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Practical Linear-Time O(1)-Workspace Suffix Sorting
for Constant Alphabets

GE NONG, Sun Yat-sen University

This article presents an O(n)-time algorithm called SACA-K for sorting the suffixes of an input string
T [0, n−1] over an alphabet A[0, K−1]. The problem of sorting the suffixes of T is also known as constructing
the suffix array (SA) for T . The theoretical memory usage of SACA-K is n log K+n log n+K log nbits. Moreover,
we also have a practical implementation for SACA-K that uses n bytes + (n + 256) words and is suitable for
strings over any alphabet up to full ASCII, where a word is log nbits. In our experiment, SACA-K outperforms
SA-IS that was previously the most time- and space-efficient linear-time SA construction algorithm (SACA).
SACA-K is around 33% faster and uses a smaller deterministic workspace of K words, where the workspace
is the space needed beyond the input string and the output SA. Given K = O(1), SACA-K runs in linear time
and O(1) workspace. To the best of our knowledge, such a result is the first reported in the literature with a
practical source code publicly available.
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1. INTRODUCTION

Given a string T [0, n − 1] of n characters from an ordered alphabet A[0, K − 1], the
suffix array (SA) of T is an array SA[0, n − 1] of integers storing the pointers for all
the suffixes in increasing lexicographical order [Manber and Myers 1993]. To simplify
presentation, we assume that there is always T [n−1] = 0, which is the unique smallest
character in T and called the sentinel. Because of the sentinel, any two suffixes in T
must be different, and their lexicographical order is determined by comparing their
characters one by one, from left to right, until we see a difference. Let suf(T , i) denote
the suffix T [i, n−1] in T . Given that all the suffixes of T have been sorted in SA, there
must be suf(T , SA[i]) < suf(T , SA[ j]) for all i < j.

In this article, we propose an O(n)-time suffix array construction algorithm (SACA)
called SACA-K (i.e., SACA with K-word workspace). The theoretical memory usage of
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SACA-K is n log K + n log n+ K log n bits. Moreover, we also have a practical implemen-
tation for SACA-K that uses n bytes + (n + 256) words and is suitable for strings over
any alphabet up to full ASCII, where a word is log n bits.

SA and its variants are fundamental data structures for building information sys-
tems. During the past two decades, a plethora of SACAs of different time and space com-
plexities have been proposed among which are a few notable ones [Manber and Myers
1993; Sadakane 1998; Itoh and Tanaka 1999; Larsson and Sadakane 1999; Burkhardt
and Kärkkäinen 2003; Hon et al. 2003; Manzini and Ferragina 2004; Schürmann and
Stoye 2005; Maniscalco and Puglisi 2006]. Readers may want to read Puglisi et al.
[2007] for a thorough survey up to 2007. The SA can be computed in linear time [Kim
et al. 2005; Ko and Aluru 2005; Kärkkäinen et al. 2006; Nong et al. 2011]1 on a RAM
model. In practice, the best time and space performance for linear-time SACAs is cur-
rently achieved by algorithms SA-IS and SA-DS [Nong et al. 2011]. Both algorithms
use a common divide-and-conquer method to recursively compute the SA in linear time.
In general, SA-IS runs faster but SA-DS can use less space in the worst case. Of par-
ticular interest to us in this article is further improving the induced sorting technique
in SA-IS to make it run faster and use less space. The key for SA-IS to achieve linear
time is the combined use of the linear-time methods for problem reduction and solution
induction. The time complexity of SA-IS is given by T (n) = T (�n/2�) + O(n) = O(n),
where T (�n/2�) counts for reducing T into a new shortened string T1 of size not greater
than half of T (see Lemma 3.5 in [Nong et al. 2011]), and O(n) is due to inducing the
SA of T from that of T1. The core of the whole SA-IS algorithm is the induced sorting
technique for sorting the suffixes as well as the sampled substrings, which is developed
on top of the following classification of L-type and S-type suffixes [Itoh and Tanaka
1999; Ko and Aluru 2005; Nong et al. 2011].

The suffix composed of only the sentinel itself, that is, suf(T , n − 1), is S-type. For
i ∈ [0, n− 2], a suffix suf(T , i) is defined as L-type or S-type if suf(T , i) > suf(T , i + 1) or
suf(T , i) < suf(T , i + 1), respectively. Equivalently, suf(T , i) is S-type if and only if (1)
i = n−1; or (2) T [i] < T [i+1]; or (3) T [i] = T [i+1] and suf(T , i+1) is S-type. Moreover,
suf(T , i) is L-type if it is not S-type. From the suffix type definitions, an L-type or S-type
suffix is larger or smaller than its succeeding suffix, respectively. Further, an S-type
suffix suf(T , i), i > 0, is called an LMS-suffix (leftmost S-type) if suf(T , i − 1) is L-type.
Given the type of suffix, we further define the type of a character: T [i] is L-type or
S-type if suf(T , i) is L-type or S-type, respectively. Furthermore, T [i] is called an LMS-
character if suf(T , i) is an LMS-suffix. A substring T [i, j] is called an LMS-substring
if (1) i = j = n− 1, or (2) i < j, both T [i] and T [ j] are LMS-characters, and there is no
other LMS-character in between them. lms(T , i) denotes the LMS-substring starting
at LMS-character T [i], i ∈ [1, n − 1].

The following diagram illustrates the concepts of suffix/character type and LMS-
substring. Given a string T = ′′ococonut0′′ , by scanning the string from right to left,
we find the type of each suffix and character and store it in an n-bit type array t[0, n−1],
where t[i] gives the type of suf(T , i): 0 for L-type and 1 for S-type, respectively. Also,
all the LMS-substrings, in their positional order from left to right in T , are found to
be {′′coc′′, ′′con′′, ′′nut0′′, ′′0′′} (notice that the sentinel itself is an LMS-substring), where
each pair of neighboring LMS-substrings overlap on a common LMS-character.

T : o c o c o n u t 0
character type : L S L S L S L L S

t : 0 1 0 1 0 1 0 0 1
LMS−substrings : coc , con , nut0 , 0

1Only the journal versions of articles reporting these algorithms are cited here.
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The induced sorting method in SA-IS is a kind of bucket sorting developed in the
context of SA construction. Given that a set of elements are sorted by their keys into
an array, each subset of elements of equivalent keys must locate consecutively in a
sub-array called a bucket. If we sort all the characters of T into SA, we will see a set of
buckets in SA, where each bucket comprises a set of equivalent characters. Hence, if we
lexicographically sort all the suffixes of T into SA, then all the suffixes with a common
first character must fall into the bucket for their first characters. Let bucket(SA, T , i)
denote the bucket in SA for character T [i] as well as suffix suf(T , i). Furthermore,
the first and the last items of a bucket are called the start and the end of the bucket,
respectively.

An important property utilized to develop the linear-time algorithms in Ko and Aluru
[2005] and Nong et al. [2011] is that in each bucket in SA, an L-type suffix of T must
be lexicographically less than and hence locate before an S-type suffix. This property
was exploited by SA-IS for induced sorting of both the sampled substrings and the
suffixes at each recursion level. The induced sorting algorithms in SA-IS are bucket
sorting in principle, using a bucket counter array bkt for keeping track of the status of
each bucket on-the-fly. The term induced sorting is coined to reflect that the order of
suffixes of a string is induced from that of another string that is at least shorter by half.
The new linear-time algorithm SACA-K is developed based on a novel naming method
different from that in SA-IS. Such a naming method enables us to design SACA-K
with the following distinct advantages over SA-IS: (1) type array t is not needed at
all, and (2) bucket counter array bkt is needed only at the top recursion level. As a
result, the workspace is deterministic K words for computing the suffix array of input
string T , where the workspace is the space needed beyond the input T and the output
SA. Therefore, for any n-character string T over a constant alphabet of size K = O(1),
SACA-K solves the problem in O(n) time and O(1) workspace.2

In the rest of this article, we present the SACA-K algorithm framework in Section 2
and explain the underlying ideas in Sections 3–5. The practical time and space perfor-
mance of SACA-K are evaluated by experiments on a set of typical corpora in Section 6,
and the main results are summarized in Section 7.

2. SACA-K

2.1. Framework

Figure 1 shows the framework of SACA-K. Similar to SA-IS [Nong et al. 2011], SACA-K
first samples all the LMS-substrings of T and sorts them, then replaces each LMS-
substring with an integer name to produce a shortened string T1 (which is at least 1/2
shorter than T , i.e., n1 ≤ �n/2�, see Lemma 3.5 in Nong et al. [2011]) for computing the
SA of T recursively. Both SA-IS and SACA-K sample the same set of LMS-substrings
to compute the new shortened string T1.3 As a result, SACA-K will output the same SA
as that from SA-IS, in the same time complexity of T (n) = T (�n/2�) + O(n) = O(n) as
that of SA-IS, too. The major improvement of SACA-K over SA-IS lies in the reduced
workspace. The design of SA-IS uses a workspace reserved for bucket counter array
bkt and type array t linear to n. However, SACA-K uses only a deterministic workspace
which is solely decided by K instead.

2If not specified explicitly, a space is measured in log n bits, as commonly adopted in the literature for SACAs
e.g., [Franceschini and Muthukrishnan 2007; Kärkkäinen et al. 2006]. In Franceschini and Muthukrishnan
[2007], a SACA is said to be “in-place” if it uses O(1) workspace.
3SACA-K names the sorted LMS-substrings by a new method (presented in Section 5) different from that in
SA-IS. Hence, the string T1 produced in SACA-K may be different from that in SA-IS, although both are of
the same length n1.
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Fig. 1. The algorithm framework of SACA-K.

Some more notations are introduced here for further presentation of SACA-K. To
denote a symbol in SACA-K at level l ≥ 0, we add (l) to the symbol’s subscript, for
example, T(l) and T1(l) for T and T1 at level l, respectively. Further, let SA(T(l)) denote
the suffix array of T(l), and SA(l) be the space for storing SA(T(l)). That is, the notation
SA(T(l)) means that all the suffixes of T(l) are already sorted and stored in SA(l); however,
the notation SA(l) means only the space for storing SA(T(l)), regardless of what and how
the data are stored. Notice that due to the recursion, T1(l) and SA1(l) are actually T(l+1)
and SA(l+1), respectively.

2.2. Reusing SA(0)

The space of SA at level 0, that is, SA(0), is reused throughout all the recursion levels
of SACA-K. In Figure 2, the upper and lower three rows show the statuses of SA(0)
immediately before and after the recursive call at line 8, in problem reduction (i.e.,
Stage 1–2) and solution induction (i.e., Stage 4) at levels 0–2, respectively.

ACM Transactions on Information Systems, Vol. 31, No. 3, Article 15, Publication date: July 2013.
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Fig. 2. Reusing SA(0) in SACA-K.

At level 0 shown in the first row, T(1) (i.e., T1(0)) is stored in the rightmost n(1) items in
SA(0) (i.e., SA(0)[n(0)−n(1), n(0)−1]), where n(l) is the size of T(l), and the first n(0)−n(1) ≥ n(1)
items in SA(0) are unoccupied and can be reused for SA(1) (recalling n(l) ≥ 2n1(l) at each
level l). At level 1 shown in the 2nd row, T(2) is stored immediately on the left-hand side
of T(1), and the leftmost n(0) −n(1) −n(2) ≥ n(2) items are free and can be reused for SA(2).
We keep on recursively reducing the string from level to level. At level l, the sub-array
SA(0)[0, n(l+1) − 1] is always free and is enough for the space required for SA(l+1).

Suppose that we are at line 9 (in Figure 1) for level 2. At this point, SA(T(3)) has been
computed and stored in SA(3) which is reusing SA(0)[0, n(3) − 1], as shown by row 4 (in
Figure 2). Then in line 12, SA(T(2)) is induced from SA(T(3)) and stored in SA(2) which
is reusing SA(0)[0, n(2) − 1]. Further in line 13, we return to the upper recursion level
and reach line 9 for level 1, and now the status of SA(0) is shown by row 5. Then, we
continue to compute SA(T(1)) from SA(T(2)) by line 12, and get SA(T(1)) stored in SA(1)
shown in the last row when we reach line 9 at level 0. Finally, SA(T(0)) is induced from
SA(T(1)) by line 10 to produce the output suffix array.

2.3. Induced Sorting

After level 0, SACA-K follows a common execution path for levels 1, 2, etc. Hence, it is
enough for us to explain SACA-K for levels 0 and 1 only. The details of the algorithm
for induced sorting of the suffixes at levels 0 and 1 are different; however, they can be
fit into the following common algorithm framework. At each level, provided that all the
LMS-suffixes of T have been sorted and stored in SA1 which is reusing SA[0, n1−1], we
can perform induced sorting of all the suffixes of T by the following four-step procedure.

(1) Initialize each item of SA[n1, n − 1] as empty.
(2) Scan SA[0, n1 − 1] once from right to left to put all the sorted LMS-suffixes of T

into their buckets in SA, from the end to the start in each bucket.
(3) Scan SA once from left to right. For each non-empty SA[i], j = SA[i] − 1, if

T [ j] is L-type, then put suf(T , j) into the current leftmost empty position in
bucket(SA, T , j).

(4) Scan SA once from right to left. For each non-empty SA[i], j = SA[i] − 1, if
T [ j] is S-type, then put suf(T , j) into the current rightmost empty position in
bucket(SA, T , j).
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The preceding algorithm can also be reused to induce the sorting of all the LMS-
substrings of T by keeping the last two steps unchanged and modifying the first two
steps as follows

(1) Initialize each item of SA[0, n − 1] as empty.
(2) Scan T once from right to left to put all the LMS-substrings of T into the buckets

for their first characters, that is, lms(T , i) is put into bucket(SA, T , i), from the end
to the start in each bucket.

Each step of the aforementioned algorithms for induced sorting suffixes and LMS-
substrings clearly runs in O(n) time, resulting in a total time complexity of O(n) for
both algorithms. Because there is no bucket counter array bkt for level 1, the last three
steps for the induced sorting algorithms on levels 0 and 1 are different. Specifically, the
major difference is in the last two steps: (1) how to determine the type of T [ j] when we
are scanning a non-empty item SA[i], and (2) how to keep track of the current leftmost
or rightmost positions of each bucket. Since the last two steps for induced sorting
suffixes and LMS-substrings at each level are identical and the first two steps are
straightforward, we will concentrate on presenting the algorithms for induced sorting
suffixes at levels 0 and 1, respectively.

3. SORTING SUFFIXES AT LEVEL 0

Differently from SA-IS, where an n-bit type array t is available at each level for induced
sorting suffixes, there is no t in SACA-K, either implicitly nor explicitly. Under this
constraint, the general algorithm for induced sorting suffixes in Section 2.3 is further
developed as follows.

(1) Initialize each item of SA[n1, n − 1] as empty.
(2) Compute into bkt[0, K−1] the end position of each bucket in SA. Scan SA[0, n1 −1]

once from right to left to put all the sorted LMS-suffixes of T into their buckets in
SA, from the end to the start in each bucket, in the following way: for each scanned
item SA[i], j = SA[i] and c = T [ j], set SA[i] as empty, SA[bkt[c]] = j and decrease
bkt[c] by 1.

(3) Compute into bkt[0, K − 1] the start position of each bucket in SA. Scan SA once
from left to right to induced sort the L-type suffixes of T into their buckets in SA,
from the start to the end in each bucket, in the following way: for each scanned
non-empty item SA[i], j = SA[i] − 1 and c = T [ j], if T [ j] is L-type, then set
SA[bkt[c]] = j and increase bkt[c] by 1.

(4) Compute into bkt[0, K − 1] the end position of each bucket in SA. Scan SA once
from right to left to induced sort the S-type suffixes of T into their buckets in SA,
from the end to the start in each bucket, in the following way: for each scanned
non-empty item SA[i], j = SA[i] − 1 and c = T [ j], if T [ j] is S-type, then set
SA[bkt[c]] = j and decrease bkt[c] by 1.

In the last two steps of the preceding algorithm, how do we to determine the type of
T [ j] without type array t? For step 3, because each non-empty item SA[i] stores either
an LMS-suffix or an L-type suffix, T [ j] must be L-type for T [ j] ≥ T [SA[i]]. However,
for step 4, we need to utilize the following property to help determine if T [ j] is S-type
or not when we see T [ j] = T [SA[i]]. In this property, bkt[T [ j]] < i means that the
newly induced S-type suffix must be stored into an item in front of (i.e., on the left-hand
side of) the non-empty item SA[i] that we are currently scanning.

PROPERTY 3.1. At level l = 0, when induced sorting the S-type suffixes of T from the
sorted L-type suffixes, for each non-empty SA[i] and j = SA[i] − 1, suf(T , j) is S-type if
and only if (i) T [ j] < T [SA[i]] or (ii) T [ j] = T [SA[i]] and bkt[T [ j]] < i.
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For the SA-IS algorithm, there is an optimized implementation by Yuta Mori at
https://sites.google.com/site/yuta256/sais/. In Mori’s program, a technique sim-
ilar to Property 3.1 is employed to remove the array t. As seen in file saic.c of package
sais-lite-2.4.1, when an S-type suffix is induced into SA[ j], the highest bit of SA[ j]
is reset as 0 if suf(T , SA[ j] − 1) is detected as S-type for T [SA[ j] − 1] ≤ T [SA[ j]],
or else set as 1. Later on, when we further scan to SA[ j], we can determine whether
suf(T , SA[ j] − 1) is S-type or not by simply checking the highest bit of SA[ j].4 Such
a technique occupies the highest bit of each SA[ j] to mark whether suf(T , SA[ j] − 1)
is S-type or not. However, in Property 3.1, we do not use, by any means, any space
in SA for removing the array t. This is the difference between Mori’s technique and
ours, and it is critical for SACA-K achieving K-word workspace. Regardless of this
difference, SACA-K is distinct from all the known SACAs by the new naming rule for
LMS-substrings proposed in the sequel.

4. SORTING SUFFIXES AT DEEPER LEVELS

At each recursion level of SACA-K, bucket sorting is employed for induced sorting of
both LMS-substrings and suffixes. At level 0, we use K words to store a bucket counter
array bkt[0, K −1] for induced sorting when reducing T into T1, as well as augmenting
SA(T1) to SA(T ). However, at level 1, if we still use a specific bucket counter array for
bucket sorting, the bucket counter array will require O(n) words. In order to achieve
a workspace of K words for the whole algorithm, no specific bucket counter array is
allowed for bucket sorting at levels 1, 2, and thereafter. Fortunately, we have found a
novel way for induced sorting using no specific bucket counter array, in the case that
the following property is held.

PROPERTY 4.1. At level l > 0, each L-type or S-type character in T itself also points
to the start or the end of its bucket in SA, respectively.

In Section 5, we will show how to produce T with this property. Now, given this
property for T at level 1, we show how to compute SA(T ) without using a specific
bucket counter array.

4.1. Induced Sorting L-Type Suffixes

Without the bucket counter array bkt that we had for induced sorting the L-type suffixes
at level 0 in Section 3, the algorithm for induced sorting the L-type suffixes at level 1
relies on Property 4.1. The key idea is to reuse the start item of each bucket in SA to
maintain a counter for tracking the location where an L-type suffix being sorted into
this bucket should be stored. At any level l > 0, each item of SA is reusing an item of
SA(0), and the highest bit in each item is not needed to store the index for a suffix in
T (due to n1 ≤ �n/2� at each level). Hence, at level l > 0, the highest bit of SA[i] is
always available to be used for indicating what data is currently stored in the rest bits
of SA[i]: 0 for a suffix index, 1 for a bucket counter or an empty value.

At the beginning of line 12 in Figure 1, an item in SA may be empty (marked by the
least negative integer denoted by EMPTY) or may store the index of an LMS-suffix in
T , and all the LMS-suffixes stored in SA have been sorted in their correct order. To
induced sort all the L-type suffixes, we scan SA once from left to right as follows. For
each SA[i] > 0 being scanned, j = SA[i] − 1, if T [ j] is L-type (in this case, T [ j] is
L-type if T [ j] ≥ T [ j + 1]), we will put suf(T , j) into its bucket in SA. Recall that T in
this case holds Property 4.1, so T [ j] points to the start of its bucket in SA. That is, let

4This can also speed up the running process because it avoids one random access to array t for the type of
suf(T , SA[ j] − 1)). The array t previously in SA-IS is now replaced by another cache-friendly sparse n-bit
array consisting of the highest bits of SA.
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c = T [ j], the start of bucket(SA, T , j) is SA[c]. To indicate that an item in SA is being
reused as a bucket counter, the value stored in this item is set as a non-empty negative
value. Now, we check the value of SA[c] for the following cases.

(1) If SA[c] is empty, then suf(T , j) is the first suffix being put into its bucket. In this
case, we further check SA[c + 1] to see if it is empty or not. If it is, we sort suf(T , j)
into SA[c + 1] by setting SA[c + 1] = j and start to reuse SA[c] as a counter by
setting SA[c] = −1. Otherwise, SA[c + 1] may be nonnegative for a suffix index
or negative for a counter, and suf(T , j) must be the only element of its bucket; we
hence simply put suf(T , j) into its bucket by setting SA[c] = j.

(2) If SA[c] is nonnegative, then SA[c] is “borrowed” by the left-neighboring bucket
(of bucket(SA, T , j)). In this case, SA[c] is storing the largest item in the left-
neighboring bucket, and we need to shift-left one step of all the items in the
left-neighboring bucket to their correct locations in SA. The start item of the left-
neighboring bucket can be found by scanning from SA[c] to the left, until we see
the first item SA[x] that is negative for being reused as a counter. That is, x is the
largest for SA[x] < 0, SA[x] �= EMPTY, and x < c. Having found SA[x], we shift-left
one step all the items in SA[x + 1, c] to SA[x, c − 1], and set SA[c] as empty. Now,
we see the same condition as that in case 1; hence the operations in case 1 are
performed to further sort suf(T , j) into its bucket.

(3) If SA[c] is negative and non-empty, then SA[c] is being reused as a counter for
bucket(SA, T , j). In this case, let d = SA[c] and pos = c − d+ 1, then SA[pos] is the
item that suf(T , j) should be stored into. However, suf(T , j) may be the largest suffix
in its bucket. Therefore, we further check the value of SA[pos] to proceed as follows.
If SA[pos] is empty, we simply put suf(T , j) into its bucket by setting SA[pos] = j,
and increase the counter of its bucket by 1, that is, SA[c] = SA[c] − 1 (notice that
SA[c] is negative for a counter). Otherwise, it indicates that SA[pos] is the start
item of the right-neighboring bucket, which must be currently nonnegative for a
suffix index or negative for a counter. Hence, we need to shift-left one step the items
in SA[c + 1, pos − 1] to SA[c, pos − 2], then sort suf(T , j) into its bucket by setting
SA[pos − 1] = j.

In the algorithm just described, because we reuse the start item of a bucket as a
counter for recording how many L-type suffixes are already stored in the bucket, it is
possible that the largest suffix of a bucket is temporarily put into the start item of its
right-neighboring bucket. In other words, the rightmost item of a bucket runs into the
start item of the right-neighboring bucket. Hence, in case 2, if we see that SA[c] is
nonnegative for a suffix index, it means that SA[c] is borrowed by the largest suffix in
the left-neighboring bucket (of bucket(SA, T , j)). Hence, we need to adjust all the items
of the left-neighboring bucket to their correct locations. This is done by shifting left one
step all the items in the left-neighboring bucket, where the start of the left-neighboring
bucket is currently the first non-empty negative item in front of SA[c]. Notice that in
cases 2 and 3, the suffixes in a bucket are shifted left only when the bucket is fully
filled. In other words, no other suffix will be sorted into the bucket thereafter. Hence,
the counter for this bucket is not needed anymore. Shifting left a bucket in case 3 is
simpler than in case 2, for we have already known the exact positions of the first and
last items of the bucket.

The time complexity of this algorithm is determined by the loop for scanning SAonce
in order to perform the induced sorting operations. Each iteration of this loop will sort
at most an L-type suffix into SA, and each L-type suffix already sorted into SA can be
shifted at most once. Hence, this loop has a time complexity dominated by the loop’s
size, that is, O(n).
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4.2. Induced Sorting S-Type Suffixes

Given that all the L-type suffixes of T are already sorted into their correct positions
in SA, we can scan SA once from right to left to induced sort all the S-type suffixes.
When induced sorting the L-type suffixes, the start item of each bucket is reused as
a counter for the bucket. However, to induced sort the S-type suffixes, because we are
now scanning SA in a reverse direction, that is, from right to left, and each S-type
character of T points the end of its bucket in SA, now the end item instead of the start
item of a bucket is reused as the counter for the bucket. Hence, with some minor and
symmetric changes to the algorithm for induced sorting the L-type suffixes, we now
present the algorithm for inducing the order of S-type suffixes from the sorted L-type
suffixes.

We scan SA once from right to left as follows. For each SA[i] > 0 being scanned,
j = SA[i]−1, we first check if T [ j] is S-type or not using Property 4.2. In this property,
case (ii) means that the newly induced S-type suffix must be stored into an item in
front of (i.e., on the left-hand side of) the item SA[i] that we are currently scanning.
Now in T , a character itself also points to either the start or the end of its bucket in
SA. Hence, when we see T [ j] = T [SA[i]] and T [ j] > i, then T [ j] must point to the
end of bucket(SA, T , j). This implies that T [ j] must be S-type, because Property 4.1 is
now held by T .

PROPERTY 4.2. At level l > 0, when induced sorting the S-type suffixes of T from the
sorted L-type suffixes, for each SA[i] > 0 and j = SA[i] − 1, suf(T , j) is S-type if and
only if (i) T [ j] < T [SA[i]] or (ii) T [ j] = T [SA[i]] and T [ j] > i.

If T [ j] is S-type, we will put suf(T , j) into its bucket in SA. Recall that T in this case
holds Property 4.1, so T [ j] points to the end of its bucket in SA. That is, let c = T [ j],
the end of bucket(SA, T , j) is SA[c]. Now, we check the value of SA[c] for the following
cases.

(1) If SA[c] is empty, then suf(T , j) is the first suffix being put into its bucket. In this
case, we further check SA[c − 1] to see if it is empty or not. If it is, we sort suf(T , j)
into SA[c − 1] by setting SA[c − 1] = j and start to reuse SA[c] as a counter by
setting SA[c] = −1. Otherwise, SA[c − 1] may be nonnegative for a suffix index
or negative for a counter, and suf(T , j) must be the only element of its bucket; we
hence simply put suf(T , j) into its bucket by setting SA[c] = j.

(2) If SA[c] is nonnegative, then SA[c] is borrowed by the right-neighboring bucket
(of bucket(SA, T , j)). In this case, SA[c] is storing the smallest item in the right-
neighboring bucket, and we need to shift-right one step all the items in the right-
neighboring bucket to their correct locations in SA. The end item of the right-
neighboring bucket can be found by scanning from SA[c] to the right, until we see
the first item SA[x] that is negative for being reused as a counter. That is, x is
the smallest for SA[x] < 0, SA[x] �= EMPTY, and x > c. Having found SA[x], we
shift-right one step all the items in SA[c, x − 1] to SA[c + 1, x], and set SA[c] as
empty. Now, we see the same condition as that in case 1, hence the operations in
case 1 are performed to further sort suf(T , j) into its bucket.

(3) If SA[c] is negative and non-empty, then SA[c] is reused as a counter for
bucket(SA, T , j). In this case, let d = SA[c] and pos = c + d− 1, then SA[pos] is the
item that suf(T , j) should be stored into. However, suf(T , j) may be the smallest S-
type suffix in its bucket. Therefore, we further check the value of SA[pos] to proceed
as follows. If SA[pos] is empty, we simply put suf(T , j) into its bucket by setting
SA[pos] = j, and increase the counter of its bucket by 1, that is, SA[c] = SA[c] − 1
(notice that SA[c] is negative for a counter). Otherwise, SA[pos] must be currently
nonnegative for a suffix index or negative for a counter. Hence, we need to shift-right
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one step the items in SA[pos + 1, c − 1] to SA[pos + 2, c], then sort suf(T , j) into its
bucket by setting SA[pos + 1] = j.

5. NAMING SORTED LMS-SUBSTRINGS

We now describe how to calculate the names for the sorted LMS-substrings of T to get
a new reduced string T1 (which is also the input string T at the next recursion level)
with Property 4.1.

Define s-rank and se-rank of a character in T as follows. The s-rank of T [i] is the
number of characters in T smaller than T [i], and the se-rank of T [i] is the number of
characters in T smaller than or equal to T [i] (excluding T [i] itself), respectively. Given
that all the LMS-substrings of T have been sorted into SA1, we use the following
novel naming method to produce T1 in time O(n). Notice that in this section, each
set of identical LMS-substrings in T constitutes a substring bucket in SA1; such a
bucket definition for LMS-substrings is different from that for suffixes and characters
in Section 1.

(1) Scan SA1 once from left to right to name each LMS-substring of T by the start
position of the substring’s bucket in SA1, resulting in an interim reduced string
denoted by Z1 (where each character points to the start of its bucket in SA1).

(2) Scan Z1 once from right to left to replace each S-type character in Z1 with the end
position of its bucket in SA1, resulting in the new string T1. (Notice that in this
step, the type of each character in Z1 can be determined on-the-fly when Z1 is being
scanned from right to left.)

This naming method is different from that used in SA-IS. Naming the LMS-
substrings of T in this way, in the new string T1, each L-type or S-type character
itself is also its s-rank or se-rank in T1, respectively. As a result, we now get the re-
duced string T1, in which each L-type or S-type character points to the start or the
end of the character’s bucket in SA1, respectively. However, there is still a problem
to be solved in this naming algorithm. To detect the start of each bucket in the first
step, we need to compare any two neighboring LMS-substrings of T stored in SA1.
Without type array t, how do we determine the ends of two LMS-substrings when they
are compared? Because the type of suf(T , i − 1) relies on the type of suf(T , i) when
T [i − 1] = T [i] (see Section 1), there is a difficulty in determining the end of an LMS-
substring when traversing from the start of the LMS-substring. However, fortunately,
we can still traverse an LMS-substring from its start to detect its end by utilizing the
following observation.

An LMS-substring has a type pattern governed by this regular expression S+L+S,
where S+ and L+ mean a string of one or multiple S-type and L-type characters, re-
spectively. In other words, an LMS-substring consists of three segments in sequence:
one or multiple S-type characters, one or multiple L-type characters, and a single S-
type character. Suppose that we are going to retrieve lms(T , x) from its start character
T [x], lms(T , x) together with its succeeding LMS-substring would follow such a pattern
S+L+S+L+S (notice that any two neighboring LMS-substrings must overlap on a com-
mon LMS-character). This fact is utilized to design the following two-step algorithm
for retrieving lms(T , x) from T [x].

(1) Traverse the LMS-substring from its first character T [x] until we see a character
T [x + i] less than its preceding T [x + i − 1]. Now, T [x + i − 1] must be L-type.

(2) Continue to traverse the remaining characters of the LMS-substring and terminate
when we see a character T [x+i] greater than its preceding T [x+i−1] or T [x+i] is
the sentinel. At this point, we know that the start of the succeeding LMS-substring
has been traversed and its position was previously recorded when we saw T [x+i] <
T [x + i − 1] the last time.
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Consider the following example for the preceding algorithm. Suppose that we have
two neighboring LMS-substrings suffix0, where the first and second LMS-substrings
are suf and ffix0, respectively. Starting from the character s, the first step traverses the
character u, then breaks when the first character f is seen, for f < u. Further in the
second step, the next two characters f, i are traversed. When the first f is visited, its
position is saved, for f < u and it is probably the start of the second LMS-substring.
However, when the second f is approached, we do not save its position, for it must not be
the start of the second LMS-substring (suppose that it is, then the first f must be S-type
and hence the start of the second LMS-substring instead, resulting in a contradiction).
When we reach the character i, because i > f, the traversal is terminated, and the first
f is confirmed to be the end of the first LMS-substring.

5.1. Correctness

In the SA-IS algorithm [Nong et al. 2011], having sorted and stored in SA1 all the
LMS-substrings of T , we name each LMS-substring by the index of its bucket in SA1
to produce the reduced string called Y1 here, where the buckets in SA1 are indexed from
0. If we name each LMS-substring by the start position of its bucket instead to produce
another string Y2 (i.e., Z1 in our new naming algorithm), then for any Y1[i] < Y1[ j]
or Y1[i] = Y1[ j], we must have Y2[i] < Y2[ j] or Y2[i] = Y2[ j], respectively. Therefore
SA(Y1) and SA(Y2) must be identical. Further, we rename each S-type character in
Y2 by the end position of its bucket instead to produce yet another string called Y3.
Now for any Y2[i] < Y2[ j], there must be Y3[i] < Y3[ j]. In case of Y2[i] = Y2[ j],
we further consider two more cases with respect to whether the types of Y2[i] and
Y2[ j] are the same. If so, we must have Y3[i] = Y3[ j], or else without loss of generality,
suppose Y2[i] and Y2[ j] are L-type and S-type, respectively, we must have Y3[i] < Y3[ j],
suf(Y2, i) < suf(Y2, j), and suf(Y3, i) < suf(Y3, j). Hence SA(Y2) and SA(Y3) must be
identical, too. Given that SA(Y1) and SA(Y3) are identical, because Y1 and Y3 are in
effect T1, as produced by SA-IS and SACA-K, respectively, we get that SA(T1) and
therefore SA(T ) computed by both algorithms must be identical.

6. PERFORMANCE

Four programs are used in this performance evaluation experiment: saca-k, sa-is,
sais-lite, and divsort. The first two were made by us for the algorithms SACA-K and
SA-IS, respectively; the last two were made by Yuta Mori: sais-lite-2.4.1 at https://
sites.google.com/site/yuta256/sais/ and libdivsufsort-2.0.1 at http://code.
google.com/p/libdivsufsort/, respectively. The first three are lineartime (sais-lite
is an optimized implementation of sa-is, so it is lineartime, too); only divsort has a
super-linear worst-case time of O(n log n) (stated in README of libdivsufsort-2.0.1).
For each input string in this experiment, all the outputs from these four programs were
compared to be identical to ensure that all these programs worked correctly.

The experiment was performed on a notebook with the following configuration: 1
Intel(R) Core i3-370M Processor (2.4GHz, Dual Core, 3MB L3), 4GB 1333MHz DDR3
SDRAM, CentOS 6.3 (Final) 64-bit. Specifically, divsort and sais-lite were compiled
using the default makefile provided in their source packages, and our two programs
saca-k and sa-is were compiled by g++ with options “-fomit-frame-pointer -W -Wall
-Winline -DNDBUG -O3”. Our source packages for saca-k and sa-is are publicly avail-
able at http://code.google.com/p/ge-nong/.

Table I lists the datasets used in this experiment; they are a subset of the Pizza
Chili corpus at http://pizzachili.dcc.uchile.cl/. The first four are from the main
text corpus, and the last four are from the highly repetitive corpus. The investigated
performance measures are the time and space consumptions for each algorithm running
on the datasets. With these settings, in the design of the four programs, each integer
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Table I. Corpora: One Byte Per Character

Corpus n K Description
dna 403,927,746 16 A sequence of newline-separated gene DNA sequences from

the Gutenberg Project.
english.600MB 629,145,600 239 The 600MB-prefix of the original corpus “english” which is the

concatenation of English text files from the Gutenberg Project.
proteins.600MB 629,145,600 27 The 600MB-prefix of the original corpus “proteins” which is

a sequence of newline-separated protein sequences from the
Swissprot database.

sources 210,866,607 230 A file formed by C/Java source code by concatenating all the
files of the linux-2.6.11.6 and gcc-4.0.0 distributions.

cere 461,286,644 5 A file containing 37 sequences of Saccharomyces Cerevisiae.
einstein.en.txt 467,626,544 139 The English article of Albert Einstein downloaded up to

November 10, 2006.
fib41 267,914,296 2 Fibonacci sequence.
kernel 257,961,616 160 A collection of all 1.0.x and 1.1.x versions of the Linux Kernel6.

takes four bytes, and each character of an input string takes one byte. The theoretical
maximum workspace in bytes for each program is given as follows: 4K for saca-k,
2.125n for sa-is, max{4096, 2n} for sais-lite, O(1) for divsort (the total space is
given as 5n + O(1) bytes in README of libdivsufsort-2.0.1).

6.1. Space

The workspace is obtained by subtracting 5n bytes (the necessary space for input and
output) from the total space usage measured by command memusage. The workspace re-
sults measured in bytes for our experiments are shown in Table II. While the workspace
of sa-is is linearly corpus-size-dependent, the workspace for each of the rest is a con-
stant. The smallest workspace results are always achieved by saca-k: 256 × 4 = 1024
bytes, plus an extra integer to account for the sentinel, for a total of 1029 bytes.

6.2. Time

In Table III, each runtime in microseconds per character (μs/ch) is the mean of three
runs measured using the clock() function of C to record only the time interval for
computing the SA, which doesn’t include the latency for reading the input corpus from
disk and writing the output SA to disk. In the last two rows, the statistics of mean and
standard deviation are given for the samples of each program. From the mean results,
we have these observations: (1) divsort is the fastest; (2) the speed of sais-lite is
very close to that of divsort; (3) saca-k takes twice the time of divsort; (4) sa-is is
the slowest.

On two repetitive corpora “cere” and “fib41”, sais-lite is observed to be running
faster than divsort. In particular, for “fib41”, the speedup of sais-lite over divsort is
0.308/0.103 = 2.99. This is also an evidence for a well-known drawback of engineered
super-linear time algorithms: their speeds are input dependent and can become much
slower than linear-time algorithms for some inputs.

From Table III, saca-k is observed to be running about 33% faster than sa-is on
average, that is, a mean speedup of 0.533/0.402 = 1.33. The speed improvement is
mainly due to that at each level l > 0, saca-k need not scan T to find the start or
the end of each bucket in SA, due to Property 4.1. However, sa-is needs to scan T
six times to compute the bucket counter array: three times for induced sorting the
LMS-substrings, and three times for induced sorting the suffixes. In summary, saca-k
not only consumes less space than sa-is, but also runs faster.

In order to see the runtime for increasing file size, two files “english” and “proteins”
were chosen to record the runtimes for each program on their increasing prefixes of
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Table II. Workspace in Bytes

Corpus divsort sais-lite sa-is saca-k

dna 263,168 4,096 148,438,208 1,029
english.600MB 263,168 4,096 212,770,873 1,029
proteins.600MB 263,168 4,096 235,596,366 1,029
sources 263,168 4,096 68,884,168 1,029
cere 263,168 4,096 82,561,594 1,029
einstein.en.txt 263,168 4,096 85,152,774 1,029
fib41 263,168 4,096 54,186,838 1,029
kernel 263,168 4,096 46,767,439 1,029

Note: The smallest workspace results are always achieved by saca-k,
while the workspace results for sa-is are linear to n and the largest.

Table III. Time in μs/ch

Corpus divsort sais-lite sa-is saca-k

dna 0.201 0.276 0.601 0.426
english.600MB 0.221 0.300 0.766 0.512
proteins.600MB 0.227 0.327 0.804 0.504
sources 0.121 0.177 0.334 0.287
cere 0.167 0.152 0.516 0.402
einstein.en.txt 0.149 0.154 0.348 0.310
fib41 0.308 0.103 0.456 0.423
kernel 0.139 0.146 0.435 0.354

mean 0.192 0.204 0.533 0.402
stdev 0.061 0.084 0.178 0.082

Note: The mean speeds of divsort and sais-lite are very close
and the fastest. The average speedup of saca-k over sa-is is
0.533/0.402 = 1.33.

sizes in MB: 10, 20, 40, 60, 100, 200, 400, 600. The time results in μs/ch for these two
files are shown in Figures 3 and 4, respectively. A consistent trend for all the curves is
that when the size of the input string increases, all programs slow down. The reason
being that when n increases, more total space is needed by each program, which in
turn causes the on-chip cache miss ratio to increase and results in a longer latency for
random accesses of data from the main memory.

In Table III and Figures 3 and 4, we have seen that the results for divsort and
sais-lite are quite close. Because sais-lite is an optimized implementation of sa-is
and saca-k is faster than sa-is, we believe that an optimized implementation of saca-k
will have better time and space performance than sais-lite and hence runs at a speed
even closer to that of divsort. We anticipate that such an optimized implementation
can be engineered after the publication of this work.

7. CONCLUSION

Each step of SACA-K in Figure 1 has a time complexity O(n), so the total time remains
linear as that of SA-IS, that is, T (n) = T (�n/2�)+ O(n) = O(n). For the space complexity
of SACA-K, besides T and SA, we have an additional array bkt of K words at recursion
level 0 only. Hence we have the following result.

LEMMA 7.1. For a string T [0, n − 1] over an alphabet A[0, K − 1], SACA-K requires
O(n) time and K-word workspace for constructing the suffix array of T , where a word
is log n bits.
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Fig. 3. Time in μs/ch vs. prefix of “english” in MB.

Fig. 4. Time in μs/ch vs. prefix of “proteins” in MB.

From Lemma 7.1, we have an immediate result: given K = O(1), SACA-K runs in
linear time and O(1) workspace. To the best of our knowledge, such a result is the first
reported in the literature with a practical source code publicly available.

Besides being used in SA construction, the idea of induced sorting suffixes has also
been exploited to design algorithms for other problems, for example, direct BWT com-
putation using induced sorting by Okanohara and Sadakane [2009] and inducing the
LCP-array by Fischer [2011]. The methods proposed here might also be used to develop
more time- and space-efficient algorithms for solving these problems.

Recently, some external memory (EM) SACAs have been proposed for constructing
large SAs, where the space needed by an EM algorithm is mainly supplied by low-cost
massive disks, for example, bwt-disk [Ferragina et al. 2012] and DC3 [Dementiev et al.
2008]. In bwt-disk5, the original input string is split into a number of blocks so that
the BWT computation of each block can be completely executed in RAM. The whole
BWT is built incrementally by first computing the solution for each block and then
merging these solutions block by block. For a given input string, the speed of bwt-disk
is inversely proportional to the number of blocks: a smaller number of blocks means
a faster speed. To compute the BWT of each block, the SA of the block needs to be

5bwt-disk computes the Burrows-Wheeler Transform (BWT); however, it was also analyzed in Ferragina
et al. [2012] that bwt-disk can be adapted for SA construction.
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constructed using a SACA. Hence, efficient internal memory SACAs with good worst-
case time and space performance, such as SACA-K, can also find an important role in
the design of efficient EM algorithms for SA-related problems.
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BURKHARDT, S. AND KÄRKKÄINEN, J. 2003. Fast lightweight suffix array construction and checking. In Combina-
torial Pattern Matching, Lecture Notes in Computer Science, vol. 2676, Spriger Verlag, Berlin Heidelberg,
55–69.
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