54,796.1778 61,561.2966 58,153.4797 ± 2.5
ATT532 29,206 32,281 30,627.9032 ± 1.1
NRW1379 61,913.7975 65,399.0571 63,638.0352 ± 1.3

One might wonder whether it is not better to derandomize this probabilistic
algorithm and to use an order constructed according to special criteria. A first
thought would be that that node o should be inserted next in the tour for
which the insertion costs Δj,o are minimal. Thus, the algorithm above is
altered in the following way, leading to a new “best-bestinsertion heuristic”
called the cheapest insertion heuristic [170]:

• Start with a randomly selected node õ as the first node of the tour, σ(1) = õ.
Put all nodes except õ in a bag.

• Select that node ô as the second node in the tour for which the distance
to õ is minimum, i. e.,

D(ô, õ) = min
o
D(o, õ) .

Set σ(2) = ô, remove ô from the bag, and set a counter c = 2.
• As long as c < N do:

– Determine the minimum insertion costs Δj,o = mini Δi,o for each node o
in the bag and memorize the edge position j where the best place to
insert node o is.

– Select that node ô for which Δj,ô is minimal, insert it in the partial tour
between σ(j) and σ(j + 1), remove it from the bag, and increment the
counter, c = c+ 1.

One might guess that this cheapest insertion heuristic would lead to better
results than the bestinsertion heuristic as the minimum of all minimum costs
for inserting a further node is used. However, a comparison of Table 3.3 with

Table 3.3. Results for the cheapest insertion heuristic: for each instance, each of
the nodes was once chosen as starting node of the heuristic. The mean value denotes
the average over N results

Instance Minimum Maximum Mean value ± error

BEER127 135,496.102 141,685.394 139,770.738 ± 93.7
LIN318 49,393.1998 50,808.5208 50,035.6234 ± 17.0
PCB442 57,415.3716 61,094.7875 59,353.3754 ± 55.3
ATT532 32,066 32,840 32,491.2481 ± 4.4
NRW1379 65,396.0661 66,478.0767 66,100.9075 ± 5.0
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Table 3.2 shows just the opposite. The bestinsertion heuristic leads to clearly
better results than the cheapest insertion heuristic. Obviously, this is the
case not although but because the bestinsertion heuristic allows for random
choices during its application.

Thus, it seems generally a good idea to insert new pieces into the system in
a random and not in a predefined order. However, one can also think of many
other rules defining an order for inserting the nodes (for a small overview
see, e. g., [170]). All of these rules have in common that they determine the
insertion order of the nodes according to some extremality conditions. One
might select that node from the bag for which the minimum insertion costs
are minimal or maximal, for which the maximum insertion costs are minimal
or maximal, for which the minimum distance to one of the nodes in the partial
tour is minimal or maximal, or for which the maximum distance to one of
the nodes in the partial tour is minimal or maximal, and so on.

Table 3.4. Results for the farthest insertion heuristic: for each instance, each node
was once chosen as starting node of the heuristic. The mean value denotes the
average over N results

Instance Minimum Maximum Mean value ± error

BEER127 124,000.033 140,965.911 129,789.501 ± 290
LIN318 45,065.7241 49,331.1769 46,633.8460 ± 38.1
PCB442 56,646.3008 61,013.0087 58,759.8852 ± 34.4
ATT532 29,918 32,024 30,986.2782 ± 17.0
NRW1379 62,862.6274 65,957.9057 64,214.9173 ± 11.9

Table 3.4 shows the results for the so-called farthest insertion heuristic.
Here that node is selected among all nodes whose minimum insertion costs are
maximal [170], i. e., one again determines for all nodes o and all possible inser-
tion points i the insertion costs Δi,o. Then one asks for Δj,ô = maxo mini Δi,o

and inserts the node ô by removing the jth edge. Comparing Table 3.4 with
the results in Table 3.2, one finds that this heuristic leads for one of the
considered instances to better results, but mostly to worse results than the
bestinsertion heuristic.

Then we want to have a look at the type of solutions that are created
by these heuristics. Figure 3.4 shows typical solutions of the BEER127 and
the PCB442 instances produced by the bestinsertion, cheapest insertion, and
farthest insertion heuristics. The starting node of the cheapest insertion and
of the farthest insertion heuristics are specially marked with a filled dot. We
find that the solutions of the bestinsertion heuristic and the farthest insertion
heuristic look rather similar to each other. Furthermore, the solutions of the
cheapest insertion heuristic look somewhat strange, but one can clearly see
what solutions such a selection rule for the node to be inserted leads to. For
all solutions, one finds that there are still crossings and other local things
that could be improved.
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Fig. 3.4. Comparison of solutions produced with the insertion heuristics mentioned
in the text. Left column: solutions for the BEER127 instance; right column: corre-
sponding solutions for the PCB442 instance. The solutions in the top row were
created with the bestinsertion heuristic, those in the middle with the cheapest in-
sertion heuristic, and those at the bottom row with the farthest insertion heuristic
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Summarizing, insertion heuristics lead very quickly to good, but not very
good, solutions. Generally, working with this type of heuristic seems to be
a very good way to randomly select the piece to be inserted in the system
and to insert it in the best possible way. If one really wants or has to define
a rule set governing the order in which individual pieces will be inserted in
the system, then one should work with minimax conditions, like taking “the
best of the worst” or “the worst of the best” item. Inserting “the worst of
the worst” naturally cannot lead to good solutions; furthermore, inserting
“the best of the best” has been shown not to be optimal in general. For
more complex problems, one should not develop a stiff rule set for which
item should be inserted and when and where to insert it, and one should
not try to perform insertions purely at random. Instead, one must find some
compromise between the paradigms of randomness and stiffness.

3.3 Using Deeper Insight into the Problem

The question arises as to whether one could make even better use of the
insertion approach to heuristics. One might have additional knowledge of the
problem one wants to use for such a construction heuristic in order to achieve
better results.

We will now give an example of how such deeper insight into a given
problem can actually lead to better results. There is considerable additional
knowledge about the properties of the TSP as it has been studied exhaus-
tively. For example, one might consider the convex hull (CH) of all nodes.
The CH is the smallest convex area in which all nodes lie. It is limited by
some outer nodes and the connecting lines between them. The order in which
these nodes of the CH are arranged is the same order in which they lie in
the optimum solution. As the insertion heuristics described above only insert
additional nodes between other nodes in the tour, they do not change the
order of these nodes. Thus, the CH can be considered a good starting point
for insertion heuristics.

There are several ways to construct a CH [177]. An easy way to do this
for a set of nodes in two dimensions is as follows:

• First determine the extreme values of the x- and y-coordinates of the nodes.
Let xmin, xmax, ymin, and ymax be these extreme values. The distances
D(i, j) between the single nodes shall be calculated according to the Eu-
clidean metric for this algorithm here.

• Then select among the nodes with y = ymin the one with the largest
x-coordinate. This node is part of the CH and is set as σ(1). Set a counter
c = 1.

• While x(σ(c)) < xmax, calculate for each node o with an x-coordinate
larger than x(σ(c)), i. e., x(o) > x(σ(c)), the angle between the connection
line from σ(c) to o and the x-axis. The node ô with the smallest angle is
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the next node in the convex hull. One need not calculate the angle α(o)
explicitly but only its cosine. This cosine is given by

cos(α(o)) =

(
x(o) − x(σ(c))
y(o) − y(σ(c))

)
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)
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. (3.2)

Then that ô is selected for which cos(α(o)) is maximal. ô becomes a part of
the convex hull, and the counter c is thus incremented by 1 and σ(c) = ô.
This step of the algorithm is repeated if x(σ(c)) < xmax.

• Now the algorithm has reached the rightmost region of the nodes. One
selects then from all nodes with x(o) = xmax the one with the largest y-
coordinate. If this node is not identical to σ(c), then the counter must be
incremented again and the node inserted at the end of the convex hull.

• While y(σ(c)) < ymax, calculate for each node o the angle α(o) to the
y-axis, as above:
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. (3.3)

That node ô for which this cosine is maximal is then appended to the
convex hull; thus c = c+ 1 and σ(c) = ô. This step of the algorithm must
be repeated if y(σ(c)) < ymax.

• As the y-coordinate of the last node of the CH is maximal, the algorithm
has reached the topmost region of the problem. One searches through all
nodes with y(o) = ymax for the one with the minimum x-coordinate. If this
node ô is not identical to σ(c), then it must be appended to the CH in the
described way.

• Now one must search for the node with the smallest angle to the −x-axis.
Thus let ô be the node with the maximum value for

cos(α(o)) =
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This node ô is again appended to the CH. If its x-coordinate of the new
σ(c) is larger than xmin, then this step of the algorithm must be repeated.

• Now the algorithm has reached the leftmost area. Among all nodes with
x(o) = xmin the one with the minimum y-coordinate is selected. If this
node ô is not identical to σ(c), then it must be added to the CH.
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• As long as y(σ(c)) > ymin, calculate for each node

cos(α(o)) =
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(3.5)

and select that node ô for which this cosine is maximal. Then ô is appended
to the CH. Again, this step is repeated until y(σ(c)) = ymin.

• Finally, the bottom region is reached again. If σ(c) = σ(1), then the last
node must be removed, as it appears both at the beginning and at the end
of the CH. This can simply be done by decrementing c by 1.

Using this approach, there are sometimes too many nodes in the CH due
to collinearities that occur when two or more nodes have the same cosine
value. However, the CH is supposed to contain the minimum number of nodes
necessary. Thus, one must remove nodes that are not needed.

Of course, there are also other and partially more elegant ways to con-
struct the CH of a set of nodes in two dimensions. Some of them work with
angular approaches like the algorithm above, others start with nonoverlap-
ping CHs for two and three nodes and unite these CHs successively into one
CH for all nodes [177].

The CH of the nodes is then used as the starting point of an insertion
heuristic. Figure 3.5 shows an application of the bestinsertion heuristic start-
ing with the CH as initialization. The pictures denoting various stages of the
algorithm are really typical: one often finds that an insertion heuristic start-
ing with the CH first inserts many inner nodes only between two neighboring
nodes of the CH before further connections of the CH are destroyed. Table 3.5
presents the results of this approach. One finds that the results are mostly
slightly better than using the pure bestinsertion heuristic, which starts from
three randomly chosen nodes.

Of course, one can also start the cheapest insertion and the farthest inser-
tion heuristics from the CH. Due to the deterministic order of the insertions
of the nodes, the algorithm will end up at a unique solution. The results
for these heuristics are presented in Table 3.6. Comparing the results for the
cheapest insertion with the results for the pure cheapest insertion heuristic
in Table 3.3, one finds that the results here are much better than the min-
imum values given in Table 3.3, such that the CH is a very good starting
point for an altered cheapest insertion heuristic. However, this trend is not
true for the results for farthest insertion, as a comparison with the results for
the pure farthest insertion heuristic in Table 3.4 shows. Here the results are
sometimes better and sometimes worse than the mean values in Table 3.4.
One can also compare the results in Table 3.6 with those in Table 3.5 and
finds that the cheapest and the farthest insertion heuristics lead to sometimes
better and sometimes worse results than the corresponding mean value of the
bestinsertion heuristic.
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Fig. 3.5. Constructing a solution of the BEER127 instance, starting from the CH
of the nodes and using the bestinsertion heuristic: the six pictures show various
stages of one application of this algorithm, from the initialization via intermediate
stages to the final solution
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Table 3.5. Results for the bestinsertion heuristic starting with the CH of the nodes
as initial tour: for each instance, the heuristic was performed 100,000 times

Instance Minimum Maximum Mean value ± error

BEER127 120,013.136 141,878.386 128,210.423 ± 9.6
LIN318 43,826.3060 49,138.9202 46,314.9891 ± 2.1
PCB442 54,538.7924 61,634.0449 58,114.3733 ± 2.5
ATT532 29,258 32,171 30,555.1791 ± 1.1
NRW1379 61,921.4855 65,580.9828 63,745.1455 ± 1.3

Table 3.6. Results for the cheapest insertion and the farthest insertion heuristics
starting with the CH of the nodes as initial tour: of course, there is only one solution
for each instance

Instance Cheapest Insertion Farthest Insertion

BEER127 124,830.995 124,789.471
LIN318 46,903.7692 46,857.7320
PCB442 56,588.8166 59,682.3358
ATT532 30,929 30,835
NRW1379 64,924.9067 63,540.6292

Summarizing, one can conclude that one might find better initialization
routines for some insertion heuristic if one has deeper insight into the prob-
lem. However, often this additional work might be useless, as the gain de-
pends on the combination of a good initialization and an appropriate insertion
heuristic.

3.4 The Savings Heuristic

All construction heuristics introduced above have one thing in common: the
item to be inserted is inserted in the best possible way. Thus, each item is
somehow egoistic as it looks out only for its own profit, i. e., its own insertion
costs, which will be optimal. However, due to this egoistic approach, synergy
effects might be lost, such that one looks for another construction heuristic
that considers all nodes somehow in parallel.

An example for such a heuristic is the savings algorithm, which was orig-
inally developed for the vehicle routing problem (VRP) but is also applied
to the TSP in order to obtain rather fast quite good solutions. The TSP
is considered to be a VRP and solved in the same way as a corresponding
VRP instance. For the TSP case, one starts by randomly selecting one node
and calling it “the depot d.” (For a VRP, the depot is known in advance,
of course.) The algorithm proceeds as shown in Fig. 3.6. N − 1 traveling
salesmen start from depot d to one of the other N − 1 nodes and return to
the depot. This is the initialization routine of the savings heuristic. One now
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has a tour plan σ with σ(i, j) denoting the ith node in the tour of the jth
salesman. Thus, intially each column contains one entry, with σ(1, j) being
the visited customer. One can omit depot d at the beginning and at the end
of each tour, but of course the length of the tour of the jth salesman is given
by

Hj(σ) = D(d, σ(1, j)) +
Nj−1∑

i=1

D(σ(i, j), σ(i+ 1, j)) +D(σ(Nj , j), d) , (3.6)

with Nj being the number of customers in tour j. The overall length is given
by the sum of these tour lengths. Thus, the TSP is transformed into a multiple
traveling salesman problem with N−1 salesmen. The task is now to minimize
the number of salesmen needed, such that a minimum number of salesmen
remains at the end. In the case of the TSP, this number is 1; for a VRP the
number might be larger because of the capacity constraint.

This minimization process is performed by uniting the tours of two trav-
eling salesmen into the tour of one traveling salesman by removing the depot
from the end of one tour and the beginning of another tour. Thus, one cal-
culates for each pair of tours (a, b) the savings that can be achieved if the
tours are united into one tour. Let Na be the number of nodes in the tour
of traveling salesman a, not including the depot at the beginning and at the
end, and analogously let Nb be the number of nodes in tour b. In the case of
the symmetric TSP, there are four ways to unite the two tours, giving four
savings values for uniting the tours:

S1(a, b) = D(σ(Na, a), d) + D(d, σ(1, b)) − D(σ(Na, a), σ(1, b)) ,
S2(a, b) = D(σ(1, a), d) + D(d, σ(1, b)) − D(σ(1, a), σ(1, b)) ,
S3(a, b) = D(σ(Nb, b), d) + D(d, σ(1, a)) − D(σ(Nb, b), σ(1, a)) ,
S4(a, b) = D(σ(Na, a), d) + D(d, σ(Nb, b)) − D(σ(Na, a), σ(Nb, b)) .

(3.7)

Then the savings for uniting tours a and b is given by

S(a, b) = max {S1(a, b), S2(a, b), S3(a, b), S4(a, b)} . (3.8)

After the savings S(a, b) has been determined for each pair (a, b) of tours,
those tours ã and b̃ are united for which this savings is maximal:

• If S1(ã, b̃) is maximal, then tour b̃ is appended to the end of tour ã: thus,
one gets one sequence σ(1, j), σ(2, j), . . . , σ(Nj , j), with σ(1, j) = σ(1, ã),
σ(2, j) = σ(2, ã), . . ., σ(Nã, j) = σ(Nã, ã), σ(Nã + 1, j) = σ(1, b̃), σ(Nã +
2, j) = σ(2, b̃), . . ., σ(Nj , j) = σ(Nb̃, b̃), with Nj = Nã +Nb̃.

• If, however, S2(ã, b̃) is maximal, then the direction of tour ã is first changed,
such that the first customer becomes the last and so on, and after that
tour b̃ is appended to the end of tour ã.

• If S3(ã, b̃) is maximal, then tour ã is appended to the end of tour b̃.
• If, finally, S4(ã, b̃) is maximal, then the direction of tour b̃ must be changed

before it is appended to the end of tour ã.
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Fig. 3.6. Constructing a solution of the PCB442 instance, using the savings heuris-
tic: the six pictures show various stages of one application of this algorithm, from
the initialization via intermediate stages to the final solution
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From these descriptions above it follows that the situation is not as easy if
the distance matrix is not symmetric. For the ATSP, one must consider the
difference in length for changing the direction of a tour. In the case of the
VRP, one must check whether a truck is overloaded if it has to serve the
united tour. If this constraint is violated, the unification must be forbidden.
Analogously, two tours cannot be united if hard time windows of customers
are violated after the unification. If such a unification is forbidden due to
these additional constraints, then one goes through the list of savings that
has to be ordered according to the size of the savings and checks for the next
possibility for uniting two tours until a pair of tours is found that can be
united.

After this unification of two tours, one calculates all savings values be-
tween the united tour and the other tours. One still knows the other savings
values from the calculations before. Then one again orders the savings values
according to their size and unites those two tours with the largest savings
value, if this is allowed.

This procedure is iterated again and again. In the case of the TSP, only
one tour remains at the end. In the case of the VRP, it becomes impossible
at some step to unite any pair of tours due to the capacity constraints such
that the algorithm stops with a number of trucks, which might sometimes
be the minimum number of trucks actually needed but usually it is slightly
larger.

Looking at Fig. 3.6 again, one sees what actually happens if applying this
heuristic: one starts with a starlike structure with the center of the star being
the depot from which all the rays originate that are the tours starting at the
depot, serving one customer, and ending at the depot. Then neighboring
rays with the largest lengths are united such that the radius of the starlike
structure around the depot decreases. Automatically, the question arises as
to where to put the center of this star, i. e., whether it is better to place the
depot in the center or at one of the edges. Of course, one should not consider
the geographical center of the area in which the nodes lie as most of the
nodes might be clustered in some small region inside the overall area. Thus,
the “center of mass” is a preferable measure for the center of the points.
The coordinates XCM and YCM of the center of mass point PCM are simply
calculated by

XCM =
1
N

N∑

i=1

xi and YCM =
1
N

N∑

i=1

yi . (3.9)

Figure 3.7 shows two diagrams in which the length of all possible final so-
lutions is plotted vs. the distance D(d, PCM) between depot d and PCM: for
the BEER127 instance, the depot should not be placed in one of the beer
gardens far out in the suburbs. Instead, one of the beer gardens rather near
the center of mass should be chosen. For the PCB442 problem, the results are
just the opposite. Here one gets on average better results if one chooses the
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Fig. 3.7. Analysis of the savings heuristic: each point stands for one of the N
possible applications of the savings algorithm. The length of the final configuration
is plotted vs. the distance between the depot node and the center of mass. The
data shown on the left belong to the BEER127 instance; the data on the right to
the PCB442 instance

Table 3.7. Results for the savings heuristic: for each instance, each of the nodes
was once chosen as the “depot.” The mean value denotes the average over N results

Instance Minimum Maximum Mean value ± error

BEER127 122689.400 137693.407 126611.232 ± 198
LIN318 44417.8099 47600.2678 45764.5415 ± 37.6
PCB442 53898.6223 57750.9015 55766.8600 ± 33.2
ATT532 29528 31297 30320.3609 ± 13.7
NRW1379 61167.6236 63451.7975 62397.4092 ± 9.3

location of the depot further out from the center. Thus, there is no general
criterion where to optimally place the depot.

Table 3.7 presents all results for the savings algorithm. Comparing them
with the results for the insertion type of heuristics, the savings algorithm
leads to better results on average. This surely has to do with the integrated
view of the savings algorithm. Of course, the savings algorithm also has its
weak points, as, e. g., two tours that were already connected cannot be split
again; furthermore one tour cannot be inserted but only appended to the end
of another tour.

A heuristic that does exactly this and that is related to this savings heuris-
tic is the nearest merger heuristic. In contrast to the savings heuristic, the
nearest merger heuristic does not choose a specific node to be a depot. In-
stead, it initializes the system with N one-node tours. These tours are grad-
ually united. The outline of the algorithm is as follows:

• The heuristic starts with N tours. Each of them contains one of the N
nodes such that each node is in one tour.

• While the number of tours is larger than 1, do:
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– Select those two tours σ(., k) and σ(., l) with the smallest distance to
each other. This distance is given by

min
1≤i≤Nk
1≤j≤Nl

{D(σ(i, k), σ(j, l)} ,

with Nk being the number of nodes in tour k and Nl the number of
nodes in tour l.

– The tours are united in the cheapest possible way: let i+ be the successor
of tour position i in tour σ(., k) and j+ the successor of j in σ(., l). Then
for all pairs (i, j) one calculates the savings values

S1 = D(σ(i, k), σ(j, l)) + D(σ(i+, k), σ(j+, l))
− D(σ(i, k), σ(i+, k)) − D(σ(j, l), σ(j+, l))

and
S2 = D(σ(i, k), σ(j+, l)) + D(σ(i+, k), σ(j, l))

− D(σ(i, k), σ(i+, k)) − D(σ(j, l), σ(j+, l)).

For the pair (i, j) with the minimum savings value, one cuts the edges
between σ(i, k) and σ(i+, k) and between σ(j, l) and σ(j+, l) and forms
two new edges: if S1 < S2, then edges between σ(i, k) and σ(j, l) and be-
tween σ(i+, k) and σ(j+, l) are created. Otherwise, edges between σ(i, k)
and σ(j+, l) and between σ(i+, k) and σ(j, l) are created. Thus, the two
possibilities for choosing one of the two directions of the tour to be in-
serted are considered.

– If the number of tours is larger than 1, then one iterates this procedure
again.

Of course, the formulas for the savings values above cover only the general
case in which both tours consist of at least three nodes. Otherwise, one must
distinguish between one and two nodes for each tour. For each of these cases,
one can use even simpler formulas.

Table 3.8 shows the results for applying the nearest merger heuristic to the
five considered instances. One finds that the results are very bad, although
the heuristic provides more possibilities to connect two tours than the Savings
heuristic, which only allows one to append a tour at the end of another tour.

Table 3.8. Results for the nearest merger heuristic: of course, there is only one
solution for each instance

Instance Result

BEER127 141,316.469
LIN318 52,203.8594
PCB442 60,512.9570
ATT532 32,979
NRW1379 66,065.2031
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However, due to the depot approach, the savings heuristic makes intelligent
use of the angular distribution of the nodes around the depot. This effect is
missing here, so that one ends up with far worse results, although the nearest
merger heuristic is related to the savings heuristic in its basic philosophy.

As a next step, one might think that a randomization of the algorithm
might lead to better results, as, e. g., the bestinsertion heuristic provides bet-
ter results than the cheapest insertion heuristic. One can analogously define
a best merger heuristic in which the tours to be united are chosen at ran-
dom and the edges to be removed are determined as in the nearest merger
heuristic.

Table 3.9. Results for the best merger heuristic: for each instance, 100,000 opti-
mization runs were performed

Instance Minimum Maximum Mean value ± error

BEER127 297,419.569 401,973.722 354,925.723 ± 38.6
LIN318 257,606.980 321,904.772 287,828.522 ± 22.4
PCB442 344,280.234 418,127.578 380,302.261 ± 24.9
ATT532 210,753 251,342 230,491.492 ± 15.4
NRW1379 638,256.993 715,736.532 673,542.708 ± 25.4

Table 3.9 shows the results for this approach, which are all very bad.
Here the random approach leads to very long edges that cannot be removed
anymore in the subsequent optimization process. Thus, not in every case
does a randomization of an algorithm lead to an improvement over the stiff
version of the algorithm. One should always first consider the effects of this
randomization during the optimization process. In this case, one can even
easily predict that the randomized heuristics will not lead to good results if
one performs a few steps of this method on a small instance manually.

Generally, construction heuristics can lead very quickly to quite good results
that are roughly at least 10% worse than the optimum. They are therefore
used in exactly these applications for which a solution has to be found nearly
immediately “after pressing the button” and where a loss of roughly 10%, if
compared to the unknown optimum, does not hurt. When one wants to reduce
this loss to 1% or even 0.1%, more elaborate algorithms must be used. This
gain must be paid for with additional calculation time.
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4.1 Initialization Routine

In the last chapter, several examples for construction heuristics leading to
quite good solutions were given. But there is also another approach that
involves starting at some solution and improving this solution step by step
until a rather good solution is obtained.

These improvement heuristics usually start with a randomly chosen tour,
as shown in Fig. 4.1 for the traveling salesman problem (TSP) instances
BEER127 and PCB442. The “construction” of such a random initial config-
uration is performed as follows:

• Put all nodes of the TSP instance in an unordered bag and set a counter
c = 0.

• While c < N ,
– Increment c by 1,
– Select one node o from the bag randomly,
– Set σ(c) = o,
– Remove o from the bag.

Fig. 4.1. Random configurations of the BEER127 instance (left) and the PCB442
instance (right)
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Each of the N ! possible orders of nodes is achieved with equal probability.
For the symmetric TSP, the starting node and the direction of the tour does
not matter, such that there are (N − 1)!/2 configurations of the symmetric
TSP. For the asymmetric TSP (ATSP), one has (N − 1)! configurations.

The average length of all configurations can be computed easily: as the
nodes are chosen in a random order, each edge has the same probability to
be part of the tour. The mean edge length D̄ is given as the average over the
lengths of all edges that can occur in a TSP configuration:

D̄ =
1

N(N − 1)

N∑

i,j=1
i�=j

D(i, j) . (4.1)

(Note that the diagonal elements of the distance matrix never occur as edge
lengths.) Thus the average length of a randomly chosen configuration is given
by

〈H〉∞ = N × D̄ =
1

N − 1

N∑

i,j=1
i�=j

D(i, j) . (4.2)

Table 4.1 denotes the results averaged over 100,000 random configurations
for five TSP instances. One finds that the mean value of the lengths fluctuates
around its expectation value as expected. However, the best solution found
is much worse than any solution created by one of the construction heuristics
presented in the last chapter. Thus, one cannot hope to find a quite good
solution by simply creating configurations at random. There are exponentially
more configurations in the energy regime around 〈H〉∞ than in the regime of
the rather good solutions, such that the probability of creating a rather good
solution vanishes.

However, a random configuration usually serves as a starting point for
improvement heuristics. The task is now to transfer the system from the
high-energy unordered regime to a low-energy ordered solution.

Table 4.1. Randomly created solutions: for each instance, the routine for creating
an arbitrary configuration was performed 100,000 times. In addition to the results
of these runs, the expectation value 〈H〉∞ for each instance is given

Instance 〈H〉∞ Minimum Maximum Mean value ± error

BEER127 628,964.464 522,048.692 704,879.121 628,871.220 ± 62.0
LIN318 587,996.659 529,494.856 648,422.848 587,967.946 ± 44.7
PCB442 772,614.928 696,210.110 841,405.018 772,583.835 ± 48.6
ATT532 512,114.712 466,452 556,684 512,161.912 ± 33.5
NRW1379 1,423,598.22 1,337,635.44 1,496,604.12 1,423,553.33 ± 56.0
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4.2 Small Moves

For all improvement heuristics , the philosophy is as follows: starting from
an arbitrary configuration, one tries to improve this configuration step by
step until no further improvement is found. One defines a routine called
a move by which a configuration is changed, i. e., a move is performed from
a configuration σ to a configuration τ . The question arises as to what such
a move would look like. In the concept of local search, a move will only change
a configuration slightly, so that one searches somehow in the neighborhood
of the current configuration for a better solution.

Thus, the task is now to find small moves that change a TSP configuration
only slightly. An obvious move is exchanging two nodes of the tour, as shown
in Fig. 4.2. This move is mostly called exchange (EXC), but sometimes also
swap, transposition, or or-opt. (Note that in the business of vehicle routing,
there is another move sometimes called exchange. This move exchanges two
nodes of different tours. Thus, one always has to ask what move is meant.)
The procedure is as follows:

• Choose two tour positions i and j with 1 ≤ i, j ≤ N and i �= j at random.
The nodes σ(i) and σ(j) are to be exchanged.

• Let i+ be the tour position after tour position i, i. e.,

i+ =
{
i+ 1 if 1 ≤ i ≤ N − 1
1 if i = N

,

and let i− be the tour position before i, i. e.,

i− =
{
i− 1 if 2 ≤ i ≤ N
N if i = 1

.

Fig. 4.2. The exchange (EXC)
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Analogously, let j+ be the tour position after j and j− be the tour position
before j.

• Applying the move routine means jumping from the current configuration σ
to a new configuration τ . In most acceptance criteria for a move, the energy
difference ΔH = H(τ)−H(σ) is considered. One need not sum up all edge
lengths of the configurations σ and τ ; instead, one must consider the lengths
of the differing edges only:

ΔH =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(σ(i−), σ(j)) + D(σ(i), σ(j+))
− D(σ(i−), σ(i)) − D(σ(j), σ(j+)) if i+ = j ,

D(σ(j−), σ(i)) + D(σ(j), σ(i+))
− D(σ(j−), σ(j)) − D(σ(i), σ(i+)) if j+ = i ,

D(σ(i−), σ(j)) + D(σ(j), σ(i+))
+ D(σ(j−), σ(i)) + D(σ(i), σ(j+))
− D(σ(i−), σ(i)) − D(σ(i), σ(i+))
− D(σ(j−), σ(j)) − D(σ(j), σ(j+))

otherwise .

(4.3)

Thus, one can easily calculate the energy difference without applying the
move. This is also true for the other moves below.

• After the energy difference has been calculated, it is checked whether the
move shall be accepted according to the acceptance criterion of the under-
lying algorithm:
– If it is accepted, then σ(i) and σ(j) are exchanged.
– If it is rejected, then one simply stays with the configuration σ.

Fig. 4.3. The node insertion move (NIM)



4.2 Small Moves 267

There are also other possibilities for changing the configuration σ slightly.
For example, one could shift one node to another position in the tour, as
shown in Fig. 4.3. This move is usually called node insertion move (NIM).
The procedure for applying the NIM is rather the same as applying the EXC:

• Randomly select a tour position i with 1 ≤ i ≤ N and calculate i+ as
above. The edge between σ(i) and σ(i+) shall be removed.

• Randomly select a tour position j with 1 ≤ j ≤ N , j �= i, and j �= i+. σ(j)
is the node to be inserted between σ(i) and σ(i+).

• Determine j− and j+ as above.
• The energy difference is given as follows:

ΔH =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

D(σ(i), σ(j)) + D(σ(i+), σ(j+))
− D(σ(i), σ(i+)) − D(σ(j), σ(j+)) if j− = i+ ,

D(σ(j−), σ(i)) + D(σ(j), σ(i+))
− D(σ(j−), σ(j)) − D(σ(i), σ(i+)) if j+ = i ,

D(σ(i), σ(j)) + D(σ(j), σ(i+))
+ D(σ(j−), σ(j+)) − D(σ(i), σ(i+))
− D(σ(j−), σ(j)) − D(σ(j), σ(j+))

otherwise .

(4.4)

• If the acceptance criterion is fulfilled, then the move has to be applied. In
the first two cases, this is easy: σ(j−) has to be exchanged with σ(j) in the
case j− = i+; analogously, σ(i) is exchanged with σ(j) in the case j+ = i.
In the other general case, one first stores σ(j) in an auxiliary variable h
and then distinguishes between i < j and i > j: if i < j, then one must
shift σ(j−), σ(j−− 1), . . ., σ(i+) toward the position of the successor, i. e.,
σ(j−) → σ(j), σ(j− − 1) → σ(j−), . . ., σ(i+) → σ(i+ + 1), and then insert
the node σ(i+) = h. In the case i > j, one shifts σ(j+), . . ., σ(i) toward
the position of the predecessor, i. e., σ(j+) → σ(j), . . ., σ(i) → σ(i − 1),
and then inserts the node σ(i) = h.
This description holds for the implementation of a TSP configuration as
a 1D array σ, with σ(i) being the node at tour position i. However, one
can also implement a TSP configuration as a connected list in which there
is a pointer from each node to its successor. In this implementation, the
update routine for the general case is much easier, as only three pointers
have to be updated. One might conclude that one should prefer this imple-
mentation as it requires much less computation time for the update of the
configuration. However, more computing time is necessary until the energy
difference is calculated. Furthermore, except for the random walk (RW),
not every move is accepted. Thus, one must check with the acceptance
criterion used to see which of these implementations is faster.

A further small move was introduced by Lin [129]. The so-called Lin-2-
opt (L2O), which is shown in Fig. 4.4 removes two nonneighboring edges of
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Fig. 4.4. The Lin-2-opt (L2O)

a configuration, changes the direction of one part of the tour, and inserts
two new edges connecting the two parts again. The procedure for an array
implementation of a configuration of a symmetric TSP is as follows:

• Randomly select a tour position i with 1 ≤ i ≤ N .
• Randomly select a tour position j with 1 ≤ j ≤ N and j �= i.
• Sort i and j such that i < j.
• Define i+ and j+ analogously to the above.
• The cases i+ = j and j+ = i are not allowed. In these cases, restart from

the very beginning.
• The edges to be removed shall be (σ(i), σ(i+)) and (σ(j), σ(j+)). The en-

ergy difference is thus given as

ΔH = D(σ(i), σ(j)) +D(σ(i+), σ(j+)) −D(σ(i), σ(i+)) −D(σ(j), σ(j+)) .
(4.5)

• If the acceptance criterion is met, then the part between σ(i) and σ(j+)
must be turned around. This is done by exchanging pairs of nodes, i. e.,
σ(i+) ↔ σ(j), σ(i+ +1) ↔ σ(j−1), . . ., till σ((i+ j)/2) ↔ σ((i+ j)/2+1)
if i+ j is even or σ([(i+ j)/2]) ↔ σ([(i+ j)/2]+2) if i+ j is odd. ([x] again
denotes the Gaussian brackets that take the integer part of x.)

This description must be changed for the ATSP, as one must consider that
the length of the tour part that is turned around changes. Furthermore, only
in the case of the symmetric TSP is the turning around of one of the two
parts arbitrary. Thus, for the ATSP one may not order i and j according to
their size, which was done here in order to simplify the update routine.
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Thus, there are three small moves for the TSP. A comparison of these
moves leads to the following insight:

• These are the smallest possible moves for the TSP, as for each move only
two tour positions are selected. It is not possible to perform a tour change
if changing something by choosing only one tour position if one is dealing
with the symmetric TSP. (For the ATSP, one could turn the whole tour
around.)

• The L2O cuts two edges, the NIM three edges, and the EXC four edges.
• The NIM moves one node, the EXC two nodes, and the L2O |j− i| nodes.
• The number of configurations τ that can be reached from one configura-

tion σ is of the order O(N2) for all moves: in the case of the EXC, one has
exactly

(
N
2

)
, in the case of the L2O only N × (N − 3)/2 neighbors. Thus,

the so-called neighborhood size of all three moves is virtually the same.

The question is now how well these three moves perform.

4.3 Computational Results for Greedy Algorithm

First, one must consider the case that one starts with a random configura-
tion. The task is to end up at a quite good solution. Of course, it makes
no sense to apply the moves mentioned above in the RW scenario. As ev-
ery move is accepted in the RW mode, one would change the configurations
at random, thus ending up with random configurations, which are energeti-
cally much worse than the optimum solution, as seen above. Thus, another
simple acceptance criterion must be found, highlighting the effectiveness of
the moves themselves. The simplest criterion provides the greedy algorithm,
which rejects any deterioration and accepts all moves with ΔH ≤ 0. Applying
this greedy algorithm, the system will freeze after the application of several
moves in some locally minimum configuration.

The number of moves needed until the system freezes is proportional to
N2, as the neighborhood size is of order O(N2) for every configuration. A few
test runs showed that after 1 − 12 × N2 move trials the system was frozen
for all three move routines. In order to be on the safe side, we started each
simulation with a randomly generated configuration and performed 50×N2

moves.
The first question of interest is what the final configurations look like

for the different types of moves. Figure 4.5 shows final configurations of the
BEER127 and the PCB442 instances, which are metastable to either the
EXC or the NIM or the L2O. That the configuration is indeed metastable
means that there cannot be found a subsequent move of the corresponding
type that could improve the solution. This can especially be nicely seen in
the case of the L2O, as the configurations no longer contain any crossings:
each application of a L2O adds or removes one crossing. Removing a crossing
means decreasing the length of the configuration. Thus, if no crossings are
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Fig. 4.5. Comparison of solutions produced with the greedy algorithm, using the
small moves mentioned in the text. Left column: solutions for the BEER127 in-
stance; right column: corresponding solutions for the PCB442 instance. The solu-
tions in the top row were created using the EXC, those in the middle using the
NIM, and those at the bottom using the L2O
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left, the length of the configuration cannot be decreased further with the
L2O.

The second question is how well these moves perform and which of these
provides the best results. The graphic in Fig. 4.5 already reveals that the
L2O leads to the best results. The results for each 100 optimization runs are
presented in Table 4.2. One finds that for all instances, the L2O leads to
by far the best results, whereas the EXC leads always to the worst results.
This enormous difference between the EXC and the L2O was theoretically
explained in [201]: as the number of cut edges is two for the L2O and four
for the EXC, for large N , the correlation length λ is given by N/2 if using
the L2O and N/4 if using the EXC. As the size of the neighborhood of
a configuration is roughly the same for both moves, namely, of order O(N2),
this difference in λ results in the fact that the L2O must lead to better
results than the EXC. Generalizing this approach, one also understands that
the quality of the results achieved with the NIM lies in between, as three
edges are cut, leading to λ = N/3, and again the size of the neighborhood of
a configuration is of order O(N2).

Next, one might wonder whether it would not be best to implement all
three moves and start them in a random order, thus getting solutions that
are metastable both for the EXC and the NIM and the L2O. Table 4.3 shows
the results for this approach, in which each of the moves EXC, NIM, and L2O
was called with probability 1

3 . Note that we used 150×N2 moves here in order

Table 4.2. Results for the greedy algorithm using small moves: for each instance,
100 optimization runs were performed, starting with a random configuration and
performing either a EXC 50×N2 times or a NIM 50×N2 times or a L2O 50×N2

times with the greedy acceptance criterion

Instance Move Minimum Maximum Mean value ± error

BEER127 EXC 159,705.087 208,409.703 182,672.403 ± 977.4
NIM 132,898.075 161,648.200 146,418.726 ± 596.4
L2O 121,178.315 138,126.861 129,964.407 ± 325.5

LIN318 EXC 90,116.6104 127,763.120 110,660.750 ± 628.5
NIM 59,992.7967 78,436.1451 68,407.9569 ± 376.2
L2O 45,115.9243 49,971.4471 47,276.4710 ± 95.0

PCB442 EXC 112,322.878 142,974.558 129,290.471 ± 708.4
NIM 64,129.9159 79,939.0300 70,764.4069 ± 296.7
L2O 54,682.4205 59,026.1119 56,614.6608 ± 82.3

ATT532 EXC 69,294 91,946 80,037.86 ± 449.7
NIM 37,691 47,862 42,460.43 ± 212.1
L2O 29,960 32,026 30,867.73 ± 42.2

NRW1379 EXC 164,670.848 196,316.798 181,017.337 ± 607.0
NIM 89,353.7705 105,344.742 94,486.5234 ± 294.3
L2O 62,862.6385 64,887.1349 64,046.8071 ± 42.9
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Table 4.3. Results for the greedy algorithm using small moves: for each instance,
100 optimization runs were performed, starting with a random configuration and
performing 150 × N2 moves with equal probabilities for the move being an EXC,
a NIM, or a L2O

Instance Minimum Maximum Mean value ± error

BEER127 119,331.431 134,236.701 126,605.995 ± 305.2
LIN318 43,488.2914 47,875.0510 45,743.4573 ± 78.9
PCB442 52,589.4816 56,840.8241 54,660.7005 ± 76.3
ATT532 29,069 30,530 29,689.64 ± 31.1
NRW1379 60,334.7758 62,208.5391 61,154.0388 ± 39.4

to be on the safe side for the freezing criterion. One indeed finds that this
“mixture” leads to a better quality of results than the isolated moves. This
result is not surprising when considering the energy landscape: the resulting
configurations are now metastable with respect to the EXC, the NIM, and
the L2O, whereas the results presented in Table 4.2 were only metastable
with respect to one of these moves. If one thus checks all local minima in
an energy landscape formed by, e. g., the Exchange only, one would find that
most of these configurations could be further improved by a NIM or a L2O.
The application of these moves and then also of additional EXCs would lead
to better results.

4.4 Local Search as Afterburner
for Construction Heuristics

There is also another way of using these moves combined with the greedy
acceptance criterion: as seen in the last chapter, the resulting configurations
of construction heuristics, such as the bestinsertion heuristic or the savings
heuristic, are not locally optimal. Thus, they could be improved by removing
crossings, by shifting nodes to other positions, or by exchanging nodes. Thus,
one creates a configuration with a construction heuristic and then starts
a so-called “afterburner”, which consists of an improvement heuristic. This
afterburner applies small moves in the greedy mode in order to improve the
configuration locally.

Table 4.4 shows the results for starting with configurations produced by
the bestinsertion heuristic followed by an afterburner consisting of 50 × N2

EXCs, NIMs, or L2Os in the greedy mode. One finds that the NIM can
improve the configurations produced by the bestinsertion heuristic for all
instances much more than the EXC or the L2O. Even better results are
achieved with a mixture of all three moves.
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Table 4.4. Results for the afterburner for the bestinsertion heuristic: for each in-
stance, 100 optimization runs were performed. The “orig” results are those achieved
with the bestinsertion heuristic only. Then an afterburner was applied to each of
the 100 configurations, consisting of either 50 × N2 EXC or 50 × N2 NIMs or
50 × N2 L2O or 150 × N2 moves with equal probability of an EXC, a NIM, or
a L2O (“mixed”). Each of these moves was used in the greedy mode, and thus all
deteriorations were rejected

Instance Move Minimum Maximum Mean value ± error Mean
improvement

BEER127 orig 125,660.270 140,146.531 131,928.823 ± 273.9
EXC 122,802.361 137,991.458 130,452.933 ± 277.5 1475.89
NIM 121,753.542 133,271.145 127,592.701 ± 253.2 4336.12
L2O 123,103.694 134,933.780 128,469.835 ± 255.8 3458.99

Mixed 121,147.451 134,091.960 126,540.200 ± 260.8 5388.62

LIN318 Orig 45,069.2572 48,654.3710 46,475.8893 ± 71.76
EXC 44,786.9199 48,151.1938 46,030.9755 ± 68.07 444.91
NIM 43,984.2132 47,134.9966 45,173.8139 ± 62.17 1302.08
L2O 44,380.9389 46,957.3946 45,427.7567 ± 55.65 1048.13

Mixed 43,783.6120 46,685.4222 44,771.2695 ± 53.21 1704.62

PCB442 Orig 56,075.4169 60,433.8159 58,186.9793 ± 68.96
EXC 55,592.1833 59,534.4677 57,423.6919 ± 68.11 763.29
NIM 53,365.8901 57,559.2394 55,340.1747 ± 64.72 2846.80
L2O 54,638.2939 58,231.7207 56,144.9652 ± 71.71 2042.01

Mixed 53,500.8513 56,206.5877 54,747.9606 ± 59.60 3439.02

ATT532 Orig 29,725 31,489 30,612.67 ± 33.71
EXC 29,508 31,074 30,251.67 ± 29.63 361.00
NIM 28,720 30,151 29,570.17 ± 31.17 1042.50
L2O 29,257 30,493 29,916.42 ± 26.91 696.25

Mixed 28,650 29,995 29,354.41 ± 28.44 1258.26

NRW1379 Orig 62,661.6777 64,754.9425 63,594.9357 ± 42.93
EXC 61,794.5966 63,818.7890 62,833.7421 ± 41.28 761.19
NIM 60,126.8920 61,632.9720 60,968.9513 ± 27.21 2625.98
L2O 61,381.6769 63,133.1927 62,193.8470 ± 33.59 1401.09

Mixed 59,965.4997 61,185.0856 60,631.2822 ± 28.59 2963.65

A look at Table 4.5 reveals that also in the case where the initial solutions
are produced with the savings heuristic, the NIM leads to the largest improve-
ments among the three moves. Again, the EXC performs worst. A mixture
of all three moves leads to even better results, which are on average only 3
to 5% worse than the optimum.
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Table 4.5. Results for the afterburner for the savings heuristic: the procedure is
the same as for the results in Table 4.4, with the exceptions that the initial config-
urations were produced not with the bestinsertion but with the savings heuristic
and that N optimization runs were performed

Instance Move Minimum Maximum Mean value ± error Mean
improvement

BEER127 Orig 122,689.400 137,693.407 126,611.232 ± 197.04
EXC 120,405.089 134,417.855 124,612.765 ± 178.36 1998.47
NIM 119,411.536 132,192.833 122,650.917 ± 161.18 3960.32
L2O 119,936.472 130,000.871 123,781.982 ± 166.50 2829.25

Mixed 118,444.675 128,040.274 122,372.420 ± 143.14 4238.81

LIN318 Orig 44,417.8099 47,600.2678 45,764.5415 ± 37.55
EXC 43,199.9493 46,689.5988 44,938.3216 ± 38.18 826.22
NIM 43,008.0510 45,572.6886 44,206.8113 ± 30.67 1557.73
L2O 43,098.0751 45,773.1190 44,431.7113 ± 30.83 1332.83

Mixed 42,857.2567 45,379.7298 43,943.4939 ± 28.04 1821.05

PCB442 Orig 53,898.6223 57,750.9015 55,766.8600 ± 33.18
EXC 53,184.7074 56,554.6051 54,872.4913 ± 30.78 894.37
NIM 51,701.5554 54,684.4690 53,021.0843 ± 25.53 2745.78
L2O 52,422.0055 55,591.6721 54,110.9355 ± 27.31 1655.92

Mixed 51,622.9015 54,165.6020 52,843.2454 ± 23.79 2923.61

ATT532 Orig 29,528 31,297 30,320.36 ± 13.61
EXC 28,951 30,852 29,729.47 ± 14.00 590.89
NIM 28,465 30,057 29,088.00 ± 12.50 1232.36
L2O 28,637 30,416 29,447.88 ± 11.65 872.48

Mixed 28,213 29,918 28,921.26 ± 11.54 1399.10

NRW1379 Orig 61,167.6236 63,451.7975 62,397.4092 ± 9.31
EXC 60,518.0125 62,547.8736 61,504.1214 ± 8.63 893.29
NIM 59,339.9513 61,199.3219 60,196.2318 ± 7.47 2201.18
L2O 60,118.8580 62,266.0126 61,139.2124 ± 8.36 1258.20

Mixed 59,192.6633 61,031.2744 60,011.4728 ± 7.41 2385.94
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In the last chapter, the smallest possible moves for applying the local search
approach to the traveling salesman problem (TSP) were introduced. The
results were already quite promising but not very good. Thus, one wonders
whether a weakening of the local search approach, i. e., using larger moves,
might lead to better results. These larger moves can be composed by smaller
ones. As the best results for the smallest moves were achieved with the Lin-
2-opt (L2O), we will only consider constructions of higher-order moves based
on this L2O.

5.1 Lin-3-Opts

For the L2O, two tour positions i and j were considered after which the tour
was cut. Analogously, one can fix three tour positions, i, j, and k, after which
the tour is cut. Thus, one gets three sequences that have to be reconnected
in such a way that a new closed tour is built. Let i, j, and k be ordered
according to their size such that i < j < k, and let i+, j+, and k+ be the
tour positions after the positions i, j, and k, respectively. Thus, one can write
the cut tour as follows:

. . . σ(i) σ(i+) . . . σ(j) σ(j+) . . . σ(k) σ(k+) . . .

Note that the tour is, of course, closed such that the partial tour starting
at σ(k+) ends with σ(i). If j �= i+, k �= j+, and i �= k+, there are eight
possibilities to reconnect the three parts:

1. One can trivially reconnect σ(i) with σ(i+), σ(j) with σ(j+), and σ(k)
with σ(k+), thus ending up with the old configuration.

2. One can connect σ(i) with σ(i+), σ(j) with σ(k), and σ(j+) with σ(k+),
thus ending up with

. . . σ(i) σ(i+) . . . σ(j) σ(k) . . . σ(j+) σ(k+) . . .

However, this move could be performed with a L2O cutting the tour after
σ(j) and σ(k). Thus, this possibility does not lead to a larger move.
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3. One can connect σ(i) with σ(j), σ(i+) with σ(j+), and σ(k) with σ(k+).
Then one gets the tour

. . . σ(i) σ(j) . . . σ(i+) σ(j+) . . . σ(k) σ(k+) . . .

However, this reconnection could also be done with a L2O cutting the
tour after σ(i) and σ(j). Again this is not an L3O.

4. Then one can reconnect the three parts as follows:

. . . σ(i) σ(j) . . . σ(i+) σ(k) . . . σ(j+) σ(k+) . . .

This is the first true possibility for a L3O as there are three new edges
in the tour. For this move, two L2Os would have to be performed to
simulate it, namely, one turning around σ(i+), . . . , σ(j) and one turning
around σ(j+), . . . , σ(k).

5. Then one can reconnect the three parts as follows:

. . . σ(i) σ(j+) . . . σ(k) σ(i+) . . . σ(j) σ(k+) . . .

This is a further true possibility for a L3O as there are again three new
edges in the tour. However, here three L2Os would be needed to simulate
this L3O: first a L2O cutting the tour after positions i and k would have
to be performed, then one after i and i + (k − j), and finally one after
i+ (k − j) and k.

6. The reconnection

. . . σ(i) σ(j+) . . . σ(k) σ(j) . . . σ(i+) σ(k+) . . .

is also a true possibility for a L3O. Here, only two L2Os would be neces-
sary to simulate the L3O, the first one after tour positions i and k, the
second one after i and i+ (k − j).

7. Analogously, the reconnection

. . . σ(i) σ(k) . . . σ(j+) σ(i+) . . . σ(j) σ(k+) . . .

leads to three new edges and is thus a true L3O. Here also only two L2Os
are needed to simulate it, namely, one cutting after tour positions i and k
and one after k − (j − i) and k.

8. In contrast, the reconnection

. . . σ(i) σ(k) . . . σ(j+) σ(j) . . . σ(i+) σ(k+) . . .

can also be performed with only one L2O, which cuts the tour after σ(i)
and σ(k).

Thus, four possibilites for a Lin-3-opt (L3O) remain: one can either exchange
two succeeding parts of the tour without changing their direction (L3O1), or
one can change the directions of two succeeding parts of the tour (L3O2), or
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Fig. 5.1. The Lin-3-opts: L3O1 (top left), L3O2 (top right), L3O3 (bottom left),
and L3O4 (bottom right)

one can exchange two succeeding parts of the tour and change the direction
of one of these (L3O3 and L3O4). These moves are presented in Fig. 5.1.

However, if one of the two parts consists of only one node, i. e., either
i+ = j or j+ = k, then the number of possible moves leading to three new
edges reduces to one. The only possible L3O in this case is the node insertion
move (NIM), which was introduced in the last chapter. As the NIM is a special
case of the L3O, but has a neighborhood size of order O(N2) like the L2O,
it is sometimes called Lin-2.5-opt. Even worse, if both i+ = j and j+ = k,
then the only possible move is the nearest neighbor exchange, which can be
considered as a special case of either the exchange or the L2O as the nodes
σ(j) and σ(k) are exchanged and the tour is cut after σ(i) and σ(k). In this
case, there is no longer any true L3O.

5.2 Higher-Order Lin-n-Opts

One can go on to moves of even higher order, for which four, five, six, or more
edges have to be cut. Analogously to the considerations for the L3O, one can
determine the number of possible L4Os to be 25, the number of possible L5Os
to be 208, and so on. The number of possible Lin-n-opts can be calculated
as follows [203]:
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Assume that there are n edges cut in the current tour. Thus, it is split
into n sequences containing A(i) nodes with

n∑

i=1

A(i) = N . (5.1)

Depending on the neighborhood relation of these n cuts to each other, the
cutting of the tour into partial sequences leads to the following structures
that have to be distinguished in the analysis below:

• There are pieces containing two or more nodes, i. e., A(i) ≥ 2. Let α0 be
the number of these parts.

• Then there are isolated pieces that contain only one node, and that are
surrounded by two pieces containing at least two nodes. Thus, this case is
given for a one-node piece A(i) by

A(i− 1) ≥ 2 ∧ A(i) = 1 ∧ A(i+ 1) ≥ 2 . (5.2)

Let α1 be the number of such pieces.
• Then there are tuples of directly succeeding pieces with each one containing

only one node. Thus, here three directly succeeding edges were cut and the
neighboring edges around them remained uncut. Thus, one has a tuple
(i, i+ 1) with

A(i− 1) ≥ 2 ∧ A(i) = 1 ∧ A(i+ 1) = 1 ∧ A(i+ 2) ≥ 2 . (5.3)

Let α2 be the number of these tuples.
• Furthermore, there are triples, quadruples, quintuples, and so on of neigh-

boring pieces, each one consisting of only node node. Let the number of
these parts be α3, α4, . . ., αN .

Then the number of cuts n can be expressed as follows:

n = α0 +
N∑

i=1

iαi . (5.4)

In what follows, the assumption shall hold that not every edge of the tour
is cut, so that n < N and thus α0 > 0. Thus, one can always choose a part
consisting of two or more nodes and fix its direction. We will only consider the
symmetric TSP here. For the asymmetric TSP (ATSP), some of the numbers
given have to be multiplied by 2.

Next the number of reconnections leading to feasible configurations are
determined. Feasible means that there is a closed roundtrip touching each
node exactly once. For this purpose, first the special case that each part
consists of at least two nodes will be considered such that n = α0. Let M be
the number of possibilities for creating a feasible configuration. In general,
this number depends on the vector α = (α0, α1, . . . , αN ). M is given by

M(α0, 0, . . . , 0) = 2n−1(n− 1)! = Mn (5.5)

and therefore depends only on n.
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In the general case, there are also other αi > 0. The calculation of M
does not depend on whether parts consisting of only one node are isolated
or come in tuples or triples. Thus, one can rewrite the dependency in the
form

M(α) = M(α0, n− α0, 0, . . . , 0) . (5.6)

Starting from the part consisting of two nodes and with a fixed direction,
one has n − α0 possibilities to connect a piece consisting of only one node,
thus reducing their number n−α0 by 1, and 2(α0−1) possibilities to connect
a piece consisting of at least two nodes, thus also reducing their number by 1.
One can solve this recursion to obtain

M(α) = 2−(n−α0)M(n, 0, . . . , 0) = 2α0−1(n− 1)! . (5.7)

However, M is only the number of possibilities for creating a feasible
configuration. The number N of true Lin-n-opts is much smaller. As was
already shown for the L3O, many possibilities turn out to be Lin-k-opts,
with k < n, if cut edges are used again. These former edges must be excluded
in the calculation of the true Lin-n-opts as otherwise the numbers of Lin-
(n− i)-opts might be added several times.

Again the starting point is the special case in which each part consists of at
least two nodes. In this case, the number M(n, 0, . . . , 0) must be reduced by
the number of possibilities for a smaller Lin-k-opt. There are

(
n
k

)
possibilities

to choose old edges if there are n−k cuts. Thus, the number of true Lin-n-opts
is given by

N (n, 0, . . . , 0) = 2n−1(n− 1)! −
n−1∑

k=0

(
n

k

)

N (k, 0, . . . , 0) , (5.8)

with
N (0) = 1 . (5.9)

Thus, there is 1 Lin-0-opt, namely, the identity, 0 L1Os, as by cutting only
one edge no new tour can be formed, 1 L2O, 4 L3Os, 25 L4Os, 208 L5Os,
2121 L6Os, and so on.

The next more general case is that there are not only pieces consist-
ing of at least two nodes but also isolated pieces consisting of one node
and surrounded by pieces of at least two nodes. For each of these iso-
lated pieces, one can proceed as follows: one extends this isolated piece
to two nodes by doubling the node. Thus, one gets N (α0 + 1, α1 − 1, . . .)
instead of N (α0, α1, . . .) possibilities. By changing its direction, one can
connect it (in contrast to before when it consisted of only one edge) to
those edges of the neighboring parts to which it was connected before.
There are two possibilities to connect it in this way to one of the two
neighboring parts and one way to connect it in this way to both neigh-
boring parts. These cases must be forbidden now. The resulting number
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must be divided by 2, as a partial sequence containing only one node
does not have two different directions, such that one gets the recursive for-
mula:

N (α) = 1
2

(
N (α0 + 1, α1 − 1, α2, . . . , αN−2)

−2 · N (α0, α1 − 1, α2, . . . , αN−2)

−N (α0 − 1, α1 − 1, α2, . . . , αN−2)
)
.

(5.10)

Analogously, one can derive a formula if there are tuples of neighboring
parts with only one node each. Here one expands one of the two parts to
two nodes, such that there is one tuple less, but one isolated part more and
one longer part more. Analogously to the above, the false possibilities must
be subtracted and the result divided by 2, such that one gets the following
formula:

N (α) = 1
2

(
N (α0 + 1, α1 + 1, α2 − 1 , α3, . . . , αN−2)

−N (α0, α1 + 1, α2 − 1 , α3, . . . , αN−2)

−N (α0 + 1, α1, α2 − 1 , α3, . . . , αN−2)

−N (α0, α1, α2 − 1 , α3, . . . , αN−2)
)
.

(5.11)

The approach is the same for triples, quadruples, and so on. Here it is ap-
propriate to blow up a single-node part at the frontier such that the following
recursive formula is obtained:

N (α) = 1
2

(
N (α0 + 1, α1, . . . , αi−1 + 1, αi − 1, αi+1, . . . , αN−2)

−N (α0, α1, . . . , αi−1 + 1, αi − 1, αi+1, . . . , αN−2)

−N (α0 + 1, α1, . . . , αi−2 + 1, αi−1, αi − 1, αi+1, . . . , αN−2)

−N (α0, α1, . . . , αi−2 + 1, αi−1, αi − 1, αi+1, . . . , αN−2)
)
.

(5.12)
Generally, one should proceed with the recursion in the following way:

first, those nonzero αi for which i is maximal should vanish. This approach
should be iterated with decreasing i until one ends up with a formula for
tours with pieces consisting of at least two nodes.

So far, however, we have only calculated the number of possibilities for
reconnecting several partial sequences, which were created after the former
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Table 5.1. Number of possibilities for cutting the tour of a traveling salesman if
each partial sequence shall contain at least two nodes: n denotes the number of cuts
of the Lin-n-opt, C(n) the number of possibilities

n C(n)

2 N × (N − 3)/2
3 N × (N − 4)(N − 5)/3!
4 N × (N − 5)(N − 6)(N − 7)/4!
5 N × (N − 6)(N − 7)(N − 8)(N − 9)/5!

tour had been cut, to a new tour. We must still determine the number of
possibilities for cutting the tour in order to create these partial sequences.

We again start out with the special case in which every partial sequence
to be created contains at least two nodes. By empirically going through all
possibilities, we found the formulas given in Table 5.1. From this result we
deduce a general formula for the possibilities C(n) for the Lin-n-opt:

C(n) = N ×
n−1∏

i=1

(N − n− i) × 1
n!

=
N

N − n
×
(
N − n

n

)

. (5.13)

Thus we find here that the neighborhood created by a Lin-n-opt is of order
O(Nn).

In the general case, an arbitrary Lin-n-opt can also lead to partial se-
quences containing only one node. Here we have to distinguish between var-
ious types of cuts: The cuts introduced by a Lin-n-opt can be isolated, i. e.,
they are between two sequences with more than one node each. Then they
can lead to isolated nodes that are between two partial sequences with more
than one node each, and so on. Let us view this here from the point of
view of the cuts of the tour. All in all, a Lin-n-opt generally leads to n
cuts in the tour. Let us denote an i-type multicut (with 1 ≤ i ≤ n) at
position j (with 1 ≤ j ≤ N) as the scenario where the tour is cut at i
successive positions after the node with the tour position number j. Thus,
the tour is cut by an i-type multicut successively between pairs of nodes
with the tour position numbers (j, j + 1), (j + 1, j + 2), . . . , (j + i − 1, j +
i).

Furthermore, let βi be the number of i-type multicuts: β1 is the number
of isolated cuts, and β2 is the number of 2-type multicuts by which the tour is
cut after two successive tour positions such that a partial sequence containing
only one node is created, surrounded by two sequences containing more than
one node. Thus, β2 is also the number of isolated nodes surrounded by longer
sequences and is thus identical to α1. Analogously, 3-type multicuts lead to
tuples of nodes that are surrounded by partial sequences with more than
one node; thus β3 is the number α2 of these tuples. Analogously, 4-type
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Table 5.2. Number of possibilities for cutting the tour of a traveling salesman: n
denotes the overall number of cuts performed by the Lin-n-opt, β1, β2, β3, and β4

denote the number of 1-, 2-, 3-, and 4-type multicuts as defined in the text. Only
βi values for i ≤ 4 are considered here in our examples. For the L6O, only some
special cases are considered. The number C of possibilities depends on all these
numbers. All these formulas for C(β) were found manually

n β1 β2 β3 β4 C

2 2 0 0 0 N × (N − 3)/2
0 1 0 0 N

3 3 0 0 0 N × (N − 4)(N − 5)/3!
1 1 0 0 N × (N − 4)
0 0 1 0 N

4 4 0 0 0 N × (N − 5)(N − 6)(N − 7)/4!
2 1 0 0 N × (N − 5)(N − 6)/2
0 2 0 0 N × (N − 5)/2
1 0 1 0 N × (N − 5)
0 0 0 1 N

5 5 0 0 0 N × (N − 6)(N − 7)(N − 8)(N − 9)/5!
3 1 0 0 N × (N − 6)(N − 7)(N − 8)/3!
1 2 0 0 N × (N − 6)(N − 7)/2
2 0 1 0 N × (N − 6)(N − 7)/2
0 1 1 0 N × (N − 6)
1 0 0 1 N × (N − 6)

6 2 2 0 0 N × (N − 7)(N − 8)(N − 9)/2/2
0 3 0 0 N × (N − 7)(N − 8)/3!
3 0 1 0 N × (N − 7)(N − 8)(N − 9)/3!
1 1 1 0 N × (N − 7)(N − 8)
0 0 2 0 N × (N − 7)/2
2 0 0 1 N × (N − 7)(N − 8)/2
0 1 0 1 N × (N − 7)

multicuts lead to triples of sequences containing only one node each, and so
on. Generally, we have for all i ≥ 1 that

αi = βi+1 , (5.14)

but for i = 0 the situation is different: each i-type multicut produces a further
sequence consisting of at least two nodes, such that we have

α0 =
n∑

i=1

βi . (5.15)

Please note that α0 is both the number of these longer partial sequences
and the number of all i-type multicuts. The overall number n of cuts can be
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expressed as

n =
n∑

i=1

iβi . (5.16)

In this general case, the number C of ways of cutting the tour also depends
not only on n but on the entries of the vector β = (β1, β2, . . . , βn) as well. As
Table 5.2 shows, the order of the neighborhood size is now given as O(Nα0 ).
From these examples in the table we empirically derive the formula

C(β) = N ×

∑
n

j=1
βj−1

∏

i=1

(N − n− i) × 1
∏n

i=1 βi!
(5.17)

for the number of possibilities for cutting a tour with a Lin-n-opt, leading to
βi many i-type multicuts. Note that if the upper index of a product is smaller
than the lower index, then this so-called empty product is 1. This formula
can be rewritten as

C(β) =
N

N − n
×
(
N − n

α0

)

× α0!∏n
i=1 βi!

(5.18)

making use of α0 as the sum of all βi. Note that Eq. (5.13) for the special
case with each sequence containing at least two nodes is a special case of
Eq. (5.18).

5.3 Computational Results for the Greedy Algorithm

Now the quality of these larger moves shall be investigated, starting with the
four types of the L3O. Table 5.3 shows the results for the greedy algorithm
using one of these four move types. The names of these types are the same
as in Fig. 5.1. In a few test runs, the system was frozen after 1 − 2 × N3

moves, so that we spent 10 × N3 moves to be on the safe side. One finds
that the results for any of these L3Os are much better than those for the
L2O in Table 4.2, except for the NRW1379 instance. These results are in nice
agreement with the remark in [201] on the results in [116] that the L3Os lead
to better results than the L2O. This is surely an effect of the neighborhood
size of a L3O, which is of order O(N3), whereas the neighborhood size of the
L2O is only N(N − 3)/2 and thus of order O(N2).

Furthermore, the quality of the results differs between the various types
of L3Os: L3O3 and L3O4, both of which exchange two successive parts of
the tour and change the direction of one of these parts, provide better results
than the other two types of the L3O. Mostly, the variant L3O2, which changes
the directions of two successive parts of the tour simultaneously, provides
the worst results among the L3Os. Please note that different results can be
achieved if an other optimization algorithm, like simulated annealing, is used.
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Table 5.3. Results for the greedy algorithm using L3Os: for each instance, 100
optimization runs were performed, starting with a random configuration and per-
forming 10 ×N3 times one of the four L3Os with the greedy acceptance criterion.
In the “L3Oall” scenario, each of the four L3Os was implemented and called with
the same probability; here 20 ×N3 move trials were performed

Instance Move Minimum Maximum Mean value ± error

BEER127 L3O1 119,218.371 131,235.436 125,118.494 ± 254.3
L3O2 120,935.053 133,226.981 125,888.805 ± 260.4
L3O3 118,589.344 127,980.167 121,981.992 ± 187.4
L3O4 118,899.537 127,588.470 121,928.533 ± 187.4
L3Oall 118,629.043 127,881.507 121,396.175 ± 194.1

LIN318 L3O1 43,883.1117 46,992.0997 45,210.0271 ± 63.9
L3O2 44,209.8503 47,368.0175 45,466.4980 ± 66.1
L3O3 42,863.7951 44,822.3800 43,632.8142 ± 39.5
L3O4 42,626.6703 45,173.6630 43,534.8133 ± 44.4
L3Oall 42,401.9352 44,514.0820 43,518.6735 ± 40.7

PCB442 L3O1 53,547.9002 56,348.0251 54,850.7759 ± 60.7
L3O2 52,975.6709 57,838.1568 54,847.6013 ± 85.7
L3O3 51,658.9173 54,163.2202 52,689.2427 ± 47.9
L3O4 51,627.2806 53,519.6159 52,545.4050 ± 41.0
L3Oall 51,480.2480 53,892.2666 52,493.4278 ± 44.5

ATT532 L3O1 28,716 30,639 29,732.22 ± 33.7
L3O2 29,229 30,817 30,031.61 ± 30.7
L3O3 28,275 29,369 28,692.05 ± 22.8
L3O4 28,076 29,159 28,673.47 ± 21.4
L3Oall 28,281 29,102 28,718.27 ± 19.6

NRW1379 L3O1 64,624.4812 66,712.2867 65,611.2830 ± 35.6
L3O2 63,267.3838 64,788.3074 64,008.2578 ± 37.1
L3O3 58,730.9852 59,768.7048 59,199.8516 ± 25.4
L3O4 58,727.9973 59,656.5893 59,173.3947 ± 23.5
L3Oall 58,650.2000 60,077.9761 59,307.8550 ± 26.1

One can proceed to moves of even greater size, namely, the L4Os. As
mentioned before, there are 25 different types of a L4O. One of these is the
so-called two-bridge move: it cuts the tour after four positions i, j, k, and l,
i. e.,

. . . σ(i) σ(i+) . . . σ(j) σ(j+) . . . σ(k) σ(k+) . . . σ(l) σ(l+) . . . ,

and connects the parts as follows:

. . . σ(i) σ(k+) . . . σ(l) σ(j+) . . . σ(k) σ(i+) . . . σ(j) σ(l+) . . .

Thus, it exchanges two nonsuccessive parts of the tour. This move is called
L4O1 in Table 5.4. Furthermore, we implemented another variant of the L4O,
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Table 5.4. Results for the greedy algorithm using two types of L4Os: for each
instance, 100 optimization runs were performed, starting with a random configu-
ration and performing N4 times one L4O with the greedy acceptance criterion. As
the computing time is rather large, only small instances are considered

Instance Move Minimum Maximum Mean value ± error

BEER127 L4O1 123,767.073 134,986.024 129,588.275 ± 244.2
L4O2 121,407.255 131,300.030 125,622.863 ± 214.7

LIN318 L4O1 45,184.3246 48,569.5839 46,740.9896 ± 72.2
L4O2 44,539.2015 46,932.1063 45,451.7793 ± 48.3

PCB442 L4O1 55,673.1534 58,855.2662 57,381.3213 ± 71.3
L4O2 53,793.3942 56,843.4938 55,209.2331 ± 64.0

which additionally changes the direction of the middle part of the tour:

. . . σ(i) σ(k+) . . . σ(l) σ(k) . . . σ(j+) σ(i+) . . . σ(j) σ(l+) . . .

The L2O is a special case of this L4O2, if both i+ = j and k+ = l.
As the neighborhood size of the L4Os is of order O(N4), it is not surprising

that the number of L4O moves needed until the system is frozen in the greedy
mode is also of order O(N4). Table 5.4 provides the results for some smaller
TSP instances. Comparing these results to those in Table 5.3, one finds that
the L4O1 provides worse results and the L4O2 provides results of roughly
the same quality. As the calculation time needed is increased so strongly and
as there is no payback with a significant improvement of the results, we do
not consider these L4Os or even higher moves any further.

5.4 Combination of Moves of Various Sizes

Table 5.5 shows the results for a mixture of the three smallest moves and the
four variants of the L3O. We find that this mixture leads to better results
than a mixture of the smallest moves only. As already discussed above, the
calculation time t needed until the system freezes in some locally minimum
solution is given by

t = α(N,n) ×Nn , (5.19)

with n being the number of positions to choose in the move routine for se-
lecting an edge to cut or a node to move and α(N,n) being some constant
depending strongly on n. However, the considerations till now have been
rather theoretical: first, one is interested in achieving a solution that is as
good as possible but also in a calculation time as short as possible. In prac-
tical applications, one does not care whether the system is actually frozen
or not; thus one does not want to spend the calculation time to ensure that
the system is frozen. Secondly, when following the approach above, the best
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Table 5.5. Results for the greedy algorithm using the small moves EXC, NIM,
and L2O and the four variants of the L3O with equal probability: for each instance,
100 optimization runs were performed, starting with a random configuration and
performing 50 ×N3 times a move with the greedy acceptance criterion

Instance Minimum Maximum Mean value ± error

BEER127 119,173.772 128,031.879 122,507.497 ± 210.9
LIN318 42,750.1022 45,225.3364 43,842.1611 ± 48.5
PCB442 51,584.0933 55,147.4393 52,957.8833 ± 53.2
ATT532 28,341 29,305 28,863.08 ± 19.3
NRW1379 59,322.0434 61,053.6215 60,068.1042 ± 31.8

way would be to perform a bunch of Lin-N -opts, which are guaranteed to
lead to the optimum configuration as all configurations are neighbors of each
other and, thus, only one minimum remains in the energy landscape. But
this contradicts the local search approach, which requires that neighboring
configurations be rather similar to each other. Furthermore, it requires much
calculation time to find that special Lin-N -opt that actually leads to the
optimum.

Thus, one usually considers the smallest possible moves with order n0

and the moves with the next higher order n0 + 1 only. Only seldom are
moves of the order n0 + 2 used. Furthermore, one measures the calculation
time in sweeps linearly in the system size N : if N moves are performed,
then a sweep is performed. Of course, this definition does not consider that
two tour positions are involved in the L2O, three in the L3Os, and so on.
Therefore, it is neither a true measure in terms of interactions nor a true
measure in times of using a specific tour position in a move. Despite that, we
will use this term from now on and will study the quality of the results that
can be achieved depending on the number of sweeps invested.
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6.1 Application of Ruin & Recreate

As already pointed out in Chap. 10, Part I, it is sometimes not sufficient to
work with the local search paradigm, i. e., to use only small moves in order to
change a configuration. Instead, large moves must be invented that destroy
the current configuration to some degree and rebuild the remaining subsystem
to a solution for the whole problem according to a given rule set. Such a ruin
& recreate (R & R) move thus consists of two parts, a ruin part that removes
some parts of the system and a recreate part that reinserts these parts into
the system.

For the traveling salesman problem (TSP), there are two obvious possibil-
ities for performing the ruin part of the move: one could remove either edges
or nodes from the roundtrip of the traveling salesman. Let us consider here
the case of the nodes only. Some nodes are removed from the tour and thus
no longer served by the traveling salesman. There are generally at least the
following two possibilities for choosing the nodes to be removed:

• One could always randomly select some nodes and remove them from the
tour.

• But one could also use some neighborhood relation between the nodes. In
the case of the TSP, this neighborhood could be given by the distances
between the nodes or by the sequence of the tour.

We will thus consider these three Ruin types:

• Radial ruin:
A node c is randomly selected. Furthermore, a number n of nodes to be
removed from the system is chosen. Then the n nearest neighbors of c (in-
cluding c) are removed from the roundtrip of the traveling salesman; the
predecessors and successors of the removed nodes are connected such that
a shorter tour consisting of the remaining N − n nodes is built.
Although the neighborhood relation might have nothing in common with
the radial appearance, the radial ruin can easily be imagined for a geo-
graphic neighborhood relation with an underlying Euclidean metric, and
thus this terminus technicus should be used for this type as one can always
visualize a neighborhood relation by introducing such a metric that one
gets a sphere.
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Fig. 6.1. R & R move applied to the PCB442 instance using the radial ruin (left)
and the sequential ruin (right). Top row: current configurations in which nodes
to be removed are already selected. (For the radial ruin, these nodes lie within
a circle around the central node c.) Middle row: these nodes are removed and
a roundtrip through the other nodes remains. Bottom row: the removed nodes are
already reinserted by the bestinsertion heuristic
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Fig. 6.2. R & R move using the random ruin: as in Fig. 6.1, the top graphic
shows the initial configuration, the middle graphic the tour through the remaining
subsystem, and the bottom graphic the recreated configuration
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• Sequential ruin:
Here a sequence of n successive nodes in the tour is removed and the
predecessor and the successor of the sequence are connected. Thus, like the
radial ruin, the sequential ruin uses some neighborhood relation; however,
here the neighborhood is given by the relative positions of the individual
nodes in the current solution; thus, this is not a static neighborhood.

• Random ruin:
Here n nodes are randomly selected. Again the roundtrip through the re-
maining nodes in the system is closed by inserting edges between the pre-
decessors and successors of the removed nodes.

Let us assume that the removed nodes are put in a bag one by one. Then
they have to be reinserted into the system, so that a complete configuration
for the original problem consisting of all N nodes is built. This recreate
part of the move may not be done randomly, as then the probability that
a good configuration will be created will be very small. Instead, something
“intelligent” must be done. Furthermore, the recreation of a configuration
should not take too much time. Thus, a construction heuristic is used that
starts with the already existing partial solution, takes the nodes from the
bag, and reinserts them into the system. For example, one could use the
bestinsertion heuristic.

Thus we have defined three R & R moves: R & Rrad combines the radial
ruin and the bestinsertion heuristic to a move, R & Rseq combines the se-
quential ruin and the bestinsertion heuristic, and R & Rran consists of the
random ruin and the bestinsertion heuristic. How these moves work is illus-
trated in Figs. 6.1 and 6.2. In the case of the radial ruin, the nodes to be
removed lie in a circle because of the Euclidean metric. For a Manhattan or
Tschebyscheff metric, they would lie in a square. In the case of the sequential
ruin, the tour can be folded in a way such that the nodes also lie in some
local region. Contrarily, the tour sequence can also be topologically extended
through the whole region of the problem. Generally, these R & R moves are
never local but have an impact on the whole system, as removed nodes may
be placed in an other part of the tour by the bestinsertion heuristic.

As already mentioned in Chap. 10, one must consider a maximum fraction
P up to which the system is destroyed. One finds that one should not remove
too large fractions from the radial and sequential ruins, as then the area
that must be recreated would become too large. However, one may of course
remove even 50% of the system when using the random ruin, as an “overall
skeleton” always remains from which a tour for the complete system can be
reconstructed very well.

6.2 Analysis of R & R Moves in RW and GRE Modes

First, the question arises as to how to start the optimization run with these
moves. It is a rather natural choice not to start with a randomly created
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configuration but with one that was fully created by the construction heuristic
that is used by the recreate part of the R & R move. Thus, a “ruin & recreate
all” move, i. e., the bestinsertion heuristic, is performed at the beginning.
Furthermore, a suitable maximum fraction P must be selected for each R &
R move. Then a sequence of R & R moves can be performed, e. g., in the
random walk (RW) or in the greedy (GRE) mode.

However, one must be aware of the fact that the RW is not the type of
RW that was performed with the small moves. For the small moves, new
edges were selected at random, such that every configuration was created
with the same probability and a real RW through the configuration space
was performed by accepting each of these small moves. Here, however, also
every move is accepted according to the RW acceptance criterion but the
resulting configurations are not random because of the construction heuristic
that tries to place every node to be reinserted on the best position in the
tour.

If one plotted a histogram of the lengths of randomly created configura-
tions and then a histogram of the lengths of configurations that were then
altered by a series of small moves, one would get the same histogram as
some edges are replaced by other randomly selected edges. However, here the
question arises as to whether the histogram of configurations created by the
bestinsertion heuristic is changed by R & R moves with P < 1.

Figure 6.3 shows probability distributions of the PCB442 instance, to
which we will restrict ourselves in this chapter, for constructing a solution
with the bestinsertion heuristic (R & Rall) and then altering it by either
100 R & Rrad moves or by 100 R & Rseq moves or by 100 R & Rran moves,
depending on the maximum fraction P = 0.01, 0.02, 0.05, 0.1, 0.2, or 0.5 of the
system to be destroyed. One finds that the probability distribution is shifted.
For small fractions P , the solutions are always improved by the R & R moves.
This is quite obvious, as in this case the R & R moves that try to reinsert
each removed node in the best possible way work in a quasigreedy mode. For
large P , the results for the three move types differ: R & Rran clearly provides
the best results and R & Rrad changes the distribution only slightly, whereas
R & Rseq obviously worsens the configurations. These results can be easily
explained: R & Rran can best make use of the roundtrip through the remaining
nodes as the nodes that were removed are uniformly distributed over the
whole system, such that an overall frame remains on which the recreate part
of the move can work very well. R & Rrad, however, constructs a part of the
system in a sphere in a completely new way, with only a small number of hints
from the surrounding area. The ruin part of R & Rseq, however, produces one
long edge in the system; the removed nodes are then often inserted on other
edges such that after the recreate this long edge might remain. Thus, this
move is an example of a bad combination of a ruin and a recreate. Please
note that this sequential ruin cannot be said to be generally bad. Only the
combination with the bestinsertion heuristic as the recreate part of the move
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Fig. 6.3. Distribution of the lengths of 100,000 solutions created with the bestin-
sertion heuristic and then altered with 100 R & R moves in a random walk: in each
graphic, the results are shown for a specific maximum fraction P up to which the
system is destroyed. For not too large P the configuratons are improved. For small
P , the peaks of the distributions are always shifted toward smaller lengths. For the
random ruin, the results get even better if P is large, whereas they get worse for
the sequential ruin
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Fig. 6.4. Distribution of the lengths of 100,000 solutions, first created with the
bestinsertion heuristic and then altered with 100 move trials in the greedy mode,
for various P
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leads to bad results. Other recreates that, e. g., would reinsert all removed
nodes between the end nodes of the long edge might lead to better results.

For comparison, analogous results for these moves shall be shown for the
greedy algorithm if again applied to the PCB442 instance. Figure 6.4 shows
that the results differ from those for the RW. First, the results are mostly
better if using the greedy algorithm instead of the RW, which one would, of
course, expect. The greatest differences are achieved for the radial and the
sequential ruin, whereas the gain is relatively small for the random ruin. The
results differ for small P only slightly as for these small fractions it is nearly
equivalent to using RW or greedy: if, e. g., only one node is removed and
bestinsertion looks for the cheapest possibility for reinserting the node, then
one gets either the previous solution or a better solution. Here RW and greedy
coincide. If a small number of nodes is removed, only small deviations from
the greedy algorithm are possible. For larger P , the distributions achieved
with the greedy algorithm exhibit a sharper peak, and the peak is generally
transferred to smaller lengths. For P = 0.5 one gets worse results than for
P = 0.2 when the sequential or radial ruin is used. The optimum fraction up
to which the system should be destroyed thus depends on the type of ruin
here, too.

Thus far, only some trend has been observed for the various moves. Of
course, these changes do not stop after 100 move trials, as can be observed in
Fig. 6.5. The mean value of 10 optimization runs converges for large P toward
a constant after roughly 1000 move trials if using the RW and working with
the radial or sequential ruin. For small P , the various runs do not differ
much between the RW mode and the greedy mode. If using the random ruin,
one gets a different behavior: the mean value continues with its decrease for
all P . Furthermore, it is remarkable that all curves decrease in a sigmoidal
way. The best results are achieved if a large P is used because these moves
lead to larger reorderings in the system on a larger scale and thus to more
improvements. Again the radial and sequential ruins are more closely related
to each other than to the random ruin. Additionally, one must consider that
after the large amount of calculation time that was invested in these graphics,
most curves indicate that even after such a huge number of move trials the
system is not frozen in the greedy mode for larger and medium P . Further
improvements could be found especially for the random ruin.

6.3 Ruin & Recreate as Self-Contained Algorithm

All the Markovian improvement heuristics that start with some solution and
try to improve it gradually and are more elaborate than the RW or the greedy
have a property in common, namely, a control parameter. This control param-
eter is gradually reduced during the optimization run such that a transition
between the RW mode and the greedy mode is performed. Of course, one can
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Fig. 6.5. Mean length averaged over ten runs as a function of the number of R & R
moves for R & Rrad, R & Rseq, and R & Rran with various P . Zero moves corresponds
to the initialization with the bestinsertion heuristic. Left column: results for RW;
right column: results for greedy

use R & R moves also in optimization runs with, e. g., simulated annealing
(SA), thus achieving even better results than with the greedy algorithm [194].

However, here we want to consider that R & R already contains the control
parameter P up to which the system may be destroyed at a maximum. As
shown above, the results achieved strongly depend on this parameter. One
could also vary this parameter during the optimization run.

Figure 6.6 shows the results for an optimization run for the PCB442
instance with each of these three move types. The acceptance criterion used is
that of the RW. The maximum number n of nodes to be removed is decreased
linearly from N − 1 to 1 in steps of 1. The decrease of P and of n leads
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Fig. 6.6. Decrease of the length of the PCB442 instance with a decreasing maxi-
mum number of nodes to be removed in the ruin part of a R & R move: for each
move type, one optimization run was performed. Whereas R & Rrad shows a nice
sigmoidal decrease, R & Rseq clearly exhibits a knee at about n = 200 and R &
Rrad drops immediately. The points which seem to be at n < 1 are still using n = 1

to a transition from the RW to the greedy regime. For the radial and the
sequential ruins, one gets a sigmoidal decrease of the mean energy. Similar
transitions will be achieved in the following chapters when working with SA
and related algorithms. The curve for the sequential ruin exhibits a knee
between 100 ≤ n ≤ 300, which is in agreement with the results above.

6.4 Discussion of Application Possibilities
of Ruin & Recreate

There are also other possibilities for defining R & R moves. For example, one
could replace the bestinsertion heuristic by any other construction heuristic
mentioned above. But one could also think of an improvement heuristic do-
ing the work of the recreate part of the move: thus, such a large move would
make use of either small moves or of other large moves of a smaller range.
These moves are then accepted or rejected according to the acceptance cri-
terion of the underlying optimization algorithm. If using, e. g., SA, one could
think of a two-temperature concept: for the overall system, there is a global
temperature T . But while applying a large move to a part of the system,
a local temperature Tl overwrites T in the local part of the system. This lo-
cal temperature is gradually reduced from a high value to zero, thus leading
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to a good solution of the local part of the problem. The rebuilt configura-
tion of the overall system is then either accepted or rejected with the global
temperature T [165].

One can show for both the above-mentioned R & R moves that make use
of construction heuristics and for moves that use a local optimization run
as the recreate part of the move that this R & R paradigm leads to better
results in the same amount of calculation time than the standard local search
approach [194, 165]. Furthermore, when not using the greedy algorithm, one
should not mix small moves and these R & R moves, as this leads to worse
results. It was shown above that the R & R moves, in contrast to small moves,
lead not to random configurations if the RW criterion is applied but to much
better configurations. If now additionally the Lin-2-opt, e. g., were applied
in the RW, it would introduce two new randomly selected edges, leading
on average to a worse configuration and in consequence worsening the R &
R result. Analogously, the local and the large moves would feel different
degrees of freedom if a more elaborate algorithm with a control parameter
were applied at each value of this control parameter.

We will now return to the seven small moves and study the quality of
algorithms based on these moves, as otherwise it would be unclear as to
what improvement is due to the algorithm and what is due to the intelligence
in the R & R moves. Furthermore, for large moves, one would always have
to test which ruin and recreate combination is the best for the underlying
optimization algorithm and to what extent the system should be destroyed
in order to get the best results.



7 Application of Simulated Annealing to TSP

7.1 Simulated Annealing for the TSP

The application of simulated annealing (SA) to the traveling salesman prob-
lem (TSP) is rather straightforward. One usually starts with a random config-
uration and performs a series of moves changing the configuration gradually.
One uses the same moves as for the greedy algorithm, but now the accep-
tance probability function is given by the Metropolis criterion [Eq. (11.6) in
Part I]. The temperature is decreased from a high value to a value at which
it is so small that the system is frozen. For the TSP, the energy difference is
given by the difference between the lengths of the current configuration and
the tentative new configuration, and the decrease of the temperature must be
performed in an exponential way, i. e., by Tnew = f × Told. We will generally
work with f = 0.99 in what follows so as not to quench the system.

Thus, the outline of the algorithm is as follows:

• First, the system must be initialized by determining the distance matrix D
between the N nodes and by creating a random configuration as initial
configuration for the simulation.

• Second, an appropriate start temperature must be determined that is large
enough, i. e., above the freezing temperature Tf . This can be done by, e. g.,
performing a random walk (RW) in which each move is accepted and by
measuring the energy differences ΔHi occurring during this RW. The ini-
tial temperature can then be set to, e. g., 10×max{ΔHi}, as described in
Chap. 15 in Part I. Then the main part of the optimization process can be
started.

• As long as the temperature is larger than some end value, do:
– Perform a series of sweeps at each temperature step. Each move is ac-

cepted or rejected according to the Metropolis criterion.
– Reduce the temperature T by a constant factor, i. e., T = f × T .

• At last, the final configuration is printed.

Figures 7.1 and 7.2 show snapshots of an optimization run with SA applied
to the PCB442 instance. The optimization run starts out with a randomly cre-
ated configuration as shown in Fig. 4.1. Then it applies the Metropolis crite-
rion at the high temperature value T = 10,000. At this temperature, one does
not see any difference between these configurations when walking over them.
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T=10000 T=3697.3

T=1353.3 T=495.36

T=299.69 T=181.32

Fig. 7.1. Application of SA to the PCB442 instance at large temperatures T > Tf :
with decreasing temperature, the system leaves the range of the random configura-
tions and gets to configurations with smaller energies
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T=109.70 T=66.369

T=40.154 T=24.293

T=8.8921 T=0.10053

Fig. 7.2. Application of SA to the PCB442 instance at small temperatures T < Tf :
with decreasing temperature, the system freezes, orders itself, and, finally, gets stuck
in a local or like here in the global optimum



302 7 Application of Simulated Annealing to TSP

Decreasing the temperature further, more and more short edges become part
of the roundtrip, and the original spider net is thus thinned out. At a tem-
perature T ≈ 180, the system undergoes its transition from the unordered
to the ordered phase. Then, at smaller temperatures, the system undergoes
some local rearrangements and accepts some remaining improvements. But
the system is no longer able to leave the local valley at these small tem-
peratures. Summarizing, when the temperature is decreased, SA drives the
system to be optimized gradually from the range of random configurations
to the regime of ordered solutions by accepting changes in the configuration
with the Metropolis criterion.

7.2 Computational Results for Observables of Interest

From a physicist’s point of view, the first questions arising are what the
observables of interest are and how they change during the cooling process.
Two observables, which are always available for closer investigation, are the
expectation value of the mean energy 〈H〉 and the specific heat C.

Figure 7.3 shows the results for these observables of optimization runs
for three TSP instances. In each run, the temperature was decreased from
its initial value to the final value by a factor of 0.99, so that the number
of temperature steps is in each case given by [−5/ log10(0.99)] = 1145. In
each temperature step, 1100 measurements were performed. The first 100
measurements were thrown away as the system needs some time to equilibrate
at the new temperature value. Between two measurements, 30 sweeps were
performed, such that the configurations whose measurements were taken are
quite independent of each other. Each sweep contains N move trials. The
seven small moves [exchange (EXC), node insertion move (NIM), Lin-2-opt
(L2O), and the four variants of the Lin-3-opt (L3O)] are called with equal
probability. Note that we present in this figure and in the following figures raw
data, i. e., the real measurements are shown without any binning or otherwise
smoothing of the data. Nicer looking figures can of course be obtained if the
number of measurements is strongly increased or if the measured data are
binned, for example by averaging over 5 to 25 successive data points.

For all three instances, the mean energy 〈H〉 decreases smoothly in a sig-
moidal way with decreasing temperature T on a logarithmic scale. Finally, it
becomes constant at some small value of T . From that temperature on, the
system is frozen. The right half of Fig. 7.3 shows the specific heat C, which
is calculated according to the relation C = Var(H)/T 2 = (〈H2〉 − 〈H〉2)/T 2.
One finds a nice rounded peak around the so-called freezing temperature Tf

of the system. One notices that the fluctuations on the left leg of the peak are
much larger than those on the right leg. This is simply due to the fact that
the temperature is smaller such that fluctuations in the variance of the energy
are not so suppressed as in the high-temperature regime. Here in all cases
the specific heat vanishes at small temperatures. However, due to rounding
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Fig. 7.3. Computational results for the mean energy 〈H〉 (left) and the specific heat
C (right) of the three TSP instances using SA: BEER127 (top), LIN318 (middle),
ATT532 (bottom)

errors, it could sometimes happen that a small positive or negative value for
the variance remains, so that one gets an increase in the specific heat at very
small temperatures that is proportional to 1/T 2.

The specific heat is very important for the optimization process when
using SA. One must start the optimization run with an initial temperature
larger than or at least at the freezing temperature Tf in order to get to good
results. Furthermore, if the peak looks rather symmetric on a logarithmic
scale, as it is here, then one should decrease the temperature in an exponential
way as the system obviously freezes over several orders of magnitude of the
temperature. Otherwise, if the peak appears rather symmetric if plotted with
a linear T -axis, one should prefer a linear cooling schedule. Finally, one should
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always have a look at the figure of the specific heat. If it does not show a nice
peak but large fluctuations in the form of several sharp spikes, then the
calculation time must be increased as otherwise the system will be simply
quenched down. There is also another possibility for measuring the specific
heat, namely, by using the definition of the specific heat, C = ∂〈H〉/∂T . One
can thus calculate numerically this derivative using the results for the mean
energy values. If the specific heat looks exactly the same as if calculated via
the variance of the energy, one can say that the simulation is in equilibrium.
However, this is only a weak condition for having a true equilibrium. Mostly,
however, one only refers to the method of calculating the specific heat via
the energy variance, as it is numerically more stable, so that one sees a real
peak with a much smaller amount of calculation time as would be necessary
if one were to use the derivative definition which, if the calculation time was
not long enough, only shows quasirandom fluctuations.

Mostly, only the mean energy and the specific heat are available for
a closer investigation of the problem. However, sometimes one has deeper
insight into the problem and is able to define an appropriate order parame-
ter ξ. Then one can virtually extend the Hamiltonian by

H̃(σ) = H(σ) − λξ(σ) (7.1)

with some Lagrange multiplier λ with λ→ 0. Thus, one can consider the mean
value 〈ξ〉 of this control parameter and also the corresponding susceptibility

χ =
∂〈ξ〉
∂λ

=
Var(ξ)
T

. (7.2)

This susceptibility can be considered the answer by the system to the force
applied by the Lagrange multiplier λ via the Zeeman term −λξ in the Hamil-
tonian, such that it will order itself according to the considered order para-
meter.

For the TSP, an appropriate order parameter was already introduced,
namely, the projection of the current configuration on the ground state by
comparing the edges used in the configuration, as sketched in Sect. 1.9. The
results for this order parameter and its corresponding susceptibility are shown
in Fig. 7.4. The order parameter increases with decreasing temperature in
a sigmoidal way. But only if the optimization run ends up in the global
optimum of the problem does the order parameter converge to 1, as is the
case for the BEER127 instance. For the other two instances, the optimization
runs ended up at some quasioptimum configurations that have many edges
in common with the corresponding global optimum configurations, so that
the final value is about 0.7 in both cases.

The corresponding susceptibilities, which are shown in the right half of
Fig. 7.4, exhibit (despite fluctuations) a nice peak at the system’s critical
temperature Tc. This peak is much sharper than the peak of the specific
heat and, in addition, is at a lower temperature, the temperature at which
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Fig. 7.4. Computational results for the expectation value 〈ξ〉 of the order parameter
χ (left) and the corresponding susceptibility χ (right) of three TSP instances using
SA: BEER127 (top), LIN318 (middle), ATT532 (bottom)

the ordering transition really takes place. Thus, if one has a good order
parameter for some problem, it is advantageous to use the susceptibility at
least in addition to the specific heat. Looking closer at the susceptibility of the
LIN318 instance, one suspects that the peak might be a double peak, which
might come from an ordering and clustering effect as in [110], so that one
achieves first an ordering in the large length scale, whereas the small parts
are ordered inside themselves at smaller temperatures. However, one must
perform more measurements in order to verify this assumption. Investigating
the graphics for the susceptibility of the ATT532 instance more closely, one
finds that it increases for very small temperatures proportional to 1/T . This
comes from a rounding error in the calculation of the variance of the order
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parameter. This variance should vanish; however, numerically a small positive
value remains such that the susceptibility increases hyperbolically.
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Fig. 7.5. Computational results for the mean energy 〈H〉 (left) and the specific heat
C (right) of the PCB442 instance using SA with either the Metropolis criterion or
the heat bath criterion

Finally, the question arises as to whether we get the same results for these
observables when using other acceptance criteria for SA. As mentioned in the
derivation of SA in Chap. 11 in Part I, some arbitrariness in the explicit choice
of the transition probability remains. Above, we used the most widely used
Metropolis criterion. Figure 7.5 shows a comparison of the results for the
mean energy and the specific heat of the PCB442 instance when using either
the Metropolis criterion or the heat bath criterion. We find that the use of
either of these two criteria leads to the same results. This is not surprising as
both criteria are intended to lead the system to the Boltzmann equilibrium,
such that the expectation values for the observables must be identical.

7.3 Computational Results for Acceptance Rates

Next the freezing behavior of the optimization process if using SA shall be
studied. For this purpose, first of all the total acceptance rate A of the moves
must be considered. Figure 7.6 shows the results for the acceptance rate for
the three TSP instances. In all three cases, one finds a nice sigmoidal decrease
of the acceptance rate with decreasing temperature. Note that the peak of
the specific heat is located at a temperature at which less than 10% of the
moves are accepted. As it is sufficient to start at the peak of the specific
heat, one should always consider that most moves are rejected during the
optimization run. Thus, one should program the move routines accordingly.
For example, one should always calculate the energy difference without ex-
plicitly applying the move if possible and appropriate. Furthermore note that
the total acceptance rate nearly vanishes at the order transition.
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Fig. 7.6. Computational results for the total move acceptance rate A of the three
TSP instances using SA: BEER127 (top), LIN318 (middle), ATT532 (bottom)

However, not only the total acceptance rate A for all moves but also the
partial acceptance rates Ai of the individual moves are of interest. Figure 7.7
shows the results for the seven applied moves. One finds at first glance that
the acceptance rates for the four variants of the L3O coincide with each other.
However, there are small differences between the sigmoidal decreases in the
acceptance rates for the moves EXC, NIM, and L2O. The acceptance rate
for the EXC decreases at slightly higher temperatures than the acceptance
rate for the NIM and this again at slightly higher temperatures than the
acceptance rate of the L2O. This can be easily explained: as the EXC changes
four, the NIM three, and the L2O only two edges and as the edge lengths of
the new and of the old edges are summed up, when calculating the energy
difference ΔH, the occurring absolute energy differences for the EXC are
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Fig. 7.7. Computational results for the partial acceptance rates Ai of the moves
EXC, NIM, and L2O (left) and of the four variants of the L3O (right) for three
TSP instances using SA: BEER127 (top), LIN318 (middle), ATT532 (bottom)

on average larger than those for the NIM and even more than those of the
L2O. This difference in the average deteriorations leads to different transition
temperatures. The acceptance rates of the L3Os nearly coincide with the
acceptance rate for the EXC, but their decreases are a bit steeper.

However, one could also have implemented various moves for which accep-
tance rates decrease at very different temperatures. If one has thus a move a
with an acceptance rate decreasing at rather high temperatures and a move b
with an acceptance rate decreasing much later in the optimization process, it
usually does not make any sense to call the move a often at very small tem-
peratures. Generally, one could observe the acceptance rates of the individual
moves and then decide for the next temperature step how often each move
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will be called. This decision can also be influenced by the averaged (absolute)
size of the energy changes a move causes, i. e., a move is also worthwile even
if seldom accepted, if it leads to large improvements.
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Fig. 7.8. Computational results for the total move acceptance rateA of the PCB442
instances using SA with either the Metropolis criterion or the heat bath criterion

Again we ultimately want to compare the results achieved with the
Metropolis criterion and the heat bath criterion. Figure 7.8 shows the curves
for the total acceptance rate A when using one of these two acceptance cri-
teria. We find that the heat bath acceptance probability starts out at 0.5
at very high temperatures and decreases sigmoidally to zero with decreasing
temperatures. It is always smaller than the Metropolis acceptance probability.

The system performs in both cases the same transition from the high-
energy random configurations to the low-energy ordered solutions. The start-
ing value of the acceptance rate of 0.5 simply denotes that 50% of the moves
are accepted. But the system is indeed in a quasi-RW mode at these high
temperatures. Trivial moves with ΔH = 0 are accepted with a probability of
0.5 by the heat bath criterion. Also, the other moves are accepted with prob-
abilities of ≈ 0.5. Thus, the heat bath criterion leads at high temperatures
basically to a quasi-RW in which on average every second move is accepted,
nearly independently of its energy difference. Using the Metropolis criterion
at high temperatures, the improving moves are always accepted and the wors-
ening moves are nearly always accepted, so that the total acceptance rate is
slightly smaller than 1. Using the heat bath criterion, the total acceptance
rate cancels out to 0.5 at high temperatures, as the acceptance probability
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for any move is roughly 0.5. Thus, the dynamics is slowed down if replacing
the Metropolis criterion by the heat bath criterion, but the results for the
expectation values of the observables remain, of course, the same.

7.4 Quality of the Results Achieved
with Various Computing Times

Finally, we want to consider the quality of the results that can be achieved by
spending a certain amount of computing time for a SA run in comparison to
the quality of the results achieved with the greedy algorithm when spending
exactly the same amount of time. Figure 7.9 shows the quality of the results
vs. the calculation time spent. For each TSP instance, 100 optimization runs
were performed; the mean value is thus averaged over 100 final configurations,
so that the error bars are the same size as the symbols. Analogously, the
minima and maxima are also taken from these 100 runs each. (Henceforth,
the terms minimum, mean, and maximum length will always refer to the
results of 100 optimization runs unless it is clearly stated otherwise.) The
calculation time is denoted as the number of Monte Carlo sweeps spent per
temperature step of SA. For the greedy algorithm, corresponding calculation
times were used; the Metropolis criterion, which is used for SA, was simply
replaced by the greedy criterion.

In the SA runs, the BEER127 instance was cooled down from the initial
temperature Ti = 105 to the final temperature Tf = 1 in each optimiza-
tion run. Additionally, a final greedy step was performed. Analogously, the
LIN318, PCB442, and ATT532 instances were cooled down from Ti = 104 to
Tf = 0.1, then a final greedy step was performed. For the NRW1379 instance,
the parameters were Ti = 103 and Tf = 10−2; also, a greedy step at T = 0
was performed at the end. These fixed values were set in order to be able to
compare the individual results better as a function of the calculation time
spent and in order to allow each system the transition from the unordered to
the ordered regime.

The cooling schedule was exponential with a cooling factor of f = 0.99.
Thus, all in all, 1147 temperature steps were performed in each optimization
run for each instance. The number of sweeps per temperature step differed:
they were 1, 3, 10, 30, 100, . . ., or 30000. Summarizing, the overall number
of sweeps spent is given by the number of temperature steps multiplied by
this number of sweeps per temperature step.

In order to have slightly more space in the graphics, the lengths of the
final configurations were divided by a factor of 1000, such that the labeling
at the y-axis takes up less space.

Figure 7.9 clearly shows that the lengths achieved with SA decrease with
increasing calculation time, at first rather fast, but then the improvement
diminishes if more calculation time is invested. For the larger instances, one
finds that the minimum and maximum qualities found for a certain amount
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Fig. 7.9. Quality of the results achieved with SA (straight lines) and the greedy al-
gorithm (dotted lines) for five TSP instances (BEER127, LIN318, PCB442, ATT532,
and NRW1379) vs. number of sweeps per temperature step: the three lines show
the minimum lengths, mean lengths (error bars of the size of the symbols), and
maximum lengths

of calculation time are not far from each other if the number of sweeps is
increased beyond 1000 sweeps per temperature step. Furthermore, if the cal-
culation time is increased by a factor of 10, the worst result out of 100 runs
is then nearly as good as the best result previously. Thus, when working with
SA, it is generally best to spend the whole calculation time available on one
long optimization run. Performing many short optimization runs clearly leads
to worse results. Comparing these results for SA with those for the greedy
algorithm, one clearly finds that the greedy algorithm is superior for very
short calculation times as it spends the whole calculation time at T = 0,
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where it only accepts improvements, whereas SA gradually quenches the sys-
tem down to this regime but initially also allows deteriorations. However, as
more calculation time is spent, SA surpasses the greedy algorithm. One finds
for all instances that the greedy algorithm, which leads to a freezing of the
system in some local minimum at ≈ 3 × 103 sweeps per temperature step,
i. e., after ≈ 3 × 106 overall sweeps, cannot lead to such good configurations
as SA is able to produce for longer calculation times. Furthermore, one finds
for the greedy that the variation between results of different runs is greater
than that was seen for SA.

50

55

60

65

70

75

80

1 10 102 103 104

le
ng

th
/1

00
0

# sweeps per T

PCB442

Metropolis
Heatbath

Fig. 7.10. Quality of the results achieved with SA for the PCB442 instance using
either the Metropolis criterion (straight lines) or the heat bath criterion (dotted
lines) vs. number of sweeps per temperature step. The three lines show the minimum
lengths, mean lengths (error bars of the size of the symbols), and maximum lengths.
The results for the Metropolis criterion are replotted from Fig. 7.9

Next we again investigate whether it makes a difference to use the heat
bath criterion instead of the Metropolis criterion. Figure 7.10 compares the
results of these two acceptance criteria for the PCB442 instance. In both
cases, the same parameters for the starting value of the temperature and so
on were used. Looking closely, we find that the Metropolis criterion always
leads on average to better results. For short computing times, this difference
is significant, as can be seen at the error bars; for long computing times, it
is only marginal. This result can easily be explained by the fact that the
dynamics is faster if using the Metropolis criterion. However, it is not always
advantageous to use the Metropolis criterion: if it takes a large amount of
calculation time to actually update a configuration if a move is accepted
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and only a comparatively small amount to calculate the energy difference
of the proposed move, then it might sometimes be better to use the heat
bath criterion and perform more sweeps per temperature step. We, however,
will stay with the Metropolis criterion here. This scenario of working with
SA using the Metropolis criterion and using the parameters mentioned above
will become our standard case with which we will usually compare the results
for other algorithms in the following chapters.
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Fig. 7.11. Investigating the Grest hypothesis on data for SA shown in Fig. 7.9:
the deviation of the mean length to the optimum is plotted vs. the inverse of the
logarithm of the calculation time, which is simply measured in number of sweeps
per temperature step. A hand-made fit leads to a dependency as 1/ log(t)ζ with
ζ ≈ 5 for the BEER127 instance, ζ ≈ 1.5 for the LIN318 instance, and ζ ≈ 2.5 for
the other three instances
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Based on the results for SA in Fig. 7.9, we investigate the Grest hypoth-
esis [Eq. (16.1) in Part I] for these five TSP instances: according to Grest,
the mean deviation of the results achieved with SA after some time t from
the globally optimum solution Hopt is proportional to 1/ log(t)ζ with some
power ζ. Figure 7.11 shows the data of Fig. 7.9 replotted in such a way as
to be able to verify the Grest hypothesis. In a double logarithmic plot, the
exponent ζ is clearly not roughly 1. Furthermore, it is impossible to get all
points on one straight line; there is even a slight curvature for those points
that correspond to long computing times. We used only those for fitting as
they are the more important points. We get ζ ≈ 5 for the BEER127 instance
and ζ ≈ 1.5 for the LIN318 instance. Only for the three largest instances do
we clearly find an exponent of ζ ≈ 2.5. Thus, for large TSP instances, the
Grest hypothesis might hold for long computing times.



8 Dependencies of SA Results

on Moves and Cooling Process

8.1 Results for Various Small Moves

In this chapter, we want to study which things have an impact on the quality
of the results. These “things” are the moves and the cooling schedule.

First we want to start with an investigation into what level of quality can
be reached with a particular move type. Thus, instead of calling a “one move
trial routine”, which then again calls with an equal probability of 1/7 one
of the seven moves exchange (EXC), node insertion move (NIM), Lin-2-opt
(L2O), and the four variants of the L3O, one could, e. g., simply call only one
of these moves all the time.

Here we present only results for the PCB442 instance, but the conclusions
can be made generally. The optimization runs were performed in the same
way as in Sect. 7.4, i. e., the PCB442 instance was cooled down from the initial
temperature 104 to 0.1 with a cooling factor of 0.99. Finally, one greedy step
was performed, such that 1147 temperature steps were performed. Thus, the
move routine was called 1147 (the number of temperature steps) times the
number of sweeps per temperature times 442 (the number of TSP nodes).

Figure 8.1 shows the results for various calculation times depending on the
move used. In the “all” scenario, every move was called with equal probability,
such that these results are identical to those in Fig. 7.9 for the PCB442
instance. At first glance, we find that the results differ strongly for the various
moves: the worst results are clearly achieved with the EXC for all calculation
times. For short calculation times, the L2O leads to the best results, followed
by the “all moves” scenario and the NIM. Thus, with only a rather small
amount of calculation time, it is best to work with a good small move only
and not to use larger moves. However, usually one does not know in advance
which of the small moves will lead to good results. Furthermore, in this
time regime, which lasts only fractions of seconds, it is better first to use
a construction heuristics and then, if there is still time available, to proceed
with an afterburner in the greedy mode.

For longer calculation times, however, the curves for the various moves
except the EXC seem to coincide. In order to better be able to study the
differences between the moves, we enlarge them by looking at the relative
deviation
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Fig. 8.1. Minimum and mean lengths vs. calculation time when using only one of
the seven moves or all moves when applying SA to the PCB442 instance

δx =
x−Hopt

Hopt
(8.1)

of the results to the optimum value of the TSP instance. x denotes either the
mean value 〈H〉 or the minimum value found. A deviation of 0.1 thus means
that the value is 10% worse than the optimum value.

Figure 8.2 shows the results for the relative deviations derived from the
data shown in Fig. 8.1. The differences are enlarged with a logarithmic y-axis.
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Fig. 8.2. Minimum and mean deviation δ [as defined in Eq. (8.1)] vs. calculation
time (based on data of Fig. 8.1)

Points not shown are thus exactly 0. One finds that the mean deviation is
approximately the same for the L2O and the “all moves” scenario, in the long
time range. Furthermore, these two scenarios lead to the best results, followed
by the L3Os and the NIM. Looking at δmin, we find that the “all moves”
scenario finally finds the optimum if the number of sweeps per temperature
step is at least 104, whereas the L2O alone does not lead to it.
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Summarizing, it is best to implement as many smallest-order and next-
higher-order moves as possible. The often heard sentence “You only need to
implement one small move as the algorithm will do it all” is simply false
or at least not generally true. Surely, one might find a move like the L2O
for a specific problem, which leads to rather the same quality of results as
the ensemble of moves, but then it must be the right move and not, e. g.,
the analog to the EXC. This additional implementation work pays off in the
quality of the results, especially if more calculation time is invested.

Thus, we will return to our “all moves” scenario, in which each of these
seven small moves is called with equal probability. Of course, one could think
of even more complex move routines, in which some moves are called more of-
ten than others. Furthermore, these calling rates could be changed adaptively
due to the acceptance rates of each type of move and the energy changes or
gains to which they lead at each temperature. One could even move on to
some system with artificial intelligence or a neural network that then adapts
the calling rates. However, as far as we know, there is no general rule set
for all possible problems on how to choose the calling rates of the individ-
ual moves: one move type could be more important than another type if it
is accepted more often, if it leads to larger improvements, or if it leads to
a larger acceptance rate for another move after an accepted move trial. There
are many possibilities for implementing an adaptive calling algorithm based
on rules of thumb containing these importance measures. Of course, such an
algorithm could lead to even better results, especially for short calculation
times [180]. We, however, want to stay with our simple calling procedure.

8.2 Results for Monotonous Cooling Schedules

The next question is how strong the influence of the cooling schedule is on
the quality of the results. First, we will consider the standard exponential
cooling schedule as usual, not with a cooling factor of f = 0.99 but with
smaller cooling factors of 0.1 ≤ f ≤ 0.98. Again the system is cooled down
from Ti = 104 to Tf = 0.1.

Figure 8.3 shows the results for these cooling factors. Note that here the
results are not plotted vs. the number of sweeps per temperature step but vs.
the overall number of sweeps. As a smaller cooling factor is used, the number
of temperature steps decreases. The number of temperature steps for each
cooling factor is given in Table 8.1. We find that the curves for the different
cooling factors seem to coincide totally. Thus, at first sight, the results seem
to be independent of the cooling factor f , as the curves for the various f scale
nicely.

We again blow up the differences by looking at the relative deviation as
defined in Eq. (8.1). Figure 8.4 clearly shows that for short calculation times,
the results are independent of the cooling factor used. In the long time period,
however, the results for the smallest cooling factors f = 0.1 and f = 0.2 are
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Fig. 8.3. Minimum and mean lengths vs. number of sweeps for various cooling
factors when applying SA to the PCB442 instance

Table 8.1. Number of temperature steps for various cooling factors for the results
shown in Fig. 8.3

Cooling factor 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95 0.97 0.98 0.99

Temperature steps 7 9 11 14 18 24 34 53 111 226 379 571 1147
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Fig. 8.4. Minimum and mean deviation δ [as defined in Eq. (8.1)] vs. calculation
time (based on the data of Fig. 8.3)

significantly worse than those for the larger cooling factors. First, the curve
for f = 0.1 deviates from the other curves, then that of f = 0.2, and, finally,
even the curve for f = 0.3 starts to move away from the other curves that
lead to better results.

Summarizing, we wish to state that it is better to use a larger cooling
factor. According to our experience also with other problems, one should
generally work with f ≥ 0.8.
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The second question when restricting oneself to monotonic cooling sched-
ules, as one usually does, is at what initial temperature Ti should the opti-
mization run be started and at what final temperature Tf should it end. As
already mentioned in Chap. 11 in Part I, the initial temperature Ti must be
large enough such that the system is not quenched down in a greedylike way.
Additionally, the final temperature Tf must be so small that the system is
virtually frozen. Here we want to study the quenching effect only, as it does
not make much sense to study the quality of “high-temperature solutions”.
Thus, we use the “good” cooling factor f = 0.99, which leads to good results,
as shown above, and the final temperature Tf = 0.1, at which the PCB442
system is frozen. Again we cool the system from an initial temperature Ti,
which is to be varied here, exponentially down to Tf and finally add a greedy
step, such that we get the overall number of temperature steps shown in
Table 8.2.

Table 8.2. Number of temperature steps for various initial temperatures Ti

Initial temperature 0.3 1 3 10 30 100 300 1000 3000 10000 30000 100000

Temperature steps 111 231 340 460 569 689 798 918 1027 1147 1256 1376

Figure 8.5 shows the results for various initial temperatures Ti. As the
figure makes clear, the results differ between the small initial temperatures
Ti ≤ 10 and the large Ti ≥ 100. The points for Ti = 30 lie in between
these two scenarios. In the short time period, the results for small Ti are
better. This result is in accordance with results shown in Fig. 7.9 and can be
explained like them: for very short computing times, the greedy algorithm
leads to better results than SA. Starting at a rather small initial temperature
means quenching the system. One can interpret the greedy as some kind of
superquench of the system. Thus, these results for small Ti must be better
for short calculation times as no time is lost at high temperatures where
also large deteriorations are accepted. For long calculation times, however,
we clearly find that the results for small Ti are worse than those for Ti ≥ 100,
which seem to be rather identical.

To see these differences better, we blow them up by looking at the devia-
tion from the optimum as defined in Eq. (8.1). Figure 8.6 shows the relative
deviation of the minimum result found and of the mean results. We clearly
find for long computing times that, for 3 ≤ Ti ≤ 100, the smaller the initial
temperature, the worse the results. The results for Ti ≤ 3 lie close together,
so obviously it does not make any difference whether Ti = 3 or Ti = 0.3 as the
system is in the greedy mode anyway. On the other hand, for Ti ≥ 100, we
cannot see significant differences between the runs with different Ti but the
same number of sweeps per temperature step. (These results form the groups
of seven points in the graphic for δmean.) Thus, increasing the initial tem-
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Fig. 8.5. Minimum and mean lengths vs. number of sweeps for various initial
temperatures Ti when applying SA to the PCB442 instance

perature Ti too much means wasting calculation time at high temperatures
as we find that we get rather equally good results for 102 ≤ Ti ≤ 105 here:
cooling down the system exponentially from 105 to 0.1 means trying twice as
many moves as cooling it down from 102 to 0.1 if the number of move trials
per temperature step stays the same. Furthermore, more moves are accepted
at larger temperatures, such that also more computing time for updating the
configuration and thus really applying the move must be invested. Note that
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Fig. 8.6. Minimum and mean lengths vs. number of sweeps for various initial
temperatures Ti when applying SA to the PCB442 instance

we do not want to make a plaedoyer for using small initial temperatures.
If working on more complex problems than the TSP, it might be that the
system is restricted to some subspace in the search space if Ti is chosen too
small. Thus, we recommend using the criteria introduced in Chap. 15, Part I,
even if some calculation time might be wasted. This is still much better than
starting at too small temperatures and thus getting worse results as shown
here.
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Of course, one could also work with more elaborate monotonous cooling
schedules in which the cooling factor is changed adaptively, which also leads
to better results, if the calculation time is concentrated on the important
temperature range. But again, although optimization libraries like the TopC
library developed at the IBM Scientific Center Heidelberg containing such
elaborate techniques have been developed, adapting each of the many pa-
rameters to a given problem instance in a perfect way still requires much
testing [180].

8.3 Results for Bouncing

The next question is whether the results can be improved if a nonmonotonous
cooling schedule is used. We want to investigate this question by a rather
straightforward approach to nonmonotonous cooling called bouncing: in
a first iteration, the system is cooled down from a high initial temperature
Ti to a freezing temperature Tf as usual. For this first iteration, which will
be called iteration No. 1 in this section, we will use parameters as before:
we cool down the PCB442 instance from Ti = 10,000 to Tf = 0.1 with an
exponential cooling schedule using a cooling factor of f = 0.99—which makes
1146 temperature steps—and finish the first iteration with a greedy step at
T = 0. Then we perform a series of bouncing iterations, in which

• We take the final configuration of the previous iteration as the starting
configuration,

• We set the starting temperature to a specific value TB,
• We cool the system down to Tf = 0.1 in an exponential schedule with 1146

cooling steps, and
• Finally, we perform one greedy step.
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Fig. 8.7. Bouncing the PCB442 instance: mean and minimum lengths achieved
with 100 optimization runs for various bouncing temperatures TB (TB = 200,
100, 50, 25, 12.5) and for various numbers of sweeps per temperature step in each
bouncing iteration vs. the number of bouncing iterations. Note that the lower bound
in each graphic is exactly at the optimum value 50,783.5 . . . for the PCB442 instance
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Fig. 8.7. (continued)
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Fig. 8.8. Bouncing the PCB442 instance: results analogous to those in Fig. 8.7,
but for larger numbers of sweeps per temperature step and bouncing iteration, the
optimum value is now shown separately
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In each temperature step, the same amount of sweeps is performed as usual.
As we want to compare the bouncing results with the results for SA with
a monotonous cooling schedule, the number of sweeps per temperature step
is as usual 1, 3, 10, 30, . . .. Note that in each bouncing iteration, the same
number of move trials is performed as in the usual optimization run, which
now serves as iteration No. 1. Furthermore, note that the individual tem-
perature values are closer to each other than in the first iteration, i. e., the
cooling factor in the bouncing iterations is larger than 0.99. We bounce those
systems with less calculation time in each bouncing iteration more often, so
that the overall calculation time measured in number of sweeps is the same
for all parameter sets and thus we can really compare the results at the end.

Figures 8.7 and 8.8 show the mean and minimum results for various val-
ues of the bouncing temperature TB and for various numbers of sweeps per
temperature step. For cases with less calculation time, all curves decrease
strongly in the first few iterations. Then they either fluctuate around some
constant value in the case of larger bouncing temperatures TB or continue to
decrease for smaller TB.

We clearly find that the bouncing process is generally able to gradually
improve the quality of the solutions: the mean lengths decrease with an in-
creasing number of bouncing iterations. For a small number of sweeps per
temperature step, first the runs with TB = 50 lead to the best results, but
later on the results of the runs with TB = 25 are better than these. For larger
numbers of sweeps, the runs with TB = 50 lead on average to the best results
in all bouncing iterations. Furthermore, we notice that by far the worst re-
sults are always achieved if we bounce the system up to TB = 200, followed
by TB = 100 and TB = 12.5.

Looking at the specific heat in Fig. 8.9, we find that the bouncing tem-
peratures used cover the three bouncing regimes mentioned in Sect. 15.2 in
Part I:

• TB = 200 lies above the freezing temperature Tf of the system, TB = 100
only slightly below. Using these bouncing temperatures, one “melts” the
system, so to speak. In the case of very short calculation times, one can still
improve the initial configuration, as the system is quickly quenched down
to low temperatures and the final configuration of the previous iteration is
surely not fully optimized, so that one can find easily some improvements.
For long calculation times in each bouncing iteration, the quality of the
solutions stays roughly the same as in the first iteration.

• At TB = 12.5, the specific heat starts to vanish. The system is only slightly
warmed up if reheated only up to this temperature. Again, for short calcu-
lation times, improvements can be found as the calculation time for each
iteration is simply too short to really get in a local minimum in the first
iteration. Thus, the curves for TB = 12.5 decrease slowly in this case. For
long calculation times per iteration, however, the bouncing iterations do
not lead to larger improvements as the Monte Carlo walker is not able to
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Fig. 8.10. Bouncing the PCB442 instance: here the symmetric overlap of the final
configuration σi of each bouncing iteration i with the final configuration of the
previous bouncing iteration, which serves as the initial configuration for the next
bouncing iteration, is shown
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Fig. 8.10. (continued)

leave the local valley of the initial configuration due to the small value of
TB.

• The bouncing temperatures TB = 25 and TB = 50 are on the left leg of the
specific heat. Thus, the system is considerably warmed up in these cases,
but it is not melted. Thus, these bouncing temperatures “lie in the right
temperature range”, as can also be seen from the fact that the results for
these TB are generally the best.

Note that these numbers of a “good” bouncing temperature strongly depend
on the instance. One should first perform a conventional SA run in which
the specific heat of the system is measured. Then one knows the temperature
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Fig. 8.11. Bouncing the PCB442 instance: here the symmetric overlap between
the final configuration σi of the bouncing iteration i with the final configuration σ1

of the first iteration, i. e., of the conventional monotonically cooled optimization
run, is shown
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Fig. 8.11. (continued)

range in which one must reheat the system in order to strongly improve the
results with a bouncing process.

These insights are in good agreement with the results shown in Figs. 8.10
and 8.11. Here we consider the overlap between the final configurations σi of
the successive bouncing iterations i. The overlap O(σ, τ) between configura-
tions σ and τ is simply given by the number of edges occurring both in σ and
in τ in relation to the overall number of edges: let

ησ(i, j) =

⎧
⎨

⎩

1 if σ−1(i) = σ−1(j) ± 1 modN ,

0 otherwise ,
(8.2)

i. e., ησ(i, j) = 1 if j is either the predecessor or the successor of i in configu-
ration σ. Then the overlap is given as

O(σ, τ) =
1

2N

N∑

i,j=1

ησ(i, j) × ητ (i, j) . (8.3)

We first consider the overlap between the final configuration σi of the bounc-
ing iteration i and the final configuration σi−1 of the previous bouncing it-
eration i− 1, which serves as the initial configuration for the next bouncing
iteration. For the first bouncing iteration, we simply set σ0 = σ1 such that
the overlap has the value 1 there. We find that for small calculation times
the overlap increases strongly in the first few iterations. Then it becomes
nearly a constant in all cases. Furthermore, we find that these final constants
strongly depend on the corresponding bouncing temperature TB: the smaller
TB is, the larger is the overlap with the initial configuration of the bouncing
iteration. This result is not surprising at all, as the possibilities for moving
for the Monte Carlo walker are enlarged if the system is reheated to a higher
temperature. However, the agreement with the results for the lengths is very
good:

• The results for the lengths coincide for a number of sweeps ≥ 100 for TB =
200 and TB = 100 in Figs. 8.7 and 8.8. Analogously, the overlaps coincide
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Fig. 8.12. Bouncing the PCB442 instance: the results of Figs. 8.7 and 8.8 for the
mean length are replotted as the mean deviation from the optimum, as defined in
Eq. (8.1). For comparison, the results of monotonically cooled optimization runs
with SA of Fig. 7.9 for the PCB442 instance are shown with the label “SA”
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Fig. 8.12. (continued)

for these sweep numbers. Furthermore, they stay roughly constant at ≈
0.76 if the number of sweeps is increased. This number is also the overlap
between rather good configurations that are generated independently of
each other for this specific instance.

• The best results can, however, be achieved if this overlap to the initial
configuration is larger and is >≈ 0.8 for longer computing times.

• If the system is only slightly warmed up, then the overlap has values > 0.9
and thus is simply too large. In this case, the Monte Carlo walker does not
leave the local valley and is thus not able to get to better solutions.

Instead of projecting the final configuration σi of the bouncing iteration i
on the final configuration σi−1 of the previous bouncing iteration i− 1, one
can also consider the projection of σi on σ1, i. e., on the result of the ini-
tial optimization run, which is now successively bounced. Figure 8.11 shows
the results for this projection. We find that this projection decreases more
strongly for very short computing times. Furthermore, the decrease again de-
pends on the bouncing temperature TB: for TB = 200, this overlap drops to its
final value and stays rather constant there. This is also the case for TB = 100
and longer computing times. For smaller TB, the overlap with the original
solution gradually decreases. The lower TB is, the slower is this decrease.

Note that these values for this specific PCB442 instance might differ
strongly from values for other instances and other problems. In particular,
the PCB442 instance exhibits a highly degenerate ground state and thus also
higher-energy states are degenerate. There are trivial moves by which one
can jump in the greedy mode between various configurations as the energy
of some neighboring configurations is exactly the same.

Till now, we have only considered the relative improvement due to the
bouncing process. However, looking at Figs. 8.7 and 8.8 again, we find that
there are large differences in the quality of the final configurations σ1 of the
first iteration due to the different calculation times spent. The longer this
first monotonously cooled iteration lasts, the better these results are, which
are to be improved by the bouncing process. However, the question arises
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as to whether it is better to perform a short initial cooling run and then
a long bouncing process with many iterations or to spend all the available
calculation time in one monotonically cooled optimization run.

Figure 8.12 shows the results for the mean relative deviations from the
optimum as defined in Eq. (8.1), both for the results of the bouncing process
shown in Figs. 8.7 and 8.8 and for the results for monotonically cooled op-
timization runs that are taken from Fig. 7.9. The results are plotted in such
a way that one can clearly see what quality of results one gets as a function
of the computing time.

In this figure, the results for SA occur as a line from which the results
for the bouncing processes take off after the first monotonically cooled iter-
ation. For a small number of sweeps per temperature step in each bouncing
iteration one finds that the results achieved after 1–10 bouncing iterations
can indeed be better for short computing times. Investing more computing
time, bouncing cannot lead to as good results as a long monotonically cooled
optimization run.

However, the bouncing idea has still its place, not only in the case that
the available computing time is very short, and it can be very useful: after
having invested some computing time on several computers, one can check
the final configurations that one likes most and then bounce the best one
several times in order to improve its quality but not lose too many of the
nice properties one wants to have. There are also other applications in which
one needs to get a first preliminary solution in a rather short time in order to
have a solution at all, but then one can often use additional calculation time
when available in order to improve the result while not altering the solution
too much.

8.4 Results for Parallel Tempering

The next cooling approach we want to investigate is parallel tempering (PT).
Here one considers not just one Monte Carlo walker walking through the
energy landscape but a set of Monte Carlo walkers. Each of these Monte
Carlo walkers i has assigned a fixed temperature Ti. They accept each move
according to the Metropolis criterion. After some number of sweeps, they are
allowed to switch their positions in the energy landscape if a Metropolis-like
criterion [Eq. (15.30) in Part I] is fulfilled. The exact implementation of the
PT algorithm is as follows:

1. Set up a set of processes, each one starting with a randomly generated
configuration and assign a temperature Ti to each process i, which is held
constant during the simulation. These temperature values correspond to
the temperatures of the conventional SA algorithm. Actually, we use 1147
processes, assigning to each of them one of the temperature values of the
SA simulations, i. e., Ti = 10,000×0.99i−1 for 1 ≤ i ≤ 1146 and T1147 = 0.
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2. Then each process performs the same number of sweeps. This leads to
a final configuration σi for each process i.

3. After that pairs of processes with neighboring temperature values check
according to Eq. (15.30) in Part I whether or not they should exchange
their configurations. As the number of processes is odd, here the process
pairs (1, 2), (3, 4), . . . , (1145, 1146), and the process pairs (2, 3), (4, 5), . . . ,
(1146, 1147) are used in an alternating way. Note that there is always
one marginal process that does not take part in this exchange process.
Furthermore, note that the exchange with process 1147, which is run
in the greedy mode, is performed according to the greedy acceptance
criterion, such that the better of the two configurations is moved to the
greedy Markov chain.

4. If some stopping criterion is not met (here a given calculation time), the
algorithm returns to step 2.
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Fig. 8.13. Minimum, mean, and maximum lengths vs. number of sweeps between
two swaps achieved with PT applied to the PCB442 instance (left) and to the
ATT532 instance (right): for each of the two instances, 100 optimization runs were
performed

We decided to use the same overall time as for the longest SA simulations,
namely, an overall number of 30,000 sweeps per temperature step, in order
to compare the results with those of standard SA. This overall number of
30,000 is split as a product of the number of sweeps between two swaps and
the number of swaps. Now the question arises as to how often the swap of
the configurations shall be performed. Figure 8.13 shows the results averaged
over 100 simulations using this PT with various numbers of sweeps between
two swaps. Note that as a result of the simulation, the length of the final
configuration of process 1147, which was run at the lowest temperature T = 0,
was returned.

The amount of 30 sweeps is already so large that the configuration at
the highest temperature cannot tunnel to the last process, as here only 1000
swaps are performed, whereas there are 1147 processes. On the other hand, it
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does not make sense to use less than at least one sweep between two swaps, as
the transferred configuration has to get used to the new temperature value.
We find that the mean results are rather independent of the number of sweeps
between two swaps, but the minimum results that can be achieved for the
PCB442 instance become better if there is more time between two swaps.

The question is now whether this method is better or worse than SA.
Neglecting the time for the swaps, the same overall number of move trials
was performed as with SA using 30000 sweeps per temperature step and
1147 temperature steps. SA leads on average to results of 51,032 ± 16 for
this scenario if applied to the PCB442 instance and to results of 27,834 ± 9
if applied to the ATT532 instance. SA reaches sometimes even the optimum
configuration. On the other hand, PT leads on average to values larger than
51,600 for the PCB442 instance and larger than 28,300 for the ATT532 in-
stance. The best result achieved for the PCB442 instance is 51,021.375, for
the ATT532 instance 28,079. However, this is arguing from the point of view
of a single-processor machine, on which all these processes of PT must be
run. One can also argue from the point of view of people working on large
workstation clusters or on supercomputers with a huge number of processors:
here the different processes of PT can be run in parallel, such that—if we
neglect again the time for swapping the configurations—each processor only
performs 30,000 sweeps and has thus finished its work within 1/1147 of the
time the single-processor machine needs. If we now compare this scenario
with SA, the nearest value to that is where we perform 30 sweeps for each of
the 1147 temperature steps. Here we get 53,146±51 for the PCB442 instance
and 29,016 ± 23 for the ATT532 instance, so that in this sense SA leads to
much worse results than PT. On the other hand, one can also argue that if
one uses a parallel computer search for the optimum of a given problem with
SA, one can start the same SA program on each processor and finally take the
best result. For 1000 simulations performed, with 30 sweeps per temperature
step, this best result was 51730.8471 for the PCB442 instance and 28419 for
the ATT532 instance, which is in both cases still much worse than the mean
result achieved with PT.

A further question is whether this PT method can really be interpreted
as a type of cooling process for SA. For this reason, we show in Fig. 8.14
the lengths of the final configurations of the processes in a PT optimization
run drawn vs. the temperature values of the individual processes. We find
that these lengths fluctuate nicely around the curve for the expectation value
of the energy as a function of the temperature. Thus, after some time, each
process has moved the system starting at a random configuration into the
correct range of energies at its system temperature. The swapping of the
configurations between the processes can speed up adjusting the systems to
the temperatures.

The question now is whether the results achieved with PT can be fur-
ther improved. The philosophy of SA is not to quench the system down by



8.4 Results for Parallel Tempering 337

0

100

200

300

400

500

600

700

800

10-2 10-1 1 10 102 103 104 105

le
ng

th
/1

00
0

T

PT
SA

Fig. 8.14. Lengths of the final PCB442 configurations of the processes in a PT
optimization run vs. temperature values of each process. For comparison, the ex-
pectation value 〈H〉T of the energy as a function of the temperature, which was
measured in a SA run, is drawn as a straight line

cooling it somewhat fast but to cool it slowly. If we consider the processes
of a PT simulation, then we find that those processes with small tempera-
tures quench their configurations down, which are initialized with randomly
generated configurations. Thus the idea is already to start with much better
configurations, at least at the low temperatures. Much better configurations
like these can be easily and quickly generated by some construction heuristic,
like the bestinsertion heuristic. Figure 8.15 shows results that are analogous
to those in Fig. 8.13, but now all initial configurations are generated with the
bestinsertion heuristic. We find that the results for the PCB442 instance do
not improve—on the contrary, they are slightly worse—whereas the results
for the ATT532 instance become better. As there is no general advantage of
starting with preoptimized solutions, we will return to the random initializa-
tion.

The next question concerning the quality of the results as well is how many
processes will be used. On the one hand, the temperatures of the processes
must be “dense” enough so that the acceptance ratio for the swapping of the
configurations is large enough. For each process, the lengths of the occurring
configurations fluctuate after some time around the expectation value of the
energy. The widths of these distributions differ for the various temperature
values. But these distributions should overlap; otherwise one can only use
that part of the PT criterion in which the acceptance probability decreases
exponentially with the difference between the inverse temperature values. As
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we see for our approach in Fig. 8.14, we are well on the safe side, according to
this criterion, as the final lengths shown there are not monotonically decreas-
ing. On the other hand, let us consider an argument sometimes heard for this
PT method: let us consider the swapping of the configurations as a RW pro-
cess, i. e., the configurations perform a RW in the temperature space [208].
(Of course, this is not the case, as the swap is not always accepted but only
with a Metropolis-like criterion, but we want to use this picture here.) Then,
according to the Einstein relation, the range of temperature steps a configu-
ration can trespass is proportional to the square root of the time that passed
since the RW was started. Thus, the time a configuration needs to visit all
the occurring processes increases at least quadratically with the number of
processes. Summarizing, we need a large number of dense temperature values
but a small number of processes.

In order to solve this contradiction, an approach can be used in which
there are fewer ensemble members and the individual ensemble members of
the PT process gradually decrease their temperature values Ti. In our imple-
mentation, we use 1146/n+1 ensemble members with n = 1, 2, 3, 191, 382, 573,
and 1146, which are the factors of the number 1146. The last member of the
ensemble is always set to the temperature T = 0 from the very beginning.
The other members start with temperature values of Ti = 104 × 0.99i−1.
The temperatures are then gradually decreased exponentially with the cool-
ing factor 0.99, such that the final temperatures for these ensemble members
are given by Ti = 104 × 0.991146×(n−1)/n+(i−1), Thus the whole temperature
range of the previous simulations is covered. This decrease of the tempera-
ture is performed uniformly during the entire optimization process. As there
is only a fraction of the previous number of ensemble members left, we in-
crease the overall number of sweeps performed by each ensemble member by
this factor n in order to use the same overall time for the simulation runs.
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Figure 8.16 shows the results for various n, averaged over 100 PT simula-
tions each. One clearly finds that the results strongly improve if n is increased
from 1 to 191 and thus the number of ensemble members decreases from 1147
to 7. (Even the optimum of the PCB442 problem can be reached with this
approach.) However, if n is increased even further, the results get worse again,
but stay generally much better than the original PT approach without cool-
ing and better than the results for very small n. Thus, there is an optimum
intermediate number of processes when using this PT approach. The results
are then even able to compete with those of SA if PT must be carried out on
a single processor.

Summarizing, PT is an interesting alternative to SA. However, it is only
useful if there is a parallel computer or a workstation cluster one can work
on. A small or medium-sized cluster is sufficient as the number of processes
should not be too large.



9 Application to TSP of Algorithms Related

to Simulated Annealing

9.1 Computational Results for Threshold Accepting

The way to apply threshold accepting (TA) to the traveling salesman problem
(TSP) is exactly the same as for simulated annealing (SA) except that the
acceptance criterion must be changed. Instead of the Metropolis criterion, the
threshold criterion is used, i. e., the tentative new configuration is accepted if
it is either better or up to a threshold T worse than the current configuration.
Thus, the acceptance function of TA can only take one of the two discrete
values 0 and 1 such that there is never the need to calculate a random number
in order to decide whether to accept or reject a move. Furthermore, no expo-
nential must be calculated. Thus, the computing time for the accept function
is much shorter than for SA. For some problems, the energy difference ΔH
can be calculated very quickly. For instance, when treating the TSP with the
seven small moves, we usually work with, one simply adds up up to eight
numbers that are looked up from the distance matrix. Thus, in this case, it
was advantageous to use TA instead of SA some years ago in order to save the
calculation time for calculating the exponential. (Because of this calculation
time problem, many models developed in physics exhibit only a very small
number of possible energy differences, such that the exponentials of these
differences ΔHi, i. e., the values exp(−ΔHi/(kBT )), can be easily calculated
at the beginning of each temperature step, then stored in a table, and finally
looked up from this table if needed.)

As TA can be considered a deterministic variant of SA, also the range of
the control parameter in which the transition from the high-energy configu-
rations to the low-energy solutions occurs can be expected to be rather the
same. Thus, we use the same initial and final values for the threshold here
as we used in Chap. 7 for the temperature. Indeed, we simply copied the
SA program and replaced the Metropolis criterion by the threshold criterion.
There is no more to do if switching from SA to related algorithms like TA.

Investigating TA, we first want to compare the results for some observ-
ables with the curves obtained for SA. First, Fig. 9.1 shows the decrease in
the mean energy 〈H〉 with decreasing threshold and temperature T and the
curves for the specific heat C of three TSP instances both for TA and for
SA. One clearly sees that the decrease in 〈H〉 is steeper in the case of TA.
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Furthermore, at large thresholds, the mean energy is virtually constant. The
“specific heat” is calculated via C = Var(H)/T 2 both for SA and TA. Of
course, this formula is only correct for SA. But we find that this observable
also gives some insight into the behavior of TA, as it measures the fluctu-
ations of the energy related to the control parameter. However, one must
be aware of the fact that this is then not specific heat in the strict physical
sense in the case of TA. One finds for all three instances that the peak of this
specific heat lies at slightly larger values of T in the case of TA. Furthermore,
the height of the peak is much smaller. Thirdly, one finds that the specific
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Fig. 9.1. Computational results for the mean energy 〈H〉 (left) and the specific
heat C (right) of three TSP instances [BEER127 (top), LIN318 (middle), ATT532
(bottom)] using TA. For comparison, the results for SA of Fig. 7.3 are shown as
dashed lines
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heats for SA and TA are rather identical at large values of T and that the
curves differ from each other when approaching the peak of the specific heat.
In conclusion, we get the result that the range of the control parameter T in
which the transition between the high-energy and the low-energy regime oc-
curs is indeed roughly the same for SA and TA. Thus, one can really consider
TA to be an approximation of SA.

Next we compare TA and SA with the curves for the mean value of the
order parameter ξ, which was introduced in Sect. 1.9, and the correspond-
ing susceptibility χ, which are both shown in Fig. 9.2. The susceptibility is
calculated as χ = Var(H)/T both for SA and for TA, although the formula
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Fig. 9.2. Computational results for the expectation value 〈ξ〉 of the order param-
eter (left) and the corresponding susceptibility χ (right) of three TSP instances
[BEER127 (top), LIN318 (middle), ATT532 (bottom)] using TA. For comparison,
the results for SA from Fig. 7.4 are shown as dashed lines
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is only strictly correct for SA. Again the figure contains the curves for SA
for comparison, too. The curves for the order parameter also increase from
slightly above zero to their final values, which depend on the locally minimum
configurations in which the simulation runs finally get stuck, at roughly the
same values of the control parameter, with the curve for TA increasing a little
bit earlier. Thus, we see the same transition range of the control parameter
here as well. The peak of the susceptibility χ lies, like the peak of the spe-
cific heat, at slightly larger values of the control parameter T and its height is
smaller again than in the case of SA. Looking more closely at the peaks of the
susceptibilities of TA at small thresholds, one finds that χ increases ∝ 1/T
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Fig. 9.3. Computational results for the total move acceptance rate A of three
TSP instances [BEER127 (top), LIN318 (middle), ATT532 (bottom)] using TA. For
comparison, the results for SA from Fig. 7.6 are shown as dashed lines
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for small thresholds T until the minimum positive energy difference of the
system is crossed. After that the susceptibilities might increase again, due to
a constant rounding error, such that the variance of the control parameter is
not exactly zero, as it should be, but some small constant value, such that χ
increases again ∝ 1/T .

For other systems, we have already found more pronounced steps on the
left legs of the specific heat and the susceptibility [182, 185, 189]: first these
observables increase ∝ 1/T 2 and ∝ 1/T , respectively, then there is a sharp
step downwards, then they increase again. This can be iterated several times,
so that the sequence of the smallest energy differences of a system can be
determined.
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Fig. 9.4. Computational results for the partial acceptance rates Ai of the moves
EXC, NIM, and L2O (left), and of the four variants of the L3O (right) for three
TSP instances using TA: BEER127 (top), LIN318 (middle), ATT532 (bottom)
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Next we compare the curves for the total acceptance rate of all moves
between TA and SA. Figure 9.3 shows that the acceptance rates of TA start
with a value of exactly 1. Thus, at the beginning, the system is in the ran-
dom walk (RW) mode, as every move is accepted. Then the acceptance rate
decreases more steeply than for SA. Again the transition range is roughly the
same for SA and TA.

Now we consider the partial acceptance rates of the individual moves,
shown in Fig. 9.4. We find that they all decrease nicely in a sigmoidal way
from 1 to some small value. Just as for SA, we find for TA that the partial
acceptance rates of the four variants of the Lin-3-opt (L3O) are identical.
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Some years ago the claim was made that TA is a superior method to SA
due to the better quality of the results [53]. Thus, we compare the results we
get for various calculation times measured in sweeps for five TSP instances
from SA and TA. In both cases, the same exponential cooling schedule with
a factor of f = 0.99 was used, the system was cooled from the initial value
Ti = 105 to the final value Tf = 1 in the case of the BEER127 instance, from
Ti = 103 to Tf = 0.01 in the case of the NRW1379 instance, and from Ti = 104

to Tf = 0.1 for all other instances. Finally, one greedy step was added. In each
temperature and threshold, step, a number of sweeps (1, 3, 10, 30, . . . , 30,000)
was performed. Figure 9.5 shows the quality of the results achieved vs. the
number of sweeps used per temperature step. For each instance, 100 opti-
mization runs were performed for both SA and TA.

We find that the results for SA and for TA are roughly of the same
quality; sometimes SA is better, sometimes TA. Thus, the two algorithms
can be considered equally good. Only for short calculation times, generally
the results achieved with TA are better than those achieved with SA. On the
other hand, when investing a lot of calculation time, one is more likely to get
a better result with SA. For very large amounts of calculation times, SA is
then clearly superior to TA.

9.2 Computational Results for Penna Criterion

The next acceptance criterion that is related to and competing with the
Metropolis criterion and that we investigate here is the Penna criterion, as
an example of the criteria based on the Tsallis statistic. The Penna criterion
is given as

p(σ → τ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if ΔH ≤ 0 ,

0 if q < 1 and ΔH ≥ kT

1 − q
,

(

1 − (1 − q)
ΔH
kT

) 1
1 − q otherwise .

(9.1)

Note that the Penna criterion is a “Tsallis-inspired” criterion but does not
converge to the Tsallis probability distribution. A special case of this Penna
criterion is the Metropolis criterion for q = 1. In this case, we use the original
Metropolis criterion instead.

First, the question arises as to what the curves for the observables look
like when using this criterion. We had to split the results for q ≤ 1 and q ≥ 1,
as they behave quite differently. Figure 9.6 shows the results for the mean
value of the energy and the specific heat C, which was again measured as
C = Var(H)/T 2, for the PCB442 instance, to which we want to restrict the
discussion in this section. We find that the temperature range in which the
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transition from the high-energy to the low-energy regime occurs is shifted
toward smaller temperatures with increasing q. For q < 1, we get curves
looking rather similar to that of SA; the curves for the energy seem to be
simply shifted sideward. The amount of shift roughly depends in a logarithmic
way on the absolute value of q if q is strongly negative. The curves for q < 1
are only slightly steeper than that for SA. However, we find, that the decrease
in the energy is strongly slowed down when using values of q with q > 1: the
transition range is extended by some orders of magnitude of the temperature
if q = 2 is used.

Looking at the specific heat, we find that the height of the peak strongly
increases and is shifted toward smaller values of the temperature with in-
creasing q.

Next we want to consider the total acceptance rate A as a measure of the
extent to which the system is frozen at a particular temperature. Figure 9.7
shows nice sigmoidal decreases in the acceptance rate. We find behavior simi-
lar to that of the decrease in the mean energy shown in Fig. 9.6: for negative q,
the curve is simply shifted sideward. For q > 1, the decrease in the acceptance
rates lasts more orders of magnitude of the temperature than for q = 1. The
question is now whether this slower transition behavior pays off with better
results.
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Fig. 9.8. Applying the Penna criterion to the PCB442 instance: mean (left) and
minimum (right) length vs. number of sweeps per temperature step

Figure 9.8 shows the quality of the results achieved with the Penna cri-
terion achieved with various values of q. For −32 ≤ q < 1, the PCB442
instance was cooled down from Ti = 105 to Tf = 1, for q = 1 and q = 1.5,
from Ti = 104 to Tf = 0.1, and for q = 2, from Ti = 104 to 10−5. Finally,
a greedy step with T = 0 was performed. Note that the simulation runs with
q = 2 thus got much more calculation time than the other optimization runs.
For each q and for each number of sweeps per temperature step, 100 opti-
mization runs were performed. We find that the results for −2 ≤ q ≤ 1 are
the best. The worst results are achieved with q > 1.

In Fig. 9.9, the differences in the quality are magnified using the relative
deviation δmean from the optimum. We again find that there are no large
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differences for q ≤ 1. Again one finds that the achieved results are much
worse for q > 1. Summarizing, one should use either small negative values
or values up to q = 1 when working with the Penna criterion. The Penna
criterion does not lead to results better than SA for the TSP.

9.3 Computational Results for Great Deluge Algorithm

The next algorithm we investigate is the great deluge algorithm (GDA). Un-
like the previous algorithms, the acceptance probability of this algorithm
depends not on the energy difference between the current configuration and
the tentative new configuration but only on the energy value of the tentative
new configuration. If this energy is smaller than the control parameter T ,
then the new configuration is accepted. The Monte Carlo walker can thus
be considered to be a bottom-dwelling fish in a lake and T to be the water
level. The fish can perform a RW on the bottom of the lake but cannot leave
the lake. With decreasing water level, the possible moves of the fish drive it
to deeper and deeper regions of the lake. Finally, he/she is stranded at some
local minimum, which is hopefully rather deep.

The question is now at what value of the control parameter to start and
how to decrease it. We start with a random initial configuration σ0 and set
the initial water level Ti = 1.5 × H(σ0) such that the system is safely in
the RW mode at the beginning. Then T is decreased exponentially with
a factor f = 0.99. However, a problem occurs if the fish is then above the
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decreased water level. Thus, we reduce the water level T iteratively with this
cooling factor, but if the fish then moves above the water level, we set the
water level to the energy value of the current configuration in order to avoid
this problem. If this occurs often, then the cooling of the system is slowed
down considerably. Generally, the system could even choose its own cooling
schedule.

Figure 9.10 shows the decrease in the water level and the mean energy
with increasing time. We find that there are five regimes:
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Fig. 9.10. Water level T and mean energy 〈H〉 decreasing with increasing time
measured in cooling steps: computational results for three TSP instances [BEER127
(top), LIN318 (middle), ATT532 (bottom)] when applying the GDA; graphic on right
is a blowup of graphic on left and shows additional fit curves
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• Initially, the water level decreases exponentially with a factor of f = 0.99
until it reaches that range of areas in which the system oscillates in its RW.

• Then the water level starts to press the system down to smaller energies.
• After this short transition period, the cooling schedule that the system

adaptively creates seems to become roughly exponential again: for the
BEER127 instance, one gets on average f = 0.9966 between the 150. and
350. time steps, for the LIN318 instance, f = 0.9983 between the 400. and
1000. steps, and for the ATT532 instance, f = 0.9985 between the 250.
and 750. time steps.

• Then a second transition occurs in which the freezing behavior is even more
slowed down.

• Finally, the system freezes in some local minimum, so that further time
steps do not lead to further improvements.
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Fig. 9.11. Normalized difference between the water level T and the mean energy
〈H〉: computational results for three TSP instances applying the GDA (based on
data shown in Fig. 9.10)

One finds nice scaling behaviors common to all investigated TSP in-
stances, as Fig. 9.11 shows: when plotting the normalized difference between
the water level and the mean energy vs. the time measured in water level
steps, the first transition regime occurs at the same time for all instances.
This is not surprising, as we set the initial water level to 1.5 times the length
of the random initial configuration. However, if we divide the number of wa-
ter level steps by the system size, then the curves coincide roughly with each
other at the second breakdown, at which the system starts to get stuck in
some local valley and finally freezes in a local minimum.

Plotting the mean energy vs. the water level, which plays the role of the
temperature in the GDA, provides further insight. Figure 9.12 shows that one
does not obtain the same picture as if using SA or TA: first the mean energy
is virtually constant at high water levels, i. e., the system is in a RW mode
initially. After a short transition range, the mean energy decreases linearly
as y = x with the decreasing water level. The small differences between the
water level and the mean energy are too small to be visible here.
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Fig. 9.12. Mean energy 〈H〉 vs. water level T for the TSP instances BEER127
(top), LIN318 (middle), and ATT532 (bottom): results are replotted from Fig. 9.10

Next we want to investigate the fluctuations of the energy at some water
level. A useful means for that is C = Var(H)/T 2, although this formula for
the specific heat is only valid in the case of SA. Figure 9.13 shows C for
three TSP instances. We find that at large water levels, the curves increase
∝ 1/T 2 with decreasing water level, as expected, as the system performs
a RW at these large water levels, such that the variance of the energy remains
constant. After the peak C breaks down rather fast, as the water level restricts
the system to the configurations in some half space of the energy landscape.
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Fig. 9.13. C vs. water level T of the GDA for three TSP instances [BEER127
(top), LIN318 (middle), ATT532 (bottom)]

Although the system could perform a restricted RW due to the accep-
tance criterion, it obviously likes to stay slightly below the water level, as
the results of the last figures show. As the system does not prefer a specific
configuration, we can only conclude that there are many more configurations
slightly below the water level than far below the water level. Due to the self-
chosen cooling schedule of the algorithm, we can even say that the number of
configurations increases exponentially with increasing water level, i. e., with
increasing energy. One could also interpret these results in such a way that
each good configuration has exponentially more neighboring configurations
with worse energy values than with better energy values. However, these two
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statements are equivalent to each other. Summarizing, the GDA is a good
means to measure the relative density of states at a given energy value.

Next we again investigate more closely the order parameter ξ and the
corresponding susceptibility χ [measured as χ = Var(H)/T ], which are shown
for three TSP instances in Fig. 9.14. The order parameter increases strongly
at the freezing transition. The behavior is rather different from that of SA
and TA, where a sigmoidal increase could be observed in which the order
parameter reached its final value rather smoothly. Here, however, the order
parameter increases to its final value. This increase stops when the system is
frozen in some local minimum.
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At high water levels, at which the system performs an unrestricted RW,
the susceptibility increases ∝ 1/T , as expected. But after a short transition
range in which the water level nearly meets the mean energy value, the sus-
ceptiblity starts on average to increase ∝ 1/T 3, as one can see when plotting
the susceptibility in a log-log plot. However, one can even better fit two 1/T 5

functions to it between which a transfer occurs. Then the susceptibility in-
creases even faster than that, before it breaks down when the system freezes
in a local minimum.

The total acceptance rates shown in Fig. 9.15 do not look familiar, either.
For large T , the acceptance rates are equal to 1, as the system performs
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Fig. 9.15. Acceptance rate vs. water level T of the GDA for three TSP instances
[BEER127 (top), LIN318 (middle), ATT532 (bottom)]
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a RW there. Lowering T , the acceptance rates decrease ∝ T 2−3. Finally, the
acceptance rate breaks down as the system gets stuck in some local valley
and finally freezes at its bottom.

Figure 9.16 shows the partial acceptance rates for the individual moves.
Here, too, we find that the acceptance rates for the four types of the L3O
are again rather identical. All acceptance rates start to decrease from 1 at
roughly the same value of T . The decrease in the acceptance rate of the
Lin-2-opt (L2O) is the slowest one. The acceptance rate for the EXC first
decreases fastest but then crosses the acceptance rates for the four L3Os.
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Till now, the GDA has been allowed to select the new water level on its
own, as T could be set to the energy of the current configuration if that was
larger than the desired next value of the water level. However, in practical
applications, one usually avoids this slowing down of the cooling schedule.
But then the simulation might run into the problem that the system is stuck
in a configuration above the water level and cannot get below the water
level if every neighboring configuration is also above the water level. Thus,
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even paths leading iteratively downhill and into the water cannot be used.
Therefore, the acceptance criterion of the GDA is altered such that each
move improving the current configuration is also accepted. This extension
is only important for the case mentioned. Here the system is quenched into
some local valley as if by a greedy descent, but basically the algorithm is still
a GDA as it allows for a restricted RW once the Monte Carlo walker is below
the surface of the water.

Figure 9.17 shows the results achieved with the GDA for five TSP in-
stances. For comparison, the results achieved with SA are shown, too. SA
was selected as there are proofs both for SA and the GDA that they may
lead to the optimum configuration in an infinite amount of time.

Looking at Fig. 9.17 we find that the GDA leads to much worse results
than SA for short calculation times. Increasing the calculation time, the dif-
ference between the GDA and SA becomes smaller. However, the mean value
of the results provided by SA always stays significantly better than that of the
GDA. Summarizing, SA is superior to the GDA and should thus be preferred.
A further point to make is that only the energy difference must be calculated
if using SA. Of course, one can also calculate the energy difference and add it
to the energy of the current configuration to get the energy of the tentative
new configuration that is to be accepted or rejected by the GDA. But after
the acceptance of a series of moves, the energy of the current configuration
must be recalculated in order to reduce the amount of rounding errors. This
takes some additional calculation time.

9.4 Computational Results for Record-to-Record Travel

The record-to-record travel (R2R) algorithm is, given its acceptance criterion,
closely related to TA. In contrast to TA, R2R compares the tentative new
configuration not to the current one but to the best configuration found so
far. Thus, a move is accepted either if it leads to an improvement or if the
tentative new configuration is only up to some threshold T worse than the
best solution found so far. As this criterion is technically rather similar to
that of TA, we will compare the results for R2R with the results for TA here.

Again we start out with the decrease in the mean energy with decreas-
ing threshold (Fig. 9.18). The decrease in the energy looks rather similar to
that of TA. But the transition regime in which the energy decreases from
the regime of the random configuration to the regime of ordered solutions
is shifted to larger values of the threshold by roughly one magnitude. The
pseudo specific heat, which is calculated as C = Var(H)/T 2 for both algo-
rithms and which is shown on the right half of Fig. 9.18, shows, however,
a completely different behavior: for the R2R algorithm, three parts of C can
be distinguished: a small peak is observed at large T . In the intermediate
threshold range, C fluctuates rather menacingly. Finally, at small thresholds,
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Fig. 9.18. Computational results for the mean energy 〈H〉 (left) and the pseudo
specific heat C (right) of three TSP instances [BEER127 (top), LIN318 (middle),
ATT532 (bottom)] using R2R. For comparison, the results for TA of Fig. 9.1 are
shown

there is a second peak that is much larger than the one at high thresholds.
Such fluctuations as seen in the intermediate part here could also occur when
working with SA or TA and spending only a very small amount of calculation
time. In that case, such fluctuations indicate that the system is not equili-
brated as the measurements are taken, so that one gets fluctuations instead
of a round or sharp peak. Here, however, the calculation time for the R2R
algorithm was the same as for TA. It could be that this is a sign that the
system has not yet reached equilibrium, whatever that is in the case of R2R.
Even more interesting are the left large peaks. They differ strongly between
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simulations as each Monte Carlo walker meets other best-so-far solutions on
his way at different times.

Let us now take another look at the order parameter and its correspond-
ing susceptibility (Fig. 9.19). We get a nice sigmoidal increase of the order
parameter with decreasing threshold with the R2R algorithm as well. This
increase is shifted by roughly one order of magnitude of the threshold toward
larger threshold values compared to TA. This result is in accordance with
the result for the susceptibility, which also increases earlier. The peaks of
the susceptibilities of the various instances for R2R look otherwise rather the
same as for TA: if there is a wide peak for a specific instance with TA, there
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Fig. 9.19. Computational results for the order parameter 〈ξ〉 and the corresponding
susceptibility χ of three TSP instances [BEER127 (top), LIN318 (middle), ATT532
(bottom)] using R2R. For comparison, the results for TA from Fig. 9.2 are shown
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is also a wide peak with R2R. Analogously, sharp peaks are shifted on the
threshold axis.

The same shift can be observed in the total acceptance rates A (Fig. 9.20).
In addition, the decrease in the acceptance rate is slightly steeper for TA than
for the R2R, which is also the case for the decrease in the energy. Thus, the
transition range of this R2R algorithm is wider than the transition range
of TA.

Next we consider the partial acceptance rates of the individual moves for
the R2R algorithm. Figure 9.21 shows curves similar to those of TA (Fig. 9.4).
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Fig. 9.20. Computational results for the total move acceptance rate A of three
TSP instances [BEER127 (top), LIN318 (middle), ATT532 (bottom)] using R2R.
For comparison, the results for TA from Fig. 9.3 are shown
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Fig. 9.21. Computational results for the partial acceptance rates Ai of the moves
EXC, NIM, and L2O and of the four variants of the L3O for three TSP instances
using R2R: BEER127 (top), LIN318 (middle), ATT532 (bottom)

Again we notice that the curves for the four variants of the L3O coincide with
each other. The curves for the smaller moves again differ only slightly.

Finally, we consider the quality of the results that can be achieved using
the R2R algorithm and compare it to the results for TA again. Figure 9.22
shows the results as usual for the five TSP instances. We find that for short
calculation times, TA is clearly superior to the R2R algorithm. However,
the R2R algorithm produces slightly better results on average when a large
amount of calculation time is spent. Reconsidering the calculation time to
be spent one again must consider that the total energy of the tentative new
configuration must be determined as in the GDA, such that one must—at
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Fig. 9.22. Quality of the results achieved with R2R (straight lines) vs. those
achieved with TA (dotted lines, replotted from Fig. 9.5), for five TSP instances
(BEER127, LIN318, PCB442, ATT532, and NRW1379) vs. number of sweeps per
threshold step: the three lines show the minimum, mean (error bars are the size of
the symbols), and maximum lengths

least sometimes—calculate not only the energy difference but the total new
energy.

Summarizing, we have shown some results for the application of algo-
rithms closely related to SA. One might argue that the results were mostly
the same or very similar time after time. However, there are also a few
small differences among these algorithms. Thus, we showed these curves over
and over in order to see what stays the same and where the differences lie.
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Generally speaking, however, as the concept of SA to introduce some con-
trol parameter in order to enable the system to climb over barriers in the
energy landscape and to reduce this control parameter in order to drive the
system from the regime of unordered high-energy configurations to ordered
low-energy solutions is transferred to similar algorithms, one cannot expect
anything completely new here. One cannot even say which of these algo-
rithms is the best. Some are better at shorter calculation times, others at
longer times. It may even depend on the computer being used, e. g., how
much time it takes to calculate an exponential of a number.

The algorithms related to SA shown here simply demonstrate that this
concept of cooling a system down with a temperaturelike control parameter
and thus getting (quasi) optimum solutions is very general and does not
depend very much on a specific acceptance criterion.



10 Application of Search Space Smoothing

to TSP

10.1 A Small Toy Problem

Till now, more elaborate iterative improvement heuristics have been studied
that make use of a control parameter by which the Monte Carlo walker is
partially enabled to climb over barriers in the energy landscape. But there
are also algorithms that try to change the energy landscape by removing the
barriers, such that a greedy Monte Carlo walker who never climbs upward
might be able to reach the global minimum.

Let us start with the small toy instance given in Table 10.1. It consists
of four nodes on the unit square but the distance D(2, 1) is

√
2 instead of 1,

such that the TSP instance becomes asymmetric. The distance matrix D is

Table 10.1. Small toy instance of an asymmetric TSP: as shown in the picture, it
consists of four nodes located at the edges of a unit square such that the distances
are already given. The distance D(2, 1) will be, however,

√
2, so that the TSP

instance becomes asymmetric. Furthermore, only one move will be implemented
by which two neighboring nodes in the tour are exchanged. Left table: asymmetric
distance matrix of this instance; right table: sequences, lengths, and neighbors of
individual states

➀

➁ ➂

➃

11.4 1

1

1

1.4

Distance matrix
1 2 3 4

1 0 1
√

2 1

2
√

2 0 1
√

2

3
√

2 1 0 1

4 1
√

2 1 0

−→

State Sequence Length Neighboring states

# 1 (1 2 3 4) 4 # 2, # 3, # 4, # 5

# 2 (1 2 4 3) 2 + 2
√

2 # 1, # 3, # 5, # 6

# 3 (1 3 2 4) 2 + 2
√

2 # 1, # 2, # 4, # 6

# 4 (1 3 4 2) 1 + 3
√

2 # 1, # 3, # 5, # 6

# 5 (1 4 2 3) 2 + 2
√

2 # 1, # 2, # 4, # 6

# 6 (1 4 3 2) 3 +
√

2 # 2, # 3, # 4, # 5
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Fig. 10.1. Two representations of the energy landscape of the toy instance intro-
duced in Tab. 10.1. Left: closed Markov chain of minimum length containing all
edges in the search space, i. e., all possible moves between various configurations,
exactly once. Dotted line: mean length of all states, which is roughly 4.69. Right:
the search space is projected in the 2D space in such a way that the six states and
the links between them form both a hexagon and a hexagram. On top of this plane,
which stands for the search space, a further dimension is introduced that refers to
the energies of the states. Thus, we see in this projection on the 3D space what the
energy landscape looks like for this problem

shown in the left table. The only move allowed will be the nearest neighbor
exchange, a special case of the Lin-2-opt (L2O) and the exchange (EXC),
by which two neighboring nodes in the sequence are exchanged. Thus, the
energy landscape contains six states, among them the global optimum (1234)
and a local minimum (4321) with lengths 4 and 3 +

√
2 ≈ 4.41, respec-

tively. The other four states are neighbors of these minima, as shown on
the right in Table 10.1. A closed Markov chain containing all edges in the
energy landscape is shown in Fig. 10.1. The mean length of the states is
〈H〉 = (7 + 5

√
2)/(4− 1) ≈ 4.69. Furthermore, this figure shows a projection

of this energy landscape into the 3D space, which gives an even better in-
sight into this problem than looking only at the closed Markov chain, which
represents a cut through the landscape along the path a Monte Carlo walker
has gone.

We now introduce an easy smoothing rule:

• First, all states are assumed to have the same length 〈H〉. Thus, the energy
landscape is flat at the very beginning.

• In the second step, the state whose length deviates most from 〈H〉 resumes
its original length. Thus, the energy landscape retains its previous form,
except that there is now a hole or a peak in the surface.

• In the next steps, the other states return to their original lengths. The order
in which they return is determined by the deviation of their lengths to the
mean length. Thus, the one with the second largest deviation returns, then
the one with the third largest deviation, and so on. Finally, all states return
to their original lengths.
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In the toy model, the following sequence of “desmoothing” steps is applied:

1. First, the energy landscape forms a plain, as all states are of equal length.
2. Then state 1 returns to its original length. The other states remain on

the plateau. Here state 1 becomes the global minimum of the system.
3. State 4 returns to its original position in the energy landscape and be-

comes the global maximum.
4. State 6 becomes a local minimum.
5. States 2, 3, and 5 return to their original lengths at the same time.

When performing a greedy walk over the smoothed energy landscape at each
step, the Monte Carlo walker will fall into the global minimum in step 2.

Of course, this is only a simple example, but it demonstrates the potential
of this idea. However, more elaborate techniques for search space smoothing
(SSS) must be used for practical applications as a complete enumeration of all
configurations and thus an exact knowledge of the energy landscape is usually
impossible for larger system sizes. Thus, rules must be found for smoothing
the entries in the distance matrix in order to smooth the energy landscape
in an indirect way.

10.2 Gu and Huang Approach

Gu and Huang introduced the following approach to smoothing the distances
with a smoothness-control parameter α [76]:

• First, normalize all distances by dividing them by the maximum distance:
let Dmax be the maximum of all distances and

d(i, j) = D(i, j)/Dmax . (10.1)

This linear transformation rescales all lengths to the interval [0; 1]; however,
the shape of the energy landscape is not changed.

• Secondly, the mean normalized distance

d̄ =
1

N(N − 1)

N∑

i,j=1
i�=j

d(i, j) (10.2)

is calculated. Due to the normalization of the distances, this mean distance
lies between 0 and 1. Note that the edges from a node to itself cannot be
part of a feasible TSP configuration. The diagonal elements of the distance
matrix are left out both in the sum and in the normalization factor.
Figure 10.2 shows mean distances for various TSP scenarios. First, the TSP
nodes could be placed randomly, e. g., in the unit square. We considered
instances with 3, 10, 30, 100, 300, 1000, and 3000 nodes. For each TSP
size, 100 random instances were generated. The lines show the minimum,
maximum, and mean value (with error bars) of d̄. We find that the mean
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Fig. 10.2. Mean distances d̄ as defined in Eq. (10.2) of TSP instances with the
nodes placed randomly in a unit square (“random”), placed on a regular quadratic
grid (“grid”), and placed on a circle (“circle”) with equal distance to the nearest
neighbors

Table 10.2. Mean distances d̄ as defined in Eq. (10.2) of five TSP benchmark
instances

Instance d̄

BEER127 0.254739. . .
LIN318 0.380025. . .
PCB442 0.361045. . .
ATT532 0.345025. . .
NRW1379 0.348021. . .

distance decreases monotonously with increasing system size. Secondly, we
consider instances in which the nodes are placed on a quadratic grid. Thus,
the number of nodes N is always given by N = L2 with L being the linear
dimension of the grid, i. e., the number of columns and rows. Here, too, the
curve decreases monotonously. Furthermore, we find that the curve for the
random instances and for the grid instances coincide at large N , which is
not surprising as these two scenarios can be considered in the limit of large
N as a Monte Carlo and a deterministic measurement of the integral

1
Dmax

∫

dr

∫

dr′|r − r′| × �(r) × �(r′)

=
1√
2

∫ 1

0

dx
∫ 1

0

dy
∫ 1

0

da
∫ 1

0

db
√

(x− a)2 + (y − b)2
(10.3)
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with the point density �(r) ≡ 1. For the largest TSP instance we used for
Fig. 10.2, we get a value of ≈ 0.37 for this integral. On the other hand,
we consider the case of the nonfrustrated TSP in which all nodes lie on
a circle, such that the nodes are the corners of a regular “N -gon”. Here
the mean distance d̄ also decreases monotonously with increasing N , in the
sense that it decreases monotonously both for even N and for odd N . If N
is even, its mean normalized distance d̄ is slightly smaller than the value
for N + 1. These values converge to the limiting value

1
Dmax

∫

dr

∫

dr′|r − r′| × �(r) × �(r′)

=
1
2

2π∫

0

dϕ

2π∫

0

dψ
∣
∣
∣
∣

(
cos(ϕ) − cos(ψ)
sin(ϕ) − sin(ψ)

)∣
∣
∣
∣×

1
2π

× 1
2π

=
1

8π2

2π∫

0

dϕ

2π∫

0

dψ
√

2(1 − cos(ϕ− ψ))

= 16π/(8π2) = 2/π ≈ 0.6366 . . . .

(10.4)

This limiting value is of course much larger than in the previous two cases
as there is a large hole in the midst of the spatial distribution of the nodes.
In practical applications, nodes are mostly placed neither according to
a special geometry nor purely at random. However, the results for random
instances are usually much closer to those for real-life instances than those
of a special geometry.
Finally, we consider the values for d̄ in the five benchmark instances we
work with here. The values are given in Table 10.2. The very small value
for the BEER127 instance is due to the special distribution of the nodes
where many nodes are close together in the center and only a few nodes
are outside. The values of the other instances agree nicely with those for
random and grid instances. Note that the values for d̄ are significantly
smaller than 0.5 in all five benchmark instances, which will be important
later on for the explanation of the results of the SSS technique.

• Furthermore, the deviations Δ(i, j) of the distances to the mean distance,

Δ(i, j) = d(i, j) − d̄ , (10.5)

hold also the condition 0 ≤ |Δ(i, j)| < 1 for all distances.
• Gu and Huang introduced a power law for the smoothed distances:

dα(i, j) =

⎧
⎨

⎩

d̄+ Δ(i, j)α if Δ(i, j) ≥ 0 ,

d̄− (−Δ(i, j))α otherwise .
(10.6)
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Fig. 10.3. Distances smoothed with the power law smoothing formula (10.6).
Curves: values for smoothed distances dα(i, j) as functions of the original normal-
ized distances d(i, j) for the assumed mean normalized distance d̄ = 0.35 and for
various values of the smoothness control parameter α

Using this formula, α must be decreased gradually from a rather high
value at which all distances are roughly the same (Fig. 10.3) such that the
energy landscape is rather flat, to a final value of 1 at which the distances
return to their original values and the energy landscape returns to its original
shape. For α � 1, one gets dα(i, j) ≈ d̄, as the deviation is smaller than 1.
This is the reason for the normalization of the distances. At each value of α,
several greedy sweeps are applied to the system in order to lead the system
into a local or even the global minimum of the smoothed energy landscape.
At large α, the system will thus get into the global optimum of the smoothed
energy landscape if there is only one minimum left. With decreasing α, the
landscape is deformed and the minima are shifted to configurations near
those configurations that are the minima in the previous landscape. With
new greedy runs, the system follows these changes in the landscape. If α is
decreased slowly enough, one can usually trust in a guidance effect [76], i. e.,
the system does not lose the trail of its old local or global minimum.

As in the investigation of simulated annealing (SA) and its related algo-
rithms, we first want to investigate the behavior of SSS by looking at some ob-
servables of the TSP instances. Figure 10.4 shows in its left half the decrease
in the mean energy for three TSP instances. However, one must consider that
there are two energy functions when working with this SSS technique: there
is of course the original Hamiltonian Horig that has to be considered. The
greedy optimization, however, works at each value of the smoothness-control
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Fig. 10.4. Computational results for the mean energy 〈H〉 (left) and the order
parameter 〈ξ〉 (right) of three TSP instances using the power law formula for SSS:
BEER127 (top), LIN318 (middle), ATT532 (bottom). The mean energy 〈Hα〉 ac-
cording to the smoothed distance valuesDmax×dα(i, j) and the mean energy 〈Horig〉
calculated with the original distances D(i, j) are shown

parameter α with a smoothed Hamiltonian Hα, which only coincides with
Horig at the final value α = 1. Thus, first, we must consider 〈Hα〉: it stays ex-
actly constant for very large α and then decreases monotonously. Over a wide
α-range, 〈Hα〉 stays virtually constant. Only for small α does the decrease
in 〈Hα〉 become dramatic. Thus, looking only at 〈Hα〉, one would conclude
that the optimization is performed at small α-values.

However, the mean energy 〈Horig〉, calculated with the original distances
D(i, j), which is simply measured at each α-step but has no influence on the
optimization process, first fluctuates around the curve for 〈Hα〉, then drops
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to a narrow range of the control parameter α, and finally decreases slightly
in a gradual way. The fluctuation at the beginning hints that the greedy
technique here nearly coincides with the random walk (RW): obviously, most
or all configurations are of equal length, so that most, or even all, moves are
accepted. 〈Horig〉 drops to a range where 〈Hα〉 is still exactly or virtually
constant. This means that the energy landscape is no longer flat at these
values of α. As the mean value d̄ is smaller than 0.5, the first edges not of
length d̄ must be those with D(i, j) ≈ Dmax. Thus, the system first starts to
avoid taking longer edges into the configuration. This leads to the large drop
of 〈Horig〉, whereas 〈Hα〉 is still rather constant as the other edges are still
of the same length d̄. This type of landscape can be considered a monument
valley landscape, which is shown in the color picture: in such a landscape,
there is a plain but also some isolated hills sticking out of the plain. The hills
are made of the configurations containing the longest edges.

Finally, at smaller α, 〈Horig〉 looks like the development of the mean
value of the energy in the greedy case: the system is quasifrozen, but some-
times improvements are found. But here these improvements are due to the
guidance effect of SSS: by reducing the smoothness-control parameter α, the
smoothed energy landscape is deformed, so that a configuration that had pre-
viously been the local minimum might then be on a crooked wall. Applying
the greedy algorithm, the system is able to move to the new local minimum
nearby, in the slightly desmoothed energy landscape. Hopefully, this guid-
ance effect will lead to good results in the end, where the landscape is finally
turned into the energy landscape of the original problem.

The right half of Fig. 10.4 shows the expectation value of the order param-
eter ξ. At large α, 〈ξ〉 is slightly larger than zero and thus indicates that the
system is in a RW mode in which the configurations sometimes contain one
or more edges of the optimum configuration. Then in the α-range in which
〈Horig〉 drops, 〈ξ〉 fluctuates rather strongly. Depending on the exact value
of α, the system likes more or less the valley in which the global optimum
lies. At small α, where 〈Horig〉 shows already a mostly frozen behavior, 〈ξ〉
is also practically frozen. But large jumps in 〈ξ〉 occur between some succes-
sive α-steps. Obviously, sometimes the system falls in a quite different valley
in the energy landscape when viewed from the point of view of the original
landscape. Figure 10.4 shows that this can either gradually lead to a better
approximation of the optimum, as it does for the BEER127 instance, or it
can be more up and down, as it is for the other two instances.

A further measure for the freezing behavior of this SSS approach is the
total acceptance rate of the moves, which is shown in Fig. 10.5. We find that
the curves for the total acceptance rate are rather similar to those for 〈Horig〉
in Fig. 10.4 and strengthen the points made in the discussion of 〈Horig〉
above. At large α, the system is in a quasi-RW mode in which most moves
are accepted. With decreasing α, more and more moves are rejected. Then in
a very narrow α-range, a transition occurs in which both the total acceptance
rate and 〈Horig〉 break down. For small α, the acceptance rate vanishes.
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Fig. 10.5. Computational results for the total acceptance rate A of three TSP
instances using the power law formula for SSS: BEER127 (top), LIN318 (middle),
ATT532 (bottom)

We get the same picture for the partial acceptance rates of the moves
in Fig. 10.6. As in the graphics for SA and its related algorithms, we find
again that the acceptance rates for the four variants of the Lin-3-Opt (L3O)
coincide with each other for all values of the control parameter. On the other
hand, there are some differences between the curves for the smaller moves:
for large α, the acceptance rate of the L2O is larger than that for the node
insertion move (NIM), which is in turn larger than that for the EXC. In some
narrow “critical range” of α, these curves break down. The acceptance rates
for the four variants of the L3O and for EXC vanish first, followed by the
acceptance rate of the NIM, and again followed by the L2O.
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Fig. 10.6. Computational results for the partial acceptance rates Ai of the small
moves EXC, NIM, and L2O (left) and of the four variants of the L3O (right) of
three TSP instances using the power law formula for SSS: BEER127 (top), LIN318
(middle), ATT532 (bottom)

The most astounding difference between SSS with the power law formula
by Gu and Huang and SA-type optimization algorithms is that obviously
here the system orders itself on a linear and not a logarithmic α-scale. This
is clearly not only due to the construction of the α-decrease schedule, which
must end at a final value of 1 instead of the final temperature value of 0,
because the successive α-values could also be chosen as 1+(αi−1)×fn with an
initial α-value αi and a “cooling factor” f . Instead, we find nearly sigmoidal
decreases of 〈Horig〉 in Fig. 10.4 and of the total and partial acceptance rates
on a linear α-scale. Thus, we decrease α linearly when using the power law
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formula by Gu and Huang, from a large initial value to 1 in steps of 0.01.
Finally, we add one greedy step to the original energy landscape in order to
end up at exactly α = 1.

Finally, but most important for optimization purposes, the question arises
as to whether this SSS approach leads to better results than the SA-type op-
timization algorithms. Thus, we compare the results achieved with SSS using
the power law formula with those achieved with SA in Fig. 10.7. The ini-
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Fig. 10.7. Quality of the results achieved with SSS using the power law formula
(straight lines) and SA (dotted lines) for five TSP instances (BEER127, LIN318,
PCB442, ATT532, and NRW1379) vs. overall number of sweeps: the three lines show
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tial value of the smoothness-control parameter was chosen to be 45.001 for
the BEER127, LIN318, and PCB442 instances, 65.001 for the ATT532 in-
stance, and 55.001 for the NRW1379 instance. Thus, we performed 4402
α-steps for the BEER127, LIN318, and PCB442 instances, 6402 for the
ATT532 instance, and 5402 for the NRW1379 instance. At each α-step, some
number of sweeps (1, 3, 10, 30, . . .) was performed. These results are now
compared to those for SA shown in Fig. 7.9. The number of temperature
steps when using SA was for all instances 1147. Generally, we find that—
when using our parameters, which allow the transition between the unordered
high-energy and the ordered low-energy regime without wasting too much cal-
culation time at large values of the control parameter—SA generally leads
to better results for these five TSP instances than SSS with this power law
formula. However, from this comparison, one may not conclude that SA is
generally better than SSS for all problems and for all imaginable smoothing
formulas and cooling schedules. As the number of smoothing formulas is in-
finite, one might also find for some problem a smoothing formula that leads
to better results than SA.

Of course, further Gu–Huang-like smoothing formulas can be developed
with more complicated smoothing formulas. These should be based on the
normalized distances and their deviation from the mean distance d̄. Fur-
thermore, they must lead to a flat landscape for large α and to the orig-
inal landscape for some small value of α. Here we give only a few exam-
ples [181, 186, 182]:

• Exponential smoothing:
Here a Gu–Huang-like formula containing an exp(. . .) term is used:

dα(i, j) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

d̄+
α

exp
(

α

Δ(i, j)

)

− 1
if Δ(i, j) ≥ 0 ,

d̄− α

exp
(

α

−Δ(i, j)

)

− 1
otherwise .

(10.7)

For large α, the deviation from the mean distance d̄ vanishes much more
strongly than for the original power law formula. For α → 0, considering
the relation exp(x) → 1 + x for x → 0, one gets the original landscape.
Using this exponential smoothing formula, α is decreased linearly in steps
of 0.01 from the initial value of 18.001 to 0.001. Finally, a greedy step on
the original landscape corresponding to α = 0 is added. Thus, 1802 α-steps
are performed.
Figure 10.8 shows the results for the PCB442 instance for the mean energy
〈H〉 calculated according to the smoothed metric and according to the
original metric and for the total acceptance rate A. We find that the results
are rather similar to those for the power law smoothing formula: again, the
system is in a quasi-RW mode at large values of α. 〈Horig〉 and A drop in
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Fig. 10.8. Computational results for the mean energy 〈H〉 (left) and the total ac-
ceptance rate A (right) of the PCB442 instance using the exponential formula (10.7)
for SSS: left: both the mean energy 〈Hα〉 according to the smoothed distance values
Dmax × dα(i, j) and the mean energy 〈Horig〉 calculated with the original distances
D(i, j) are shown
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Fig. 10.9. Quality of the results achieved with SSS using the exponential formula
(straight lines) and using the power law formula (dotted lines) for the PCB442
instance vs. overall number of sweeps: the three lines show minimum lengths, mean
lengths (error bars are mostly the size of the symbols), and maximum lengths

the same narrow range of α while 〈Hα〉 is still rather constant. At small α,
〈Hα〉 drops significantly and finally coincides with the curve for 〈Horig〉 at
α = 0, while the system is already frozen. Again we find that the system
orders itself on a linear scale of α.
For optimization purposes, it is even more important to study the quality of
the results achieved with this exponential smoothing formula. Figure 10.9
shows that the results for both formulas are roughly of the same quality.
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• Sigmoidal smoothing:
As an example of a sigmoidal smoothing formula, the hyperbolic tangent
shall be used as a smoothing function:

dα(i, j) = d̄+
tanh (αΔ(i, j))

α
. (10.8)

These sigmoidal smoothing functions like the tangens hyperbolicus have
in common that they are rather flat for large argument values and that
they are linear around the origin. Thus, for very large α, the sigmoidal
function can be replaced by its limiting values, which are small compared
to α, such that all distances are equal to d̄. At α→ 0, however, the relation
tanh(x) ≈ x can be used, such that the original landscape is received at
the end.
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Fig. 10.10. Computational results for the mean energy 〈H〉 (left) and the total
acceptance rate A (right) of PCB442 instance using the sigmoidal formula (10.8)
for SSS: left: both the mean energy 〈Hα〉 according to the smoothed distance values
Dmax × dα(i, j) and the mean energy 〈Horig〉 calculated with the original distances
D(i, j) are shown

As Fig. 10.10 shows, this sigmoidal smoothing formula (10.8) leads to a new
behavior of both 〈Horig〉 and the total acceptance rate A: as usual, 〈Horig〉
fluctuates around 〈Hα〉 at large α, while the acceptance rate is 1. Then
both 〈Horig〉 and A drop to an intermediate value. Obviously, the system
performs a restricted RW on some plateau in the energy landscape, which
is completely surrounded by some hills. One could imagine this type of
landscape as the Great Basin in the USA, which is also surrounded by hills.
We additionally find that the acceptance rate fluctuates here in contrast to
results in [186]: this has to do with the different move set. The small moves
L2O, EXC, and NIM only show one constant value of the acceptance rate
in this intermediate range of α. But the variants of the L3O jump between
a value of ≈ 0.15 and 0, such that we get an overall fluctuation of the
total acceptance rate A. After this intermediate range, both A and 〈Horig〉
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decrease again, and the system freezes. In this range of their decrease, 〈Hα〉
also starts to decrease. The curves of 〈Horig〉 and 〈Hα〉 also coincide later at
smaller α. But, most interesting of all, we find that the system here orders
on a logarithmic α-scale, such that we must plot the data vs. a logarithmic
α-axis and decrease α exponentially by a factor of 0.99 from 2 × 1017 to
10−6. After that, a greedy step in the original landscape corresponding to
α = 0 is added, so that we have 5340 overall α-steps.
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Fig. 10.11. Quality of the results achieved with SSS using the sigmoidal formula
(straight lines) and the power law formula (dotted lines) for the PCB442 instance
vs. overall number of sweeps: the three lines show minimum lengths, mean lengths
(error bars are mostly the size of the symbols), and maximum lengths

We again compare the quality of the results achieved with this sigmoidal
smoothing formula with those for the original power law smoothing for-
mula. Figure 10.11 shows that the sigmoidal smoothing formula (10.8)
leads to significantly worse results than the power law formula (10.6).

• Logarithmic smoothing:
The logarithm can also be used as a smoothing function:

dα(i, j) =

⎧
⎪⎪⎨

⎪⎪⎩

d̄+
log(1 + αΔ(i, j))

α
if Δ(i, j) ≥ 0 ,

d̄− log(1 − αΔ(i, j))
α

otherwise .
(10.9)

Here one makes use of the fact that the logarithm increases very slowly for
large increasing arguments. Furthermore, when considering log(1 + x) ≈ x
for small |x|, one finds that one gets the original landscape for small α.
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Just as for sigmoidal smoothing, we find for logarithmic smoothing that α
must be decreased in an exponential way: Fig. 10.12 shows pictures similar
to those of Fig. 10.10; however, the extended medium range of 〈Horig〉
and of the acceptance rate A are missing. Instead we find that after the
first sharp decrease in 〈Horig〉 and A, both quantities show fluctuations.
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Fig. 10.12. Computational results for the mean energy 〈H〉 (left) and the total
acceptance rate A (right) of the PCB442 instance using the logarithmic formula
(10.9) for SSS: left: both the mean energy 〈Hα〉 according to the smoothed distance
values Dmax × dα(i, j) and the mean energy 〈Horig〉 calculated with the original
distances D(i, j) are shown. The inset in the right graphic shows a blowup of the
acceptance rate in order to show the fluctuations better
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Fig. 10.13. Quality of the results achieved with SSS using the logarithmic formula
(straight lines) and the power law formula (dotted lines) or for the PCB442 instance
vs. overall number of sweeps: the three lines show minimum lengths, mean lengths
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These fluctuations, which are shown enlarged in the inset, can even be
self-similar depending on the moves used [186]. Then both 〈Horig〉 and A
vanish while 〈Hα〉 is still constant. At much smaller values of α, 〈Hα〉
decreases and finally becomes identical with 〈Horig〉 at α = 0. Working
with this logarithmic smoothing formula (10.9), we decrease α from 2 ×
1018 to 10−6 exponentially with a factor of 0.99. Again we add a greedy
step in the original landscape at the end, so that we have overall 5569
α-steps.
Finally, we compare the results achieved with the logarithmic smoothing
formula (10.9) again with those obtained with the power law formula (10.6).
Figure 10.13 shows that power law smoothing leads to significantly better
results for short computing times, whereas the logarithmic smoothing for-
mula provides better results when investing more computing time. Of all
the smoothing formulas studied here, the logarithmic smoothing formula
is the only one able to lead to the global optimum of the PCB442 instance
and to other quasioptimum results.

10.3 Effect of Numerical Precision on Smoothing

When increasing the smoothness-control parameter α to even larger values
than used above, the acceptance rate becomes exactly 100% for all smoothing
formulas, i. e., every move is accepted, the greedy and the RW coincide totally.
Thus, the smoothed energy landscape must be completely flat at such large
values of α. This is not an effect of the formulas themselves, as these would
always lead to very small deviations of the smoothed distances to the mean
normalized distance d̄, as long as α took finite positive values. Thus, this
effect is only due to the finite numerical precision on a computer: each real
number is represented by some number of bits. Nowadays, usually one of the
two following representations is used: the real number is either stored in four
bytes, i. e., 32 bits (in which case it is called a REAL or REAL*4 in Fortran
and usually a float in C, C++, and Java) or it is stored in eight bytes,
i. e., 64 bits (in which case it is called a DOUBLE PRECISION or a REAL*8 in
Fortran and usually a double in C, C++, and Java. However, these precisions
are only fixed for Fortran and Java; one must check the precision with the
sizeof command when working with C and C++.) Within these bits, both
the mantisse and the exponent are stored. Thus, not every real number can
be stored on a computer but only a small set of them, and these are only
represented with some finite precision. Thus, if a very small number b is added
to a comparatively large number a, the result for a + b is a. This explains
why on the computer all lengths have the value d̄ for very large α, so that
the lengths of the configurations are identical and the energy landscape is
completely plain.
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However, the next question is whether this finite numerical precision on
a computer also affects the smoothing steps at smaller α. Figure 10.14 shows
with the example of the power law smoothing formula that the curves for our
observables of interest stay rather the same if another precision for the real
numbers is used. However, the transition from the random configurations at
large values of α to the quasifrozen system occurs at much smaller values
of α if the precision of the real numbers is decreased. Here we present only
results for real numbers with 4-byte or 8-byte precision, as these are the two
most often used numerical precisions.

In both scenarios, α was decreased linearly in steps of 0.01. The final
value of α must be 1, of course. However, the initial value of α can be chosen
much smaller if fewer bits are used for the representation of real numbers as
the transition range is shifted to smaller values of α. Thus, an initial value of
20.001 was used for α when working with four bytes, whereas an initial value
of 45.001 was used when working with eight bytes. In both cases, a greedy
step in the original landscape corresponding to α = 1 was added in the end.
Thus, we have 4402 α-steps when working with eight bytes, whereas we have
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Fig. 10.14. Computational results for the mean energy 〈H〉 (top) and the to-
tal acceptance rate A (bottom) of the PCB442 instance using the power law for-
mula (10.6) for SSS: left: results from using 8-byte-long REALs; right: results from
using 4-byte-long REALs. As usual, both the mean energy 〈Hα〉 according to the
smoothed distance values Dmax × dα(i, j) and the mean energy 〈Horig〉 calculated
with the original distances D(i, j) are shown
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Fig. 10.15. Quality of the results achieved with SSS using the power law for-
mula (10.6) with 8-byte precision (straight lines) and 4-byte precision (dotted lines)
for the PCB442 instance vs. overall number of sweeps: the three lines show min-
imum lengths, mean lengths (error bars are mostly the size of the symbols), and
maximum lengths

only 1902 when working with four. The question arises as to which of the two
scenarios leads to the better results. Figure 10.15 shows that, although less
calculation time was invested in the REAL*4 runs, they led to slightly better
results. Thus, more precision does not necessarily lead to better results. Here
the transition range is only shifted but not widened so that the different
precision of the numbers mainly leads to the difference in the initial value of
α, which can be chosen to be much smaller.

Note that such numerical rounding effects play no such role for the tran-
sition regimes of SA and its related algorithms. There the energy differences
are not changed by changing the control parameter. They are always related
to the control parameter as “ΔH/T ”. The acceptance functions can be writ-
ten, e. g., as Θ(exp(−ΔH/T )− r) in the case of SA, with r being the random
number and Θ(x) the Heaviside function returning a 1 if x ≥ 0 and 0 other-
wise and written as Θ(1−ΔH/T ) in the case of threshold accepting (TA). Of
course, the rounding errors are of different sizes for various precisions. But
the calculated number ΔH/T stays rather the same. Thus, the results for,
e. g., the location of the critical transition range stay the same.
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10.4 Smoothing with Finite Numerical Precision Only

As finite numerical precision plays such a dominant role in SSS, the question
arises as to whether it is also possible to smooth the energy landscape by
rounding errors only on the basis of a linear smoothing function. For this
purpose, we define the following hyperbolic smoothing function, with which
we will now work:

dα(i, j) = d̄+
1
α

Δ(i, j) . (10.10)

Looking at this formula from an exact mathematical point of view, it would
simply lead to a linear rescaling of the energy landscape without changing its
shape. Thus, changing the smoothness-control parameter α and performing
a greedy step at each value of α would be identical to running the greedy algo-
rithm on the original landscape. However, as mentioned above, we can make
use of smoothing effects due to rounding errors if we choose an initial value
of α large enough such that all distances become equal to d̄ at the beginning.
The optimization run ends at α = 1 in the original energy landscape.
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Fig. 10.16. Computational results for the mean energy 〈H〉 (top) and the to-
tal acceptance rate A (bottom) of the PCB442 instance using the hyperbolic for-
mula (10.10) for SSS: left: results for using 8-byte-long REALs; right: results for
using 4-byte-long REALs. As usual, both the mean energy 〈Hα〉 according to the
smoothed distance values Dmax × dα(i, j) and the mean energy 〈Horig〉 calculated
with the original distances D(i, j) are shown
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Figure 10.16 shows results for using this hyperbolic smoothing formula
working with REAL*8 and REAL*4. We find that we get smoothing effects due
to rounding errors in both cases at large values of α: at very large values, all
distances are equal to d̄ as expected, such that the system performs a RW
in the flat energy landscape. Then the curves for 〈Horig〉 and the total ac-
ceptance rate A drop significantly in a narrow range of α. We then find an
intermediate increase of these two curves, such that the system is obviously
able to move more and get to worse configurations again. But after that both
curves decrease again, and the system freezes. Over this whole range of α
where this happens, 〈Hα〉 stays (rather) constant. Finally, 〈Hα〉 decreases at
comparatively small α and unites with the curve of 〈Horig〉 at α = 1. Just as
for sigmoidal and logarithmic smoothing, we find that the system orders itself
on a logarithmic scale such that we decrease α exponentially with a factor of
0.99 from 2 × 1016 to 1 in the case of 8-byte precision and from 5 × 107 to 1
in the case of 4-byte precision in the production runs. Adding a greedy step
at the end in both cases, we have 3736 α-steps when working with REAL*8
and 1765 α-steps when working with REAL*4.

Figure 10.17 shows the quality of the results achieved with the hyperbolic
smoothing formula (10.10) both for 8-byte-long and 4-byte-long real numbers.
We find again that, although much less calculation time was invested in the
runs with 4-byte precision, they lead to slightly better results, such that it
seems to be preferrable to work with REAL*4 when using the SSS approach.

50

52

54

56

58

60

62

64

66

104 105 106 107 108

le
ng

th
/1

00
0

# sweeps

8 bytes
4 bytes

Fig. 10.17. Quality of the results achieved with SSS using the hyperbolic for-
mula (10.10) with 8-byte precision (straight lines) and 4-byte precision (dotted lines)
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When comparing the results for hyperbolic smoothing to those for the
other smoothing formulas, we find that we get the best results with this
hyperbolic approach. Perhaps this has to do with the fact that we work here
indeed all the time much more with the original landscape than if using one
of the other formulas: smoothing with this linear formula here does not lead
to a shifting of the local minima. The main effect when desmoothing the
landscape is that neighboring states that were degenerate at larger values of
α suddenly have differing energy values. Thus, more and more degeneracies
are desolved while decreasing α until the original landscape is received, which
is then only linearly transformed at the end.

Summarizing, this SSS approach is an interesting ansatz when working
with iterative improvement heuristics. Basically, it is an approach strongly
related to the SA-type optimization algorithms: again a control parameter is
introduced that transfers the system gradually from a RW phase to a greedy
phase. The results we got here for SSS are generally slightly worse than those
we got for SA and TA. However, it might be that when using other parameters
or working on other problems they could lead to better results.



11 Further Techniques Changing

the Energy Landscape of a TSP

11.1 The Convex–Concave Approach
to Search Space Smoothing

Based on the search space smoothing (SSS) approach by Gu and Huang [76],
discussed in the previous chapter 10, Coy et al. introduced a related ap-
proach [42] based on considerations of the shape of the smoothing functions
introduced in [76] and [186] and discussed in the last chapter 10. All these
smoothing functions f(d(i, j)) except the hyperbolic one can be split at the
mean normalized distance d̄ into a convex and a concave part: a real function
f(x) is said to be convex in some interval [a; b] if

f(t× x1 + (1 − t) × x2) ≤ t× f(x1) + (1 − t) × f(x2) , (11.1)

with 0 ≤ t ≤ 1 and x1, x2 ∈ [a; b]. f(x) is said to be concave in some interval
if −f(x) is convex there.

Figure 10.3 shows that the power law smoothing formula (10.6) is convex
for d(i, j) > d̄ and concave for d(i, j) < d̄. On the other hand the sigmoidal
smoothing formula, e. g., is concave for d(i, j) > d̄ and convex for d(i, j) < d̄.
Thus, the question can be asked whether the convex or the concave part
of the smoothing function is the important one for the smoothing process
and, based on that, whether a completely convex or a completely concave
smoothing function would lead to even better results [42].

A straightforward approach to investigating this idea is to use the ap-
proach of Gu and Huang: introduce a smoothness control parameter α, work
with normalized distances d(i, j) = D(i, j)/Dmax, i. e., 0 ≤ d(i, j) ≤ 1, and
define the convex smoothing formula

dα(i, j) = d(i, j)α (11.2)

and the concave smoothing formula

dα(i, j) = d(i, j)1/α (11.3)

with α ≥ 1 [42]. Note that these formulas are nearly identical with the power
law smoothing formula (10.6) by Gu and Huang, but the concept of using the
mean distance d̄ is omitted here in order to get an overall convex or concave
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Fig. 11.1. Distances smoothed with the convex smoothing formula (11.2) (left)
and with the concave smoothing formula (11.3) (right): the curves show the values
for the smoothed distances dα(i, j) as functions of the original normalized distances
d(i, j) for various values of the smoothness-control parameter α. One gets dα(i, j) =
d(i, j) for α = 1

function (Fig. 11.1). Thus, all nonzero distances converge to 1 for α → ∞
when using the concave formula. Analogously, all smoothed distances except
those for d(i, j) = 1 converge against 0 for α → ∞ when using the convex
formula. Thus, we get flat landscapes at large α and the original landscape
at α = 1 for both formulas.
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Fig. 11.2. Computational results for the mean energy 〈H〉 (left) and the total
acceptance rate A (right) of the PCB442 instance using the convex formula (11.2)
for SSS. Left: both the mean energy 〈Hα〉 according to the smoothed distance values
Dmax × dα(i, j) and the mean energy 〈Horig〉 calculated with the original distances
D(i, j) are shown

Again we first study the developments of the mean energy and of the
acceptance rate with decreasing smoothness control parameter α (Fig. 11.2)
for the convex smoothing formula (11.2). We find that 〈Hα〉 is hardly visible
in the left graphic as it remains zero until small values of α are reached.
On the other hand, 〈Horig〉 shows the behavior we are used to. It decreases
from the energy range of the random configurations in some range of the
control parameter α to the regime of the ordered configurations. In the same
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range, the total acceptance rate A drops from slightly below 1 to values
slightly larger than 0. Note that when using this convex smoothing formula,
the greedy approach can never completely coincide with the random walk
(RW), as the longest edge is always of length 1, whereas the other lengths
are decreased to 0. Thus, the longest edge will never be accepted by the greedy
algorithm. We find that at α-values smaller than 5×104, the system leaves this
quasi-RW mode. In the production runs, we thus decrease α exponentially
from 5× 104 to 1 with a factor of 0.99. Furthermore, we add one greedy step
at α = 1 in the original landscape. At small α, the curve for 〈Hα〉 increases
toward the curve for 〈Horig〉, while the curve for 〈Horig〉 shows that sometimes
improvements can be found even at small α.

Although the convex smoothing formula (11.2) is related to the power
law smoothing formula (10.6), we find that here the system orders itself on
a logarithmic α-scale (α must be decreased over several orders of magnitude),
whereas it ordered itself on a linear scale for the power law smoothing formula.
Thus, we want to compare the results achieved with the convex smoothing
formula with those for another smoothing formula that also orders the system
over several orders of magnitude of the control parameter. As the hyperbolic
smoothing formula (10.10) also orders the system in a logarithmic way and
as it is analytically a special case of a convex function, we will compare
the results for the convex smoothing formula with those for the hyperbolic
formula here. Figure 11.3 shows the results for both smoothing formulas.
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Fig. 11.3. Quality of the results achieved with SSS using the convex formula (11.2)
(straight lines) and the hyperbolic formula (10.10) (dotted lines) for the PCB442
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Note that 1, 3, 10, 30, . . ., or 30,000 sweeps were performed per α-step in both
cases, but that 1078 α-steps were performed using the convex function and
3736 α-steps when working with the hyperbolic function. We find that the
hyperbolic smoothing function leads to significantly better results than the
convex smoothing function.
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Fig. 11.4. Computational results for the mean energy 〈H〉 (left) and the total
acceptance rate A (right) of the PCB442 instance using the concave formula (11.3)
for SSS. Left: both the mean energy 〈Hα〉 according to the smoothed distance values
Dmax × dα(i, j) and the mean energy 〈Horig〉 calculated with the original distances
D(i, j) are shown

Next we consider the results for the concave smoothing function (11.3).
Figure 11.4 shows the development of the mean energy and of the total ac-
ceptance rate with decreasing α. Again 〈Hα〉 is rather constant over a wide
α-range at a value of Dmax×N ≈ 4841.487×442 ≈ 2.14×106, as all smoothed
normalized distances are equal to 1 for very large α and deviate from 1 only
slightly with decreasing α. These starting deviations lead to the breakdown
of both 〈Horig〉 and A at α ≈ 7 × 1016. Then the curves for these observ-
ables gradually increase again before a second decrease occurs. At small α,
the curve for 〈Hα〉 decreases strongly and tends toward the curve for 〈Horig〉.
The last improvements for the system can be found at α ≈ 2. Thus, this
smoothing formula also orders the system over several orders of magnitude
of the smoothness control parameter, such that we use again an exponential
cooling schedule.

In the production runs, we decreased α from 9 × 1016 exponentially to 1
with a factor of 0.99 and added a greedy step in the original landscape at the
end, so that we had overall 3886 α-steps here. Figure 11.5 shows the results
for the concave smoothing formula (11.3) compared to those for hyperbolic
smoothing. We find that the results for concave smoothing are on average
significantly better than those for hyperbolic smoothing, so that the concave
smoothing formula may be considered to be the best smoothing formula found
so far. As the results do not spread as widely as for hyperbolic smoothing,
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(straight lines) and the hyperbolic formula (10.10) (dotted lines) for the PCB442
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we did not obtain a result here with optimum length using it in contrast to
the hyperbolic and the logarithmic smoothing formulas.

Finally, one might ask whether one could combine the convex smoothing
formula (11.2) with the concave smoothing formula (11.3). This can be be
done, e. g., by first performing some sweeps using the concave smoothing
formula and then performing the same number of sweeps using the convex
smoothing formula. Figure 11.6 shows the results for this approach. For each
α-step, we perform the measurements separately for the concave and for the
convex part. Thus, the data points jump between the curves for convex and
concave smoothing shown in Figs. 11.2 and 11.4. For large α, the system is
in the RW mode for the convex smoothing formula but already in the greedy
mode for the concave smoothing formula. Thus, the system performs a RW if
the convex formula is applied; then it is quenched down in some local valley
after switching to the concave formula. With the next switch to the convex
formula, the system leaves the local minimum again and walks freely through
the energy landscape.

As Fig. 11.7 shows, switching between the convex and the concave formula
does not lead to a further improvement in the results. Here we decrease α
from 5 × 104 to 1 exponentially with a factor of 0.99. At each α-step with
α > 1, we perform two steps, one in the convex and one in the concave mode.
At α = 1, we perform a greedy step in the original landscape. Thus, we
multiply here the number of sweeps per α-step with 2 × 1078 − 1 = 2155,
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Fig. 11.6. Computational results for the mean energy 〈H〉 (left) and the total ac-
ceptance rate A (right) of the PCB442 instance using both the convex formula (11.2)
and the concave formula (11.3) for SSS. Left: both the mean energy 〈Hα〉 accord-
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and A, and then perform the same number of sweeps in the convex mode and print
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the number of steps, in order to get the overall number of sweeps. We find
that the results for this combined technique are again rather good but not
as good as when using the concave formula alone.

Coy et al. changed the original power law smoothing formula by Gu and
Huang to make it completely convex or concave. This can, of course, also be
done with the other smoothing formulas introduced in the last chapter. For
example, the sigmoidal smoothing formula (10.8) can be altered to

dα(i, j) =
tanh(αd(i, j))

α
, (11.4)

thus resembling an overall concave formula in the interval [0; 1]. Figure 11.8
shows results for the mean energy and for the acceptance rate. The picture
for the mean energy looks similar to that for the convex formula shown in
Fig. 11.4: at large α, the mean value calculated with the smoothed distance
matrix vanishes, while the mean value calculated with the original distance
matrix shows that the system is in a RW mode. 〈Hα〉 continuously increases
over the whole α-range. The mean value calculated with the original distance
matrix exhibits a breakdown, after which both curves start to coincide. Much
more interesting is the sight of the acceptance rate: for large α, the total
acceptance rate jumps irregularly between total acceptance of all moves and
a value of 0.428 . . .. Both values start to decrease at the same α-values.

Figure 11.9 shows the results achieved with the sigmoidal–concave smooth-
ing formula in comparison with results achieved using the original sigmoidal
smoothing formula. We decreased α from 2000 to 0.01 by a factor of 0.99
when working with the sigmoidal–concave formula and added a greedy step
in the original landscape at the end, thus having only 1216 α-steps. Just as
with the power law smoothing formula, we find here also that this convex–
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concave approach by Coy et al. leads to an improvement over the original
deviation approach of Gu and Huang.

Summarizing, Fig. 11.10 shows the mean deviation of the results achieved
for the PCB442 instance for all the smoothing formulas introduced in this and
in the last chapter: we clearly find that the concave smoothing formula leads
to the best results, followed by hyperbolic, logarithmic, and convex/concave
smoothing. The worst results are achieved with the convex and the sigmoidal
smoothing formulas. The results for simulated annealing (SA), which are
shown for comparison and redrawn from Fig. 7.9, show that SSS can lead to
results similar to those for SA if an appropriate smoothing function is used.

11.2 Noising the System

Besides these and related techniques for smoothing the energy landscape,
additional algorithms for changing the energy landscape have been developed.
Based on the finding that similar problem instances usually exhibit similar
ground states, the noising technique, which is also called the permutation
technique, was developed. The basic idea is to change the original problem
instance that is to be solved slightly again and again into other instances
that look quite similar, get into a good local minimum of these, and then
switch to the next altered problem instance. One hopes thus to cross barriers
in the energy landscape of the original problem instance even when using the
greedy algorithm for optimization.

For the traveling salesman problem (TSP), an instance can be altered by
changing the entries in the distance matrix. This can be done in two ways:
either one addresses the distances directly and changes them in a random
way or one changes the locations of the nodes randomly, thus changing the
distances. We prefer to change the locations of the nodes in order to stay
with geometric Euclidean TSP instances. Furthermore, we found in our tests
that it is advantageous to use some variable control parameter R that governs
the size of the displacement of the nodes and that is decreased during the
optimization run. Thus, the outline of our approach is as follows:

1. Create a random initial configuration σ for the proposed TSP instance.
2. Choose an appropriate starting value R of how much a node can be

displaced at a maximum.
3. Derive from the original TSP instance a new instance: each node of the

original TSP instance is displaced randomly within a squere of radius R
around its original location.

4. Perform a greedy optimization run, starting at σ and ending at a config-
uration τ .

5. Set σ := τ and decrease R slightly.
6. If R has not yet reached some final small value, return to step 3.
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7. Finally, perform a greedy optimization run starting at σ on the original
problem instance (i. e., at R = 0) and print out the resulting configura-
tion.

According to our tests on various TSP instances, it is advantageous to choose
the initial and final value of R depending on the minimum distance Dmin =
min{D(i, j)|D(i, j) > 0} occurring in the original problem instance. We found
empirically that it is a good approach to decrease R from 103 × Dmin to
10−2 ×Dmin exponentially before finally setting R = 0.
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Fig. 11.11. Computational results for the mean energy 〈H〉 (left) and the total
acceptance rate A (right) of the PCB442 instance using the noising approach. Left:
both the mean energy 〈Haltered〉 of the altered instances and the mean energy 〈Horig〉
calculated with the original distances D(i, j) are shown

The minimum distance in the PCB442 instance is 50, so that we decrease
R from 5× 104 to 0.5 exponentially with a factor of 0.99. At the end, we add
a greedy step for the original instance, corresponding to α = 0, such that we
have overall 1147 steps. Figure 11.11 shows results for the mean energy and
the total acceptance rate of the moves for the PCB442 instance. We have
again two energies of interest: first, the energy of the altered instances that
are optimized within an R-step is of interest. The curve for this 〈Haltered〉
decreases linearly at large R. This is due to the fact that the individual
nodes are also displaced far outside the boundaries of the curcuit board at
these large R. In fact, the random displacements dominate the locations
of the nodes at these large values. With decreasing R, the area where the
nodes are located becomes smaller, such that the lengths found for these
altered TSP instances decrease linearly with R. In addition, we calculate
what length the sequence of the configuration would have if this sequence
were the configuration of the original problem. We find that 〈Horig〉 takes
values like those for random instances at first; thus, the system is in a kind
of RW mode at these large R, when considered from the point of view of
the original problem, although the acceptance rate is very small, of course,
as the greedy criterion is applied. With decreasing R, 〈Horig〉 and the total
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acceptance rate A decrease sigmoidally. In this range, the noising approach
tackles a series of TSP instances that become increasingly identical with the
original instance. Finally, the deviations from the original instance are so
small that basically the original instance is tackled all the time, so that both
〈Horig〉 and 〈Haltered〉 freeze and finally coincide at R = 0.
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Fig. 11.12. Quality of the results achieved with the noising approach (straight
lines) and with SSS using the concave formula (11.3) (dotted lines) for the PCB442
instance vs. overall number of sweeps: the three lines show minimum lengths, mean
lengths (error bars are mostly the size of the symbols), and maximum lengths

Next we want to consider the quality of the results provided by this noising
approach. In Fig. 11.12, these results are compared to the results of the
concave smoothing formula (11.3), which provides the best results among all
smoothing formulas for SSS introduced here. We find that the results achieved
with our noising approach are only slightly worse than those achieved with
SSS using the convex smoothing formula.

11.3 Weight Annealing

The weight annealing (WA) technique is closely related to the noising ap-
proach. Here weights are assigned to the individual parts of the problem in
order to change the sizes of their corresponding addends in the cost function
and thus their importance in the optimization run. In the application to the
TSP, the individual parts are the nodes. We first rewrite the Hamiltonian of
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the TSP as follows:

H(σ) =
N∑

i=1

D(σ(i), σ(i + 1))

=
1
2

N∑

i=1

(D(σ(i), σ(i+ 1)) +D(σ(i), σ(i− 1)))

=
N∑

i=1

Jσ(σ(i)) ,

(11.5)

with Jσ(σ(i)) = (D(σ(i), σ(i + 1)) + D(σ(i), σ(i − 1)))/2, σ(0) ≡ σ(N) and
σ(N + 1) ≡ σ(1).

Thus, each node i contributes the value

Jσ(i) = (D(i, σ(σ−1(i) + 1)) +D(i, σ(σ−1(i) − 1)))/2 (11.6)

to the Hamiltonian H(σ) =
∑

i Jσ(i). If we want to strengthen the impor-
tance of a certain node i, we will thus generally enlarge its addend to the
Hamiltonian by some weight factor W (i). Thus, we get a weighted Hamilto-
nian

HW (σ) =
N∑

i=1

W (i) × Jσ(i) . (11.7)

Note that here the sum runs over the nodes and not over the tour positions
as above.

This approach opens a whole slew of new possibilities for optimization
algorithms, especially if a control parameter like the temperature T in SA
is used: when working with SA, the individual parts of the system could
be treated at different local temperatures. Local bouncing strategies could
be developed. These and other techniques could look during or after the
optimization run at how well the individual parts of the problem are solved
and then readjust the individual weights in order to give more emphasis to
obviously harder to solve parts of the problem.

We want to restrict ourselves to the combination of this WA approach
with the greedy algorithm. As with the noising approach, it is our aim to
overcome barriers in the energy landscape by changing the TSP instance
with these weights. As one can easily see by rewriting the Hamiltonian to

HW (σ) =
N∑

i=1

1
2

(W (σ(i)) +W (σ(i+ 1))) ×D(σ(i), σ(i + 1))

=
N∑

i=1

DW (σ(i), σ(i+ 1)) ,

(11.8)

the distances of the TSP instance are “weighted” by incorporating the weights
of the nodes, such that this approach is analogous to the noising approach.
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We want to start out by choosing the weights of the nodes randomly.
Based on the results of the noising approach in the last section, it is ad-
vantageous to decrease the amount of noise gradually, such that one starts
out with instances that are rather random and ends at the original instance.
Thus, the outline of this approach is as follows:

1. Initialize the system and create some random configuration σ.
2. Choose some large initial value for the parameter α by which the degree

to which the weights can deviate from 1 is governed.
3. Choose the weights W (i) randomly but in dependence on the parame-

ter α.
4. Calculate the weighted distances DW (i, j).
5. Perform a greedy step on the Hamiltonian HW , starting from configura-

tion σ and ending at configuration τ .
6. Set σ := τ .
7. Decrease parameter α.
8. If α has not yet reached its final value, return to step 3 of this approach.
9. Finally, set all weightsW (i) = 1 and perform a greedy step on the original

instance, starting at σ.

Now we must develop some function with which we calculate these weights
W (i). Of course, this function must depend on α, but it also must incorporate
some random element. We will try the following two “weighting functions”
here:

• In the first approach, which is a power law approach, we choose random
numbers r(i) that are uniformly distributed in the interval [−1; 1] and set

W (i) = αr(i) . (11.9)

Thus, the weights have values in the interval [1/α;α] and are uniformly dis-
tributed within this interval when plotting this interval using a logarithmic
scale.
We start out with a large initial α (using a value of 105 for the PCB442
instance) and decrease α exponentially toward 1.

• In the second linear approach, we increase α linearly from 0 to 1 in steps
of, e. g., 10−3 and choose random weight values W (i) that are uniformly
distributed in the interval [α; 2 − α].

Figure 11.13 shows the development of the mean energy and of the total
acceptance rate for both weighting approaches. The curve for the reweighted
Hamiltonian fluctuates around and decreases with the curve for the original
Hamiltonian for the power law weighting technique. We find that mostly
〈HW 〉 ≤ 〈H〉 for small α. The acceptance rate shows a sigmoidal decrease
as in the noising approach. The linear weighting approach leads to other
results: here α increases linearly from 0 to 1, such that we must read the
graphic from left to right here. 〈HW 〉 increases with increasing α, while 〈H〉
decreases. Both curves coincide for α→ 1.
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Fig. 11.13. Computational results for the mean energy 〈H〉 (left) and the total
acceptance rate A (right) of the PCB442 instance using the WA approach. Left: both
the mean energy 〈HW 〉 of instances with the reweighted distances and the mean
energy 〈Horig〉 calculated with the original distances D(i, j) are shown. Top: results
for the power law weighting technique; bottom: results for the linear weighting
technique

Finally, we want to compare the quality of the results achieved with these
weighting approaches. We used 1147 α-steps when working with the power
law weighting approach and 1001 α-steps using the linear weighting approach.
Figure 11.14 shows the quality of the results of these approaches. We find
that the linear approach leads to significantly better results than the power
law approach for short computing times and remains still better for long
computing times.

Of course, these two approaches are only a start in the struggle to apply
this WA technique to the TSP, as they change the weights of the nodes
at random. One might think of more elaborate techniques according to the
philosophy of this approach: if a part of the system is badly solved, then
the corresponding weight of this part will be enlarged. Thus, the question
arises as to how to measure how well or how poorly a part is solved. We
tried to introduce a measure with a rather simple approach: as introduced in
Sect. 1.8, the misfit parameter measures how large the frustration in a TSP
instance is. One can also use this parameter here: a TSP instance is solved
locally optimally at some node if this node is connected to its two nearest
neighbors. Let n1(i) and n2(i) be the nearest and the next nearest neighbors
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of node i. Then one must calculate

D(σ(i), σ(i+ 1)) +D(σ(i), σ(i − 1)) −D(σ(i), n1(σ(i))) −D(σ(i), n2(σ(i)))
(11.10)

in order to measure how large the deviation from local optimality is for
node σ(i). This measure could then be introduced in finding new weight
values W (σ(i)). We tried several approaches but found none better than our
linear approach with the randomly chosen weights above. We think that this
is due to the fact that usually some local part of the system should not be
solved optimally in order to get to the optimum of the overall system. This
is just the point when dealing with complex problems, that the overall global
optimality is not given by the sum of the local optimalities.
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Fig. 11.14. Quality of the results achieved with WA using the power law approach
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11.4 Final Remarks on Application
of Changing Techniques

In our implementations of SSS, noising, and WA, we generally worked with
a control parameter, usually called α, introduced by Gu and Huang [76].
This control parameter was gradually decreased over many steps. One some-
times also finds implementations in the literature in which the schedule for
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α is decreased to only a few steps but for which still moderately or even very
good results are achieved. The exact values the smoothness control parameter
takes in these applications usually depend not only on, e. g., the smoothing
function but also on the problem instance. Thus, in these approaches, first,
these important smoothing values must be found either by trial and error or
by some assumptions or within the kind of optimization runs we performed
here. Of course, if only these important smoothness values are used, the cal-
culation time in the production runs can then be decreased to a large extent.
However, we prefer to present results here for straightforward implementa-
tions for which it is easier to work with a schedule with many α-values as the
important ones are usually unknown a priori and are sometimes hard to find.

Secondly, we would like to comment on the basic heuristics to be used in
combination with these approaches that change the energy landscape: it is not
necessary to work strictly with the greedy algorithm, which does not accept
any deterioration. But one cannot start a complete run with, e. g., SA at each
α-step, as the local valley will be left at large temperatures, such that the
guidance effect of SSS and of the other techniques is lost. As shown in [186],
the greedy algorithm can be replaced by the great deluge algorithm (GDA): in
that work an optimization run was performed using the GDA at each α-step.
The initial value for the water level was chosen as the energy of the current
configuration such that the system was forced to stay in the local valley. The
GDA is thus very well suited to be combined with these approaches. But the
problem with this combination is that the GDA converges very slowly, such
that there is no great advantage from using the GDA instead of the greedy
and if one does not want to spend too much additional calculation time.
However, threshold accepting (TA) may also be used in combination with,
e. g., SSS: in the threshold search space smoothing (TSSS) approach, a small
constant threshold is introduced and the TA criterion is applied instead of
the greedy acceptance criterion. With decreasing α, the energy differences
occurring in the smoothed energy landscape become larger, such that more
and more moves are rejected. Thus, the system performs both a SSS and a TA
transition. However, when α approaches its final value, the system might not
freeze completely. Thus, one must memorize the best solution found in this
late stage of the optimization algorithm and print this solution as the result
of the optimization run.

The third comment we want to make is that, although there are differ-
ences in the philosophies and the behaviors of the algorithms between SA
and its relatives on the one side and SSS and its relatives on the other side,
the algorithms have much in common: both types of algorithms construct
a Markov chain of configurations that hopefully ends at a (quasi) optimum
configuration. Both types inherit some control parameter that is changed
during the optimization such that the system is transferred gradually from
a quasi-RW mode into a quasigreedy mode. Now we will move on to com-
pletely different approaches. We will, however, find similar concepts in these
approaches, such as the usage of a variable control parameter.
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12.1 Application of a Hopfield Network

Neural networks (NNs) can be applied to the traveling salesman problem
(TSP) in various ways. In this chapter, we start with the application of the
Hopfield network, which was proposed by Hopfield and Tank in 1985 [88].

In order to be able to apply this NN, the TSP must be coded in a special
way by using an edge matrix: let

S(i, a) =

{ 1 if node No. i is
the ath node in the tour ,

0 otherwise .
(12.1)

This coding was already mentioned in Sect. 1.4, together with the constraints
that have to be considered. However, here we code these in another way as
the entries of the edge matrix S will serve as the spins or neurons of the
Hopfield model, such that a Hamiltonian of the form

H(S) = −1
2

∑

i,a,j,b

J(i,a),(j,b) × S(i, a) × S(j, b) −H ×
∑

i,a

S(i, a) , (12.2)

with J being the connectivity matrix to be discussed later, can be derived.

• The constraint that each node must be visited only once in the tour can
be expressed by the penalty function

H1(S) =
∑

i

∑

a

∑

b�=a

S(i, a) × S(i, b) . (12.3)

This penalty function vanishes only in the case where this constraint is
fulfillled; otherwise at least one of the products would add a 1.

• Analogously, there can only be one node at each tour stop:

H2(S) =
∑

a

∑

i

∑

j �=i

S(i, a) × S(j, a) . (12.4)

• Furthermore, the matrix S must contain exactly N entries with a value
of 1. As the constraints above do not consider this fact, a further penalty
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function is needed:

H3(S) =

((
∑

i

∑

a

S(i, a)

)

−N

)2

. (12.5)

This term can be rewritten as

H3(S) =
∑

i,a

∑

j,b

S(i, a) × S(j, b) − 2N
∑

i,a

S(i, a) +N2 . (12.6)

As N is constant, the last addend of this term can be omitted.
• Finally, the main objective function should minimize the tour length. One

could therefore record it as

H0(S) =
∑

i

∑

j

∑

a

D(i, j) × S(i, a) × S(j, a+ 1) . (12.7)

However, the Hopfield rule updates every neuron according to the inter-
actions with all other neurons. As each TSP node interacts not only with
its successor but also with its predecessor in the tour, it is better to use
a symmetric Hamiltonian:

H0(S) =
1
2

∑

i

∑

j

∑

a

D(i, j) × S(i, a) × (S(j, a+ 1) + S(j, a− 1)) .

(12.8)
Node j must be either the predecessor or the successor of node i in the
tour such that the corresponding edge length is added. As all edge lengths
are added twice, this partial objective function is divided by 2.

The complete Hamiltonian is therefore given as

H = H0 + λ1H1 + λ2H2 + λ3H3 . (12.9)

The main problem consists in choosing appropriate values for the Lagrange
multipliers λ1, λ2, and λ3. If they are chosen too large, then the Hopfield
approach mostly converges to feasible solutions, which are, however, of a bad
quality. If they are too small, then the constraints might be violated. Usu-
ally, all distances D(i, j) are normalized between 0 and 1, such that one can
transfer the chosen Lagrange multipliers from one TSP instance to another
more easily.

The entries S(i, a) of the edge matrix serve as the spins or neurons
Sk=(i−1)N+a = S(i, a) of the Hopfield network. By comparing the coefficients
of the partial Hamiltonians with the Hamiltonian (12.2) one gets a description
for the entries of matrix J , namely,

J(i,a),(j,b) = −2 (λ1δi,j(1 − δa,b) + λ2δa,b(1 − δi,j) + λ3)

−D(i, j)(δa+1,b + δa−1,b) , (12.10)
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with the Kronecker symbol

δi,j =

{
1 if i = j ,

0 otherwise .
(12.11)

These weight values J(i,a),(j,b) serve as the interactions that can also be rewrit-
ten such that only two indices remain: Jk=(i−1)N+a,l=(j−1)N+b = J(i,a),(j,b).
From the addend λ3H3 we get the magnetic field

H = 2Nλ3 , (12.12)

which is equal for all spins. As the neurons do not take the values −1 and
+1 as in the description of the Hopfield model in Sect. 18.3 but the values 0
and 1, one must change the update rule for the neurons. Again the task is to
minimize the energy function (12.2). This can be done in an analogous way
to the other Hopfield rule, namely,

Si(t+ 1) = Θ

⎛

⎝H +
N∑

j=1

JijSj(t)

⎞

⎠ , (12.13)

with the slightly changed Heaviside function

Θ(x) =

{ 1 if x > 0 ,
rnd(0, 1) if x = 0 ,
0 if x < 0 ,

(12.14)

in which in the marginal case x = 0 the new spin value is randomly set to
either 0 or 1.

12.2 Computational Results for the Hopfield Network

As the number of neurons of the Hopfield network is given by N2, with N
being the number of nodes of the TSP, the number of interactions between
the neurons explodes with N4 such that only rather small TSP instances can
be solved with this Hopfield network due to the finite amount of memory
on a computer. For example, the smallest of our benchmark instances, the
BEER127 instance, with its 127 nodes, would already require roughly 1.9 GB
of memory if each of the interactions is stored in a variable with 8 bytes.
This amount of required memory limits the application of this Hopfield net-
work to small system sizes. Of course, instead of storing all these values, one
could calculate them for every operation, but then the calculation time would
increase strongly.

Furthermore, in applying this approach to small TSP instances, we found
that the parameters λ1, λ2, and λ3 must be adjusted for every TSP instance.
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The most crucial parameter seems to be λ3: if it is chosen too large in relation
to the other parameters, then the attractors of the Hopfield network are the
two states in which either every edge is used (i. e., Si = 1 for all i) or in which
no edge is used (i. e., Si = 0 for all i). The Hopfield network always jumps
between these two states. On the other hand, if λ3 is chosen too small, then
the initial configuration, which, e. g., consists of N spins with Si = 1 and
N2 −N spins with Si = 0, is not changed.

For intermediate values, this approach often leads to configurations that
are nearly feasible, but they have either too many or too few edges. Thus,
one has to optimally derive feasible roundtrips from these configurations by
either omitting or adding some edges.

For a few instances, we found nice parameters to work with, such that
we obtained quite good or even optimum results. But the limitation to small
system sizes and the recalibration of the Lagrange multipliers λi for every
new instance for getting a feasible solution at all makes this approach rather
difficult. Thus, we move on to another NN for solving optimization problems.

12.3 Application of a Kohonen Network

The Kohonen network can also be applied to the TSP. The basic idea of
this application is that the topology of a good roundtrip by the traveling
salesman is that of a closed circle. Thus, the neurons Si are initially placed
on a closed circle and gradually learn the positions of the nodes, such that the
circle is iteratively deformed to a roundtrip touching each of the nodes. This
approach, which is also called the elastic net approach [55], is implemented
as follows:

• First, M neurons are placed on a circle lying in the area in which the nodes
of the TSP lie. Thus, the neurons are given by

Si =
(
Cx + Rx cos(2πi/M)
Cy + Ry sin(2πi/M)

)

. (12.15)

The coordinates of the center C of the circle and the radii of the ellipse
in the x- and y-direction are determined from the borders of the area in
which the nodes lie. Furthermore, the interaction matrix J , which is also
called the activation profile, between the neurons is given by

Jij = exp
(

− D(i, j)2

2λ2D2
max

)

(12.16)

with the distance D(i, j) between the neurons according to some metric
(usually the Manhattan metric on the given topology is used), the max-
imum Dmax of these distances, and the stiffness parameter λ. Then the
learning rate η is set to some initial value, e. g., η = 1.
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• A sweep of learning steps is performed. Each learning step consists of three
parts:
– Some TSP node i at position

ri =
(
xi

yi

)

(12.17)

is chosen at random.
– The neuron j nearest to node i is chosen, i. e., the one whre the distance

between the neuron and the node is minimal. Usually, the Euclidean
distance |Sj − ri| is used as the distance metric.

– All neurons are updated according to the Kohonen learning rule:

Snew
k = Sold

k + η × Jkj ×
(
ri − Sold

k

)
. (12.18)

• After each sweep, the learning rate η and the stiffness parameter λ are
decreased. A mathematical derivation of this choice can be found in [172]
and a condition for practical use is given in [164].

• If the neurons have significantly changed in the last sweep, a further sweep
is performed.

• Usually, the number M of neurons used exceeds the number N of nodes
of the TSP. Furthermore, several or even all nodes might not be placed
exactly at the positions of the nodes. Therefore, a correct TSP tour must be
unhinged from the elastic band formed by the neurons. Thus, for each TSP
node, one neuron that is nearest to it is marked and is located at exactly the
position of the TSP node. All other neurons are deleted. If everything goes
well, then N neurons remain. The sequence of these neurons determines
the sequence of the TSP nodes and, thus, the solution of this problem. But
if by this procedure fewer than N neurons remain, then at least one TSP
node was not represented in the elastic band of neurons, so the solution is
not feasible.

12.4 Computational Results for a Kohonen Network

The Kohonen network contains three crucial parameters:

• The stiffness parameter λ, which controls the extent to which neurons near
neuron j also learn about the input vector ri,

• The learning rate η, which controls how strong an input vector is stored in
the network, and, above all,

• The number M of neurons, i. e., the size of the NN.

Furthermore, the question is which distance metric to use for the distances
D(i, j) between the neurons. One could either use the Euclidean distance
D(i, j) between the neurons, which changes after each learning step, or, since
the neurons are organized on a closed ring, one could also define a metric
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according to this topology, e. g., D(i, j) = 1 if neurons i and j are nearest
neighbors on the ring and D(i, j) = z if there are z−1 neurons between neu-
rons i and j. Note that these distance values are restricted to the range 0 (for
the distance of a neuron to itself) to [M/2] if the ring is closed. (The Gaus-
sian brackets for [x] denote the integer component of x.) These distances are
constant throughout the optimization run. Thus, choosing λ and η correctly
becomes less crucial for obtaining a feasible solution in the end. Thus, we use
this metric type and redefine Jij as Jij = exp(−D(i, j)2/(2λ2M2)). Further-
more, we start with η = 1 and λ = 0.01 and decrease them both exponentially
by a factor of 0.999 after each sweep. All in all, 2000 sweeps, i. e., 2000N learn-
ing steps, are performed. These parameters are independent of the specific
instance. We found these parameters empirically to be quite good parameters
for the BEER127 and LIN318 instances. For each instance, we determined
the borders of the area ([xmin;xmax], [ymin; ymax]) in which the nodes lie. The
coordinates of the center C of the circle are simply given as the mean values
of the minimum and maximum x- and y-values, respectively. For the radius
Rx of the ellipse in the x-direction, we set Rx = 0.8 × (xmax − xmin)/2 and
analogously Ry = 0.8×(ymax−ymin)/2 for the radius in the y-direction. Here
we are mainly interested in the dependency of the number M of neurons on
the quality of the results, using the parameters mentioned above simply as
constants.

First, we want to study the behavior of this Kohonen algorithm. Fig-
ure 12.1 shows the initialization, various intermediate configurations that
represent the roundtrip of the traveling salesman with increasing quality,
and the final deletion of neurons that are not needed. In this run, M = 3×N
neurons were used. We clearly find that one must use more neurons than
there are nodes in the TSP instance, as some neurons are placed on longer
edges such that they do not represent a node. Thus, for larger TSP instances
it is quite impossible to get a feasible solution with only N neurons, as some
nodes are simply not represented by a neuron. These results for the ATT532
and for the NRW1379 instance may change if we use a larger initial value of
λ (ours was rather small) and use more sweeps.

Furthermore, we are interested in the question of how many neurons are
needed to get a feasible solution that contains all nodes, i. e., in which at
least one neuron is associated to each node. Figure 12.2 clearly shows that
the number M of neurons should be much larger than the number N of TSP
nodes. For the BEER127 instance, M = 3×N neurons are sufficient in order
to achieve nearly always a feasible solution; for M/N ≥ 4, we always get
feasible solutions. This fraction M/N must be increased with increasing N :
M/N must be ≥ 11 in order to always get a feasible solution for the LIN318
instance. In the case of the PCB442 instance, we get 100 feasible solutions out
of an overall 100 configurations only for M/N = 45, 60, 85, 90, and 95. The
results are even worse for the ATT532 problem: here we never reach 100%
of feasible solutions; we must increase the ratio M/N even further to get
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initialization after 1 sweep after 10 sweeps

after 50 sweeps after 200 sweeps after 500 sweeps

after 1000 sweeps after 2000 sweeps at the end

Fig. 12.1. Solution of the BEER127 instance with a Kohonen network with M =
3 × 127 neurons: the neurons of the Kohonen network are initially placed on an
ellipse. Then they are iteratively shifted, such that the elastic band increasingly
approaches the form of a roundtrip of the traveling salesman. Finally, the unneeded
neurons are deleted

a feasible solution with a reasonable probability. The curve for the ATT532
instance shows an even worse effect: the probability for getting a feasible
solution with a Kohonen network is not necessarily a roughly monotonously
increasing function of the ratio M/N . Instead, we find for large ratios M/N
that we do not get any feasible solution at all—at least with our parameter
set. We also tried the Kohonen network on the NRW1379 instance. We did
not get any feasible solution for this large TSP instance with the Kohonen
network.
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Fig. 12.3. Lengths of the solutions of TSP instances achieved with a Kohonen
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mean (with error bars), and maximum length achieved
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The next question is whether the results, i. e., the lengths of the roundtrips
achieved with the Kohonen network, depend on the ratio M/N . Figure 12.3
shows the results for the minimum, mean, and maximum lengths achieved
with various fractions M/N for the three TSP instances BEER127, LIN318,
and PCB442. One finds that the mean length is virtually constant; it does not
depend strongly on the ratio M/N . The mean length decreases slightly with
increasing M/N for the BEER127 and PCB442 instances. Thus, increasing
the number of neurons does not always help. A further disadvantage of large
M values is that the calculation time increases linearly with the number of
neurons M . As this number is proportional to the number of nodes N and
as the number of improvement steps also increases at least linearly with N ,
the calculation time of the algorithm increases at least quadratically with the
number of TSP nodes.

Summarizing, the Kohonen network shows that NNs can be used for op-
timization purposes. However, this approach can be used only for small and
medium-sized TSP instances. Furthermore, the results achieved are not re-
ally good. Thus, although it is a nice and interesting idea to use NNs, the
computational counterparts of brains, for optimization purposes, we cannot
recommend this approach.



13 Application of Genetic Algorithms to TSP

The number of imaginable applications of genetic algorithms (GAs) to the
traveling salesman problem (TSP) is huge. Many parameters can be intro-
duced, and tuning them can strongly increase the quality of the results one
can achieve with GAs. Once we implemented a parallel GA, with which we ob-
tained the optimum results for the PCB442 and the ATT532 TSP instances.
Here, however, we want to restrict ourselves to a rather simple implementa-
tion of a GA such that the interested reader can easily implement a GA for
the TSP on his own after having read this chapter.

13.1 Mutations

There are a number of ways to define mutations and crossovers for the TSP,
for all the various codings of the configuration. However, the one-point and
two-point crossover operators, which are commonly used when working with
GAs in bit-representations of the configurations, often lead to offspring con-
figurations violating the standard constraint of the TSP, namely, that there
must be exactly one closed roundtrip touching each node exactly once. Sim-
ilarly, the standard mutations like bit shifting or bit inversion applied on the
edge matrices (1.7) and (1.11) usually result in nonfeasible configurations.
However, we prefer those mutations and crossovers that automatically lead
to configurations fulfilling the TSP constraints as otherwise one would have
to work with barrier or penalty functions, which increase the complexity for
the algorithm and makes it usually harder to find a good solution.

The question is now what appropriate mutation and crossover operators
look like for the TSP. In Chaps. 4 and 5, we already introduced the moves
exchange (EXC), node insertion move (NIM), Lin-2-opt (L2O), and the four
Lin-3-opts (L3Os), which we used later on and all of which lead to feasible
configurations. These moves can thus serve as mutations in GAs. Indeed,
these moves can even be interpreted from a genetic point of view, considering
the configuration written as a permutation of numbers, as follows:

• The EXC, which exchanges two nodes in the tour, is somehow an analogon
to the bit exchange.

• The NIM, which shifts one node to another position in the tour, can be
seen as an analogon to the bit shift.
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• The L2O, which reverses the direction of a part of the tour, is related to
the bit reversal.

• The L3Os can be interpreted as combinations of bit operators shifting and
reversing strings of bits.

Instead of the bits, which can take only two values, one has nodes with
numbers from 1 to N .

13.2 Crossovers

We will thus use these seven moves as the mutations that are used to change
single configurations. But the essential point of GAs is that there are also
crossover operators that allow the configurations to mate and to have some
offspring together. There are also many ways to define a crossover operator
that leads to feasible offspring configurations. Usually, two child configura-
tions K1 and K2 are produced from two parental configurations P1 and P2

that mate with each other as desribed below. In the descriptions below, only
the production of K1 will be given in detail. For K2, the role of the two
parents is simply reversed.

Some standard crossover operators for the TSP are as follows:

• Random crossover

Table 13.1. Example of the random crossover

P1 8 1 3 0 2 7 6 4 5 9
P2 7 4 8 1 0 2 6 5 3 9

Step 1: Choose R(i) randomly.

R 1 0 0 1 0 1 1 0 0 1

Step 2: Set Kx(i) = Px(i) if R(i) = 1.

K̃1 8 − − 0 − 7 6 − − 9

K̃2 7 − − 1 − 2 6 − − 9

Step 3: Fill empty Kx(i) in the order
in which they occur in P3−x.

K1 8 4 1 0 2 7 6 5 3 9
K2 7 8 3 1 0 2 6 4 5 9

The simplest crossover operator for the TSP that always leads to feasible
configurations is probably the random crossover (RX). The RX first pro-
duces a random bitstring R. The N bits R(i) are set to 0 or 1 with equal
probability. Then the RX fills K1(i) with the content of P1(i) if R(i) = 1.
If the bit R(i) is not set, then the position K1(i) remains empty at first.
In the next step, the remaining empty positions of K1 are filled with those
nodes that are not yet part of K1 in the order in which they occur in P2.
A small example in Table 13.1 illustrates this RX.
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The random element in this move is rather strong. Good partial sequences
that are perhaps already part of the parent configurations are usually not
handed down to the child configurations. Thus, one can expect that this
crossover operator might generally not lead to very good children.

• Partially matched crossover

Table 13.2. Example of the partially matched crossover

Step 1: Select positions j and k.
P1 and P2 are cut there
(j = 3 and k = 7).

P1 8 1 3 0 2 7 6 4 5 9
P2 7 4 8 1 0 2 6 5 3 9

Step 2: Set R(i) = 1
if i ≤ j and i > k.

R 1 1 1 0 0 0 0 1 1 1

Step 3: Set Kx(i) = Px(i) if R(i) = 1.

K̃1 8 1 3 − − − − 4 5 9

K̃2 7 4 8 − − − − 5 3 9

Step 4: Else set Kx(i) = P3−x(i).

K̃1 8 1 3 1 0 2 6 4 5 9

K̃2 7 4 8 0 2 7 6 5 3 9

Step 5: Dissolve double occurrences:
Let n be such a double node.
Let l1 and l2 be its positions
with j < l1 ≤ k.
Set Kx(l2) = Px(l1).

K̃1 8 0 3 1 0 2 6 4 5 9

K̃2 2 4 8 0 2 7 6 5 3 9

Repeat step 5 if new errors occur.

K̃1 8 2 3 1 0 2 6 4 5 9

K̃2 0 4 8 0 2 7 6 5 3 9

and again . . .

K1 8 7 3 1 0 2 6 4 5 9
K2 1 4 8 0 2 7 6 5 3 9

The partially matched crossover (PMX) works in a completely different
way. Here one chooses randomly two positions j and k with 1 ≤ j < k ≤ N
after which the two parental configurations P1 and P2 are supposed to be
cut. Let j+ and k+ be the successive positions to j and k, respectively.
Thus, usually P1 is split into the three partial sequences P1(1), . . . , P1(j),
P1(j+), . . . , P1(k), and P1(k+), . . . , P1(N), and analogously P2. Then one
makes the first step in constructing the kid configuration K1 by setting
K1(i) = P1(i) for i ≤ j and i > k. Then one sets K1(i) = P2(i) for j < i ≤
k. But here one faces the problem that some nodes might occur twice in K1

while other nodes are forgotten entirely. Let, e. g., n be such a node that
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would occur twice, i. e., once in the partial sequence K1(j+), . . . ,K1(k),
which K1 inherited from P2, and once outside this partial sequence, which
K1 inherited from P1. Let l1 and l2 be the positions at which n occurs with
j+ ≤ l1 ≤ k. To dissolve this double occurrence, set K1(l2) = P1(l1). After
this replacement has been done for all nodes found to occur twice in K1,
one might find that other nodes occur twice in K1. Thus, one must iterate
this search-and-repair procedure until all double occurrences are dissolved.

• Order crossover

Table 13.3. Example of the order crossover

Step 1: Select positions j and k.
P1 and P2 are cut there.
(j = 2 and k = 5)

P1 8 1 3 0 2 7 6 4 5 9
P2 7 4 8 1 0 2 6 5 3 9

Step 2: Set Kx(i) = Px(i)

K̃1 8 1 3 0 2 7 6 4 5 9

K̃2 7 4 8 1 0 2 6 5 3 9

Step 3: Delete P1(j+), . . . , P1(k)
in K2 and vice versa.

K̃1 − − 3 − 2 7 6 4 5 9

K̃2 7 4 8 1 − − 6 5 − 9

Step 4: Reorder the indices:
Write “−” in the interval,
the other indices outside.
Start with index j+.

K̃1 3 2 − − − 7 6 4 5 9

K̃2 8 1 − − − 6 5 9 7 4

Step 5: Set Kx(i) = P3−x(i)
for j < i < k.

K1 3 2 8 1 0 7 6 4 5 9
K2 8 1 3 0 2 6 5 9 7 4

A further crossover operator called the order crossover (OX) is strongly
related to the PMX. Again one selects two positions j and k after which
the parental configurations are supposed to be cut and initially sets the kid
configurations as above. However, the errors with the double occurrences of
the nodes are dissolved in another way. Here one preliminarily sets K1(i) =
P1(i) for all i. Then one checks for all values in P2(j+), . . . , P2(k) to see
whether they occur inK1(1), . . . ,K1(j) or inK1(k+), . . . ,K1(N). If at least
one of them does, one marks such positions i with K1(i) = −. Then one
reorders the marked and unmarked indices in such a way that the marked
indices are written in the exchange interval and the other indices outside,
starting with the index j+. Finally, one sets K1(i) = P2(i) for j+ ≤ i ≤ k.
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• Cycle crossover

Table 13.4. Example of the cycle crossover

P1 8 1 3 0 2 7 6 4 5 9
P2 2 8 7 4 6 3 1 5 0 9

Step 1: Choose a position i0
randomly; set i = i0.
Let, e. g., i0 = 2.

Step 2: Iterate:
Set Kx(i) = Px(i).
Set i = P−1

x (P3−x(i)).
Repeat until i = i0.

K̃1 8 1 − − 2 − 6 − − −
K̃2 2 8 − − 6 − 1 − − −
Step 3: Set empty Kx(i) = P3−x(i).

K1 8 1 7 4 2 3 6 5 0 9
K2 2 8 3 0 6 7 1 4 5 9

The cycle crossover (CX) works differently from the crossover opera-
tors mentioned above: here one randomly selects a position i0 and sets
K1(i0) = P1(i0). Then one determines the position number i1 of the node
P2(i0) in P1 and analogously sets K1(i1) = P1(i1). This ansatz of iter-
atively determining the tour position number ik of the node P2(ik−1) in
P1 and setting K1(ik) = P1(ik) is repeated until P2(ik−1) = P1(i0). One
can imagine this approach as if the numbers P1(i0), . . . , P1(ik−1) formed
a cycle with their counterparts P2(i0), . . . , P2(ik−1). In the example in Ta-
ble 13.4, the cycle is created by the numbers 1, 8, 2, 6. For all remaining
tour positions, one sets K1(i) = P2(i).

Of course, there are many more such crossover operators, but we wish
to restrict ourselves to this list of a few widely used and well-known opera-
tors [192].

13.3 Natural Selection

As already mentioned, genetic algorithms work with a large population of
configurations. Thus, one starts out with a large set of either randomly ini-
tialized or already preoptimized configurations. In each evolution step, muta-
tions can change the individuals of the population. Here one can either alter
the individuals themselves or produce copies of the individuals that have been
changed by the application of the mutation operators. These copies or clones
correspond to an asexual reproduction. The mutations can be performed ei-
ther at random or only if they lead to an improvement.
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Offspring is usually produced by applying the crossover operators intro-
duced above, which corresponds to a sexual reproduction, as two parental
configurations are needed to generate a child configuration.

Due to the generation of children, the number of individuals in the pop-
ulation increases. But usually one wants to stay with a constant population
size during the optimization run. Thus, some individuals of the population
must be removed such that some children can be added to the population.
Here one can think of various approaches: for example, each time a child
is generated, the least fit member of the population is replaced by a child.
One can alter this approach and only perform this exchange if the child
has a greater fitness than this individual. But one can alternatively produce
a large number of children and apply the survival-of-the-fittest approach in
such a way that the populations of the parental and the children configura-
tions are first merged and then those individuals with the least fitness are
removed. Here one finds a really rich and entertaining variety of possibilities
on how to simulate an evolutionary process by means of natural selection.
One can also think of a maximum lifetime even for very good individuals.

13.4 Computational Results

We implemented the GA as follows:

• First, an initial population of 100 individuals is generated, each of which
gets a randomly created roundtrip through the 442 drilling holes of the
PCB442 TSP instance.

• Then we determine the rank of the individuals; the best individual gets
the No. 1 rank, the second-best the No. 2 rank, and so on.

• Then we perform a loop over 1000 evolution steps:
– In each evolution step, we perform ten sweeps of mutations for each

individual. The seven mutations mentioned above are used with equal
probability. Mutations are only accepted if they do not worsen the con-
figuration. They are directly applied to the individuals themselves.

– After this polishing of the individuals, we give them the opportunity to
have some sexual relationships: here we assume that each individual is
a hermaphrodite, i. e., each individual acts once like a male and once
like a female in nature. The female selects a male individual different
from herself, giving priority to individuals with a high rank. (The rank
is selected according to 1+int(random()2×M) with M being the number
of individuals.) Then a crossover operator between these two individuals
is performed, in which one child is generated. Thus, each individual is
able to play exactly once the role of the mother, who selects a strong
partner in order to produce a child with a large fitness. In the world of the
males, the better individuals serve more often as paternal configurations.
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– Thus, we have created as many children configurations as there are
parental configurations. Now we let the weaker half of our population
die in order to return to the original population size. Of course, this
approach induces a rather large evolutionary pressure.

– Finally, we update the ranks of the individuals.
• After 1000 evolution steps, the individuals have become identical for most

crossover operators. We thus return the length of the (best) configuration
after this number of evolution steps as the output of the GA.
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Fig. 13.1. Deviations of the minimum, mean, and maximum lengths of the individ-
uals from the optimum of the PCB442 TSP instance vs. time measured in evolution
steps
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The question that arises first is which crossover operator leads to the
best results. Figure 13.1 shows for five simulation runs each using a dif-
ferent crossover operator or using all of them with equal probability (bot-
tom), the development of the minimum, average, and maximum lengths of
the roundtrips of the individuals over time. To enlarge the effects, we plot
the deviation of these observables from the optimum instead of the observ-
ables themselves. We find that the simulation run is not at all frozen after
1000 evolution steps when using the RX. Using the CX, one gets a slightly
faster convergence than with the other crossover operators. In our optimiza-
tion runs, the best and the worst individuals do not differ too much from
each other in their fitness values.

Table 13.5. Quality of the solutions of the best individuals in a population (av-
eraged over 100 optimization runs each) using different crossover operators for the
PCB442 TSP instance

Operator Minimum Maximum Mean value ± error

RX 52,366.2734 53,576.5547 53,021.3112 ± 27.7
PMX 51,798.9414 53,754.0391 52,791.1574 ± 37.6
OX 51,893.4336 54,245.0859 52,728.5821 ± 46.9
CX 51,981.7891 54,108.1094 52,976.8450 ± 46.1
all 51,687.1914 54,139.543 52,772.1975 ± 51.4

Table 13.5 shows a comparison of the results that can be achieved with
the various crossover operators. The PMX and the OX lead to the best results
on average, the RX to the worst results. But note that the simulation runs
using the RX did not converge within 1000 evolution steps. We get the overall
best result by using all four crossover operators and selecting one of them at
random for each reproduction process.

Of course, these results could be improved by spending more calculation
time, using a larger population size, tuning various parameters, and changing
the scenarios for the application of the mutations and of the crossover oper-
ators. However, there are so many possibilities for tuning GAs that we could
easily fill a book the same size as this book with results for these variations.
Thus, we leave it here and turn to other optimization algorithms.
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14.1 Application of Ant Colony Optimization

Watching the efficiency of colonies of social animals with poor individual
capabilities but complex collective behaviors, one is inspired to find out how
these complex collective behaviors are created, how they work, and how they
can be simulated for the usage of mankind, especially as an algorithm for
optimization purposes.

As already introduced in Sect. 20.2, Part I, the capability of ants to find
the shortest way around an obstacle put in their path can be translated into
an optimization algorithm for problems like the traveling salesman problem
(TSP) [40]. Each ant then corresponds to a traveling salesman performing
a closed roundtrip through the given set of nodes, touching each node exactly
once. In this ant colony optimization (ACO) heuristic, each ant is assumed
to make some compromise between walking over short edges in order to mini-
mize the total tour length locally, which corresponds to the individual intelli-
gence, and using edges other ants already used and left their pheromones on,
which corresponds to the group intelligence. These in turn lead to a global
optimization scheme.

At the beginning, the system is initialized by placing M ants randomly
on the nodes. Usually M is chosen to be larger than N , the number of nodes,
such that at each node at least one ant starts its roundtrip. The ants do not
choose the edges of their roundtrips at random. Only the starting point of
the roundtrip, which has no special meaning for the standard TSP, is chosen
randomly. As the ants leave some pheromones on the edges they use, the
amount of pheromones on each edge has to be stored. This amount φ(i, j, t)
on edge (i, j) at time t evolves in time as ants using the edge for moving
either from node i to node j or from j to i add some pheromones but also as
the amount of pheromones evaporates in time. Thus, the time development
of this amount is given by

φ(i, j, t+ 1) = η × φ(i, j, t) +
M∑

k=1

Δφk(i, j, t→ t+ 1) (14.1)

with η < 1 being the evaporation coefficient and Δφk(i, j, t → t + 1) the
additional amount of pheromones ant k leaves on edge (i, j) after having
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chosen it at time t. (Note that in this model, every edge can be traversed in
the same time interval of 1, regardless of their actual lengths.)

If the ant is then at a node i at some time t, the next node j to go to is
chosen with the probability

p(i, j, t) =
φ(i, j, t)α/D(i, j)β

N∑

k=1
k/∈TABULIST

φ(i, k, t)α/D(i, k)β

(14.2)

containing the parameters α and β that can be adjusted to reweight the
individual local search via the collective global search. The inverse distance
1/D(i, j) is called the visibility of edge (i, j): the shorter the distance D(i, j)
between nodes i and j is, the more visible node j is from node i and thus
the larger the probability is that the ant will choose edge (i, j). The second
term determining the probability for choosing an edge is the amount φ of
pheromones. Thus, the ant must make some compromise between the local
search visibility and the global collective approach.

Of course, to avoid initialization problems, some small amounts of phero-
mones must be put on the edges at the beginning. Furthermore, the ants
cannot touch a node twice in the roundtrip, so this must be forbidden by
introducing a tabu list for each ant in which the nodes already visited by the
ant are stored. Thus, the sum in the denominator of formula (14.2), which
normalizes the sum of the probabilities to be 1, runs only over the nodes not
yet visited. The nodes in the tabu list get a transition probability of zero.

Summarizing, the outline of this ACO technique is as follows:

1. First, the system is initialized with small amounts of pheromones on all
edges (which are either identical or random) and by putting ants on each
node of the TSP.

2. M roundtrips are created in N steps:
a) In each step, the following commands are executed for each ant:

i. A new node is chosen randomly according to the transition prob-
ability given above.

ii. The new node to which the ant has moved is put on the tabu list
of the ant such that it cannot be selected again.

b) The amounts of pheromones on each edge and the probabilities for
choosing an edge are updated.

3. After the completion of the roundtrip, the tabu lists are emptied.
4. The heuristic returns to step 2 if some final criterion is not met.

The individual implementations of the ACO heuristic differ mainly in the
amounts of pheromones added by an ant to the edge:

• In the Ant-density model, the amount added by ant k on edge (i, j) is given
by
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Δφk(i, j, t→ t+ 1) =

⎧
⎪⎨

⎪⎩

Qd if the kth ant goes from node i
to node j or vice versa between
t and t+ 1 ,

0 otherwise .

(14.3)

Thus, the amount is given by the number of ants using the edge. This says
nothing about how good the idea is of using this edge in the first place. The
amount only refers to how many other ants have already chosen the edge.
The quality of the edge is seen in its visibility in the probability function.

• In the ant-quantity model, the amount is given by

Δφk(i, j, t→ t+ 1) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Qq/D(i, j) if the kth ant goes
from node i to node j
or vice versa
between t and t+ 1 ,

0 otherwise .

(14.4)

Thus, this model also considers the length of a specific edge and thus
reinforces the visibility of an edge here.
However, these two models can be mapped on each other simply by chang-
ing the exponent β in the probability formula. Furthermore, although the
impact of short edge lengths is enlarged in this ant-quantity model, the
basic task of the traveling salesman to find an overall short roundtrip is
not considered. The traveling salesman might have to choose a worse edge
locally in order to get an overall shorter roundtrip. But these ant-density
and ant-quality models only consider a locally optimum way in the proba-
bility function when using their descriptions of the amounts of pheromones
to add.

• Thus, the ant-cycle model moves point 2b) in the outline above to point 3
and updates the amounts of the pheromones after having created the com-
plete roundtrip according to

Δφk(i, j, t→ t+N) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Qc/Lk if the kth ant goes
from node i to node j
or vice versa
in its roundtrip ,

0 otherwise ,

(14.5)

with Lk being the overall length of the roundtrip the kth ant performs.
Thus, the shorter the overall tour length is, the more pheromones are added
to the edges that are part of the tour.

Of course, at first this ACO heuristic recalls the tour construction heuris-
tics introduced in Chap. 3. There the nodes were taken one by one from a bag.
The nearest neighbor heuristic adds the best node at the end of the partially
already created roundtrip. The ACO approach does basically the same ini-
tially, except that it introduces a random element, namely, the probability
function by which the next node is chosen. However, due to the outcome of
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many ant steps performed in parallel, this probability function is changed.
Furthermore, the algorithm does not end after having created a complete
roundtrip. Instead, this construction approach is iterated again and again in
order to improve the roundtrips created. Thus, one can consider the ACO
heuristic an iterative construction heuristic. But one can also include this
heuristic among the tabu search heuristics, as the amount of pheromones left
is some kind of adaptive memory.

14.2 Computational Results

The three models of the ACO heuristic contain several parameters on which
the results achieved depend, namely,

• The fraction M/N , i. e., the number of ants divided by the number of
nodes, which should be ≥ 1, as already shown in [40];

• The evaporation coefficient η, which should be chosen somewhere in the
range 0.5 ≤ η < 1;

• The basic amounts Qi of pheromones to be added on an edge, which is,
depending on the model, divided by the length of the edge or the overall
tour length;

• The two exponents α and β, which weigh the two quantities pheromones
and visibility, in their influence on the probability of which edge to choose.

In [40], various values were given for these parameters: M/N ∈ {1, 3, 10, 30},
η ∈ {0.5, 0.7, 0.9}, Q ∈ {1, 10, 100, 1000, 10000}, and (α, β) ∈ {0.5, 1, 2, 5,
10}2. But no direction was given as to which values for these parameters
were optimal or how the ratio between them should be. We performed 100
simulation runs for each quintuple (M/N, η,Q, α, β) applying the ant-density,
the ant-quantity, and the ant-cycle model to the BEER127 instance, which
took months of calculation time. We were unable to find a good configuration
for the BEER127 instance. None of the quintuples seemed to be significantly
better than all other quintuples.

However, it is still worthwile to have a closer look at the algorithm and
see how the ants gradually reduce the lengths of their roundtrips. To study
the behavior of the algorithm, we randomly selected the values M/N = 3,
η = 0.7, Q = 100, α = 1, and β = 1 and performed one simulation run each
for the ant-density, ant-quantity, and ant-cycle models. The decrease in the
minimum, mean, and maximum lengths of the roundtrips the ants perform
between the 127 beergardens of Augsburg is shown in Fig. 14.1. In each
time step, all ants performed a complete roundtrip. After they all finished
their roundtrip, the amount of chemical substances on an edge, and thus the
probability that a specific edge would be chosen by an ant, was updated for
the next time step.

We find that there is a strong decrease in the lengths already at the
beginning with the ant-density and for the ant-quantity models, whereas the
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Fig. 14.1. Decrease in the minimum, mean, and maximum lengths of the roundtrips
performed by 3 × 127 ants between the 127 beer gardens of Augsburg, using the
ant-density (top), ant-quantity (middle), and ant-cycle (bottom) models vs. time
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lengths decrease sigmoidally for the ant-cycle model. But for all three models
we find that there is no longer any decrease after 300 time steps: the minimum
length in the ant-density model fluctuates finally around 145,000, in the ant-
quantity model around 130,000, and in the ant-cycle model around 150,000.
These values are much worse than the optimum value of 118,293.52, so that
we cannot recommend the ACO method, at least not in these variants.

14.3 Application of Bird Flock Model

Particle swarm optimization (PSO) is an exciting new methodology in evo-
lutionary computation that is somewhat similar to a genetic algorithm in
that the system is initialized with a population of random solutions. Unlike
other algorithms, however, each potential solution (called a particle) is also
assigned a randomized velocity and then flown through the problem hyper-
space. We apply this PSO algorithm to the TSP as follows. First, we generate
an initial population consisting of a number M of randomly created configu-
rations. Then a random walk (RW) is performed for ten sweeps, in which the
node insertion move (NIM), the exchange (EXC), and the Lin-2-opt (L2O)
are applied to the various individuals. For each individual i, we store the
current configuration σ(i) and its cost function value H(σ(i)) and the best
configuration σbest(i) found by the individual during the RW and its cost
function value H(σbest(i)). Furthermore, we store the overall best configura-
tion σsuper (called the superconfiguration) found during the RW and its cost
function value H(σsuper).

After the RW, we perform several sweeps containing N ×M moves. In
each move, an individual i is randomly selected. Then this individual can act
in three different ways:

• With some probability p, it performs a random move, i. e., one of the three
moves NIM, EXC, and L2O is chosen at random, and the move is then
applied as in the RW.

• But with some probability q, individual i tries to do something similar to
the best configuration σbest(i) it has found so far. Again one of the three
moves NIM, EXC, and L2O is selected at random:
– If the NIM is selected, one edge of this configuration σbest(i) is chosen at

random. If this edge is also part of the current configuration σ(i), then
another edge is chosen at random. Then one searches for the two nodes
a and b that are connected via an edge in σbest(i) in the configuration
σ(i). Then the NIM is applied in such a way that b is inserted directly
behind a. Thus, edge (a, b) becomes part of the current configuration
σ(i).

– If EXC is selected, again one edge (a, b) of σbest(i) is chosen at random.
If this edge is also part of σ(i), then another edge is chosen at random.
Let c be the node that succeeds node a in σ(i). Then c and b are replaced
by the EXC, such that edge (a, b) becomes part of σ(i).
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– If the L2O is selected, again one edge (a, b) of σbest(i) is chosen at ran-
dom. Again one chooses another randomly chosen edge if this edge is
also part of σ(i). Let us consider here only the case in which node a
is approached by the traveling salesman before node b is approached in
σ(i). Again let c be the node succeeding node a in σ(i). Then a L2O is
performed that turns around the partial sequence containing all nodes
from node c to node b, thus introducing edge (a, b) in σ(i).

These three cases are simply three different ways to insert edge (a, b), which
is part of the best configuration σbest(i), into the current configuration σ(i).

• With the remaining probability 1 − p − q, the individual i tries to do
something similar to the overall best configuration σsuper found so far. An
edge (a, b) of this configuration is chosen at random, which is not part of
σ(i). Like above, this edge is then inserted with either the NIM or the EXC
or the L2O.
Thus, the same approach as just described is used, but with the overall best
configuration σsuper instead of the best configuration σbest(i) individual i
has found itself.

After each such move, it is checked whether σbest(i) and σsuper must be
updated.

At the end of the optimization run, the best solution found σsuper and its
cost function value H(σsuper) are returned.

14.4 Computational Results

This algorithm contains three basic parameters, namely, the ratio M/N be-
tween the number M of individuals and the number N of nodes, the proba-
bility p with which a random movement is performed, and the probability q
with which the individual introduces an edge of its best-so-far configuration.
We applied this algorithm to the BEER127 TSP instance.

We varied p and q independently in the range between 0 and 1 in steps
of 0.01, of course considering the fact that p + q ≤ 1. We used M/N = 1,
3, 10, and 30. The RW consisted of ten sweeps for each individual. Then
we performed 3000N2 moves. At the end of the optimization run, the cost
function value of σsuper was returned.

Figure 14.2 shows the results for this super configuration averaged over
100 optimization runs, for various values of p and q and for M = N . We
see at first glance that we obviously achieve the best results for very small
p, i. e., if the individuals do not make random moves. Furthermore, it seems
that q should also be chosen rather small. Therefore, it is obviously optimal
if the individuals consider the best performance of the best individual, which
is precisely the philosophy behind this algorithm.

Figure 14.3 shows the results again, but now only for small values of p and
q and for various values of M/N . To emphasize the differences, the graphic
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Fig. 14.2. Best results found for the BEER127 TSP instance for various values of
p and q and for M/N = 1: the results are averaged over 100 optimization runs
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Fig. 14.3. Best results found for the BEER127 TSP instance for small values of p
and q and for various values of M/N : the results are averaged over 100 optimization
runs

shows the mean relative deviation of the super configuration instead of the
cost function value itself. We find that p = 0 is optimal and that q should
be chosen in the range 0 ≤ q ≤ 0.03. One should also set M = N . We
obtained the best result for M/N = 1, p = 0, and q = 0.01, namely, a value
of 119441.664. This is rather close to the optimum value of the BEER127
TSP instance.

Summarizing, the PSO algorithm, which is motivated by biological sys-
tems like flocks of birds, provides an interesting approach to optimization,
leading to quite good results.
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15.1 Application of Simulated Trading to the TSP

Simulated trading (ST) was originally developed for the vehicle routing prob-
lem (VRP), which is an extension of the traveling salesman problem (TSP),
as already mentioned in Chap. 2. In their original publication [13], Bachem
et al. considered each truck driver as an agent who buys and sells goods to
his customers.

In contrast, there is only one traveling salesman in a TSP. However, the
ST algorithm can also be applied to the TSP by splitting the roundtrip
such that several agents 1, . . . ,M each get a partial sequence σ(ki), σ(ki +1),
. . . , σ(ki+Ni−1), containing Ni nodes, of the whole tour. Of course, all these
sequences put together must result in the closed roundtrip of the traveling
salesman, i. e.,

∑M
i=1Ni = N .

Now, the ST algorithm requires that there be items to be bought or sold
and that there be agents willing to give a buy or a sell order. In this section,
we want to stick closely to the original approach as described in [13]. The
individual items in this case are the nodes of the tour, which are sold and
bought by agents, thus removing or adding one node from or to their partial
sequences.

The outline of such a “trading move” is as follows:

• First, it is determined whether an agent wants to buy or to sell something.
For simplicity, only the case where each agent buys or sells one node will be
considered. Thus, optimally there will be as many buying as selling agents.

• Then each selling agent i must submit a sell order:
– He/She calculates for each of the nodes σ(ki + 1), . . . , σ(ki +Ni − 2) the

savings S(j, i) that would occur if the jth node in the tour was removed,
i. e.,

S(j, i) = Δ−j , (15.1)

with

Δ−j = D(σ(j−1), σ(j))+D(σ(j), σ(j+1))−D(σ(j−1), σ(j+1)) . (15.2)

Note that we do not consider the first and last nodes of such a partial
sequence as they are connected with the outer nodes of the partial se-
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quences of the neighboring agents and as the agents are considered to
act independently of each other.

– Now the question of the behavior or manners of each agent arises. If
they are rather greedy, they would want to offer that node σ(j) for
which S(j, i) is maximal. However, as was already mentioned in [13], it
is advantageous to work with a nongreedy behavior. Therefore, proba-
bilities p(j) are assigned to the nodes σ(j)

p(j) =
S(j, i)

ki+Ni−2∑

l=ki+1

S(l, i)

(15.3)

for all nodes σ(j) with ki +1 ≤ j ≤ ki +Ni−2. Note that the probability
of a particular j is large if the corresponding savings S(j, i) is large
compared to the other savings values.

– Then a uniformly distributed random number r is chosen by which a par-
ticular j̃ is determined according to the probabilities p(j). Thus, agent i
offers the node σ(j̃), for which he/she gets the savings S(j̃, i), for sale.
Let us introduce the abbreviation S(σ(j̃)) := S(j̃, i) here, thus assigning
the savings value to node σ(j̃).

• All selling agents send their sell orders with the associated savings values
to the central stock market, which summarizes them in a public selling list.
This selling list, containing Z offers, is sent to all buying agents.

• Each buying agent must then go through each individual offer:
– For each offered node z, an agent i has to find out where to best insert
z into his/her partial sequence. So here a greedy approach is used. Let
C(z, i) denote the minimum costs for inserting node z into the partial
sequence of agent i:

C(z, i) = min
j=ki,...,ki+Ni−1

{
Δ+

z,j

}
, (15.4)

with

Δ+
z,j = D(σ(j), z) +D(z, σ(j + 1)) −D(σ(j), σ(j + 1)) . (15.5)

– Then agent i must determine which node z̃ he/she actually wants to buy.
If only the costs for insertion are considered, then nearly every agent
would refuse to buy, as the costs for insertion are nonnegative and only
zero if node z lies on a straight line between σ(j) and σ(j+1). Therefore,
the gain for removing a node in the old sequence and inserting it into
the new one, i. e.,

G(z, i) = S(z) − C(z, i) , (15.6)

must be considered. If this gain is positive, then the shifting of the node
to the new agent decreases the tour length. Now agent i determines the
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minimum gain mi,

mi = min
z∈ selling list

G(z, i) . (15.7)

If mi < 0, then there is at least one offer with negative gain. Of course,
the single agent i would not want to accept such an offer. Whats more,
if all gains are negative, he would not want to buy anything at all. On
the other hand, it might be advantageous for the system as a whole if
he accepted an offer with negative gain so that the overall system would
not get stuck in local minima. Therefore, the algorithm distinguishes
between the cases mi < 0 and mi ≥ 0:
• If mi ≥ 0, then all of the gains of an agent are nonnegative, so that

he can be happy with any offer. Analogously to the behavior of the
selling agents, the buying agent i calculates the probabilities

p(z, i) =
G(z, i) −mi

Z∑

x=1

(G(x, i) −mi)

(15.8)

for the various offers z. However, checking this formula closely, one
finds that the least attractive offer has a probability of 0. To overcome
this problem, the value mi is slightly decreased, e. g., set to 0.97 ×
mi, before the probabilities are calculated. Then a random number is
calculated by which an offer z̃ that agent i would accept is determined.
Thus, agent i tells the stock market that he wants to submit a buy
order for node z̃ with a gain G(z̃, i).

• Otherwise, in the case mi < 0, a trick is used: agent i adds the virtual
(Z+1)th offer ẑ with the supposed gain G(ẑ, i) = 0 to the list of offers.
Analogously to the case above,mi is decreased by 3% by multiplying it
by 1.03, such that the least attractive offer also has some probability
of being chosen. The probabilities p(z1, i), p(z2, i), . . ., p(zZ , i), and
p(ẑ, i) for the individual offers are calculated as follows:

p(z, i) =
G(z, i) −mi

Z+1∑

x=1

(G(x, i) −mi)

. (15.9)

By means of a uniformly distributed random number, a particular
offer z̃ is chosen from the list of offers. If z̃ �= ẑ, then agent i tells the
stock market that he/she wants to buy node z̃ with the determined
gain G(z̃) = G(z̃, i). If, however, z̃ = ẑ, then he/she tells the stock
market that he/she does not want to buy anything.

• The stock market collects all these buy orders from the buying agents in
a list. Comparing this list with the selling list, there are three possibilities
for each node on the selling list:
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– There might be no buy order for a node on the selling list. Then the
agent who made this sell order cannot sell his/her node. Therefore, this
sell order is removed from the selling list.

– There is exactly one buy order for a node on the selling list. In this
case, the stock market creates a link between the buy order and the
corresponding sell order. The link is weighted with the gain that would be
received for shifting the node from the selling agent to the buying agent.

– There might be more than one buy order for a node on the selling list.
In this case, the stock market goes through all of these buy orders, de-
termines that buy order with the maximum gain, and creates a link
between this buy order and the corresponding sell order. This link is
weighted with the gain.

• Finally, the stock market sums up the gains over all existing links. If the
sum over all gains is nonnegative, then the trading move is accepted, i. e.,
for all existing links between a sell order from a selling agent and a buy
order from a buying agent, the node is shifted from the selling to the buying
agent. Note that some of the partial gains might be negative, producing
local deteriorations. However, if the sum of all gains is positive, this trading
move leads to an overall improvement.

If the trading move is always performed in this way, then it always exhibits in
some sense the same size, as each selling agent gives a sell order. In order to
add even more randomness and to improve the results, the authors introduced
a probability q with which a selling agent actually places a sell order [13].

This trading move is the key ingredient of the ST algorithm. Thus, the
outline of the ST algorithm is as follows:

• Read the data, determine the distance matrix, and initialize the system
with a random tour.

• Do several times:
– Split the tour into an even number of partial sequences. These sequences

should be roughly the same length. Each of these sequences must contain
at least two nodes. Furthermore, do this splitting in such a way that
a tour position is selected randomly that is the starting position of the
partial sequence of the first agent.

– Do several times:
• Determine which agents want to buy and which ones want to sell. The

number of buying and selling agents should be roughly the same.
• The individual selling agents determine by means of a random number

whether they actually want to sell. This random number must be
smaller than the probability q mentioned above. If it is, then the agents
check whether there are at least three nodes in their partial sequences
of the tour and determine the node they want to sell together with
the savings for removing this node from the partial sequence.

• The stock market collects all sell orders from the selling agents and
summarizes them in a public selling list.
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• If the selling list contains at least one item, then it is sent to the buying
agents.

• The buying agents go through all offers and determine for each offered
node where to best insert it into their partial sequences. Then they
choose one of the offers randomly as described above and send a buy
order for this offer together with its gain to the central stock market.

• The stock market goes through all buy orders and creates links be-
tween the sell orders and those buy orders that provide the maximum
gain for the corresponding sell orders. The links are weighted with the
determined gains.

• If the sum over all these gains is nonnegative, then this trading-move
is accepted, i. e., for each link between a selling or a buying agent, the
offered node is removed from the partial sequence of the selling agent
and inserted at the best possible position into the partial sequence
of the buying agent. Otherwise, if the move is not accepted, nothing
happens.

– After several such trading moves, the partial sequences are merged to
one closed tour such that it can next be split into other parts.

• Print out the final result.

15.2 Computational Results

We performed several simulations with the algorithm sketched above. We
set the number of buying agents equal to the number Ms of selling agents
such that Ms is given by M/2, with M being the overall number of agents.
We give each agent roughly the same number of nodes when splitting the
tour into several partial sequences, namely, [N/M ] or [N/M ] + 1, with [x]
being the integer part of x, such that the sequences merged together result
in a feasible configuration containing each node once. Furthermore, we add
the first node of each partial sequence to the end of the previous sequence
such that there are no connections of the tour that must not be cut. Thus,∑M

i=1Ni = N +M .
For us, the two main variables of interest are the number Ms = M/2 of

selling agents and the probability q with which a selling agent actually wants
to sell something. Figure 15.1 shows the mean results (with error bars) for
three TSP instances achieved with the ST heuristic. In each simulation, 10000
sweeps were performed, which is according to our empirical tests enough to
“freeze” the system within this heuristic. In each sweep, first the tour was split
among the agents, giving the individual agents partial sequences as described
above. ThenN trading moves were tried. At the end of each sweep, the partial
sequences were merged together to form a closed roundtrip through all nodes
again. Note that the results shown generally in this chapter, and thus also in
Fig. 15.1, are averaged over only 50 optimization runs each.
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Fig. 15.1. Quality of the results achieved with the ST heuristic for three TSP
instances [BEER127 (top), LIN318 (middle), and PCB442 (bottom)] depending on
the propability q and on the number Ms of selling agents (left: results for Ms ≤ 10,
right: results for Ms ≥ 10)

We find that the results must be differentiated between a small number of
agents and a large number of agents. This splitting can be done at Ms = 10
for all three instances: for Ms < 10, the results improve with increasing Ms

and increasing q. For all three instances, the curve for Ms = 10 starts to rise
again at q → 1. This effect becomes dramatic for Ms > 10: with increasing
q, the results become worse. The more agents are used, the worse the results
become. Obviously, this is the reason for introducing the parameter q into
the algorithm, namely, to obtain much better results for larger numbers of
agents. It seems that there is an optimum number of agents taking part in
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such a trading move: if the number of agents is too small, then the number
of sell offers is small, so that there is no real stock market. The trading move
simply performs one or a few node insertion moves (NIMs) at the same time.
Thus, the trading move is identical to either the NIM or to some special
cases of the Lin-n-opts with small n. These moves are accepted if they either
improve the configuration or do not worsen it too much. If the number of
sell offers is large, the trading move, which creates a large amount of links
between sell and buy offers and thus changes the system overall in many ways,
is no longer a move of the local search type. As already discussed in Chap. 5,
the more cuts are introduced in a Lin-n-opt, the less probable the move will
lead to an improvement if the current configuration is already rather good.
This finding for the Lin-n-Opts that n ≤ 3 is optimal is found here again
for the trading move that leads to the best results if the number of selling
agents taking part in the trading move is roughly 7 or 8. The shift in the
optimum number of cuts is given by the various acceptance rules, which are
rather elaborate for the trading move.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 5 10 15 20

q o
pt

Ms

BEER127
LIN318

PCB442

Fig. 15.2. Optimum probability leading to the best results as a function of Ms,
the number of selling nodes, for three TSP instances

Figure 15.2 shows the optimum value qopt found for the probability q for
various numbers of selling agents. Please note that the results at small Ms are
not significant as there the error bars overlap with each other. But basically
we again obtain the picture that an introduction of the probability q with
values q ≤ 0.4 is necessary for a large number of agents in order to decrease
the number of agents taking part in a trading move and thus to increase the
probability that the trading move will lead to a good result.
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15.3 Discussion of Simulated Trading

The ST heuristic is at first glance a very elaborate technique for getting solu-
tions to combinatorial optimization problems. The approach of ST seems to
be well balanced between a strict set of rules and some kind of randomness,
which is necessary to arrive at quite good results with a stochastic optimiza-
tion algorithm.

However, as the results in the last section show, this heuristic is not well
suited for the TSP. (Thus, we did not consider even applying it to larger
instances.) In fact, the results are at least more than 10% worse than the
optimum value. Of course, we must admit that this algorithm was originally
not developed for the TSP and that the artificial splitting of the tour into
partial sequences leads to a localization of the problem. A complex problem
like the TSP, however, is defined by long-range interactions of its individual
parts. One must look at the complete problem in a global way. Thus, ST
can surely not compete with global optimization algorithms like simulated
annealing for the TSP. It may be better suited for VRP and depot localization
problems, for which it was designed and for which such a splitting into the
subsets of customers served by one truck or by one depot even makes sense.

But if the ST approach wants to make use of the local search concept,
then the number of agents taking part in a trading move must not be too
large. For a small number of them, the trading move is obviously applied
in a greedylike way, i. e., it mostly leads to improvements, until no further
improvements can be found due to the limitations in the conception of the
trading move. With an increasing number of orders, good moves can be found
even more seldom.

15.4 Simulated Trading and Working

According to Benedict of Nursia’s Ora et labora, a man should pray and
work. At least getting agents to work is easy. In the original ST approach,
the agents only trade but do not work, e. g., to improve their parts of the
tour. Thus, we extend this original approach now, so that after each trading
move all agents whose tours contain at least Ni = 4 nodes perform Ni moves
in the greedy mode. The moves are chosen randomly to be either an exchange
or a node insertion move or a Lin-2-opt with equal probability. Larger moves
were not used in our experiments as the partial sequences are rather short
for a larger number of agents.

Figure 15.3 shows the results achieved with this simulated trading and
working (STW) approach. We find that the results for a small number of
agents improve to a large extent: the best results are achieved for Ms = 1,
followed by Ms = 2 and Ms = 4. Here the number of agents is minimal,
meaning their partial sequences are rather long. Furthermore, we find that
the results for Ms = 1 and Ms = 2 are rather independent of q, in contrast
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Fig. 15.3. Quality of the results achieved with the STW heuristic for three TSP
instances [BEER127 (top), LIN318 (middle), and PCB442 (bottom)] depending on
the propability q and on the number Ms of selling agents (left: results for Ms ≤ 10,
right: results for Ms ≥ 10)

to the results for larger Ms. As for these small Ms, the largest improvements
were found in comparison with the pure ST approach. We conclude that
these improvements are mainly due to the small moves performed in the
greedy mode. Of course, here the greedy algorithm must be most successful
as the partial sequences are rather long for small Ms. For Ms ≥ 10, we
again find that the results become worse with increasing probability q. Thus,
we have the same dependency on q and Ms here as before for large Ms.
However, the results are worse than those for the original ST approach for
large Ms and large q, although the greedy moves should be able to optimize
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short partial sequences very well. But obviously the trading moves not only
destroy the local order generated by the greedy moves but are even less able
than before to lead to reasonable configurations. This is due to the fact that
with preoptimized partial sequences, the gain for removing a node is mostly
much smaller than the costs for inserting it into another partial sequence.
Thus, a good trading move can hardly be found anymore. One could even
say that the local greedy moves work against the trading moves.

Summarizing, we get in this STW approach better results for small Ms,
where we basically benefit from the greedy algorithm when it is applied with
the small moves but worse results for large Ms than for the original ST
approach. In all cases, however, the quality of the results is not satisfactory.
Thus, we recommend that the agents start to pray.



16 Tabu Search Applied to TSP

The very general tabu search paradigm allows for a very wide variety of ex-
plicit implementations of tabu search to optimization problems. Within the
covers of this book, we surely cannot present implementations and computa-
tional results for all tabu search algorithms we might be able to think of.

In searching for popular implementations of tabu search to the travel-
ing salesman problem (TSP) a few years ago, we repeatedly encountered the
remark that the well-known Lin–Kernighan heuristic for the TSP [130] exhib-
ited all features of tabu search such that it could be said to be the standard
tabu search application to the TSP. In the meantime, however, several ap-
plications following the guidelines of tabu search have been published, e. g.,
by Misevičius [141], who presented results both for a basic and an advanced
tabu search implementation.

However, we are not aware of a tabu search implementation to the TSP
which is now (March 2006) widely considered to be optimal or at least to be
setting a standard. Thus, we decided to create a tabu search implementation
of our own here (partially based on the work in [141]) in four steps, by which
the interested reader will obtain a good understanding of why all ingredients
of tabu search are needed in order to get good solutions.

16.1 Definition of a Tabu List

The basic strategy of tabu search is to search the whole neighborhood of
a configuration for the best move that is not tabu. Thus, the first task when
working with tabu search is to define a tabu list. But in this context, one
must also reconsider the neighborhood of a TSP configuration. In previous
chapters, we applied various moves, like the Lin-2-opt (L2O), the node inser-
tion move (NIM), the exchange (EXC), and the four variants of the Lin-3-opt
(L3O) to the TSP, such that the neighborhood of a configuration was rather
large. To decrease this size as a first step toward decreasing the size of the
tabu list, we restrict ourselves to using the L2O only. Furthermore, to save
calculation time, we will not go through the entire neighborhood of a config-
uration generated by this L2O but randomly select 100N configurations that
can be reached from the current configuration by applying a L2O.
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As already mentioned in Chap. 22 in Part I of this book, the main problem
when working with tabu search is to prevent the tabu list size, i. e., the number
of items declared to be tabu, from exploding. Therefore, we must think of an
efficient way to define a tabu list with the properties that it cannot explode in
size and that it does not take too much computing time to determine whether
a move should be forbidden because the resulting configuration is declared as
tabu. But why should a tentative new configuration be tabu? According to the
philosophy behind tabu search, the answer is: “This configuration contains
properties that were part of many former configurations; but as one intends
to investigate other configurations as well without these properties, these
properties, and therefore also other configurations containing them, have been
declared tabu.” In the case of the TSP, such properties are the edges used in
the configurations. Thus, we introduce an edge matrix η between pairs (i, j)
of nodes with

η(i, j) =
{

0 if the edge between node i and node j is tabu ,
1 otherwise .

(16.1)

At the beginning, we set all η(i, j) = 1 and create a random configuration.
Then the best L2O must be found among 100N randomly selected possibili-
ties for the L2O. Let k and l be the tour position numbers of the nodes after
which the tour is cut by the best possible L2O, and let k+ and l+ be the
position numbers succeeding k and l, respectively. The L2O replaces then
the edges from tour position k to k+ and from l to l+ by the edges from k to
l and from k+ to l+. The simplest approach would now be to store the old
configuration in a tabu list. This approach, however, would lead to a linear
increase of the tabu list in time, slowing down the velocity of the tabu search
algorithm, because more and more configurations would have to be checked
for being tabu.

But we can now make use of the edge matrix and set η(k, l) = 0, η(l, k) =
0, η(k+, l+) = 0, and η(l+, k+) = 0. A new tabu-search-L2O that again
selects the tour position numbers k and l would try to return to the old
configuration. But all moves must check whether both of the two edges they
intend to introduce are tabu. In this way, the inverse L2O leading back to
the previous configuration is forbidden.

Please note that by using the L2O only instead of all seven small move
variants, we can keep the tabu list small, as otherwise one would also have
to store the corresponding move that had been applied to get to the current
configuration in the tabu list.

Furthermore note that the definition of a move within this tabu search
context is very different from that in, e. g., the simulated annealing (SA) con-
text: within tabu search, a tabu-L2O move consists of first randomly selecting
100N applications of the L2O move, by which two edges are removed and
two new edges are added to the system, then evaluating them for which of
these variants is the best among those that are not tabu, and finally perform-
ing this variant. In contrast, a SA-L2O checks only for one randomly chosen
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variant and decides whether to accept or reject it according to the Metropolis
criterion. Thus, it makes no sense to compare tabu search and SA in times
given by the numbers of applied moves.

A tabu search move is always accepted. At the beginning, the tabu search
approach will usually lead downhill, as each tabu search move intends to
perform the maximum improvement found if that one is not tabu. But then,
when the system has, e. g., reached a local minimum in the energy landscape,
it will search for that configuration in the neighborhood that is not tabu and
that leads to the smallest deterioration possible. Thus, a tabu search does
not get stuck in local minima. But one must store the best-so-far solution
and return this solution as the output of the tabu search algorithm, as the
tabu search algorithm might never return to this configuration and might
then work on configurations that are significantly worse than this best-so-far
solution.
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Fig. 16.1. Development of the deviation δ and of the best-so-far deviation
δbest−so−far vs. time t for the tabu search application as described in Sect. 16.1
for the PCB442 TSP instance

Figure 16.1 shows the development of the energy of this best-so-far so-
lution and of the energy itself with time when applying tabu search moves
to the PCB442 TSP instance after starting out with a randomly generated
configuration. The time is measured in tabu search moves. In order to mag-
nify small effects, we again show the relative deviation from the optimum
δ = (H − Hopt)/Hopt instead of the energies themselves. We find that the
deviations decrease first together. But then the best-so-far deviation starts to
freeze and can only seldom be improved by the system. Finally, the deviation
δ increases again and freezes at some value.
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This last behavior can be easily explained: more and more edges are de-
clared tabu. Thus, the system must introduce longer and longer edges as
many of the shortest edges are already tabu. Finally, the system can no
longer perform any move at all as all moves are declared tabu.

Thus, in our first rather simple tabu search implementation the system
worsens and finally freezes because all edges are memorized as being tabu.
Nevertheless, the average results for this approach (Table 16.1) are quite
promising for such a simple approach but of course not very good. (Note
that all results in this table were achieved after a maximum of 100N tabu
search moves.) Therefore, we carry on with a first improvement of the tabu
search algorithm in order to overcome the problem that the system must
introduce long edges as all the short ones are declared tabu.

Table 16.1. Quality of the solutions (averaged over 100 optimization runs each)
created by our increasingly enhanced variants of tabu search (as described in
Sects. 16.1–16.4) for the PCB442 TSP instance

Section Minimum Maximum Mean value ± error

16.1 51,855.922 54,667.465 53,338.336 ± 49.9
16.2 51,798.410 53,790.672 52,602.840 ± 36.0
16.3 51,222.250 53,218.211 52,069.723 ± 38.5
16.4 51,245.555 52,954.289 51,967.270 ± 38.8

16.2 Introduction of Short-Term Memory

So far, we have used a so-called long-term memory, i. e., if some property got
the tabu seal, then it was tabu forever. But as we saw, this approach is only
successful for a rather limited time, after which it leads to deteriorations.
Therefore, the system would be better off forgetting after some time that
some property has been declared tabu. This approach is usually called short-
term memory. Of course, we now have an additional tuning parameter τ for
the tabu search algorithm that marks the number of time steps after which
a property that has been declared tabu at some time t is no longer tabu. In
our implementation, we simply set τ = 10N , without much testing.

Figure 16.2 shows how the results for the deviation and the best-so-far
deviation change when using a short-term memory. The system no longer
freezes but is able to arrive at better and better solutions. The comparison
of the results in Table 16.1 yields that a short-term memory is superior to
a long-term memory, at least for the problem we study here. Now we want
to improve our results even further by adding further ingredients of the tabu
search algorithm.
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Fig. 16.2. Development of the deviation δ and of the best-so-far deviation
δbest−so−far vs. time t for the tabu search application as described in Sect. 16.2
for the PCB442 TSP instance

16.3 Adding some Aspiration

One of the key ingredients in tabu search is the aspiration criterion. This
criterion defines whether a tabu seal may be overlooked such that a property
that is marked as tabu can become a part of the new configuration. A widely
used aspiration criterion is the test of whether the introduction of properties
that are tabu would lead to a configuration that is better than all other
configurations visited so far. We added this type of an aspiration criterion to
our program and got the results shown in Fig. 16.3 and Table 16.1. We find
that the introduction of this aspiration criterion leads indeed to a further
improvement in the results. However, we find that δbest-so-far stays constant
for rather long times, such that we want to add further ingredients of tabu
search in order to get an improvement here, too.

16.4 Adding Intensification and Diversification

Two key ingredients of tabu search are still missing in our approach: in-
tensification and diversification. The concept of intensification requires that
the system be somehow forced to reinvestigate the neighborhood of a very
good configuration that had already been visited by the system before. This
method is mostly applied when the optimization run has not found a new
best-so-far solution for several sweeps. Then the system is either forced to
perform a series of moves leading the system back into the neighborhood of



446 16 Tabu Search Applied to TSP

 0.01

 0.1

 1

 10

 100

 1  10  100  1000  10000  100000

t

δbest-so-far
δ

Fig. 16.3. Development of the deviation δ and of the best-so-far deviation
δbest−so−far vs. time t for the tabu search application as described in Sect. 16.3
for the PCB442 TSP instance
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Fig. 16.4. Development of the deviation δ and of the best-so-far deviation
δbest−so−far vs. time t for the tabu search application as described in Sect. 16.4
for the PCB442 TSP instance

one of the best solutions or to jump immediately to one of these solutions.
This intensification approach is often combined with a diversification strat-
egy, according to which the system does not jump to, e. g., the desired, stored
good configuration but to, e. g., a configuration that is rather similar to this
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good configuration. Usually, this configuration was created by making some
changes in the stored configuration.

In our simple approach, we check after each sweep whether a new best-
so-far solution was found in this sweep. If not, then the system jumps to
a configuration created by the application of a Ruin & Recreate move to the
best-so-far solution. Here we use the random ruin strategy, which removes
10% of the nodes from the system. The nodes to be removed are chosen at
random. They are then reinserted by the bestinsertion heuristic.

Figure 16.4 shows that the quality of the best solution increases gradually
with time and that the system is not at all frozen after 100 sweeps. But
taking the results after this time, as in the other three variants, we find that
we obtain here the best results on average, as can be seen in Table 16.1.

Of course, the results can be further improved by spending more calcu-
lation time here, by using better memory, aspiration, intensification, and di-
versification strategies, and by tuning the various parameters of tabu search.
As with genetic algorithms, an entire book the size of this one could be filled
with elaborate strategies for tabu search, but we end here.



17 Application of History Algorithms to TSP

In this chapter, we study the application of some exemplary algorithms to
the traveling salesman problem (TSP) in which the information about all or
many previously visited configurations influences the choice of whether a new
move is accepted or rejected. These algorithms are either physically moti-
vated like the multicanonical algorithm (MUCA), multicanonical annealing
(MUCANN), and the simulated annealing (SA) variant acceptance simulated
annealing (ASA) or motivated by the desire to change the energy landscape,
as is the case for guided local search (GLS). All of these algorithms mem-
orize in some way previous energies, properties, former configurations, or
moves performed. As a result of such memorization, one might want to count
these algorithms as variants of tabu search, although they do not exhibit all
typical properties of a tabu search implementation such as working both with
intensification and diversification strategies.

17.1 The Multicanonical Algorithm

There are various ways of applying the MUCA. We want to study here prob-
ably the simplest application by working directly with a histogram n(H) and
applying the transition probability

p(σ → τ) =

⎧
⎪⎨

⎪⎩

1 if n(H(σ)) ≥ n(H(τ)) ,

n(H(σ))
n(H(τ))

otherwise
(17.1)

to the move σ → τ . We initialize all histogram bins with 1 at the very
beginning. If a move σ → τ is accepted, then n(H(τ)) is incremented by 1;
if it is rejected, then n(H(σ)) is incremented by 1. In order not to get some
overflows, we check after each 106 sweeps whether at least one histogram entry
has become larger than 109. If so, then all histogram entries are halved, i. e.,
n→ n/2 + 1.

We start each simulation with a random configuration. At the beginning,
the system will therefore be in the range of the completely unordered and
high-energy configurations. By increasing the histogram entries for these en-
ergy values, some pressure is put on the system to leave this energy range
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and to move to configurations with either smaller or larger energy values
until finally the probability for the system to be at a configuration σ with
some energy value H(σ) is the same for all energy values. Of course, this
pressure depends strongly on the width ΔH of the histogram bins: if the
histogram bins are very narrow, then it will take a long time before each of
the bins within some wider energy interval is incremented often enough to
induce a general pressure to leave this wider energy interval. If the bins are
too wide, then some random walks (RWs) might be performed within the
energy intervals of the bins, until finally some move leads to a configuration
in the energy interval of a new bin. Thus, we may expect that there is an
optimum intermediate energy width ΔH of a bin.
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Fig. 17.1. Development of the energy (left) and the minimum energy found (right)
in one simulation run applying MUCA to the PCB442 instance vs. time measured
in number of sweeps with a bin width of ΔH = 1. The energy values (left) were
always recorded after 106 sweeps; the minimum energy was recorded continuously.
The energy fluctuates in the range of the energies of random configurations, and
the minimum energy found decreases very slowly over time

We applied this algorithm to the PCB442 instance and monitored both
the best energy found and the current energy of the system. We found that
the best energy found decreased very slowly over time. The simulation run
for the results shown in Fig. 17.1 took a few days. Here we used a narrow bin
width of ΔH = 1. One might wonder whether a wider bin width would lead
to a significant speedup of this algorithm, leading to much better solutions
in shorter times.

As these simulation runs take such a long time, we only performed ten
simulation runs for each of the bin widths ΔH = 1, 10, 102, 103, and 104.
Furthermore, we stopped these runs after an overall number of 109 sweeps
each. We clearly find in Fig. 17.2 a dependency of the best result achieved on
the bin width ΔH. Furthermore, the minimum energy value found decreases
linearly if plotted vs. a logarithmic time scale, but only for the time scales
shown here, which seem to be rather short for the algorithm, as the results
obtained are not very good but are more typical of random configurations.
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Fig. 17.2. Development of the minimum energy found in time (measured in sweeps)
for 10 simulation runs applying MUCA to the PCB442 instance with various bin
widths ΔH = 1, 10, 102, 103, or 104. Left: averages over minimum energies; right:
minima of minima. The best results are achieved for the intermediate value ΔH =
103. Note that the optimum value for this TSP instance is ≈ 51× 103 and that the
energy range of its random configurations lies around 773 × 103

We believe that this decrease will not stay linear but will slow down even
further, as the number of states grows exponentially with increasing energy
for small energy values, such that it is quite unlikely to choose a move leading
to a better configuration if already being at a quite good configuration. But,
assuming that the decrease will stay linear on a logarithmic time scale, we
need roughly 1076 sweeps on average in order to reach the optimum using
a bin width ΔH = 103 such that it is useless to search for the optimum with
this implementation of MUCA.

We find that increasing ΔH from 1 to 103 yields improved minimum
results. Obviously, a widening of the histrogram bins leads to an increased
pressure on the system to leave the area of the random configurations. This
can be easily explained as many more bins must be filled up in order to
generate a hill in the histogram from which the system can roll downwards,
if more but narrower bins are used. However, we get the best results for
ΔH = 103; the results are already worse for ΔH = 104. As mentioned before,
this worsening is due to the fact that many moves lead to a tentative new
configuration that lies in the same energy bin as the current configuration if
using such wide energy intervals such that the system performs a RW within
this energy bin.

Summarizing, the MUCA is not suitable for application to the TSP in
this version. Generally, when working with the MUCA, the histogram or
the microcanonical inverse temperature β(H) and the fugacity α(H) must
be determined. For our purposes here we assumed that they are not known
a priori, so that we had to sum up the histogram during the optimization
run. Usually, for new optimization problems occurring in real life, one must
choose the approach introduced here if one wants to work with the MUCA.
Sometimes other algorithms like parallel tempering in REMUCA are used to
determine α(H) and β(H) with these before starting the MUCA run. Often
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some windowing methods are also used that determine α(H) and β(H) for
several “windows” of energy intervals and then merge the results at the inter-
val boundaries. There exist also some applications that try to guess overall
functions α(H) and β(H) from the knowledge achieved so far in the MUCA
simulation by summing up the histogram values and iterate this guessing
procedure several times. The windowing and the iterative methods require
much calculation time before the functions are derived, so they are often un-
suitable for optimization purposes. If, however, the functions α(H) and β(H),
or at least good guesses for these functions, are known beforehand, then one
might be able to perform optimization runs based on this knowledge with
a reasonable amount of calculation time.

17.2 Multicanonical Annealing

Multicanonical annealing (MUCANN) is a combination of the MUCA and
the great deluge algorithm (GDA). Basically, the same acceptance criterion
as in the MUCA is used, except that, if the energy of the tentative new con-
figuration is larger than a certain value T , then the move is always rejected.
Thus, we have an acceptance criterion as follows:

p(σ → τ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 if n(H(σ)) ≥ n(H(τ)) and H(τ) ≤ T ,

n(H(σ))
n(H(τ))

if n(H(σ)) < n(H(τ)) and H(τ) ≤ T ,

0 if H(τ) > T .

(17.2)

One can consider the GDA to be a special case of MUCANN with only one
bin in the histogram covering the whole energy range between the best and
the worst configuration. We will thus use “ΔH = ∞” here as a synonym for
the GDA.

We use the same approach for multicanonical annealing as we used for the
MUCA earlier, but we additionally add this water level T : the initial value
of T is set to the energy of the initial random configuration. After every 106

sweeps, T is lowered by a factor of 0.99. If the new value of T is smaller than
the energy of the current configuration, then T is increased to this energy
value. Thus, we use the same approach for decreasing T as we use in the GDA.
As already mentioned in Sect. 12.4 in Part I and Sect. 9.3 in Part II for the
GDA, using this cooling method the water level T is decreased very slowly.

Just as with the MUCA, we start out our investigation of multicanonical
annealing with the development of the current energy and of the minimum
energy found in a simulation run. Figure 17.3 shows a behavior of these two
values that is very different from the behavior of these observables when work-
ing with the original MUCA: here we find a nice decrease in these observables
over time. Finally, they freeze at some very good values; the minimum energy
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Fig. 17.3. Development of the energy (left) and the minimum energy found (right)
in one simulation run applying MUCANN to the PCB442 instance vs. time mea-
sured in number of sweeps with a bin width of ΔH = 1. The energy values (left)
were recorded always after 106 sweeps; the minimum energy was recorded continu-
ously. Both the current energy and the minimum energy decrease and finally freeze
at some very low energy values

found in this simulation run is 50,839.132 and the final value of the energy is
50,845.4896. Thus, it makes sense also to save the minimum energy found so
far. This is not much of an additional effort as one must work with total ener-
gies anyway when using this algorithm. Despite the fact that this simulation
run ended at a good solution, we must keep in mind that it took 1.16 · 109

sweeps in this run to freeze into a local minimum; such a result could be
easily achieved with SA with less calculation time.
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Fig. 17.4. Development of the minimum energy found in time (measured in sweeps)
for 10 simulation runs applying MUCANN to the PCB442 instance with various
bin widths ΔH = 1, 10, 102, 103, 104, or ∞ (ΔH = ∞ corresponds to the GDA).
Left: averages over minimum energies; right: minima of minima

Next we want to find out whether a faster convergence can be achieved
by using wider energy intervals for the bins in the histogram. The results
for some given calculation times and for various bin widths are shown in
Fig. 17.4. We find again a dependency on the bin width: for relatively short
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calculation times of “only” 106 sweeps, we get the best results with a bin
width of ΔH = 103, followed by the bin width ΔH = 104. But at these short
calculation times, the results are hardly better than those of the MUCA.
Spending 109 sweeps, however, we get the best results for the narrow bin
widths ΔH = 1 and ΔH = 10. The worst results are achieved for ΔH = ∞,
i. e., for the original GDA.
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Fig. 17.5. Minimum energies found (left) and energies of the last configurations,
when the system is already frozen (right), in 10 simulation runs applying MUCANN
or the GDA to the PCB442 instance. For MUCANN, the bin widths ΔH = 1, 10,
102, 103, or 104 were used. ΔH = ∞ corresponds to the GDA

However, after these 109 sweeps, the system is not yet frozen; the system
needs “slightly” more than 109 sweeps to freeze into a local minimum. We
consider the system to be frozen when the water level is identical with the
current energy of the system and when there is no change in the energy in
the following 107 sweeps. Figure 17.5 shows the energies of the last configu-
rations of the simulation runs. We find that the energies of the configurations
in which the simulation runs freeze do not differ strongly from the best en-
ergies found during the optimization runs, and sometimes they are exactly
the same. The GDA leads on average both to the best minimum and to the
best final results, followed by MUCANN with ΔH = 1 and ΔH = 103. How-
ever, only when using a bin width of ΔH ≤ 102 does the system freeze in
at least one of ten simulation runs in an optimum configuration. Some sim-
ulations applying the GDA or MUCANN with larger bin widths were able
to find an optimum configuration, but they froze in slightly worse configura-
tions.

Finally, we consider the number of sweeps the system actually needs in
order to freeze. As Fig. 17.6 shows, this time strongly increases with an
increasing bin width and is maximal for the original GDA, for which it takes
nearly twice as much time as for multicanonical annealing with ΔH = 1.

Summarizing, we recommend using rather narrow bins in the histogram if
applying MUCANN as the results are nearly as good as for the GDA but only
half of the calculation time is needed for convergence. MUCANN can also be
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Fig. 17.6. Freezing time in number of sweeps for ten simulation runs applying
MUCANN or the GDA to the PCB442 instance. For MUCANN, the bin widths
ΔH = 1, 10, 102, 103, or 104 were used. ΔH = ∞ corresponds to the GDA

considered from the point of view of the GDA: in the GDA, the decreasing
water level presses the system down to better and better configurations. Al-
though the system is allowed to perform a restricted RW below the water
level in the GDA, it always likes to stay slightly below the water level. In
MUCANN, an additional pressure is induced to go downwards, as the his-
togram entries of the energies of the configurations slightly below the water
level grow. This is the reason for why we get the shortest freezing times for
the narrowest histogram bins ΔH = 1 and ΔH = 10, as there the pressure is
naturally strongest: hardly any nontrivial move will lead to a configuration
in the same energy interval. Nevertheless, the speedup is only a factor of ≈ 2
by this additional effect such that MUCANN is still unable to compete with
algorithms like SA.

17.3 Acceptance Simulated Annealing

ASA is a SA variant introduced by Puchta [167]. As in SA, a move is ac-
cepted with the Metropolis acceptance probability, which depends both on
the energy difference between the current and the tentative new configuration
and on the control parameter, the temperature T of the system. In contrast
to standard SA, this control parameter is not simply given from outside but
is determined via the last m improvements the system has found: here the
control parameter is the probability p with which a move leading to a worse
configuration shall be accepted. Instead of a cooling schedule for the temper-
ature T , one has here a decreasing schedule for the probability p, i. e., p is
decreased exponentially by a factor of, e. g., 0.99 from an initial value of 1 to
some small final value, e. g., to 10−5. Let the average over the energy differ-
ences of the last m improving moves be ΔH. Then p will be the probability
with which a move will be accepted that leads to a new configuration whose
energy is |ΔH| worse than the energy of the current configuration. For this
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purpose, the temperature T is set to the value

T =
ΔH
ln(p)

. (17.3)

In the implementation of this algorithm, first, a short RW must be per-
formed that must be long enough to memorize the energy differences of m
improving moves. With the average of these energy differences an initial tem-
perature can be calculated. Then, at each value of p, several sweeps are per-
formed. If a move leads to an improvement, then its energy difference is
stored and replaces the energy difference of the oldest move still in the mem-
ory. Thus, the mean value of these stored energy differences changes, leading
to a new value of the temperature T , which is immediately updated. At the
end, some greedy sweeps are performed to guide the system to a local min-
imum if it is not yet frozen. The number of greedy sweeps is identical with
the number of sweeps per p-step. For small m, we use the same amount of
sweeps in the initial RW. If, however, m is so large that the memory cannot
be filled within this time, then 3m moves are performed in the RW.

Thus, ASA determines the temperature in an adaptive way: initially, the
average energy difference of moves in the RW determines the temperature.
With decreasing p, the temperature T decreases, leading the system to a range
of more ordered configurations. The energy differences of improving moves
in this regime might be different from those in the regime of the RW. Of
course, this might not be true for any system, i. e., there might be systems
in which the mean value of these energy differences stays constant. However,
if these energy differences change according to the amount of ordering of the
configurations taking part in the moves, then ASA will react to that: if the
energy differences become absolutely smaller in size, then the temperature
will be lowered additionally according to this effect. If they become absolutely
much larger, then the temperature is increased intermediately despite the
constant or just decreased control parameter p.

First, we want to investigate the behavior of the algorithm. Figure 17.7
shows for the PCB442 instance what temperatures are chosen by ASA with
various values of m at some probability value p if only a small amount
of calculation time is used. In order not to burden the reader with too
many fluctuations, only the final temperature value T at each p is plot-
ted. We find that the behavior of the T (p) curve is different for various m:
for m = 1, one can clearly distinguish three scenarios: at large values of
p, T decreases and fluctuates strongly such that this decrease can be fit-
ted either with ≈ 104p3 or with ≈ 200 exp(4p). At very small p, no more
moves are accepted, such that the average energy difference remains con-
stant. Thus, we get here ≈ −3 × 10−14/ ln(p). Between these large- and
small-p scenarios we get a wide transition in which the curve jumps up
and down. These fluctuations occur due to the fact that here only the en-
ergy difference of the last move that led to an improvement is used. Al-
ready for m = 3, we find that the fluctuations are mostly suppressed. At
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Fig. 17.7. Final temperature T chosen by the ASA run, which was applied to the
PCB442 instance, for each probability value p. The behavior of ASA for a short
calculation time (30 sweeps per probability step) and various numbers m of stored
energy differences can be approximated stepwise with fit functions as described in
the text

m = 3, we can again fit the large-p behavior with the fit function ≈ 104p3.
But here we already find that this is an overall fit for this area, not tak-
ing more detailed structures into account. We can also fit the curve with
≈ 200 exp(4p) for 0.4 ≤ p ≤ 0.85 and ≈ 10 exp(10p) for 0.05 ≤ p ≤ 0.25. For
very small p, when the system is frozen, we get ≈ −1/ ln(p) for 10−4 ≤ p ≤
10−3 and ≈ −5/ ln(p) otherwise. Form = 100, one can still describe the large-
p behavior with the fit function ≈ 104p3. But one would clearly neglect the
more detailed structure visible here, as there are hardly any fluctuations left.
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We get again ≈ 200 exp(4p) for 0.4 ≤ p ≤ 0.85 and additionally ≈ 15 exp(8p)
for 0.1 ≤ p ≤ 0.25. There is a smooth transition between these fitting curves.
For small p, we get ≈ −25/ ln(p), i. e., again the const/ ln(p) behavior. Con-
sidering next m = 103, we get again the curve ≈ 104p3 as a rough estimate for
large p. Again we can fit the curve better stepwise with exponential functions:
we get ≈ 200 exp(4p) for 0.4 ≤ p ≤ 0.75, ≈ 5 exp(14p) for 0.2 ≤ p ≤ 0.35, and
≈ 20 exp(6p). For small p, the curve converges to −60/ ln(p). For m = 104,
we do not see any possibility for a p3 fit anymore. Here we get ≈ 200 exp(4p)
for 0.4 ≤ p ≤ 0.7, ≈ 50 exp(8p) for 0.1 ≤ p ≤ 0.3, and ≈ −150/ ln(p) for
10−5 ≤ p ≤ 3×10−3. Finally, we get for m = 105 the fit curves ≈ 200 exp(4p)
for 0.25 ≤ p ≤ 0.75 and ≈ −400/ ln(p) for 10−5 ≤ p ≤ 3 × 10−3.

Summarizing these results, we can distinguish between the special case
m = 1, in which there occurs a breakdown to very small values of T , and
the case for m ≥ 10, in which we do not see such a breakdown. In all cases,
the initial value of the temperature is much larger than the freezing and
the critical temperature of the PCB442 instance. The breakdown for m = 1
to T (p) ≈ −3 × 10−14/ ln(p) leads to much too small temperatures at the
end, and the system is quenched down in the case m = 1. This small value
of −3 × 10−14 is due to the fact that also trivial moves with an energy
difference of ΔH = 0 can occur. Due to rounding errors (as usual, we calculate
with REAL*8 here), we get instead of ΔH = 0 a slightly negative energy
difference, which leads to this minuscule temperature. On the other hand,
the simulations with large m led to a final temperature, which was much
too large. One must choose a final temperature smaller than 1 when working
with SA on the PCB442 instance. The final 30 sweeps in the greedy mode are
otherwise not sufficient to lead the system to a good local minimum within
the valley of the energy landscape in which the system currently stays.

Now let us consider the corresponding curves for long calculation times,
shown in Fig. 17.8. Here we use again 1145 steps, over which the probability
is reduced from 1 to 10−5 by a factor of 0.99, and an additional greedy step
at the end. Here 30000 sweeps per probability step are performed. For m = 1,
we get the same fit functions as above; we can again fit the data with either
≈ 200 exp(4p) in the range 0.2 ≤ p ≤ 0.9 or, even better, with ≈ 104p3 even
for 0.1 ≤ p ≤ 1. Then we again get a fluctuation regime, which is located here
at 0.05 ≤ p ≤ 0.1. After that the temperature breaks down and can be fitted
with ≈ −3×10−14/ ln(p). Thus, the fit functions stay the same in the case of
m = 1 when increasing the calculation time by a factor of 1000. But we get
a different picture for m = 10. Here we can again fit the large-p behavior with
either ≈ 104p3 for 0.15 ≤ p ≤ 0.95 or with ≈ 200 exp(4p) for 0.3 ≤ p ≤ 0.9.

For small p, we see a breakdown of the T (p) curve but without the fluc-
tuations as with m = 1. However, the data points can be fitted again with
≈ −3 × 10−14 ln(p) for 10−5 ≤ p ≤ 0.1. For m = 102, we get exactly the
same fit functions as for m = 10. For m = 103, we get again roughly the
same behavior, with the only exception being that the breakdown is slightly
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Fig. 17.8. Final temperature T chosen by the ASA run, which was applied to the
PCB442 instance, for each probability value p. The behavior of ASA for a long cal-
culation time (30000 sweeps per probability step) and various numbers m of stored
energy differences can be approximated stepwise with fit functions as described in
the text

delayed here—it happens now after a short steep decrease of the curve that
can be fitted to ≈ 3×10−10 exp(200p). For m = 104, we find again all of these
fit functions, except for the additional steep decrease, which was found only
for m = 103. Instead of this steep decrease, we find that the breakdown is
delayed even more and is much smoother, such that it can be described here
as well with the p3 behavior. For m = 105, we can describe the behavior for
0.35 ≤ p ≤ 0.75 with again either ≈ 104p3 or ≈ 200 exp(4p). But then there
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is no breakdown afterward but a sigmoidal transition to a ≈ 90p0.6 curve,
which describes the behavior for 10−5 ≤ p ≤ 0.1.

Summarizing these results as well, we find the breakdown that we saw
only for m = 1 as we used 30 sweeps now for m ≤ 104. Thus, the transition
of the behavior of the algorithm is shifted with increasing calculation time.
Especially at small temperatures, when the system is frozen such that no
new improving moves can be found anymore, one finds a 1/ ln(p) behavior as
expected. However, we find an interesting power law decrease for m = 105 at
small p.

As p is decreased exponentially in time and as all graphics in Figs. 17.7
and 17.8 are plotted with logarithmic p-axis, we can read all the curves also
as functions of time as t ∝ | ln(p)|. We get only in the case m = 10 and
30,000 sweeps per step the exponential cooling schedule with appropriate
initial and final values for the temperature, which is what we roughly use as
well. The question now is: To what results can this standard and the other
chosen cooling schedules T (t) lead?

Thus, now we investigate the quality of the results achieved with ASA.
Figure 17.9 shows the results for the PCB442 instance, for various values of
m, and for various calculation times. Additionally, the results for SA from
Sect. 7.4, which were achieved in the same calculation times and also by using
a factor of 0.99, are redrawn with the label m = 0. To visualize the differences
for very good results, we do not show the results themselves but the deviation
of these results from the optimum given by δmean = (〈H〉 − Hopt)/Hopt, as
defined in formula (8.1) in Sect. 8.1. For all values ofm, we generally find that
the results for δmean improve with an increasing number of sweeps, i. e., with
increasing calculation time. (The overall calculation time in sweeps is given
as the product of the number of sweeps per p-step in ASA times the number
of these steps, which is 1146.) The global optimum of the PCB442 instance
is reached with m = 3 × 103 for 103 sweeps, m = 3 × 103 and m = 3 × 105

for 104 sweeps, and m = 104, 3 × 104, 105, and 106 for 3 × 104 sweeps,
However, we also clearly see that there is no general best value for the

number m of stored energy differences: obviously, one must use small m for
short calculations, as the best results are on average achieved with m ≤ 102.
This boundary might depend on the system size. The worst results at these
short calculation times are achieved with the largest values ofm,m = 106 and
m = 107, whose mean values coincide at the beginning. On the other hand,
we find for intermediate calculation times, like 30 or 100 sweeps per step, that
one should also use an intermediate number of stored energy differences: here
m = 104 leads to the best results, after m = 103 has led to the best results
for 10 sweeps per step. Increasing the calculation time further, the optimum
value for m is increased as well: m = 105 leads to the best results for 103

sweeps per step, m = 106 for 104 sweeps, and m = 107 for 3 × 104 sweeps.
Obviously, we get here a general law: m = 10x leads to the best results for
10x−2 sweeps per step. These optimum values also lead to better results than
standard SA at the same calculation time in sweeps. Furthermore, we see that
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Fig. 17.9. Quality of the results achieved with ASA for the PCB442 instance vs.
number of sweeps per probability step (i. e., vs. calculation time) for various num-
bers m of stored energy differences. Top: deviation of the best final configuration
out of 100 optimization runs to the global optimum; bottom: average deviation of
the energies of these 100 final configurations to the global optimum. For compar-
ison, the results for the original SA algorithm (m = 0) are shown. Error bars are
smaller than the symbols

one should on no account use m > 10x for only 10x−3 sweeps, as the results
are horribly bad there. This is due to the fact that there are larger energy
differences still stored from the start of the optimization run such that the
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final temperature of the system is overestimated. In turn, the system is not
cooled down completely, which leads to the worsening of the results. Usually,
the results for m = 10x are only slightly worse than the results for smaller
m such that we want to set the boundary between good and bad results at
that value. The results described here can be seen even better in Fig. 17.10.
Here each curve stands for one proposed calculation time and the question is
which m is optimal to use.

Finally, the question arises as to whether these conclusions about the
best value and the maximum good value of m for a given number of sweeps
depend on the system size N . Therefore, we performed the same set of opti-
mization runs also for the BEER127 instance. Figure 17.11 shows the results
for the BEER127 instance, which are plotted in the same way as in Figs. 17.9
and 17.10. We find the same dependencies here, namely, that the optimum
value of m is given by the number of sweeps multiplied by a factor of 100
and that one should on no account use a value of m that is larger than 1000
times the number of sweeps. Thus, at least for the range of the system size
N we use, this law seems to hold generally.

Summarizing, we studied in this section a highly interesting SA variant
that makes use of a memory in which the energy differences of former im-
proving moves are stored in order to determine an appropriate temperature.
We found that the size of the memory is crucial for the average quality of the
solutions in our application.

As a memory is used in ASA, one might also want to include this algorithm
in the wider field of tabu search or to speak of a hybrid algorithm, although
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Fig. 17.10. Results redrawn from Fig. 17.9, but now plotted vs. the number m of
memorized energy differences
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Fig. 17.11. Quality of the results achieved with ASA for the BEER127 instance for
various numbers of sweeps per probability step and for various numbers m of stored
energy differences. Top: the results for δmean are plotted as in Fig. 17.9; bottom: as
in Fig. 17.10

basic tabu search strategies like intensification and diversification are missing
here. Thus, for us, it is mainly an implementation of a SA variant in which
the temperature is determined adaptively.
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17.4 Guided Local Search

The application of guided local search (GLS), which was introduced in
Sect. 23.1 in Part I, to the TSP is rather straightforward: the features a so-
lution σ does or does not contain are the edges that can occur. The costs
assigned to these edges (i, j) are the distance values D(i, j).

We use as a basic algorithm the greedy algorithm, in which a neighboring
configuration is selected at random and is accepted if it is either equally good
as or better than the current configuration.

Indeed, we can use our original greedy algorithm program and have only
to extend it by a further loop over the iterations of the GLS algorithm and
by assigning penalty values p(i, j) and utility values u(i, j) to the edges. The
distances we use in the greedy algorithm are no longer the original distances
D(i, j) but the distances

D̃(i, j) = D(i, j) + λp(i, j) , (17.4)

with λ being the Lagrange multiplier by which the penalties p(i, j), which
take integer values, are related to the original costs.

Thus, the outline of the GLS algorithm is as follows. First, a random
configuration σ is created, the penalty values for all edges are initialized with
p(i, j) = 0, and the altered distances are set to the original distances, i. e.,
D̃(i, j) = D(i, j). As reported in [212], a good value for λ is

λ = a×H2−optimum/N , (17.5)

with H2−optimum being the length of a 2-optimum tour, i. e., a solution that
cannot be further improved with the Lin-2-opt, N being the number of nodes
as usual, and a being a parameter that must be changed to tune the algorithm.
Voudouris and Tsang report that the best performance was achieved for a ≈
0.3: when a was too small, the algorithm processed too slowly; when it was
too large, it converged rather fast to only a handful of good local minima. If
a was chosen correctly, then the algorithm generated a sequence of gradually
improving solutions. We work with a = 0.3 and set H2−optimum = 51,000
for the PCB442 instance for which we present results here, such that we get
λ ≈ 34.6.

After this initialization, we start out with a conventional greedy run start-
ing from the configuration σ and using the distance matrix D̃ (which is iden-
tical to D in the first iteration) and store the final configuration as τ . Then
we derive a symmetric edge matrix η from τ with

η(i, j) =

⎧
⎪⎨

⎪⎩

1 if node j is either predecessor or
successor of node i in
the configuration τ ,

0 otherwise .

(17.6)
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Then we calculate the utility values u(i, j) for all edges (i, j) according to

u(i, j) =
η(i, j) ×D(i, j)

1 + p(i, j)
. (17.7)

We go through all (i, j) and determine the maximum of all u(i, j). That edge
(i, j) for which u(i, j) is maximum (we generally restrict to one edge, as it is
usually one; if there are more than one, the first edge found with a maximum
utility value is punished) is punished by incrementing its penalty value, i. e.,
p(i, j) = p(j, i) := 1 + p(i, j). Then we set

D̃(i, j) = D̃(j, i) := D(i, j) + λ× p(i, j) . (17.8)

After that we set σ := τ and perform the next greedy optimization run,
which hopefully removes the punished bad edge (i, j). We end up at a new
final configuration τ and proceed as above.

This algorithm is iterated over and over. In each iteration, the cost func-
tion H is to be minimized according to a new distance matrix D̃,

H(σ) =
N∑

i=1

D̃(σ(i), σ(i + 1))

=
N∑

i=1

D(σ(i), σ(i + 1)) + λ×
N∑

i=1

p(σ(i), σ(i + 1))

= H0(σ) + λ×
N∑

i=1

p(σ(i), σ(i+ 1)) ,

(17.9)

with σ(N +1) ≡ σ(1) and the original cost function H0. It might be that the
algorithm finds on its way a rather good solution according to the original
cost function H0 but gets to worse solutions in the next iterations. Thus, we
always store the best final configuration τ found so far and return this τbest

with its cost value H0,bsf = H0(τbest) as the result of the optimization run.
In our implementation, first a random configuration is created. This con-

figuration is improved in 105 greedy sweeps in the original energy landscape.
Then a loop over 100 × N2 GLS iterations is performed in which first an
edge is selected for which the penalty value is incremented according to the
description above. Second, 30 greedy sweeps with the newly changed distance
matrix D̃ are performed in order to get the system into the perhaps new local
minimum. Finally, 30 greedy sweeps with the original distance matrix D are
performed.

Figure 17.12 shows the development of the observables H, H0, and H0,bsf

over time. The time is measured in the number of GLS iterations. From
this one can get the time in sweeps by multiplying the iteration number
by 30 (as 30 greedy sweeps were performed in each iteration i ≥ 1) and
adding 105 (as 105 greedy sweeps were performed in the initial iteration
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Fig. 17.12. Development of the total cost function H (top), of the original cost
function H0 (middle), and of the best cost function value found so far H0,bsf accord-
ing to the original cost function (bottom). Left: development for short time scales.
The time is measured in iterations of the GLS algorithm. Right: the long-time de-
velopments of the observables are shown by plotting 147 exemplary data points
each and connecting them with lines. Of course, this way one does not see the full
extent of the fluctuations of H0 in the long time range, but if plotting all 19,536,400
data points, one only sees noise for H0 and gets no additional information for H
and H0,bsf . The final value 52,373.9531 for H and H0 is considerably larger than
the optimum value 50,783.5469 of the PCB442 instance, which was found in at least
one iteration

i = 0, in order to get into or at least near a local minimum). Of course, 30
sweeps in one greedy iteration might not be sufficient to get from the formerly
locally minimum configuration to a local minimum nearby in the new energy
landscape. However, we did not want to spend even more calculation time.
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First, we want to consider the development of the total energy H. We find
that H increases over time, which is quite obvious, as the penalty values are
incremented over and over. Despite this increase, sometimes a local minimum
configuration will stay locally minimal such that the next greedy iteration
cannot lead to an improvement. In the long time scale, H increases linearly
according to H ≈ 0.075 × i + 2.7 × 105, with i being the iteration number.
From the value 0.075 we can derive that in the long time limit, the system
usually jumps to a new local minimum in most iterations. Otherwise the
curve would increase with one λ ≈ 34.615 per iteration. Finally, in the last
iteration, the system is optimized according to the original cost function H0,
such that the value of H drops to a value of H0.

Secondly, we consider the original cost function H0. We find that H0 in-
creases slightly in the first few iterations. Thus, in order to remove the pun-
ished long edges, the system is forced into overall slightly longer roundtrips
at first. But already in the 18th iteration, the system is for the first time able
to get into a local minimum according to H, which is better according to H0

than the previous one. After roughly 150 iterations, H0 starts to decrease be-
low the value of the first iteration, such that this iterative algorithm starts to
pay off. With the further decrease, more and more fluctuations in H0 occur.
On average, H0 increases again, but the fluctuations also grow larger, such
that one finds better and better intermediate solutions.

Thus, we must always store the best solution found so far with its energy
value H0,bsf , especially as the optimization run will usually not find its way
back to this solution in the end. The development of H0,bsf over time is
shown at the bottom of Fig. 17.12. We find that H0,bsf stays constant at
the beginning and then decreases gradually in a sigmoidal way, i. e., the last
improvements are the smallest. After roughly 1.3×107 iterations, the system
finds a globally optimum solution for the first time.

Finally, we consider the quality of the results that can be achieved with
GLS. Of course, we use for this examination the final values for H0,bsf . We
stay with overall 19,536,400 GLS iterations but change the number of sweeps
within them to between 1 and 30. Figure 17.13 shows that the quality of the
results is improved with an increasing number of sweeps. We get the optimum
value in 6% of the runs with 10 sweeps and in 54% of the runs with 30 sweeps.
The results in the other runs are nearly as good as the optimum value.

For the results shown up to now, we always used for a the value 0.3, as was
recommended by the inventors of the algorithm. However, the question arises
as to whether this value is generally an optimum value or whether this value
of 0.3 is simply a good compromise for arriving at rather good solutions rather
fast. Thus, we vary this control parameter of the GLS technique now. Fig-
ure 17.14 shows for the two shorter calculation times of one sweep and three
sweeps per iteration both the mean deviation δmean = (〈H〉 − Hopt)/Hopt

from the optimum and the probability popt of reaching the global optimum
in an optimization run. Of course, the curve for popt is not too smooth,
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performed using the altered distance matrix. Left: mean deviation from the optimum
δmean = (〈H〉 − Hopt)/Hopt; right: probability popt of reaching the global optimum
in an optimization run

as only 100 optimization runs were performed for each value of a. We find
immediately that the optimum value for a is much smaller than the recom-
mended value of 0.3. Indeed, the optimum value for optimizing the PCB442
instance with these calculation times is a ≈ 10−3. Please note that we gen-
erally assume that we do not know the optimum value, so that we cannot
break the optimization run early if the optimization run has already found
the optimum or at least a quasioptimum solution. Furthermore, note that our
calculation times are probably much larger than the inventors of the GLS al-
gorithm had intended. Although we find for the PCB442 instance a much
smaller optimum value for the parameter a, they might be quite right in
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recommending a larger value of a for the sake of reaching good solutions in
very short times. Indeed, our two curves show jumps to much worse solu-
tions when crossing the value a = 1 such that surely a value a < 1 must be
chosen..

Furthermore, Fig. 17.14 shows on its right-hand side that a globally opti-
mum configuration is reached in 41 out of 100 optimization runs when using 3
sweeps per iteration and the value a = 10−3. Thus, GLS must be considered
an excellent optimization algorithm.

Comparing GLS with SA (we take the results in Sect. 7.4 for compari-
son), we can roughly say that the results for one sweep here correspond to
the results for 10,000 sweeps in roughly 1800 temperature steps and the re-
sults for 3 sweeps to the results for 30,000 sweeps. Of course, one must find
an appropriate value of a for each problem instance when using GLS. But
taking small values for a, we generally get better results on average for GLS
than for SA. Furthermore, we must state that it depends on the problem
whether SA or GLS is faster: GLS with an underlying greedy algorithm ac-
cepts much fewer moves than SA. If the update of the configuration plays
the dominant role in the calculation time, then GLS is surely faster, except
if one is dealing with a very complex problem in which one first must build
up the complete tentative new configuration in order to calculate its energy.
On the other hand, if determining which of the properties of a configuration
will be punished takes much time, then SA is superior. An advantage of GLS
over SA is that it is easier to stop immediately if one is already content with
the achieved result quality so far or if a solution is suddenly needed urgently.
This advantage arises from the fact that SA cools the system gradually from
high-energy configurations and reaches very good solutions only at the end
of the optimization run, whereas GLS, with its underlying greedy dynamics,
produces in each iteration a configuration that is up to the order of 10% worse
than the optimum. One might wonder whether this GLS algorithm can be
as widely applied to various optimization problems as general algorithms like
SA. We think that the approach shown here for the TSP can be applied to
any problem with some interaction matrix like the distance matrix here. One
might also easily find appropriate properties for other problems, for which
some penalties can be introduced, such that GLS might be an algorithm that
can be as generally applied as SA.



18 Application of Searching

for Backbones to TSP

18.1 Definition of a Backbone

Now the searching for backbones (SfB) algorithm will be applied to the travel-
ing salesman problem (TSP). As was already mentioned in Chap. 24 in Part I,
one starts by creating a set of solutions and compares these for common parts.
Figure 18.1 shows two quite good solutions for the PCB442 problem. At first
glance, one finds the differences between these solutions. On the other hand,
there are also common parts, namely, sequences of nodes, that are identical
in both solutions.

Therefore, it is quite clear that this type of similarity should be used for
the TSP for defining a backbone: as the TSP is a sequencing problem, this
definition corresponds to the nature of the problem. Let us here now only
consider the case of a symmetric TSP, i. e., D(i, j) = D(j, i) for all pairs (i, j)

Fig. 18.1. Comparison of two quite good but not optimal solutions for the PCB442
problem. One finds many differences between these two solutions. However, there
are also many sequences of nodes identical in both solutions
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of nodes. Traversing each configuration either clockwise or counterclockwise
leads to the same overall tour length.

The basic parts of the system are the individual nodes. The simplest
relation between them is to ask whether they are neighbors of each other in
one of the solutions. Let σν be the solution of the run with number ν and let
p be the number of compared solutions, which shall be kept constant here.
Then the overlap matrix ηS for the symmetric TSP is defined as follows: the
overlap between nodes i and j is given as

ηS(i, j) =
p∑

ν=1

N∑

k=1

δi,σν(k) ·
(
δj,σν(k−1) + δj,σν(k+1)

)
, (18.1)

with σν(0) ≡ σν(N) and σν(1) ≡ σν(N + 1). Therefore, one gets an overlap
between two nodes i and j in the solution σν if j is either the predecessor or
the successor of i in the solution σν . If ηS(i, j) = p, then j is a neighbor of i
in all solutions. In this case, they belong in one backbone. Using this overlap
matrix, one can determine the backbones easily. A backbone is a sequence of
nodes i1, i2, . . . , in with ηS(i1, i2) = ηS(i2, i3) = . . . = ηS(in−1, in) = p. There
is no node i0 with i0 �= i2 and ηS(i0, i1) = p. Analogously, there is no such
node in+1 with in+1 �= in−1 and ηS(in, in+1) = p.

After the backbones have been determined, they are supposed to be used
for further optimization runs, in which they must not be destroyed. The
simplest approach for achieving this is to ask in every move whether a chosen
connection may be cut or not. This question can simply be answered by, e. g.,
looking at the corresponding entry in the overlap matrix ηS and checking
whether it is maximal. However, this costs a large amount of calculation
time. The more backbones one finds, the worse this situation is. Therefore,
one must simplify this situation for subsequent optimization runs.

An obvious way to achieve this is to represent each backbone by a pair
of nodes. Let us visualize this approach with a small example of a symmetric
TSP instance with N = 10 nodes, for which the following four solutions were
produced:

0 9 1 2 3 4 5 6 7 8
0 3 2 1 4 5 6 7 8 9
0 9 7 6 5 4 8 1 2 3
0 4 5 6 7 8 3 2 1 9
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From these solutions one derives the overlap matrix

ηS =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 2 1 0 0 0 1 4
0 0 4 0 1 0 0 0 1 2
0 4 0 4 0 0 0 0 0 0
2 0 4 0 1 0 0 0 1 0
1 1 0 1 0 4 0 0 1 0
0 0 0 0 4 0 4 0 0 0
0 0 0 0 0 4 0 4 0 0
0 0 0 0 0 0 4 0 3 1
1 1 0 1 1 0 0 3 0 1
4 2 0 0 0 0 0 1 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

(Of course, the maximum entries here are identical to the number of solu-
tions p = 4) and from that (using the first solution for splitting it into the
backbones) the following set of backbones:

0 9

1 2 3

4 5 6 7

8

These backbones, which must not be destroyed in subsequent optimization
runs, are now coded for the next iteration in such a way that the work for
the processors is as easy as possible. One obvious way to do this is to code
every backbone as a pair of nodes. In the next optimization runs, the tour
may only be cut after pairs of nodes, i. e., after the second, fourth, sixth, etc.
node. This can easily be achieved by producing only even integer random
numbers.

Using this approach, all edge points of the backbones get a new number,
and the nodes inside the backbones are removed. Therefore, the backbone set
of the example above is coded in the following way:

0 9 =⇒ 0 1

1 2 3 =⇒ 2 3

4 5 6 7 =⇒ 4 5

8 =⇒ 6

One gets the following tour:

0–1 2–3 4–5 6–6



474 18 Application of Searching for Backbones to TSP

This tour is identical with the first solution of the previous SfB iteration. The
“−” signs indicate that these connections must not be destroyed. Note that
backbones containing only one node are doubled in the tour, such that this
approach of choosing only even edges in the moves can be used.

Furthermore, one derives a smaller 7 × 7 distance matrix D̃ from the
original 10× 10 distance matrix D, which contains for example the following
entries:

D̃(0, 1) = D(0, 9), D̃(2, 3) = D(1, 2) +D(2, 3), D̃(0, 6) = D(0, 8) .

This distance matrix and this tour are used for the next optimization runs.
Of course, this coding never leads to a distance matrix D̃ with more entries
than D. However, the tour could contain twice as many nodes as the original
tour if the solutions are so different that no backbone containing at least two
nodes can be found. If there are many backbones containing only one node,
this coding costs additional time; on the other hand, it pays off if the solutions
are rather similar to each other. Using either this or a related coding or the
overlap matrix is necessary so as not to destroy the backbones.

In the second iteration of the algorithm, again a number of solutions is
generated, but with a slightly altered program in which only edges after an
even tour position number are allowed to be cut such that the backbones
are not destroyed. Again the solutions shall be generated independently of
each other. These new solutions must be decoded with the old backbones.
Extending the example above, the new solutions could be

0–1 2–3 6–6 4–5
1–0 4–5 2–3 6–6
0–1 6–6 3–2 5–4
1–0 4–5 6–6 3–2

These solutions are decoded to:

0 9 1 2 3 8 4 5 6 7
9 0 4 5 6 7 1 2 3 8
0 9 8 3 2 1 7 6 5 4
9 0 4 5 6 7 8 3 2 1

As already described in Chap. 24 in Part I, these new solutions are supposed
to be better than the previous ones and furthermore supposed to give a better
representation of those parts of the problem instance that are already solved
optimally. Therefore, the old solutions are discarded, but their inheritance
consists of the backbones that were not allowed to be destroyed, such that
they are also part of the new solutions. The new set of backbones is only
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constructed with the new solutions:

0 9

1 2 3 8

4 5 6 7

With an increasing number of iterations, one gets fewer but longer backbones.
The system to be optimized becomes smaller, and the calculation time per
iteration therefore decreases. In this example, the tour now contains only six
nodes and the distance matrix is of size 6 × 6.

18.2 Application to the Completely Asymmetric TSP

The asymmetric TSP (ATSP) exhibits a nonsymmetric distance matrix, i. e.,
there is at least one entry D(i, j) with D(i, j) �= D(j, i). However, one must
distinguish two cases for the ATSP: a completely asymmetric TSP has the
property that for all pairs (i, j) of nodes D(i, j) �= D(j, i) and furthermore
there is no sequence of nodes whose length stays the same if turned around.
However, one usually finds the partially ATSP in practical applications in
which there are some one-way streets in the problem instance by which only
some percentage of distances becomes asymmetric.

The outline for the SfB algorithm for an ATSP is identical to that for the
symmetric TSP; however, the definition of the overlap matrix, the determi-
nation and coding of the backbones, and the decoding of the coded solutions
are different.

In the case of the completely asymmetric TSP, for which there is a prefer-
able direction for any subsequence of nodes and for which there is no symme-
try between clockwise and anticlockwise traversing the tour, the backbones
must be determined in the following way: again the various solutions gener-
ated in the first iteration are compared with each other. However, only the
traversion direction that is actually used in the individual solutions is used,
i. e.,

ηA(i, j) =
p∑

ν=1

N∑

k=1

δi,σν(k) · δj,σν(k+1) , (18.2)

with σν(N + 1) ≡ σν(1). This overlap matrix for the completely asymmetric
TSP is therefore asymmetric. Then the backbones are determined accord-
ing to the maximum entries, which again must have the value p. As these
backbones are traversed in only one direction, it is sufficient to code them
by only one node as they are not allowed to be either cut or turned around.
This will be demonstrated in the following example. Let us consider a com-
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pletely asymmetric TSP with N = 10 nodes, for which p = 4 solutions of the
following form have been produced:

0 9 1 2 3 4 5 6 7 8
0 9 3 2 1 4 5 6 7 8
0 9 4 5 6 7 1 2 3 8
0 9 8 4 5 6 7 1 2 3

Then the overlap matrix is given by

ηA =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

0 0 0 0 0 0 0 0 0 4
0 0 3 0 1 0 0 0 0 0
0 1 0 3 0 0 0 0 0 0
1 0 1 0 1 0 0 0 1 0
0 0 0 0 0 4 0 0 0 0
0 0 0 0 0 0 4 0 0 0
0 0 0 0 0 0 0 4 0 0
0 2 0 0 0 0 0 0 2 0
3 0 0 0 1 0 0 0 0 0
0 1 0 1 1 0 0 0 1 0

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

From this matrix the following backbone set is created:

0 9

1

2

3

4 5 6 7

8

These backbones are coded as follows:

0

1

2

3

4

5
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From this one creates the new tour

0 1 2 3 4 5 ,

which may be cut after each position, and a smaller 6× 6 distance matrix D̃
with asymmetric distances between the various backbones, e. g.,

D̃(0, 1) = D(9, 1), D̃(1, 0) = D(1, 0), D̃(0, 4) = D(9, 4), D̃(4, 0) = D(7, 0) ,

and furthermore distances inside the one-node backbones that have to be
considered, e. g.,

D̃(0, 0) = D(0, 9), D̃(4, 4) = D(4, 5) +D(5, 6) +D(6, 7) .

In contrast to the symmetric TSP, the number of nodes in the tour, the
number of nodes in the distance matrix, and the number of backbones are
identical. Here also the diagonal elements of the distance matrix are used in
order to calculate the length of a configuration. In conclusion, this coding
already pays off if at least two nodes can be combined to one backbone when
using a basic serial optimization algorithm that does not require a calculation
of the total energy of the configuration when performing a change.

18.3 Application to Partially Asymmetric TSP

The coding is most difficult for the partially asymmetric TSP, as both sym-
metric and asymmetric backbones must be determined. Analogously to the
two marginal cases of the completely symmetric and the completely asym-
metric TSP above, first, the overlap matrices ηS and ηA are created. Then,
again one of the solutions is chosen according to which the backbones are
built. If ηS(i, j) = p for a pair (i, j) of nodes, then these nodes belong to one
backbone. After the construction of the backbone set by using the symmetric
overlap matrix ηS one must check, for all backbones containing more than
one node, whether ηA(i1, i2) = p for the first two nodes in it. If this is the
case, then automatically ηA(i2, i3) = . . . = ηA(in−1, in) = p. In this case, the
backbone must be marked as an asymmetric backbone; otherwise it is a sym-
metric backbone. Incidentally, if all backbones containing at least two nodes
are marked as asymmetric, then the asymmetries in the distance matrix ob-
viously dominate the system, such that one can proceed as in Sect. 18.2.
Otherwise, one must represent each backbone by two nodes in the tour, as in
the case of the symmetric TSP. However, the symmetric backbones are then
coded with two different nodes, whereas the asymmetric backbones and the
one-node backbones are represented by only one node, which is doubled in
the tour. Again the diagonal elements of the distance matrix D̃ also must be
added up when calculating the length of the solution.
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At the end of the algorithm, all solutions will be identical, so that only
one backbone containing all nodes is left. If the ground state of the problem
is degenerate, a small number of backbones will remain at the end.

Generally, this algorithm is based on the idea that the backbones are con-
sidered to be optimal and, even more, to be part of the globally optimum
solution. Of course, it is impossible to determine a priori which part belongs
to an optimum solution. The assumption in this algorithm is that the sta-
tistical averaging over many good solutions will reproduce these backbones.
This requires comparing an appropriate number of solutions. If there are too
few solutions, then the backbones are too long already at the very beginning.
Often they consist of nodes not connected in an optimum way. On the other
hand, if there are too many solutions, then there are so many differences
between them that pieces cannot be connected with each other as there is at
least one solution voting for another possibility. The algorithm cannot con-
verge in such a case. Therefore, the question of whether there is an optimum
number of used solutions is of central importance.

We will present results for symmetric TSP instances. The calculations
were performed on the massive parallel computer jump of the John von Neu-
mann Institute for Computing at the Research Center Jülich, Germany. The
IBM Fortran compiler mpxlf for the programming language Fortran 77 and
the parallelization library MPI were used, working on 2n, 1 ≤ n ≤ 7 (2, 4, 8,
16, 32, 64, and 128) processors. Each processor created one solution in each
SfB iteration.

Note that in all applications of the SfB algorithm, only the nearest-
neighbor interaction between the nodes is considered, as described above:
if two nodes are neighbors of each other in all solutions, then the link be-
tween them is added to the backbone list. Of course, this nearest-neighbor
interaction is only a marginal case of the vast variety of correlations between
various parts of a problem instance. However, due to the success this appli-
cation has, it is sufficient to work with this nearest neighbor interaction only.

18.4 Computational Results

Now we investigate the results for an implementation of the SfB algorithm.
We will concentrate here on the PCB442 instance, as this instance might be
rather hard to solve for this algorithm due to the degeneracy of the ground
state and of higher energy states of this instance. As the basic serial opti-
mization algorithm used for providing solutions, we use simulated annealing
(SA), as SA has the property that there are no restrictions in the search
for good solutions due to the absence of constructive elements in SA. We
always start with an initial temperature of 104 and cool the system down
to a final temperature of 0.1 exponentially with a cooling factor of 0.99 and
add a greedy step at the end. Thus, we used the same parameters for SA
as in Sect. 7.4. Furthermore, each run starts with a random configuration,
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which is created by putting the nodes in a random order in the first iteration
and the backbones in a random order in the other iterations. We use the
node insertion move (NIM), the Lin-2-opt (L2O), and the four variants of
the Lin-3-opt (L3O) with equal probability and leave out the exchange here.
From the second iteration on, in which two-node-backbones instead of single
nodes are used, the node insertion move becomes an edge insertion move:
this move, which is also widely used for the standard TSP, shifts a pair of
neighboring nodes to a new position. Please note again that also the moves
used do not contain any constructive elements. The SfB algorithm ends either
after a maximum of 1000 iterations or if less than three backbones are left,
as at least three backbones are needed for performing a L3O or a NIM.

In [187] and [183], results for several observables describing the behavior
of the SfB algorithm were already studied for several numbers p of compared
solutions, but only for one fixed amount of calculation time. Thanks to the
generous grant of computing time by the John von Neumann Institute, here
we can study the quality of the algorithm both for various values of p (p = 4,
8, 16, 32, 64, and 128) and for various numbers of sweeps per temperature
step in the SA algorithm (1, 3, 10, 30, 100, 300, 1000, and 3000 sweeps). If
looking again at the graphics for the PCB442 instance in Fig. 7.9, we find
that the quality of the results depends very strongly on the calculation time.
For 10,000 and 30,000 sweeps per temperature step, we already obtained
with some probability a ground state of the PCB442 instance with such
a serial run such that we restrict ourselves now to shorter computing times
for each SfB iteration. Furthermore, we must notice from Fig. 7.9 that rather
different solutions are compared for these different computing times: for very
short computing times, one compares rather bad solutions, which surely have
much less in common with each other and with the global optimum, as there
was no time to freeze these systems in locally minimum configurations, than
those produced with larger amounts of computing time.

Thus, the question generally arises as to whether also for short computing
times backbones can be found. To investigate this question we additionally
performed some test SfB runs in which random configurations were com-
pared for common parts. In the first iteration, the random configurations
were created as usual; in the next iterations, the backbones were placed in
a random order. If comparing only two random configurations in each itera-
tion of the SfB algorithm for common parts, the algorithm converges to one
random configuration within 1000 iterations. A small number of short back-
bones containing more than one node is even found in this time when using
p = 3. For p ≥ 4, no common structures in p different random configurations
can be found within this time limit of 1000 iterations. Now we return to
comparing solutions generated with SA.

Figure 18.2 shows the maximum number of nodes within a backbone
for various computing times and numbers p of compared solutions. When
working with p = 128, p = 64, p = 32, and p = 16, we find that the maximum
number of nodes in a backbone remains 1 or close to 1 for short computing
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Fig. 18.2. Results for the application of SfB to the PCB442 instance for various
numbers p (p = 128, 64, 32, 16, 8, 4) of compared solutions and for various calcula-
tion times. For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300,
1000, or 3000 sweeps per temperature step. These graphics show the maximum
number of nodes nmax within a backbone vs. iteration i

times. Thus, either no backbone can be created or only very short ones. The
solutions exhibit too many differences as the optimization processes hardly
had any time to push the systems into local minima. If more computing
time is invested, the maximum backbone size increases with an increasing
number of iterations, but it never reaches the overall number of nodes in the
system. Thus, ultimately the processors do not agree on a common solution.
Contrarily, when working with p = 8 or p = 4, the maximum number of
nodes in a backbone increases toward the system size within 1000 iterations
for all calculation times. However, one cannot deduce from this behavior
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that the SfB algorithm would then always lead to the optimum solution.
This behavior only shows that one can often find common structures if the
number of solutions is appropriately small.

The relative mean deviation of the quality of the results achieved with the
SfB algorithm to the optimum value of 50,783.5 . . . of the PCB442 instance
is shown in Fig. 18.3. For large numbers of processors, we get that this mean
deviation, and therefore the average quality of the solutions, decreases only
slightly with an increasing number of iterations. For short computing times,
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Fig. 18.3. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128, 64, 32, 16, 8, 4) of compared solutions and for various calculation times:
for the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the mean deviation of the
results achieved in iteration i from the optimum
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the average quality of the results is basically determined by the amount of
calculation time invested. Given more time, some longer backbones could be
created, such that obviously the SfB algorithm could lead to a decrease in
the mean deviation with an increasing number of iterations. For p = 32 and
p = 16, we find that the SfB algorithm does a really good job improving
the average quality of the results if the serial calculation time is sufficiently
long. For a small number of solutions, we also find strong improvements in
the average quality of the solutions. However, the final average quality is also
determined by the serial calculation time.

Figure 18.4 shows analogously the deviation of the best result found in an
iteration from the optimum value for the PCB442 instance. Again we see that
both the serial calculation time in each iteration and the number of processors
have an influence on the results. Generally, one finds that if already a very
good solution is found in some iteration, this does not necessarily mean that
the best result of the next iteration will be either equally good or even better,
as one might think because the backbones of the previous best solution are
of course part of the new solutions. Thus, one should also always store the
best solution found so far with the SfB algorithm, as the final solution might
be worse.

Following the discussion about the improvement of the quality of the
results by the SfB algorithm, we consider the convergence behavior of this
algorithm. As the SfB algorithm unites several nodes to backbones, which will
finally unite to only one backbone containing all nodes, it is useful to have
a look at the number of backbones in the system, shown in Fig. 18.5. We find
that this number gradually decreases with an increasing number of iterations.
Thus, the system is always able to create new backbones consisting of a few
former one-node backbones or to unite some longer backbones. However, only
in the cases p = 8 and p = 4 is the algorithm able to converge to only one
backbone within 1000 iterations.

Besides the number of backbones, which our coding routine makes equal to
half the number of nodes in the tour, one can also investigate the convergence
behavior by looking at the number of nodes in the distance matrix, which
of course also decreases due to our coding as the system converges. This
number is shown in Fig. 18.6. Like the number of backbones, the number of
nodes in the distance matrix decreases gradually with an increasing number
of iterations. Thus, the SfB algorithm also saves memory space, such that
even for originally large TSP instances the distance matrix might finally fit
in the cache, speeding up the calculation considerably.

This convergence behavior can best be described by the introduction of
some order parameters for the algorithm. First, we want to define a parameter

ϕ(ηS) =

∑

i,j

δηS(i,j),p

α
(18.3)
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Fig. 18.4. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128, 64, 32, 16, 8, 4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the deviation of the best
results in iteration i from the optimum

with α = 2N for the symmetric TSP. In the case of the completely asymmetric
TSP, one sets α = N and uses ηA instead of ηS . If all solutions coincide,
then two arbitrarily chosen nodes i and j are connected with each other
in every solution, if they are connected in at least one solution, such that
ϕ = 1. Contrarily, if there are so many differences between the solutions that
no backbone consisting of at least two nodes can be created, then ϕ = 0.
Figure 18.7 shows the results for this order parameter. We find that these
graphics are like mirror images of the graphics for the number of nodes in
the distance matrix shown in Fig. 18.6.
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Fig. 18.5. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128, 64, 32, 16, 8, 4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the number of backbones,
which is identical with half the number of nodes in the tour

A further order parameter that depends not on the maximum value of the
entries in the edge matrix but on the number of zeroes in it can be defined
as

ψ(ηS) = 1 −

−α+
∑

i,j

(1 − δηS(i,j),0)

α(p− 1)
. (18.4)

If all solutions are the same, then there are only 2N nonvanishing entries in
the edge matrix of a symmetric TSP or N nonvanishing entries in the edge
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Fig. 18.6. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128, 64, 32, 16, 8, 4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the number of nodes in the
distance matrix

matrix of an ATSP that are nonzero, thus ψ = 1. If all solutions are totally
different (i. e., if node i is connected to node j in one solution, then these
two nodes are not connected in any other solution), then there is a maximum
number of nonzeroes in the edge matrix, namely, 2Np in the symmetric case
and Np in the case of the ATSP, thus ψ = 0.

The results for the order parameter ψ are shown in Fig. 18.8. One sees at
first glance that there are significant differences from the results for the order
parameter ϕ in Fig. 18.7 for large values of p. In all cases, ψ is significantly
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Fig. 18.7. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128, 64, 32, 16, 8, 4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the order parameter ϕ as
defined in the text

larger than 0 already at the beginning. We get the smallest values for small p.
For p = 128 and p = 64, ψ stays virtually constant, whereas ψ reaches a value
of 1 for p = 8 and p = 4.

In the case p = 2, which is not shown here, ϕ and ψ generally coincide.
For p > 2, one always gets ψ > ϕ. The difference between these parameters
increases with an increasing number p. One can also provide a mathemati-
cal proof for this relation, which was done by Froschhammer and which is
published in [187, 181, 182].
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Fig. 18.8. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128, 64, 32, 16, 8, 4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the order parameter ψ as
defined in the text

Finally, we want to define a parameter for the overlap that measures the
percentage of those nodes that have another specific node as predecessor or
successor in all solutions. One can write this order parameter as

ξ =
N −Nb

N
. (18.5)

ξ vanishes if each backbone consists of one node only. This parameter is shown
in Fig. 18.9. Of course, these curves are related to the curves in Fig. 18.5,
which shows the number of backbones in the system.
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Fig. 18.9. Results of applying SfB to the PCB442 instance for various numbers
p (p = 128, 64, 32, 16, 8, 4) of compared solutions and for various calculation times.
For the basic SA optimization algorithm, we use 1, 3, 10, 30, 100, 300, 1000, or
3000 sweeps per temperature step. These graphics show the order parameter ξ as
defined in the text
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with Searching for Backbones

Till now, all solutions created have been compared for the process of finding
the backbones. As shown above, this searching for backbones (SfB) algorithm
needs an appropriate amount of solutions to be compared in order to con-
struct a suitable set of backbones. If the number of solutions is too small,
then backbones are created that are nonoptimal. On the other hand, if the
number of solutions is too large, convergence problems occur [187].

It could also be shown that the better the solutions are, the faster the
convergence to even better solutions takes place. We still want to use a large
number of processes in order to create a large amount of solutions. But we
want to overcome the convergence problem for these large numbers of solu-
tions.

19.1 An Aristocratic Approach

Thus, we introduce an “aristocratic” approach to SfB [187, 183]: instead of
comparing all p configurations, we only compare the best q out of p configu-
rations for constructing the backbones. Thus, we overcome the convergence
problem in two ways: first, the number of configurations that are compared
decreases. Secondly, if comparing the best q configurations only, we may ex-
pect that the convergence of this aristocratic approach will be not only faster
than the original approach using all p configurations but also faster than using
q configurations randomly selected form the p configurations. (This would be
identical to the original approach using q processors that generate one config-
uration each.) The reason for this is that the best q out of p� q configurations
are on average much better than the average for the overall p configurations.

As the standard SfB algorithm reaches the optimum value of the PCB442
instance if some larger amount of calculation time is invested in each iteration,
we work here only with 100 sweeps per temperature step. Figure 19.1 shows
that the achieved quality of the solutions with this aristocratic approach is
much better than what is achieved with the standard approach if the fraction
of solutions taken for determining the backbones is chosen appropriately. We
recommend using a moderate-size number, such as in this case 16 or 32 out
of 128 solutions: If the number of solutions to be compared is chosen too
small, then again the convergence takes place rather fast, but the quality of
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Fig. 19.1. Results of applying the aristocratic SfB approach to the PCB442 in-
stance for 100 sweeps per temperature step. In each iteration p = 128 solutions
were generated, but only the q = p/ω best solutions were used to determine the
backbones. The graphics show the average quality 〈H〉 of the solutions in each it-
eration (left) and the length Hmin of the best solution (right). For comparison, the
result of the standard SfB algorithm with p = 128 is also shown

the solutions is not optimal. If, for example, 64 solutions are used, then the
algorithm runs into convergence problems again.

Figure 19.2 shows the convergence behavior at the number of backbones
in the system and at the number of nodes in the distance matrix. For 32 out
of 128 solutions, we see a sharp drop both in the number of backbones and in
the number of nodes in the distance matrix. Thus, suddenly the system size
is reduced considerably. Summarizing, the aristocratic approach is superior
to the original SfB algorithm and leads to very good results if the fraction
1/ω of used solutions is appropriately chosen.
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Fig. 19.2. Results of applying the aristocratic SfB approach to the PCB442 in-
stance for 100 sweeps per temperature step. In each iteration p = 128 solutions
were generated, but only the q = p/ω best solutions were used for determining the
backbones. The graphics show the numbers Nb of backbones (left) and Nd of nodes
in the distance matrix (right). For comparison, also the result of the standard SfB
algorithm with p = 128 is shown
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19.2 A Democratic Approach

Reconsidering the aristocratic approach in the last section, the question arises
as to whether it is really necessary to use the best solutions. Thus, we intro-
duce now a democatic approach to SfB. In a democracy, the majority rules,
both in the majority of voters at the poll who decide what party/parties can
form the new government and in the majority of the members of parliament
or congress who decide for or against a new law. Such majority decisions
have already been implemented in various ways in computer algorithms. In
the field of neural networks (NNs), the committee machine that decides ac-
cording to the majority of the neurons is widely used. Here we want to use
not the strict majority/committee approach but a slightly different approach.

In modern democracies, there is usually some head of state called presi-
dent, prime minister, or chancellor. We identify the best solution achieved in
each iteration with this head of state. Now the head of state wants to bring
new laws through the parliament. In our case, he/she wants his/her edges
to become part of the set of backbones. For this purpose, he/she needs the
majority in the parliament. Thus, an edge will become part of a backbone if
more than half of the solutions also contain this edge.
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Fig. 19.3. Results of applying the democratic SfB approach to the PCB442 instance
for 100 sweeps per temperature step. In each iteration p solutions were generated.
The graphics show the average quality 〈H〉 of the solutions in each iteration (left)
and the length Hmin of the best solution (right)

In our simulations of this democratic approach, we stay with the 100
sweeps per temperature step that we used in our aristocratic approach. Fig-
ure 19.3 shows the mean and minimum quality of the solutions in each itera-
tion. We see at first glance that this approach converges very rapidly to one
common solution in only a few iteration steps. However, due to this rapid
convergence, this democratic variant is not always able to improve the qual-
ity of the solutions with an increasing number of iterations, once, indeed, the
quality of the best solution does not change at all. Generally, the final quality
of the solutions is much worse than in the aristocratic approach.
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Fig. 19.4. Results of applying the democratic SfB approach to the PCB442 instance
for 100 sweeps per temperature step. In each iteration p solutions were generated.
The graphics show the number of backbones in the system (left) and the number
of nodes in the distance matrix (right)

Figure 19.4 allows a better look at the convergence behavior of this demo-
cratic variant. We see that the number of backbones decreases to less than 20
in only two iterations of the algorithm, and the number of nodes in the dis-
tance matrix is reduced in an analogous way. Thus, this democratic variant
exhibits a very rapid convergence, but it cannot be recommended for practical
use as the quality of the resulting configurations is not good enough.

19.3 Solution of the PCB442 Problem

More than two million optimum solutions of minimum length were found
by the aristocratic variant of the SfB algorithm for the PCB442 instance,
which has a highly degenerate ground state. Thus, we would like to use these
solutions for a discussion of the ground state of this problem. Comparing
all these solutions with each other, one gets backbones for these optimum
solutions. There are a total of 89 backbones. A few are rather long, but 41
of them consist of one node only:

# nodes 1 2 3 4 6 10 17 25 27 32 33 39 51
# backbones 41 30 4 1 1 3 1 1 1 2 2 1 1

These 89 backbones are shown in Fig. 19.5. Taking a closer look at this
figure, one finds that these 89 pieces are not independent of each other. On
the contrary, the pieces are only split from each other in some areas in which
there are a few possibilities to connect them optimally. Fixing the direction
of a backbone consisting of at least three nodes, one finds that the directions
of most other backbones are then also fixed. As shown in Fig. 19.6, these
backbones belong to three groups: there are 41 backbones consisting of only
one node. Then there are 16 “blinkers”, which are backbones consisting of
two nodes each, for which there exist both possibilities for traversing them
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Fig. 19.5. Comparing over two million optimum solutions for the PCB442 TSP
instance that were found with the SfB algorithm, 89 backbones common to all
solutions can be identified

in an optimum solution if the directions of the other backbones are fixed.
Finally, there is a “superbackbone” consisting of 369 nodes.

Note that this local determinedness in the fixation of the direction of all
parts of the superbackbone if one part is fixed is a distinguishing feature of
the PCB442 instance. One can easily construct TSP instances that do not
show such a local determinedness. Examples are given in Fig. 19.7 [182]. The
Möbius strip is a standard example in mathematics for areas with boundaries
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Fig. 19.6. If the direction of one of the longer backbones (consisting of at least
three nodes) shown in Fig. 19.5 is fixed, the directions of all other backbones, with
the exception of 16 “blinkers” consisting of two nodes each, are also fixed

that cannot be orientated [29]. It is created by a rectangle with the extensions
[0; 1] × [−1; 1] for which the points (0, t) and (1,−t) are identified for all
t ∈ [−1; 1]. We place a regular square lattice with two columns on this Möbius
strip. Due to the Möbius geometry, the successor of the upper left point is
the lower right point and vice versa. Additionally, we place two point sets
on this strip that are connected to one backbone each in every optimum
solution. This example at the top of Fig. 19.7 shows that there is no local
determinedness on nonorientable areas.
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Fig. 19.7. No general local determinedness of the relative directions of backbones.
These graphics show three examples of how there is no general local determinedness
of backbones in TSP instances as in the PCB442 instance. Each of these three
instances contains two partial sequences that will be registered as backbones by
the SfB algorithm and some structures that allow for various connections. Top:
Möbius strip with ears; middle: outline of an E on a torus: bottom: structure on
a plain that can be connected to, e. g., the outlines of an H and a U . Note that the
configurations on the left are the same length as the corresponding configurations
on the right
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The second example in Fig. 19.7 shows points that form the outline of the
large letter E. Additionally there are two point sets connected to two back-
bones each. The rectangular area [−1; 1]× [−1; 1] will be formed into a torus
by identifying (−1, t) with (1, t) and (t,−1) with (t, 1) for all t ∈ [−1; 1]. The
right graphic shows another possible optimum solution for this TSP instance
on a torus. Again we find that when the direction of one backbone is fixed,
then the direction of the other backbone is not fixed. Finally, the bottom of
Fig. 19.7 shows a TSP instance in which the point sets form the outlines of
the large letters H and U . Additionally, there are again two point sets that
will be connected in two backbones in every optimum solution. In the case of
the H , both backbones are crossed in the same direction, in the case of the U ,
in the opposite direction. Thus, the PCB442 instance is rather special to show
this local determinedness in the fixation of the directions of the backbones.

Still, the superbackbone and the blinkers are not a complete description of
the ground state of the PCB442 instance, which was introduced by Grötschel.
The parts of the superbackbone can only be connected with the other parts in
an optimum way by using certain edges. At some places, it is easy to see that
such an edge is contained in an optimum solution with a probability of 50%.
However, there are other, more complicated, local structures as well in which
the probability of an edge that can be part of an optimum solution actually
being within the given optimum solution must be calculated carefully and
can be, e. g., 25%. These “connecting links” must also be considered when
speaking of the full ground state of the problem and when projecting the
current solution in an optimization run on the ground state in order to calcu-
late the order parameter. Furthermore, these connecting edges are correlated
with each other. If a certain edge is part of an optimum configuration, then
this often requires that at least one additional edge be part of this optimum
configuration.

19.4 Can Humans Do This, Too?

In our introduction to the SfB algorithm, we started out with some assump-
tions: we proposed that if several processors that try to optimize a given
problem arive at the same solution parts independently of each other, then
we can assume them to be optimally solved. Of course, JJS had such assump-
tions in mind when he considered real-world outcomes: if some person A tells
you strange things, you probably would not believe him/her. If a second per-
son tells you independently of the first one the same strange stories, then you
are already tempted to believe them. Now if many people tell you the same
thing seemingly independently of each other, then you are basically forced to
believe these stories. Now in the real world, it might be that all of these peo-
ple are simply repeating some widespread prejudice. But this cannot happen
on a parallel computer, in which the nodes are really independent of each
other.
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Now we want to go in the reverse direction after having developed this
SfB algorithm: can we use humans as the nodes of a parallel processor, let
them generate a number of solutions, then determine the backbones, then tell
them to generate new solutions using these backbones, and so on? Does the
convergence behavior of this approach differ from the convergence behavior
on a computer system?

At a conference on the emergence of identity and self-organization in
soclal systems organized by Sorin Solomon in Jerusalem in December 2003,
JJS handed out to the attendees, most of whom were physicists and computer
scientists, graphics with the locations of the 48 nodes of a TSP benchmark
instance. JJS asked the participants to draw a closed tour by hand. Looking
at the resulting solutions, it became immediately clear that most people had
done a very poor job generating the solution. Indeed, the solutions looked
rather similar to those that are achieved with construction heuristics like the
nearest neighbor heuristic, in which the last nodes are attached via very long
edges to the tour. Now perhaps the conference participants were caught by
surprise or were thinking about buying Christmas presents. However, a com-
parison of all solutions returned to JJS revealed that not a single backbone
could be found. A random selection of half the solutions showed these re-
maining solutions had exactly one edge in common.

Thus as the convergence would be rather slow and as it would be tedious
and also slightly crazy to ask people at every upcoming conference to draw
a solution, we decided to transfer this task back to computers. They should
simulate this human behavior by generating solutions according to a slightly
modified bestinsertion technique: starting out from a randomly chosen back-
bone, one iteratively selects a backbone at random and determines where to
best insert it into the tour. In addition to the standard bestinsertion tech-
nique, we have to take both directions of the backbone into account. Here
the proceeding is the same as with the original SfB algorithm, except that
the solutions are not generated with SA but with this construction heuristic.

 55000

 55500

 56000

 56500

 57000

 57500

 58000

 58500

 59000

1 3 10 30 100 300 1000

<
H

>

iteration i

p=128
p=64
p=32
p=16
p=8
p=4

 54500

 55000

 55500

 56000

 56500

 57000

 57500

 58000

 58500

1 3 10 30 100 300 1000

H
m

in

iteration i

p=128
p=64
p=32
p=16
p=8
p=4

Fig. 19.8. Results of applying the human SfB approach to the PCB442 instance
for various numbers of solutions p. The graphics show the average quality 〈H〉 of
the solutions in each iteration (left) and the length Hmin of the best solution (right)
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Fig. 19.9. Results of applying the human SfB approach to the PCB442 instance
for various numbers of solutions p. The graphics show the numbers Nb of backbones
(left) and Nd of nodes in the distance matrix (right)

Figures 19.8 and 19.9 show the results of this approach. We find that this
approach converges after 96 iterations for p = 4 and after 1783 iterations for
p = 8. Although the curves for Nb and Nd decrease nicely at the beginning,
no convergence was achieved for p ≥ 16 with more than 38,000 iterations.
The final quality of the solutions was so bad that this approach cannot be
recommended.

But here we used the standard SfB technique, so what happened? We sim-
ply replaced the SA routine by the bestinsertion routine. The SfB algorithm
gradually reduced the system size and improved the quality of the solutions.
However, obviously the bestinsertion heuristic only generates a certain type
of solution, which is not even very good. These solutions are only part of
a specific subset of the configuration space. Thus, in contrast to the results
achieved with SA, the configuration space is not appropriately sampled by
the bestinsertion technique. Thus, we strongly recommend using a basic serial
optimization scheme that is able to sample the configuration space properly
and to let the systems optimize to their full extent such that real locally
minimum configurations are compared by the SfB algorithm.
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20 The Constraint Satisfaction Problem

20.1 Sources of Constraint Satisfaction Problems

A large class of tasks that are important in practice can be given a common
expression as constraint satisfaction problems (CSPs). Such a problem has
the following form. A set of variables, xi, must each be assigned values drawn
from an appropriate domain, Di, so that all or as many as possible of a set
of constraints Cj(x1, x2, . . . , xN ) are satisfied. Tasks that fit in the class are
widely encountered. For example, scheduling times for work activities, times
for events, use of classrooms, or even frequencies to be employed for wireless
transmission of data packets can all be expressed in this form. Less obvious
examples would be obtaining a legal layout of all the circuits in a VLSI Si
chip or verifying the correctness of the logic designed for such a chip.

These problems are large. Modern hardware designs often involve millions
of elements, each of which may require a number of variables to be assigned
values before the element is completely specified. Problems in classical areas
of logistics, such as scheduling airline flights, equipment, and their crews, eas-
ily reach this scale. The rapidly growing field of bioinformatics also involves
analyzing genetic sequences involving hundreds of thousands to a few million
coding steps, or attempting to predict the structures of biologically active
chain molecules (proteins) with similarly large numbers of basic molecular
building blocks.

At the core of this large class of problems are simpler randomly generated
classes of CSPs, not arising in industrial practice but created for purposes
such as testing solution methods for constraint satisfaction by providing reli-
ably difficult problems to try. Exploring the nature of the solutions to these
problems is providing clues to why and under what conditions the more irreg-
ular realistic problems are either easy or difficult. The randomly generated
problems typically draw each variable from the same finite domain, typically
a restricted set of the integers, such as between 1 and k. Variables could even
be restricted to be Boolean, with only two values, “0” or “1”. In any of these
examples, the difficulty in the solution comes from the fact that it may be
necessary to explore a finite fraction of the entire state space of the indepen-
dent variables, which is at least of size 2N for N variables, in order to find
an acceptable solution.
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The results we will discuss in the next few chapters focus on ensembles
of randomly generated problems since the results obtained on these prove
very illuminating with respect to understanding methods of dealing with any
CSP. Some experts in constraint satisfaction believe that the “real problems”
that are suggested by or extracted from actual applications are different from
random problems because of the structure embedded in them and, as a result,
are harder to solve. We are skeptical that the difference is that profound.

As we shall see, the search for local iterative improvements form the basis
for one class of successful heuristics in CSPs. In these, all variables are as-
signed values within their domains, and the values are changed one at a time
until an acceptable solution is found. A second class of methods with a struc-
ture like the construction heuristic also play an important role. In the latter
methods, the variables are assigned values one after another. Sophisticated
versions of this keep sufficient records to make it possible to “backtrack”,
undoing some of the assignments when an insoluble conflict is reached, and
starting off again in a new search direction. The hope is that such a sequence
of assignments can be successfully completed, leading to a solution of the
problem in which all constraints are satisfied.

The sequential assignment approaches, when supported by the possibility
of backtracking, can provide exact results. Suppose the variables are Boolean.
Then each time a contradiction is found, the search backs up one step and
resumes after assuming the opposite value of the variable just before the
contradiction. If a search for a satisfying solution ends by backtracking to the
origin, we have proved that the problem does not have a satisfying solution,
since no configuration of the subset of variables that have been searched
is allowed. This may be a valuable conclusion in itself, and reaching this
conclusion without having to consider all of the N variables can provide
a considerable savings of computation over exploring all 2N possibilities.

Constraint satisfaction has entered the public eye with the popular game
of Sudoku, published in newspapers and on Web sites around the world.
The name of this game, which was invented more than 25 years ago, was
artificially created from the Japanese “Suji wa dokushin ni kagiru”, which
means that a number must stay alone. An example is shown in Fig. 20.1. It
is a fancy version of Latin squares. In a Latin square, each square is to be
filled in with an integer from a restricted range so that no row or column
contains the same number more than once. Sudoku goes one step further by
identifying additional neighborhoods (the 3 × 3 squares shown bounded by
double lines in Fig. 20.1) in which no number can appear more than once.
The constraint comes from the fact that some of the squares are already
filled in. If 30 or more are filled in, the puzzle is easy, but when only 25 or
fewer of the normal 81 squares are filled in, the puzzles are considered “evil”
or “diabolical” and provide a very enjoyable challenge for human appliers
of logic. In the practical problems that we study, there are many solutions,
but none of them is easy to find. Here, in contrast, the puzzle solutions are
claimed to be unique, and an effort is made to have the solutions discoverable
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Fig. 20.1. The popular logic game Sudoku is a handcrafted CSP. Each empty
square is to be filled with a number between 1 and 9. Each row, column, or 3×3 array
of squares bounded by the heavier lines must use each of the nine numbers exactly
once. We are told that the problem can be solved using only logical reasoning, not
trial and error, and that the solution is unique. The uniqueness of the solution
makes Sudoku problems somewhat different from naturally arising CSPs

by applying complex chains of logical inferences, without requiring extensive
depth-first search and backtracking.

20.2 Benchmarks and Competitions

Naturally, any good problem, such as constraint satisfaction, creates an op-
portunity for intense competition. In constraint satisfaction, annual contests
are run to determine the best all-around constraint satisfaction solver [94, 95].
Baskets of 1000 or more challenging problems, left unsolved in previous con-
tests or never seen before, are compiled. The problems typically include
pathological examples constructed by hand, problems drawn from or sug-
gested by industrial practice, and randomly generated problems. CSP solvers
are run automatically in a test environment against all of the problems in
the basket and compared on both the total running time they require to
solve them and on the number of problems in the basket that they actually
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succeed in solving before reaching an agreed-upon upper time limit for each
particular problem.

In a typical year, the winning programs solve about 75% of the challenge
problems, and the CPU time required varies by a factor of as much as 10,
even among just the top five or six programs entered. This contest structure
prevents programs tuned to solve a particular type of program from getting
very far, but it has not to date answered the question of exactly how the
best techniques for solving actual problems might differ from the simplest
methods that have been tested extensively on randomly generated problems.

In our discussion, we will explore the properties of CSP solutions and
solution methods for a particularly simple class of randomly generated prob-
lems, because of the more general insights that these suggest. We will not
discuss hand-generated pathological examples.

20.3 Randomly Generated Models
and Their Complexity

Two classes of random constraint satisfaction models have attracted consid-
erable interest, K-SAT and K-XOR-SAT. As a result we now understand
the characteristics of their solutions in considerable detail and can hope to
extrapolate the insights gained to other more structured problems. In each
problem, we have N Boolean variables, xi, and generate a formula, F , at
random. We then ask to exhibit a configuration of the Boolean variables for
which the formula evaluates to TRUE. The formula is most easily expressed
as the AND of a collection of M clauses, each involving K of the Boolean
variables, selected at random. If all of the clauses are individually true, then
their logical AND, and the formula as a whole, will also be true.

The parameter that characterizes the overall difficulty of satisfying a typ-
ical formula is the ratio M/N , which we will call α. In addition to considering
methods of solving large formulas, we shall be interested in the asymptotic
behavior of this problem, the results of which will almost certainly be seen
when N and M are allowed to become very large while their ratio, α, remains
constant. When α is small, the formulas are almost always satisfiable. When
α is very large, the formulas will almost surely not be satisfiable. Somewhere
in between, physical reasoning suggests, there will be a phase boundary be-
tween the satisfiable phase (SAT) and the unsatisfiable (UNSAT), and the
crossover between these two will become sharp as N → ∞. Experiments show
that this indeed happens, and both experiment and theory now provide con-
siderable insight into the details of this surprisingly rich transition. Whether
or not the transition also occurs in realistic CSPs and occurs with some of
the same phenomena is currently an active area of research.

K-SAT and K-XOR-SAT differ in the definition of their clauses. In words,
each clause in K-XOR-SAT takes K distinct randomly selected variables and
demands that their parity (the XOR of the K variables) be either 0 or 1,
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chosen at random with equal probability. In K-SAT, again K variables are
chosen at random for each clause. Each variable is assigned a desired value,
chosen at random to be either “0” or “1” with equal probability. The clause is
deemed to be satisfied as long as one or more of the variables takes its desired
value. In other words, each clause is the OR of K comparisons between the
variables and their desired values. This logical structure, the AND of OR
clauses, is known as conjunctive normal form, or CNF, so another name for
random K-SAT is random K-CNF.

Both problems are easily solved when K = 2 but become difficult for
K ≥ 3. Values of K that are not integers can also be studied by considering
formulas that are mixtures of two values of K. Thus K = 2.5 can be consid-
ered a mixture of equal numbers of two-variable and three-variable clauses.
The clauses in K-XOR-SAT are satisfied by half of the assignments of vari-
ables, regardless of the value of K, while the clauses in K-SAT are satisfied
unless all K of the variables differ from their desired values; thus they fail to
be satisfied for only 2−K of the assignments. As a result, the value of α at
which the K-XOR-SAT problem becomes unsatisfiable is much smaller than
the value of α at which the K-SAT problems become unsatisfiable for the
same value of K.

There is a connection between the K = 2 problem and stochastic branch-
ing processes, which is at the heart of whyK = 2 is an easy problem. Consider
one clause in a 2-SAT formula, for example “X OR Y”. For the formula to be
true, at least one of the two clauses in it must be true. So if X is not true, Y
must be, and if Y is not true, X must be. We can represent this situation as
a directed graph, in which an arrow leads from ¬X to Y and a second arrow
leads from ¬Y to X. If we construct this graph of implications for an entire
formula, the arrows will form chains whose length is finite when α < 1 and
diverges when α > 1. This is because the expected number of outgoing links
from each clause is α. The formula is satisfiable iff there is no path leading
from some variable to imply its negation. If the paths formed by the arrows of
implication that represent the 2-clauses are all short in length, it is possible
that no such path is present. But if the paths connect and span a signifi-
cant fraction of the variables, then almost certainly there will be many such
contradictions. Thus for 2-SAT, the runaway seen in the branching process
is also the phase boundary between a satisfiable and an unsatisfiable phase.
Determining whether the formula connects a finite fraction of the variables
requires a simple breadth-first search, whose cost is linear in the number of
clauses present.

When 3-clauses are present, there is no compact way of searching for the
logical implications. Searches for satisfying assignments to the variables or
for logical contradictions are inherently capable of branching and thus require
a cost exponentially increasing with the size of the problem.
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20.4 Randomly Generated Models
and Their Phase Diagrams

Early interest in the satisfiability problem arose from reports that it was in
fact easy when posed against an ensemble of randomly generated problems.
For example, Goldberg [68] described a class of random SAT problems for
which a construction heuristic, augmented by backtracking [47], can almost
always find a satisfying solution. In Goldberg’s model, each clause is gener-
ated by selecting variables with a fixed probability. This leads to clauses of
varying length. It was soon realized that in this model, the cost of solution is
polynomial for almost all instances [60]. It is difficult to generate computa-
tionally hard problem instances. This does not mean that they do not exist,
only that they are rare, and may in fact not be observable in practice.

20--variable formulas
40--variable formulas
50--variable formulas

N
um

be
r o

f D
P

 c
al

ls
 (t

ho
us

an
ds

)

Ratio of clauses-to-variables
2 3 4 5 6 7 8

0

1

2

3

4

Fig. 20.2. The cost (in number of constructive forward search steps) of solving
3-SAT problems displays a peak at the SAT-UNSAT boundary, which sharpens
dramatically when N → ∞ (from [113])

However, once the length of each clause is fixed, the K-SAT problem does
reliably generate problems that are hard to solve by any known algorithm,
at least for certain ranges of α. In Fig. 20.2, we see that the cost of finding
a solution peaks at α ≈ 4.3 for 3-SAT. In Fig. 20.3, we see that in this range
of α, the chance that the randomly generated 3-SAT formula is simply not
satisfiable first becomes significant. The width of the peak in the solution cost
roughly corresponds to the range of α over which this probability change
occurs. In this regime, the cost of finding a solution is observed to grow
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Ratio of clauses-to-variables

2 3 4 5 6 7 8

Fig. 20.3. Fraction of 3-SAT problems found to be unsatisfiable when formulas
are generated with 50 variables, M = αN clauses (from [113])

exponentially with N , the number of variables. The narrowing and apparent
divergence of the peak in the cost of solving 3-SAT problems suggests that
some sort of critical phenomena are taking place.

A survey of modest-sized problems in K-SAT for values of K ranging from
2 to 6 is summarized in Fig. 20.4. The threshold curves, showing the fraction
of unsatisfiable formulas in the ensemble increasing from near 0 to near 1,
appear to sharpen up and pivot around a common point for each value of
K, implicitly suggesting that this is the asymptotic position of the phase
transition between the satisfiable phase and the unsatisfiable phase. “Finite-
size scaling” is a useful tool in the study of phase transitions. The basic idea
is to find a simple and general transformation of the scale over which the
parameters (here, α) vary when passing through the critical regime, so that
with this transformation data obtained from samples of various sizes can
be reduced to a common form. The transformation should depend only on
N and the distance from the critical point. A standard form that we have
employed is to plot data for the fraction of formulas that are unsatisfiable
against, not α, but a rescaled coordinate, α′ = N1/ν(α − αc)/αc. This map-
ping has the effect of “opening up” the transition region as it narrows with
increasing N .

In Fig. 20.5, we see that the data for smaller samples collapse into a single
crossover form and coalesces into a single curve at larger values of N . Here the
values of the parameters used are αc = 4.2 and ν = 1.5. These values are not
very precisely determined; other nearby values of αc and ν will also collapse
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the data and look almost as good to the eye. Still, the evidence of a behavior
that becomes simple in the limit of very large problem size is quite compelling.
This type of “finite-size scaling” analysis can be applied to many problems in
combinatorics in which one has a threshold between two characteristics. Such
“phase transitions” are becoming a well-understood aspect of large complex
systems.
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Fig. 20.6. Crossover curves connected by finite-size scaling for K = 2, 3, 4, 5, and
6. The data points for K = 6 are plotted against the crossover curve predicted in
the annealed limit (from [198])

Figure 20.6 shows that additional information can be inferred from the
shapes of the rescaled crossover curves seen in the various cases with K =
2, 3, 4, 5, and 6. For K = 2, the shape of the crossover curve is quite different
from that of the other cases. As K reaches 6, we also find that the curve takes
a shape with ν = 1 and a simple form that can be predicted by arguments
based on averages in which we neglect all correlations between the values of
the variables in different clauses. This is often called an “annealed” average
in the study of disordered materials. If we define

yann = N(α− αann)/αann , (20.1)

then the probability that a formula will remain unsatisfied in all 2N configu-
rations can be estimated as e−2−yann . The data for K = 5 and 6 tend to this
limit in Fig. 20.6.
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20.5 Mixtures of easy and hard CSPs

In contrast to the models with a mixture of all sizes of clauses, shown in [60]
to almost always be satisfiable, if we study mixtures that interpolate between
two adjacent values of K, the results are more interesting. The case K = 2
we know can be solved by a search whose cost is linear in N , while the
case K = 3 is a classic NP-complete problem. What happens in between
has now been carefully studied [145, 146, 147] by experiments and theory on
formulas with random mixtures of 2- and 3-clauses. Consider a formula with
M clauses, pM of which are 3-clauses and (1 − p)M of which are 2-clauses,
with 0 ≤ p ≤ 1. This “(2 + p)-SAT” model smoothly interpolates between
2-SAT (p = 0) and 3-SAT (p = 1). For a given value of N the number of
2-clauses cannot exceed N , since then even in the absence of any 3-clauses the
formula would likely be unsatisfiable. This sets an upper limit of αc(2 + p) ≤
αc(2)/(1 − p) = 1/(1 − p). Using rigorous arguments, Achlioptas et al. [3]
showed that 1/(1 − p) is also a lower bound for p ≤ 0.4. Above p = 0.4 the
upper and lower bounds separate, suggesting that only above p = 0.4 do the 3-
clauses begin to play a role in inhibiting satisfiability of the constraints in the
problem. In Fig. 20.7, we compare experimental results obtained by depth-
first search with backtracking with the upper and lower bounds of [3] and
a theoretical prediction obtained by methods from statistical mechanics that
are outside the scope of this book. All three agree that from p = 0 to p = 0.4
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0 0.2 0.4 0.6 0.8 1

α

Fig. 20.7. Theoretical and experimental results for the SAT/UNSAT transition in
the 2 + p-SAT model (from [145, 146])
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the typical behavior of these mixture models is that of its 2-SAT subproblem,
with the 3-clauses appearing to play no role. From 0.4 ≤ p ≤ 1.0, both sets
of clauses are apparently important in providing constraints. The “replica
symmetric” theory of Monasson et al. [145] gives a pretty good account of
the transition point, making at worst a 10% overestimate at p = 1, while
both sets of results lie within the rigorous bounds on the transition that are
derived in [3].

Fig. 20.8. Median computational cost of proving a formula SAT or UNSAT using
a depth-first search with backtracking, for p ranging from 0 to 1. Note the extreme
difference in the behavior of this cost as seen for p = 0.6 and as seen for p ≤ 0.4

Another observation, which tends to confirm the interpretation we have
given of the role of the 2-clauses and 3-clauses as functions of p, is the cost of
solving these problems as N increases. Figure 20.8 provides data from studies
with p = 0, 0.2, 0.4, and 0.6. The cost increases linearly with N until p = 0.4,
and more steeply for p > 0.4. The figure shows data from p = 0.6, but the
effect is evident even earlier than that.



21 Construction Heuristics for CSP

21.1 Application of the Bestinsertion Heuristic
to the 3-SAT Problem

As a first approach to solving a constraint satisfaction problem (CSP) with
a construction heuristic, one might think of simply applying a standard con-
struction heuristic like the bestinsertion heuristic. Thus, one would start out
with a tabula rasa, in which each binary variable xi is unset. Then one se-
lects one of the variables xi at random and asks whether one should set xi to
true or to false according to the bestinsertion paradigm, i. e., xi is set to true
if a larger number of clauses are fulfilled than if setting it to false and vice
versa. If exactly the same number of clauses is fulfilled when set to either true
or false, then it is randomly set to either true or false with equal probability.
This method of randomly selecting a variable that is not yet set to either true
or false and then setting it to the better value is repeated until all variables
have been set.

Of course, such an approach might be sufficient for very simple problems.
However, we tested them at a few benchmark sets of the 3-SAT problem
called ufN -M , consisting of several benchmark instances, with 20 ≤ N ≤ 250
and 91 ≤ M ≤ 1065, all of which lie in the phase-transition region, are
satisfiable, and can be downloaded from [91]. We performed 100 optimization
runs for each benchmark instance. Figure 21.1 shows that the bestinsertion
heuristic only rarely found the solution for small systems; it failed completely
for N ≥ 100.

Here the question arises of the extent to which the bestinsertion heuristic
was unable to solve these problem instances. In order to investigate this prob-
lem, we measured for every instance the average and the maximum fraction
of unsatisfied clauses in the series of our 100 applications of the bestinsertion
heuristic to this problem. Taking the average of these numbers over all the
instances with a specific value of M , we find that the average of the average
fraction of unsatisfied clauses stays rather constant, whereas the maximum
fractions decrease, as shown in Fig. 21.2.

Of course, one can argue now that we have applied the simple bestinsertion
heuristic to these specific benchmark instances that lie in the transition range
and can thus be considered rather hard. Therefore, we also generated our
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Fig. 21.1. Fractions of successful optimization runs using the bestinsertion heuris-
tic, which is applied to the benchmark instances mentioned in the text. For each
benchmark instance, we performed 100 optimization runs. We plot these fractions
vs. the number M of clauses in the benchmark instances. Below, we give the number
N of variables in brackets. For most values of N , the benchmark library contains
100 benchmark instances, except for N = 20, 50, and 100, for which there are 1000
benchmark instances. We find that only 3.5% of the runs are able to find a feasible
solution for N = 20 and M = 91. For N = 50 and M = 218, 0.015% of the runs
were successful, for N = 75 and M = 325, only one instance was solved once. For
all larger instances, the bestinsertion heuristic always failed to provide a feasible
solution

own instances, with N = 1000 variables each and with various numbers
M of clauses, in the range between M = 100 and M = 2000. For each
clause, three different binary variables were selected that were inserted as
themselves into the clause with 50% probability or as their negations with
50% probability.

Figures 21.3 and 21.4 show the results averaged over these instances.
We find that the fraction of runs ending in a feasible configuration decreases
sigmoidally from 1 to 0 and finally vanishes forM/N = 1.3. For large fractions
M/N , we get a linear increase of the fraction of unsatisfied clauses.

Now one could also try to vary the bestinsertion heuristic. For example,
one might want to put more emphasis on the unsatisfied clauses. Thus, one
would select a randomly chosen unsatisfied clause in which at least one of the
three variables is not yet set to either true or false. Then one would randomly
select one of these variables and set it to either true or false according to
the bestinsertion paradigm. Please note that this does not mean here that
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Fig. 21.2. Fraction funs of clauses remaining unsatisfied after applying the bestin-
sertion heuristic vs. overall number M of clauses. (Again we give the corresponding
values of N in brackets.) For each benchmark instance, the average and maximum
fraction of unsatisfied clauses was determined. The graphic shows the average of this
average fraction (“mean of mean”), the average of the maximum fraction (“mean
of max”), and the maximum of all maxima (“max of max”). We find that the curve
“mean of mean” stays rather constant and that the maximum fraction of violated
clauses decreases with increasing system size

the clause that was selected originally is then fulfilled, as the bestinsertion
heuristic prefers to introduce the variable in such a way that a maximum
number of clauses are satisfied and not that a specific clause is satisfied. We
also implemented this variant of the bestinsertion heuristic. The results for
this variant are also shown in Figs. 21.3 and 21.4. We find that this variant
leads to worse results than the original bestinsertion heuristic. This result is
in accordance with corresponding results for the traveling salesman problem:
there most of the variants of the bestinsertion heuristic led to worse results
than the bestinsertion heuristic itself, although their rule sets were more
elaborate.

Summarizing, the application of a simple standard construction heuristic
to a 3-SAT problem fails nearly completely when the fraction M/N reaches
values in which the 3-SAT problem becomes interesting. For hard CSP prob-
lems we will need to develop much more clever and fast approximate strate-
gies. But for easy problems (which do also arise in practice), only slight
improvements in this brute force construction heuristic are required.
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21.2 Assertion, Decimation, and Resolution

The construction process described in the preceeding section has been used
and studied under several names. The oldest is “assertion”. This name arises
in the study of logical expressions and systems for determining their capa-
bilities of expression. If we think of our variables as logical variables and our
formulas as logical expressions, then it is natural to speak of “asserting” the
truth (or falsity) of a “variable” and to use the term “literal” for the form
in which a variable or its negation appears in a logical expression. Thus our
3-SAT formulas consist of clauses, each of which is the logical OR of three
literals. Asserting a variable to be either true or false, whichever makes the
resulting literal in the clause evaluate to true will make the clause true. The
term “decimation” arises from the fact that each assertion that satisfies one or
more clauses reduces the size of the part of the formula remaining unsatisfied.
If we find enough useful assertions, the formula will disappear entirely.

For 3-SAT, there is a clever series of assertions that has been shown to
decimate away simpler formulas entirely. Suppose we list, for each variable,
the number of clauses that require the variable to be true and the number
of clauses that require it to be false. A variable that needs to be always true
or always false, and will find no conflicting clause, is called a “pure literal”.
Asserting such a “pure literal” to be true removes all of its clauses from the
formula. This will require correcting the lists for the remaining variables, some
of which were in the clauses just removed. Some of these may become “pure
literals” as well. Broder et al. [30] showed that decimating pure literals (the
“pure literal rule”) will, with high probability, solve 3-SAT for all values of
α < 1.63. Dealing with pure literals first, rather than decimating at random,
as in the bestinsertion heuristic, seems a simple price to pay for such a large
improvement.

Alekhnovich and Ben-Sasson [7] were able to take the pure literal result
a step further and show that this result implies that there exists an upper
bound to the cost of running local improvement heuristics, to be discussed
in the next chapter, for all 3-SAT instances with α < 1.63 . . ..

21.3 Analyzable Assertion Protocols

To get even stronger results, and to learn some intriguing things about the
structure of the solution space for SAT problems, we next restrict our atten-
tion to the XOR-SAT problem. 3-XOR-SAT can also be expressed as a model
in which the variables are Ising spins (taking the values +1 or −1), and the
“clauses” are replaced by products of three of the spins, multiplied by either
+1 or −1, with equal probability. We shall use the XOR-SAT language in this
discussion, considering the variables to be Boolean and the clauses to be the
truth or negation (chosen at random) of three distinct variables, selected at
random. There is an equivalent of the pure literal rule for this problem. Con-
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sider a variable that participates in only one clause. Such “1-variables” can
be asserted to do whatever the clause and the remaining variables require,
and as a result the clause can always be satisfied. So for this problem, the
process of decimation consists of finding all 1-variables, removing them and
their clauses from consideration, finding any variables that are now exposed
as 1-variables, removing them, and continuing until no 1-variables remain.
This process has been studied by several groups [171, 37].
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Fig. 21.5. Density of 1-spins (1-variables) generated by the decimation procedure
in 3-XOR-SAT as the decimation progresses to completion. For concentrations of
less than c = 0.818, the decimation proceeds until all clauses have been eliminated.
Above c = 0.918, no 1-spin decimation is possible, and formulas are unsatisfiable
(from [37])

In Fig. 21.5 we see the result of this decimation process. For concentra-
tions c of clauses (equivalent to our parameter α) less than 0.818, the decima-
tion process is almost always successful. Between c = 0.818 and c = 0.918 the
decimation process reduces the size of the formula somewhat but stops after
removing a relatively small fraction of the variables and clauses, as shown in
the inset of Fig. 21.5. However, an analysis based on tracing the propagation
of inferred signs of variables, similar to the construction of inference chains
described for 2-SAT, can be carried out here. This shows that the chains are
short, and thus satisfiability is likely for 0.818 ≤ c ≤ 0.918. In Fig. 21.6,
we see that the threshold sharpens up in the canonical fashion discussed in
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Fig. 21.6. Finite-size sharpening of the SAT-UNSAT threshold in the 3-XOR-SAT
model as a function of c and of the number of variables, N . Inset: energy reached by
a deterministic rule that is not strong enough to identify satisfying configurations
in the hard-SAT region (from [171])

Chap. 20, indicating a phase transition into an UNSAT phase taking place
at precisely 0.918. In the intermediate region, one is likely to be forced to
accept a good, but not optimal, solution. The inset of Fig. 21.6 shows the
minimum cost reached by a simple deterministic strategy for finding such
ground states. We call this intermediate regime a hard-SAT region, and its
occurrence is a common feature of these combinatoric problems defined over
ensembles of random logic graphs.

21.4 Solution Space Structure of XOR-SAT

The XOR-SAT model is unusual in that we know the number of ground states
and many things about their distribution over the configuration space of the
model as functions of the concentration of clauses. By the methods developed
in [37] we find the entropy s (the log to base 2 of the number of ground states)
is given by

s = 1 − c , (21.1)

as shown in Fig. 21.5. The entropy is continuous at the SAT/UNSAT thresh-
old, cs = 0.918 . . ., but for the larger values of c describes low-lying states
in which there are inevitably some unsatisfied clauses. The interesting region
lies between cd, defined as the “dynamical threshold”, and cs because of the
difficulty to reach ground states that was shown in Fig. 21.2. Below cd, the
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of the concentration c. The total entropy (logarithm of the number of solutions)
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hard-SAT region, the entropy is the sum of two terms, the logartithm of the number
of clusters (s0) and an intra cluster entropy (s1)

ground states are uniformly distributed over the entire configuration space,
since they constitute all possible configurations of the variables remaining
when the decimation of 1-variables is completed. Above cd the decimation
completes leaving most of the variables still interacting. The entropy now
separates into two components. The number of ground states of the reduced,
decimated system is still of order exp(s0N), and each such ground state can
be considered the seed of a large number of possible additional states in which
the variables removed during the decimation process take on all possible val-
ues. On average, this adds s1 in entropy to each of the reduced ground states.

There is also a geometric interpretation to this more complex set of ground
state configurations. The ground states of the reduced formula can be thought
of as the centers of exp(s0N) clusters. The clusters are separated on average
by a Hamming distance of N/2, as were all ground states for c < cd. The
additional states of each cluster are grouped more tightly, as suggested by
the sketch in Fig. 21.7. The average separation between states in the same
cluster, measured in Hamming distance, is ≤ 0.15, since that is the fraction
of variables removed in the 1-variable decimation, and these take essentially
random values.
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This suggests a general hypothesis that the extra hardness associated with
the transition from a solvable to an unsolvable problem in combinatorics or
optimization is a consequence (or at least is accompanied by) a change in the
geometry and statistics of the configurations that are sought. The presence
of a satisfiable but still much harder-to-solve region before the transition is
also a feature that was subsequently confirmed in other models. However,
XOR-SAT is an exactly solvable model, at least in its satisfiable phase, and
may be somewhat simplistic. K-SAT, and perhaps other models that have
not been solved, appear to display this pattern but exhibit additional finer
structure in the approach to their phase boundaries from the SAT side.



22 Random Local Iterative Search Heuristics

22.1 RWalkSAT

In this chapter we consider a fairly wide range of algorithms for K-SAT and
other constraint satisfaction problems (CSPs), all of which are in the family
of local rearrangement rather than construction heuristics. Many of them are
somewhat carelessly called “walksat”, although there are several different
heuristics lumped under the general phrase. We shall separate them by their
histories.

The first proposal for a local improvement heuristic for random CSPs
was made by Papadimitriou in 1991 [160]. In this method, one starts with
a random configuration of the variables of a SAT formula and focuses on the
unsatisfied clauses. In each step, one chooses an unsatisfied clause, selected
at random, and chooses one variable found within that clause, also selected
at random. Reversing the value of that variable has the primary effect of
satisfying the clause. It may also satisfy other clauses that were unsatisfied
or cause other clauses to become unsatisfied. These secondary effects should
cancel out initially, but as the density of unsatisfied clauses decreases, one
would expect that the clauses that are made unsatisfied would increase in
number and limit the effectiveness of this heuristic. However, Papadimitriou
was able to prove that this heuristic will solve 2-SAT formulas with α ≤ 1
(in the SAT phase) in at worst N2 steps. We will refer to this simple rule as
RWalksat, since it is essentially a random walk with one clever trick.

Actually, the heuristic works much better than that. Alekhnovich and
Ben-Sasson [7] proved that it will reach a solution of 3-SAT random formulas
with α < 1.63 at a cost in steps that is linear in N . They optained an
upper bound for the length of the search by use of the pure literal rule. In
fact, it works in linear time over an even wider range than this analysis could
prove. Two recent studies [200, 16] discovered that RWalkSAT finds satisfying
configurations for 3-SAT in time linear in N as long as α ≤ 2.7. Although
the search cost increases only linearly with increasing N , the proportionality
constant diverges as α approaches its “dynamical transition”, αd. When α >
αd, the cost of solving the problem using RWalkSAT increases exponentially
with N . There is a simple explanation for this. In the easy region, α ≤ αd,
the random walk reaches a ground state directly, but at larger values of α,
the initial decrease in energy reaches a nonzero average value, but with large
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fluctuations about that average value. Above αd, the time to reach a satisfying
configuration using RWalkSAT is dominated by the waiting time for a large
enough fluctuation about this average to occur that a ground state is reached.

Desroulers and Monasson [48] have shown that the characteristics of the
endpoint of the linear region and onset of exponential cost are common to
several algorithms. They propose, based on an analysis of decimation rules,
that the probability of finding a solution with these simple heuristics has
a universal form, decreasing as exp(−N1/6). In addition, the width of the
crossover region scales as N−1/3. They argue that this form should apply to
all heuristics that work for sufficiently easy problems, those outside the Hard-
SAT region, so this could include both construction heuristics and methods
based on local moves, such as RWalkSAT.

22.2 WalkSAT

Selman, Kautz, and various coworkers have extended Papadimitriou’s idea
into a widely used local rearrangement search method for solving many sorts
of CSP problems, both model problems and those arising in real-world con-
texts [196, 197]. These methods are all called WSAT, but at least six variants
of the actual moves employed have been proposed. They are reviewed in [135].
The most widely used procedure is still their original version, which adds two
tricks to the random variable selection of [160]. After choosing an unsatisfied
clause to satisfy, they define a “greedy” move as choosing to reverse the vari-
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Fig. 22.1. Median cost of WSAT random walk steps per variable taken to solve
3-SAT formulas with α ranging from 0.5 to 4.3 (from [12])
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Fig. 22.2. Variance of the WSAT median cost, multiplied by N (from [12])

able that breaks the fewest previously satisfied clauses by its reversal. (One
could also choose to reverse the variable for which the number of clauses that
become satisfied minus the number that become unsatisfied is maximized,
but this seems not to do as well.) Next, for robustness they mix moves using
the random selection with moves using the greedy selection of a variable.
Their recommendation is an equal proportion of the two moves, selected at
random, but the fraction of each type of move used is an obvious tuning
parameter. Finally, Kautz and coworkers test each variable in the unsatisfied
clause to see if it is a “pure literal”. If any variable proves to be a pure literal,
they reverse it without considering any of the other moves.

Using the “greedy” move but without testing for pure literals, Barthel et
al. [16] found little improvement in power over pure RWalkSAT. However,
by testing first for pure literal moves, Aurell et al. [12] found that the cost
of solving 3-SAT formulas with the full WSAT remained linear in N up
to roughly α = 4.15, as shown in Fig. 22.1. The cost per variable of the
WSAT solution increases by about six orders of magnitude over this range
of α, and the distribution of times observed in [12] is broad. Aurell et al.
also evaluated the first four moments of this distribution to ensure that it
became concentrated with increasing N on the linear dependence reported.
Their results for the variance of the solution cost, scaled up by N , are shown
in Fig. 22.2. The third and fourth moments of the distribution narrow in
proportion to N and to N2, respectively. Thus the cost of WSAT behaves in
exactly the way that a process governed by the usual laws of large numbers
is expected to behave, in spite of the very large increase in the magnitude of
the effects observed.



526 22 Random Local Iterative Search Heuristics

22.3 Simulated Annealing

After this discussion of the application of algorithms specifically designed for
the satisfiability problem, we would like to mention that this problem can
also be solved by a standard approach like simulated annealing (SA). For the
application of SA, a cost function H(σ) for a configuration σ = (x1, . . . , xN )
must be defined that is then minimized with SA. We chose H to simply be
the number of unsatisfied clauses. Thus, when the Hamiltonian H reaches
a value of 0 some time in the optimization run, we know that all clauses are
fulfilled and thus a feasible configuration has been reached.

After initializing all binary variables xi randomly with either true or false,
we simply perform a standard SA run, starting at an initial temperature given
by the overall number of clauses and then reducing the temperature exponen-
tially by a factor of 0.9 to a final temperature of 10−2. In each temperature
step, we performed 1000 sweeps, i. e., 1000N moves. Each move simply selects
one variable xi at random and intends to perform the move xi → ¬xi. This
move usually changes the number of satisfied clauses. The move is then ac-
cepted or rejected according to the Metropolis acceptance criterion. A next
higher move (but there was no need to implement it) would be to try to
change two randomly selected variables at the same time.

We downloaded two large libraries of benchmark instances provided by
SATLIB [94, 91], namely, the satisfiable uniform random 3-SAT instances
that lie in the phase-transition region and all random 3-SAT instances with
backbone-minimal subinstances contributed by Singer. With our simple SA
approach, we were able to solve all of these instances with system sizes (N,M)
between (20, 91) and (250, 1065). For the smaller instances, usually only one
optimization run was needed to find a configuration in which all clauses were
fulfilled. For the larger instances, it was sometimes necessary to run the SA
program with up to ten different random seeds in order to get a feasible
configuration.

Figure 22.3 shows the results of applying SA to one of the benchmark in-
stances, using the parameters given above. Just as for the traveling salesman
problem, we find that the mean energy decreases sigmoidally with decreas-
ing temperature and finally freezes in the optimum value of 0. The curve of
the specific heat is of course rather rough, due to the shortness of the opti-
mization run. The specific heat exhibits its peak in the temperature range
between 0.1 and 1. There might be a multipeak structure because of cluster-
ing and ordering effects. But, due to the small amount of calculation time,
it could also be that the occurrence of a few peaks is only a nonequilibrium
effect. The acceptance rate also decreases sigmoidally. However, it does not
vanish for the smallest energies, although the energy no longer changes there.
Thus, trivial moves can be performed that do not change the energy at all.
Therefore, this problem instance has a degenerate ground state.

As these benchmark instances could so easily be solved with a simple SA
approach, there was no need to think of more complex optimization schemes,
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like, for example, ruin & recreate (R & R) moves or the searching for back-
bones (SfB) algorithm. But of course for more difficult instances, one might
use these approaches: when working with R & R, one would randomly select
some variables, remove them from the system in such a way that neither true
nor false values were assigned to them, and reinsert them in a random order
while trying to maximize the number of satisfied clauses by setting them to
either true or false.

In the SfB algorithm, one would compare the solutions for equal parts,
i. e., find out whether a variable xi is set to either true or false in all solutions.
If so, then it is again assumed that this setting also applies to the optimum
solution. Therefore, the variable is removed from the system by replacing it
with the value of true or false in all clauses of which it is a part. If it is
replaced by true, then the clauses are automatically fulfilled, such that they
can be removed from the system. If it is false, then the clause containing
three variables that are connected by the OR operator are reduced to two
variables with an OR operator in them. Thus, in both cases, the complexity
of the system is reduced.



23 Belief Propagation and Survey Propagation

23.1 Belief Propagation, Message Passing, and Cavities

Belief propagation [162] is a fairly old strategy, popular in artificial intelli-
gence, for using the calculus of probabilities to estimate where solutions to
complicated discrete problems such as constraint satisfaction are most likely
to be found. The mathematics behind it is usually not rigorous, but it offers
the promise of replacing a difficult integer program with a more tractable
linear or quadratic evaluation, which may often give a solution in which all
the variables are in fact integers as desired, or may be accurately rounded
off to the nearest integers. Belief propagation is generally performed as an
iterative algorithm in which each probability, of “belief”, is updated in the
light of the information currently available for the beliefs of the other vari-
ables with which the variable on which the belief is based directly interact.
To physicists, this sort of iterative update procedure is reminiscent of the
“cavity models”, of mean field theory used in early treatments of magnetic
ordering. Finally, because the iterative evaluation of beliefs is carried out by
passing information in messages that flow from one variable to another along
the graph that is defined by the interactions in a problem, it is natural to
think of distributing the calculation so that it can proceed asynchronously
and in parallel without central coordination.

To make these ideas concrete, we shall show how they can be applied
to constraint satisfaction, in particular to K-SAT. A recent series of papers
drawing upon some general ideas from the statistical mechanics of disor-
dered materials have given deep insight into the nature of the SAT-UNSAT
phase transition [138, 139, 27, 161]. This work relies on the concept of “repli-
cas” of the random system being studied, identical copies of that system
that are studied together. The basic insight, going back to Edwards and
Anderson [56], is that ordering in random systems is a matter of stability,
rather than regular structure evident by its symmetry. Thus an ordered struc-
ture is observed because it forms repeatedly in the different replicas of the
system. The simplest forms of order in random systems are called “replica
symmetric”.
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The ground states of the XOR-SAT problem discussed in the previous
chapter were first understood using the replica analysis. More complicated
structures with additional hierarchy are now known. The clustered solutions
found in the XOR-SAT problem in the hard-SAT region are one example of
these. Most of the formal methods that follow this line of investigation are
beyond the scope of this book, but practical methods of obtaining some
of the results using message passing and iterative “cavity” evaluation of
quantities called “surveys” that are similar in spirit to the standard beliefs
have become available, and will be explored next, following the derivation
in [12].

An iterative “belief propagation” (BP) [162] algorithm for K-SAT can be
derived to evaluate the probability, or “belief”, that a variable will take the
value TRUE in the set of configurations that satisfy the formula considered.
To calculate this, we first define a message (“transport”) sent from a variable
to a clause:

• ti→a is the probability that variable xi satisfies clause a.

In the other direction, we define a message (“influence”) sent from a clause
to a variable:

• ia→i is the probability that clause a is satisfied by another variable than xi.

In 3-SAT, where clause a depends on variables xi, xj , and xk, BP gives the
following iterative update equation for its influence:

i
(l)
a→i = t

(l)
j→a + t

(l)
k→a − t

(l)
j→at

(l)
k→a . (23.1)

The BP update equations for the transport ti→a involve the products of
influences acting on a variable from the clauses that surround xi, forming its
“cavity”, Vi, sorted by which literal (xi or ¬xi) appears in the clause:

A0
i =

∏

b∈Vi, yi,b=¬xi

ib→i and A1
i =

∏

b∈Vi, yi,b=xi

ib→i , (23.2)

with

yi,b =

{
xi if xi is part of clause b

¬xi if ¬xi is part of clause b
. (23.3)

The update equations are then
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0
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a→i A

0
i +A1

i

if yi,a = xi .

(23.4)
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The superscripts (l) and (l − 1) denote iteration. The probabilistic interpre-
tation is as follows: suppose we have i(l)b→i for all clauses b connected to vari-
able i. Each of these clauses can either be satisfied by another variable (with
probability i

(l)
b→i) or not be satisfied by another variable (with probability(

1 − i
(l)
b→i

)
) and also be satisfied by variable i itself. If we set variable xi to 0,

then some clauses are satisfied by xi, and some must be satisfied by other
variables. The probability that they will all be satisfied is

∏
b�=a,yi,b=xi

i
(l)
b→i.

Similarly, if xi is set to 1, then all these clauses b are satisfied with probability
∏

b�=a,yi,b=¬xi
i
(l)
b→i. The products in Eq. (23.4) can therefore be interpreted

as joint probabilities of independent events. Variable xi can be 0 or 1 in a so-
lution if the clauses in which xi appears are satisfied either directly by xi

itself or by other variables. Hence

Prob(xi) =
A0

i

A0
i +A1

i

and Prob(¬xi) =
A1

i

A0
i +A1

i

. (23.5)

23.2 Message Passing as Side Information
for Decimation

To use BP for decimation, we select the variables with the largest probability
to be either true or false. We then assign them their likely value, recalculate
the beliefs for the reduced formula, and repeat. As with removal of 1-variables
in K-XOR-SAT, decimation using BP proceeds until there are no clauses
left and leaves the remaining variables untouched. The entropy is therefore
given by the number of remaining variables, or 1—the “depth of decimation”
plotted with the dashed line in Fig. 23.1. This method succeeds in finding
satisfying configurations (ground states) of large 3-SAT formulas up to nearly
α = 3.9, which is believed to be the beginning of a Hard-SAT regime for
this problem. Since we studied only large formulas, and the SAT-UNSAT
transition is now understood to occur at α = 4.267 . . . [139], the formulas
studied were almost certainly all satisfiable. On the rising part of the BP
depth of decimation curve in Fig. 23.1, the decimation stops when the BP
equations fail to converge. At this point, use of the full WalkSAT algorithm
in the form described in the previous chapter finds a satisfying configuration
in every case studied.

In the hard-SAT region, a hierarchical decomposition into clusters of so-
lutions that are more separated from each other, as occurs in XOR-SAT, is
plausible. A more complicated set of messages, designed for use in a single
cluster of solutions, has been called survey propagation (SP) [27] and shown
to provide a viable decimation scheme in this region. To arrive at SP we
introduce a modified system of beliefs: every variable falls into one of three
classes: TRUE in all solutions (1), FALSE in all solutions (0), and TRUE in
some and FALSE in other solutions (free). Thus a decimation scheme will
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Fig. 23.1. Depth of decimation achieved by BP, SP, and two mixed cases (ρ = 0.95
and ρ = 1.05) as a function of α, the ratio of the number of clauses to the number
of variables in 3-SAT (from [12])

attempt to identify the most frozen variables, those that are constant over
a cluster of solutions. The message from a clause to a variable (an influence)
is the the same as in BP above. Although we will again only need to keep
track of one message from a variable to a clause (a transport), it is convenient
to first introduce three ancillary messages:

• T̂i→a(1) is the probability that variable xi is true in clause a in all solutions,
• T̂i→a(0) is the probability that variable xi is false in clause a in all solutions,
• T̂i→a(free) is the probability that variable xi is true in clause a in some

solutions and false in others.

Note that there are here three transports for each directed link i → a, from
a variable to a clause, in the graph. As in BP, these numbers will be functions
of the influences from clauses to variables in the preceeding update step.
Taking again the incoming influences independently, we have

T̂
(l)
i→a(free) ∝

∏
b∈Vi\a i

(l−1)
b→i ,

T̂
(l)
i→a(0) + T̂

(l)
i→a(free) ∝

∏
b∈Vi\a,yi,b=xi

i
(l−1)
b→i ,

T̂
(l)
i→a(1) + T̂

(l)
i→a(free) ∝

∏
b∈Vi\a,yi,b=¬xi

i
(l−1)
b→i .

(23.6)



23.2 Message Passing as Side Information for Decimation 533

The proportionality indicates that the probabilities are to be normalized. We
see that the structure is quite similar to that in BP. But we can make it closer
still by introducing ti→a with the same meaning as in BP. In SP it will then, as
the case might be, be equal to Ti→a(free)+Ti→a(0) or Ti→a(free)+Ti→a(1).
That gives [cf. Eq. (23.4)]:
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(23.7)

The update equations for ti→a are the same in SP as in BP, i. e., one uses
Eq. (23.1) in SP as well. Similarly to Eq. (23.5), decimation now removes
the most fixed variable, i. e., the one with the largest absolute value of (A0

i −
A1

i )/(A
0
i + A1

i − A1
iA

0
i ). Given the complexity of the original derivation of

SP [138, 139], it is remarkable that the SP scheme can be interpreted as a type
of belief propagation in another belief system. And even more remarkable is
the fact that the final iteration formulas differ so little.

A modification of SP that we will consider in what follows is to interpolate
between BP (ρ = 0) and SP (ρ = 1)1 by considering
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(23.8)

We do not have an interpretation of the intermediate cases of ρ as belief
systems.

Figure 23.1 shows the depth of decimation resulting from SP as well as
the variants that are shifted by use of the ρ parameter slightly in the direc-
tion of BP and slightly away from BP (“overrelaxed”). We see that the SP
decimation is effective only in the hard-SAT region, since below α = 3.9 it
considers all variables as “free” to take either value in the configurations that
can be constructed. In the hard-SAT region, it has the effect of removing
the core variables, leaving WalkSAT with a problem to solve that is no more
difficult than finding ground states at α = 3.9 . . ., the entry to the hard-SAT
1 This interpolation has also been considered and implemented by Zecchina and

coworkers.
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Fig. 23.2. Median cost of a WalkSAT solution close to the SAT-UNSAT transi-
tion, with and without first performing the SP-induced decimation to reduce the
complexity of the formula (from [12])

region. This is suggested by the cost data contained in Fig. 23.2. Setting the
parameter ρ to 0.95 produces an interesting result. The decimation proceeds
to completion, just as in BP, but the method continues working in the hard-
SAT region of the parameter space. Overrelaxed SP (ρ = 1.05) gives what
may be reasonable recommendations even above the SAT–UNSAT boundary,
where these methods can be used to arrive at configurations with the smallest
number of unsatisfied clauses.

23.3 Belief Propagation and Sudoku

The Sudoku puzzle that we showed in Fig. 20.1 poses a difficult challenge for
stochastic methods of resolving constraint problems. The puzzles are gener-
ated in apparently limitless quantities on popular Web sites. In our study,
we made use of puzzles from www.websudoku.com. Programs that automat-
ically solve the puzzles exist and are used in the filtering process that leads
to automatic generation of good puzzles, but to the best of our knowledge all
employ a long list of complex logic rules, followed by exhaustive search and
backtracking to explore the hardest cases.

The puzzles are graded by level of difficulty. “Easy” puzzles typically have
about 35 squares already filled in. “Medium” puzzles will have 32 clues. One
can solve puzzles at these levels by repeatedly using the rule that no square
can have a value that is already taken by another square in the same row,
column, or 3 × 3 square. As soon as you discover a square that has only
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one possible value available to it, you insert that value and see what other
discoveries the assignment may enable. A second rule is essential. If a square
is the only place in a given row, column, or 3 × 3 square that can take on
a particular value, then it must be assigned that value. These two rules can
solve any “easy” or “medium” Sudoku puzzle, and many “hard” puzzles as
well. “Hard” puzzles typically have 28 to 30 squares filled in initially. “Evil”,
sometimes called “diabolical”, puzzles start with 24 to 26 squares filled in,
and these two simple rules seldom provide more than one or two additional
assignments.

A plausible way to develop a stochastic Sudoku solver is to use belief
propagation to replace a hard discrete optimization problem with a softer
problem using real numbers. For each square, we might calculate the nine
probabilities that the square contains each one of the nine allowed numbers.
If we let P (i, j) be the probability of square j taking value i, then we can
evaluate this probability as the product of the probabilities that no other
square in the same row, column, or 3 × 3 square will take value i:

P (i, j) =
∏

k in ngbhd of j

(1 − P (i, k)) . (23.9)

After evaluating Eq. (23.9) for each of the nine choices of i, we normalize
the results so that the probabilities in a single square sum to unity. Unfortu-
nately, this takes advantage of only one of the two basic rules. After iterating
a while, we may find that the total probability of finding a “3” somewhere
in a given row does not sum to unity but can take almost any value. Since
we have already normalized the beliefs after iterating with Eq. (23.9), there
is no convenient place left to incorporate the second rule in the evolution
of the probabilities. Use of decimation, however, gets around some of this
difficulty [22].

After iterating the beliefs to convergence, one selects the square and the
value that are most strongly indicated and asserts that value in that square.
One can augment this procedure with rules to prevent making assignments
that are manifestly wrong (e. g., assigning the same number to two squares
in the same row, column, or 3 × 3 square). The result is much stronger than
simply applying the two basic rules to eliminate choices and solves nearly all
“easy” to “hard” puzzles, and some “evil” puzzles as well. Probably the fact
that the use of only nine numbers for the squares is now built in adds some
of the effects of the second logical rule, which forces values when they cannot
be assigned elsewhere in their local neighborhood.
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Fig. 23.3. Solution to the puzzle posed in Fig. 20.1. A human puzzle solver solved
this “evil” puzzle in only 12 min. It appears to be at about the limit for automatic
solution (using belief propagation) today (March 2006)

The puzzle in Fig. 20.1 was solved by a practiced human Sudoku solver
in 12min (Fig. 23.3) and by belief propagation in seconds, but the belief
propagation program needed several tries to find a successful solution. The
program solved another “evil” puzzle on the first try, while the human solver
required 14min to solve it. This work is still in progress, but it appears
likely that these extremely complicated logical inference puzzles will yield to
stochastic optimization with modest further effort.
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24 Future Outlook of Optimization Business

24.1 P = NP?

At present, optimization problems can be divided into two classes. First are
the problems for which exact algorithms exist, solving these problems in
polynomial time, i. e., the time needed to solve a problem instance of size
N is dominated by a power of N , e. g., N3. These problems belong to the
class P . The second group includes problems for which no such algorithms
have been found so far. A widely studied subclass of these problems has the
property that while it may be very hard to find a solution, once we claim to
have found a solution it is trivial to check that it is a solution. Thus with
SAT, if we claim to have a configuration that satisfies all the clauses in the
formula, one only has to check each clause to see if some Boolean variable
in the proposed solution satisfies it. It thus takes time linear in the size of
the problem to check the answer. The common consensus so far is that no
polynomial time algorithms can exist for these problems, so that the approach
of simply testing all the exponentially many possible solutions may not be so
wasteful after all.

In practice, one would use exact algorithms of the branch & bound type
for solving such problems, but these algorithms also require a calculation
time that grows exponentially with the system size N . After this possibility
is exhausted, the other choice is to use a heuristic to get a quite good solution
for the problem.

However, there is a subclass of these problems, each of which can be
mapped into any of the others in polynomial time. One calls problems in
this subclass nondeterministic polynomial complete or NPC. If in the future
somebody was able to find some exact algorithm for solving even one of the
problems in polynomial time, then there would be an algorithm for solving
all of these problems in polynomial time, as one simply needs to transform
any other problem to this solved problem in polynomial time first. In this
case, all problems would be solved automatically.

In the last few decades, attempts have been made to provide polynomial
algorithms for at least one of the problems classified as NPC. So far none
of these attempts has been successful. Even if somebody were to provide
such an algorithm in the future, it is questionable whether it would be of
any practical use. Some of the attempts made so far have led to polynomials
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p(N) of a comparatively large order. Usually in practical computations, one
works with algorithms linear in N like the calculation of the scalar product,
quadratic in N like the matrix–vector multiplication, and cubic in N , like the
matrix–matrix multiplication. But that is somehow the end one can reach
with a reasonable calculation time for larger system sizes. Thus, if somebody
really were to discover an exact polynomial algorithm with a leading term of,
e. g., N6, then it might not be of any use at all for larger system sizes.

Thus, we want to conclude that the types of heuristics described in the
book will always have their fields of application in practice, depending on the
time one is willing to invest to create a solution.

24.2 Quantum Computing

Perhaps the challenges of optimization could be swept away by fundamen-
tal changes in the nature of computation itself. Several approaches currently
under active investigation propose to accomplish just this. Truly new ap-
proaches to computing modify two standard elements of computers of the
past century. They may involve new representations of the problem to be
solved, representations for which there are novel mechanisms with which to
compute things, not simply binary bits and switching circuits. And they will
certainly involve very high degrees of parallelism in the computation, perhaps
even distributing the data and the computing elements over a wide area.

Quantum computing, discussed in this section, and molecular comput-
ing, also known as “DNA computing”, which we will discuss in the next
section, do both of these things at the same time. Both will have to evolve
considerably before we can consider them to be efficient methods for solving
practical problems, although they show great potential power. A less radical
step, already hinted at in the chapters on constraint satisfaction, is parallel
distributed computing, perhaps using message passing and similar stochastic
approaches to replace exact algorithms with much faster but approximate
ones. This uses conventional representations and arithmetic but attempts
to offer parallelism on the same scale as the size of the problem. It will be
discussed in the final section below.

Of course, completely revising the nature of computation means giving up
a lot that we now take for granted. It will take a long time to develop software
as rich and usable as the compilers, development environments, and vast
libraries of working modules out of which we build solutions to complicated
problems and distribute the answers to those who ask the questions today.

Quantum computing provides a new representation, based on quantum
bits (Qbits). Each conventional bit can only take on two states, ‘0’ or ‘1’.
N conventional bits can represent 2N possible states of a system, but we
can only explore one such state in each computation that we perform on
these bits. Qbits are defined in terms of two possible states, called a “basis”,
denoted |0〉 or |1〉, but a Qbit can be any of the possible normalized linear
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combinations of these two, α|0〉+ β|1〉, where α and β are complex numbers.
Arithmetic with classical bits is replaced by the quantum evolution of a linear
combination of Qbits, in which the derived state is a new linear combination
of the original states. When N Qbits are present, 2N coefficients are required
to describe the quantum state, since the “basis” of the N -Qbit state consists
of all possible products of the N Qbits in states |0〉 or |1〉. Thus the N -
Qbit system evolves through a configuration space with exponentially many
degrees of freedom, and its evolution in a rough sense explores these many
possibilities in parallel.

Many practical issues make this miracle extraordinarily difficult to realize
as a realistic computational tool. For a quantum mechanical system to explore
this very rich configuration space, it must be almost completely decoupled
from the rest of the world, yet to write information in and take results out
we must couple to the system. Other sources of noise also add to what is
called “decoherence”, which limits the extent to which the quantum system
can evolve before it degrades to behaving classically. Strategies for error cor-
rection have been proposed and demonstrated, but these add considerable
complexity. The result of these real-world effects is that quantum computa-
tion has been demonstrated with up to seven Qbits, but the systems in which
this has been done do not appear to permit further extensions. Other sys-
tems are currently under study and may someday permit the thousandfold
expansion in the number of Qbits required before quantum computing will
bring presently impossible computations within reach.

24.3 DNA Computing

When defining a toy computer, Turing gave an example of a very simple de-
vice consisting of a pair of tapes and a control unit that read instructions
from the input tape while moving simultaneously along the output tape read-
ing and writing data there. This device is now called a Turing machine and
is the basis of every existing computer.

In biological systems, similar events can be observed: chromatides of the
desoxyribonucleic acid, or DNA for short, are read by a molecule called DNA
polymerase that creates a mirror image of the chromatide, thus allowing the
DNA to reproduce. The DNA is a very long molecule basically consting of
a sequence of four different nuclein bases called adenine (A), thymine (T),
guanine (G), and cytosine (C). A, T, G, and C are also called the four letters
of the DNA alphabet. Adenine and thymine are complementary bases, i. e.,
in the double helix of the chromosome with its two strands, each adenine
is connected to a thymine via a hydrogen bond. Analogously, guanine and
cytosine form pairs of complementary bases. In a chromatide, there is only
one of these two strands. If a polymerase molecule gets at a starting unit
of a single chromatide, then it immediately starts reading the sequence of
bases of this chromatide and producing a mirror image in the way that it
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attaches an A when it reads a T, a T when it reads an A, a G when it reads
a C, and a C when it reads a G. If the original strand gets together with its
counterpart, they form a complete DNA again.

As the computer scientist Leonard Adleman came across these biological
findings, he immediately thought whether this biological type of computer,
which resembles a Turing machine so well, could also be used like a real
computer for solving mathematical problems [5]. The basic ingredients for
such a biological computer were already at hand, as they were provided by
nature that had developed them over millions of years of evolution:

• Only complementary strands of DNA can combine themselves via the
Watson–Crick pairing as described above. If two strands get together that
are not at least partially complementary, they cannot form a pair.

• The polymerase molecules are able to create a complementary copy of the
DNA.

• Then there is the DNA ligase that binds two strands of DNA in proximity
and bonds them covalently into a single molecule. In nature, this ligase is
used to repair breaks in the DNA strands.

• Contrarily, nucleases search for a specific sequence of bases and cut the
DNA there into two pieces.

Adleman made use of gel electrophoresis, a common technique for separating
charged molecules in an electric field. He used this technique to separate DNA
molecules of different lengths, which are charged negatively. The longer the
molecules were, the slower they moved. Finally, he got bands in the gel, each
containing DNA molecules of some specific size.

If this DNA computer is to solve real problems, then it must be possible
to store information in a DNA molecule, i. e., to create a DNA molecule
that contains the desired information. This can be done with modern DNA
synthesis methods, which can generate as a starting point 1018 molecules of
DNA, nearly all of which contain the desired sequence of A, T, G, and C
letters. These molecules only need to be placed in a small tube, while the
first electronic computers filled whole rooms.

To show the possibilities but also the difficulties of DNA computing, we
briefly sketch the work of Adleman, who was able to solve by these means
a small instance of the Hamiltonian path problem (HPP), which is closely
related to the traveling salesman problem (TSP): in the Hamiltonian path
problem, which is an NP-complete problem, a set of nodes and a set of edges
between the nodes are given. The traveling salesman cannot move from some
node to any other randomly chosen node but can walk only over those edges
that are allowed. Generally, these edges are unidirectional, i. e., if there is an
edge supporting the salesman on his way from node i to node j, there is not
necessarily an edge for returning directly from j to i. The task in this HPP
is to find a path from a given initial node to a proposed final node, touching
each of the other nodes exactly once.
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To make this problem solvable for his DNA computer, Adleman used the
following simple algorithm for solving the HPP. The first step is to generate
a set of random paths through the graph. For each of these paths, one must
verify whether they start and end at the correct nodes. If a configuration
does not fulfill this condition, it is removed from the set. Then it is checked
whether the path passes through the correct number of nodes; if not, the
path is also removed. After that it is checked whether every node is actually
passed in the path; if not, the path is removed. Finally, if the set of paths
is not empty, there is a Hamiltonian path; otherwise there is not. Of course,
this final outcome is only exact if every possible path was created at the
beginning.

The problem instance Adleman was able to solve with this algorithm for
his DNA computer at that time consisted of 7 nodes and 14 edges. This
required 7 days in the laboratory. (A human could have found the solution
in about 1 min, but Adleman’s experiment was intended only to demonstrate
that this method worked.) He coded each node by a DNA name consisting
of eight nucleotide bases. The first four bases served as a type of first name,
the last four as a surname. An edge from a node i to a node j is then
coded by the surname of node i and the first name of node j. Omitting the
initial and the final nodes of the Hamiltonian path, the first name of the first
intermediate stop, and the surname of the last intermediate stop, the solution
of the Hamiltonian path could thus be coded with 32 bases. After generating
1014 DNA molecules, Adleman put them in a simple tube, added water and
salt to reproduce biological conditions and the molecules needed such as
ligase. Within a second, the DNA computer was able to solve this problem
due to its massively parallel processing. However, the biological computer
contained not only the correct solution but also many different random paths.
The solution to this problem was first to reproduce exponentially the correct
paths, while paths with both a wrong start and a wrong end node were not
duplicated at all. If exactly one of these two end nodes was correct, then the
growth was much slower than that of the molecules meeting both conditions.
Then Adleman used gel electrophoresis to extract the molecules with the
correct length.

After that Adleman made use of a procedure called affinity separation
in which the complementary names of the desired nodes, which should be
intermediately visited in the path, are attached to microscopic iron balls.
These short molecules like to attract their counterparts in the path configu-
rations. Then he placed a magnet against the wall of the tube and poured out
those molecules that contained the corresponding node. After adding a new
solvent and removing the magnet, he raised the temperature to break the
connection between the molecules and the probes. Next he extracted the iron
balls with a magnet. This approach was repeated for any node that should
be visited along the path. After some final reheating and cooling and a fi-
nal electrophoresis step, the first DNA computation was complete: the DNA
computer, i. e., the tube, contained the desired Hamiltonian path solution.
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In the meantime, more and larger problems have been solved with DNA
computing. Currently, more and more operations can be performed automat-
ically by machines in biochemical labs, so that this work is not as tedious
as it was for Leonard Adleman in 1994. However, to our knowledge, so far
no example of DNA computing has proven potentially superior to the exist-
ing algorithms in the standard computing world with silicon computers, but
perhaps this will change in the future.

24.4 How Will the Problems Evolve?

We are currently studying optimization methods that scale to extremely large
problems because such problems exist and are becoming more typical as well
as larger with each passing year. At points in the past, it has seemed as if
things had gotten as big and complex as they will ever be, but at every turn,
some small improvement in technology has had a big impact, and the old
limits have disappeared. Consider the telephone system. Pictures from the
1920s show city skies dominated by telephone wires, telephone poles crowd-
ing the streets, and huge rooms filled with telephone operators connecting
calls. At the time, it was fashionable to say that this growth could not con-
tinue because within a few years everyone would have to become a telephone
operator. The introduction of automatic dialing did, in fact, make everyone
a telephone operator, and further automation of long-distance connection has
managed to stabilize and slowly reduce the population of live, professional
operators.

In addition, improvements in senders and receivers and the invention of
multiplexing made it possible to pass more calls over a wire at faster rates.
Optical communication has further increased the rates at which calls move,
and thus the number of calls, and has introduced the possibility of sending
multiple streams of data at different light wavelengths along the same “wire”.
In many parts of the world where wires and poles never got as dense as
in Western cities, the introduction of wireless telephony has continued this
growth without requiring the wired infrastructure at all. The result is that
today there are one or more telephones for each person on the planet. Is
that the limit? Probably not, since we are beginning to find reasons to use
telephones to communicate with machines. Our computers talk to us, and
even more often to each other, over communication lines that have grown
out of the telephone system. Computing power is being inserted into ever
smaller appliances, devices with a few well-understood functions, such as
sending and receiving e-mail, playing music in earphones, or washing clothes
with minimum waste of water and discharge of detergents. These machines
need to talk to us and to each other increasingly often. So the limits of the
telephone system, which has become a telephone and data communications
network, don’t seem to be pressing upon us.
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Data themselves are udergoing a similar explosion. Observational sciences,
such as biology, high-energy physics, astronomy, and sciences that exploit
observations of the earth and its atmosphere, increasingly take advantage of
“virtual observatories” of data that have been gathered and characterized so
that multiple types of analysis can be applied to them. Experiments seek-
ing new phenomena can combine searches for anomalies within the existing
data with new measurements to explain them. Problems that produced gi-
gabytes (1 GB ≈ 109 bytes) of data a few years ago are beginning to produce
terabytes (1 TB ≈ 1012 bytes) of data in current years, which are managed
in single installations but must be joined in data federations around the
world. The petabyte (1 PB ≈ 1015 bytes) and exabyte data accumulations
(1 EB ≈ 1018 bytes) are not far away. Commercial data are also on the same
growth curve. There is also an increasing tendency for these data to be avail-
able for carefully controlled public access. Banking records and catalogs of
information such as Google and Amazon or similar online stores’ Web sites
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Fig. 24.1. Increase of the system size N of the TSP instances optimally solved in
the year y: one clearly sees an instantaneous increase in the system sizes in the mid-
1980s in which the algorithms for solving TSP instances exactly were considerably
improved. Afterwards, an exponential increase in the size of this system size took
place. The fitting line is given by 10 × exp((y − 1950) × 0.15). The data used for
this graphic were taken from the pictorial history site of the TSP on the Web [96],
according to which the current world record (March 2006) of a TSP instance opti-
mally solved is held by Applegate, Bixby, Chvátal, Cook, and Helsgaun, who found
the optimal tour through 24978 cities in Sweden in 2004
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are good examples. It is probably no accident that each time the volume of
data that we are aware of existing in the world doubles, the price per bit of
storing that data and making it available online is nearly halved.

Even in our special world of TSP solving, the growth in the size of systems
solved exactly shows an exponential growth trend, as shown in Fig. 24.1. TSPs
in excess of 104 sites are now solved, but not routinely, as each of the new
records in Fig. 24.1 has required some months of dedicated supercomputer
time.

The focus of computing strategies to deal with this growth has increas-
ingly turned to distributed computation. Unlike the revolutionary strategies
of quantum or molecular computing, distributed computing is evolutionary.
The representation of events is as close as possible to whatever is currently
used in centralized computing, but the form of the computation changes both
because of the overall scale and because as much as possible, computation is
delegated to occur in as many places as the data reside in.

As a result, prospects for the optimization business seem excellent. There
are opportunities for optimizing access to data by intelligent placement of
related information. There is a serious need to optimize queries against dis-
tributed data so that they can avoid aggregations of huge partial results that
are not ultimately needed. The gathering of fresh data about the world needs
planning to avoid intolerable communications expense. And the message-
passing strategies and stochastic or randomized algorithms that we discuss
in this book are increasingly common in this world which we see developing.
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Schömer (Johannes Gutenberg University of Mainz).

JJS would also like to thank Mr. Hautmann and Mr. Pammer (BMW
Regensburg), Mr. Wohlleben and Mr. Schömig (Siemens Semiconductor Re-
gensburg), Peter Korevaar (formerly IBM Scientific Center Heidelberg), and
Wolfgang Rudolph and Andreas Brinkmann (BMW Munich, Germany) for
providing additional opportunities for applying optimization algorithms to
a wide variety of optimization problems in the real world.

Furthermore, JJS would like to thank Florian Baumgartner, Günter
Bauer, Sebastian Beichele, Johannes Bentner, Johann Birneder, Jürgen Britze,
Markus Dankesreiter, Anja Ebersbach, Christine Froschhammer, Christian
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benchmark instances 220–223, 231,

513, 526
biased sampling 115
binary tree 53
bird flock model 171, 428
Boltzmann distribution 81
bouncing 123, 324
branch & bound 21
branch & cut 24

concave function 389
conjugate gradients 13
constraint satisfaction problem 501

constraints 49
construction heuristics 59, 243, 513
control parameter 65
convex function 389
cooling schedule 119
cooling schedule, exponential 119
cooling schedule, linear 119
cooling schedule, logarithmic 119
cooling schedule, nonmonotonic 122
critical temperature 81
crossover 159
crossover operator 416
CSP 501
cubix model 53

decimation 517
detailed balance 82
Dijkstra algorithm 212
diversification 183, 445
divide & conquer 54
DNA computing 541

EBSA 126
EBTA 126
edge matrix 216
ensemble based simulated annealing

126
ensemble based threshold accepting

126
entropy, information 97
entropy, Shannon 97
entropy, Tsallis 96
ergodicity 84
ES 157
Euclidean metric 211
evolution strategy 157
EXC 265
exchange 265



564 Index

expectation value 85
exponential cooling schedule 119
exponentially distributed random

numbers 38

farm model 53
feedback 146
feedforward network 146
finite-size scaling 507
freezing temperature 86, 299, 303

GA 46, 157, 415
Gaussian distributed random numbers

38
GDA 100, 350, 452
genetic algorithm 46, 157, 415
geometric solution 16
GLS 185, 464
golf hole 90
Gomory algorithm 21
great deluge algorithm 100, 350, 452
greedy 64
Grest hypothesis 135, 313, 314
guided local search 185, 464

heat bath 66
heat bath criterion 83, 306
heat capacity 85
Hebb’s learning rule 147
heuristics 7, 43
hidden neurons 146
Hopfield network 149, 405
hypercube 53

importance sampling 116
information entropy 97
information exchange 56
insertion heuristics 60
integer optimization 20
intensification 183, 445
inverse simulated annealing 88
inverse temperature 82

Kohonen network 154, 408

L2O 268
L3O 275
Lagrange multiplier 87, 304
Lin-2-opt 268

Lin-3-opt 275
linear cooling schedule 119
linear problem 15
local search 45, 69
logarithmic cooling schedule 119

Manhattan metric 212
Markov process 63
master equation 82
master-slave model 53
MC 31
metaheuristics 7
metric, L1 212
metric, L2 211
metric, L∞ 212
metric, Lp 211
metric, Euclidean 211
metric, Manhattan 212
metric, Tschebyscheff 212
Metropolis criterion 83, 306
misfit 225
Monte Carlo 31
Monte Carlo, calculation of π 42
move size 71
MPI 204
MUCA 186, 449
MUCAREM 192
multiagent systems 175
multicanonical algorithm 186, 449
multicanonical annealing 192, 452
mutation 159, 415

natural selection 157
neural network 143, 405
neural network, Hopfield 149, 405
neural network, Kohonen 154, 408
neuron 144
NIM 266
NN 143, 405
node insertion move 266
noising 111, 397

observable 85, 302
optimization libraries 204
optimization, selfish 178

parallel tempering 132, 334
parallelization libraries 204
particle swarm optimization 171, 428



Index 565

partition sum 82
penalty functions 50
Penna criterion 97, 347
perceptron 147
perceptron, XOR problem 148
permutation 397
programming languages 202
PSO 171, 428
PT 132, 334
PVM 204

quantum computing 540

R & R 73
R2R 138, 359
random number generation 32
random number tests 32
random numbers 31
random numbers, exponential 38
random numbers, Gaussian 38
random numbers, transformation 37
random walk 64
record to record travel 138, 359
recurrent network 146
REM 132
REMUCA 192
replica-exchange method 132
ruin & recreate 73, 287, 528
RW 64

SA 79, 299, 526
savings heuristic 61
SCM 240
search space smoothing 103, 367
searching for backbones 193, 471, 528
self-organizing maps 154
selfish 178
selfish optimization 178
SfB 193, 471, 528
Shannon entropy 97
simple sampling 115
simplex algorithm 15, 17–19
simplex tableau 19
simulated annealing 79, 299, 526
simulated annealing, acceptance

141, 455
simulated tempering 130
simulated trading 176, 431
smoothing 367
smoothing function 371, 378, 380, 381,

386, 389

smoothing function, concave 389
smoothing function, convex 389
smoothing function, exponential 378
smoothing function, hyperbolic 386
smoothing function, logarithmic 381
smoothing function, power law 371
smoothing function, sigmoidal 380
smoothness-control parameter 105
social temperature 179
specific heat 85, 302, 303
SSS 104, 367
ST 130
stochastic tunneling 139
STUN 139
Sudoku 503, 536
sugar hat 90
sugar loaf 90
supply chain management 240
susceptibility 87
synapse 144

TA 89, 341
tabu 181
tabu search 47, 181, 441
temperature 82
temperature, critical 81
temperature, freezing 86, 299, 303
temperature, inverse 82
temperature, social 179
thermal expectation value 85
threshold 89
threshold accepting 89, 341
token ring model 54
transformation of random numbers 37
traveling salesman problem 211
tree model 53
TS 47, 181, 441
Tsallis entropy 96
Tsallis statistics 96, 347
Tschebyscheff metric 212
TSP 211
Turing machine 541

vehicle routing problem 234
vehicle routing problem with time

windows 236
VRP 234
VRPTW 236

WalkSAT 524
weight annealing 112, 399
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M. Kří̌zek, P. Neittaanmäki, R. Glowinski,
S. Korotov (Eds.)

Finite Element Methods
and Their Applications Z. Chen

Mathematics of Large Eddy Simulation
of Turbulent Flows
L. C. Berselli, T. Iliescu, W. J. Layton

Large Eddy Simulation for Incompressible
Flows An Introduction Third Edition
P. Sagaut

Spectral Methods Fundamentals in Single
Domains
C. Canuto, M. Y. Hussaini,
A. Quarteroni, T. A. Zang

Stochastic Optimization
J.J. Schneider, S. Kirkpatrick

springer.com



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages false
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Remove
  /UsePrologue false
  /ColorSettingsFile (Color Management Off)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 290
  /ColorImageMinResolutionPolicy /Warning
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.01667
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 290
  /GrayImageMinResolutionPolicy /Warning
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 2.03333
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 800
  /MonoImageMinResolutionPolicy /Warning
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 2400
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice




