Recursive Suffix Array Construction

Let us now describe linear time algorithms for suffix array construction. We assume that the alphabet of the text $T[0 . . n)$ is $[1 . . n]$ and that $T[n]=0(=\$$ in the examples).

The outline of the algorithms is:
0. Choose a subset $C \subset[0 . . n]$.

1. Sort the set T_{C}. This is done by a reduction to the suffix array construction of a string of length $|C|$, which is done recursively.
2. Sort the set $T_{[0 . . n]}$ using the order of T_{C}.

The set C can be chosen so that

- $|C| \leq \alpha n$ for a constant $\alpha<1$.
- Excluding the recursive call, all steps can be done in linear time.

Then the total time complexity can be expressed as the recurrence $t(n)=\mathcal{O}(n)+t(\alpha n)$, whose solution is $t(n)=\mathcal{O}(n)$.

The set C must be chosen so that:

1. Sorting T_{C} can be reduced to suffix array construction on a text of length $|C|$.
2. Given sorted T_{C} the suffix array of T is easy to construct.

We look at two different ways of choosing C leading to two different algorithms:

- DC3 uses difference cover sampling
- SAIS uses induced sorting

Difference Cover Sampling

A difference cover D_{q} modulo q is a subset of [0.. q) such that all values in $\left[0 . . q\right.$) can be expressed as a difference of two elements in D_{q} modulo q. In other words:

$$
[0 . . q)=\left\{i-j \bmod q \mid i, j \in D_{q}\right\}
$$

Example 4.20: $D_{7}=\{1,2,4\}$

$$
\begin{array}{lll}
1-1=0 & 1-4=-3 \equiv 4 & (\bmod q) \\
2-1=1 & 2-4=-2 \equiv 5 & (\bmod q) \\
4-2=2 & 1-2=-1 \equiv 6 & (\bmod q) \\
4-1=3 & &
\end{array}
$$

In general, we want the smallest possible difference cover for a given q.

- For any q, there exist a difference cover D_{q} of size $\mathcal{O}(\sqrt{q})$.
- The DC3 algorithm uses the simplest non-trivial difference cover $D_{3}=\{1,2\}$.

A difference cover sample is a set T_{C} of suffixes, where

$$
C=\left\{i \in[0 . . n] \mid(i \bmod q) \in D_{q}\right\}
$$

Example 4.21: If $T=$ banana $\$$ and $D_{3}=\{1,2\}$, then $C=\{1,2,4,5\}$ and $T_{C}=\{$ anana\$, nana\$, na\$, a\$ $\}$.

Once we have sorted the difference cover sample T_{C}, we can compare any two suffixes in $\mathcal{O}(q)$ time. To compare suffixes T_{i} and T_{j} :

- If $i \in C$ and $j \in C$, then we already know their order from T_{C}.
- Otherwise, find ℓ such that $i+\ell \in C$ and $j+\ell \in C$. There always exists such $\ell \in[0 . . q)$. Then compare:

$$
\begin{aligned}
& T_{i}=T[i . . i+\ell) T_{i+\ell} \\
& T_{j}=T[j . . j+\ell) T_{j+\ell}
\end{aligned}
$$

That is, compare first $T[i . . i+\ell)$ to $T[j . . j+\ell)$, and if they are the same, then $T_{i+\ell}$ to $T_{j+\ell}$ using the sorted T_{C}.

Example 4.22: $D_{3}=\{1,2\}$ and $C=\{1,2,4,5, \ldots\}$

$$
\begin{array}{lll}
T_{0}=T[0] T_{1} & T_{0}=T[0] T[1] T_{2} & T_{0}=T[0] T_{1} \\
T_{1}=T[1] T_{2} & T_{2}=T[2] T[3] T_{4} & T_{3}=T[3] T_{4}
\end{array}
$$

Algorithm 4.23: DC3

Step 0: Choose C.

- Use difference cover $D_{3}=\{1,2\}$.
- For $k \in\{0,1,2\}$, define $C_{k}=\{i \in[0 . . n] \mid i \bmod 3=k\}$.
- Let $C=C_{1} \cup C_{2}$ and $\bar{C}=C_{0}$.
$\begin{array}{lrrrrrrrrrrrrrr}\text { Example 4.24: } & i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\ & T[i] & \mathrm{y} & \mathrm{a} & \mathrm{b} & \mathrm{b} & \mathrm{a} & \mathrm{d} & \mathrm{a} & \mathrm{b} & \mathrm{b} & \mathrm{a} & \mathrm{d} & \mathrm{o} & \\end{array}
$\bar{C}=C_{0}=\{0,3,6,9,12\}, C_{1}=\{1,4,7,10\}, C_{2}=\{2,5,8,11\}$ and $C=\{1,2,4,5,7,8,10,11\}$.

Step 1: Sort T_{C}.

- For $k \in\{1,2\}$, Construct the strings $R_{k}=\left(T_{k}^{3}, T_{k+3}^{3}, T_{k+6}^{3}, \ldots, T_{\max C_{k}}^{3}\right)$ whose characters are 3-factors of the text, and let $R=R_{1} R_{2}$.
- Replace each factor T_{i}^{3} in R with an order preserving name $N_{i}^{3} \in[1 . .|R|]$. The names can be computed by sorting the factors with LSD radix sort in $\mathcal{O}(n)$ time. Let R^{\prime} be the result appended with 0 .
- Construct the inverse suffix array $S A_{R^{\prime}}^{-1}$ of R^{\prime}. This is done recursively using DC3 unless all symbols in R^{\prime} are unique, in which case $S A_{R^{\prime}}^{-1}=R^{\prime}$.
- From $S A_{R^{\prime}}^{-1}$, we get order preserving names for suffixes in T_{C}. For $i \in C$, let $N_{i}=S A_{R^{\prime}}^{-1}[j]$, where j is the position of T_{i}^{3} in R. For $i \in \bar{C}$, let $N_{i}=\perp$. Also let $N_{n+1}=N_{n+2}=0$.

Example 4.25: $\quad R$ abb ada bba do\$ bba dab bad o\$

ple 4.25:		R	abb	ada	bba	do\$	bba	dab	bad	o\$		
			R^{\prime}	1	2	4	7	4	6	3	8	0
		$S A_{R^{\prime}}^{-1}$	1	2	5	7	4	6	3	8	0	
i	0	1	2	3	4	5	6	7	8	9	10	11
$T[i]$	y	a	b	b	a	d	a	b	b	a	d	0

Step 2(a): Sort $T_{\bar{C}}$.

- For each $i \in \bar{C}$, we represent T_{i} with the pair ($T[i], N_{i+1}$). Then

$$
T_{i} \leq T_{j} \Longleftrightarrow\left(T[i], N_{i+1}\right) \leq\left(T[j], N_{j+1}\right)
$$

Note that $N_{i+1} \neq \perp$ for all $i \in \bar{C}$.

- The pairs $\left(T[i], N_{i+1}\right)$ are sorted by LSD radix sort in $\mathcal{O}(n)$ time.

Example 4.26:

$$
\begin{array}{rccccccccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
T[i] & \mathrm{y} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{o} & \$ \\
N_{i} & \perp & 1 & 4 & \perp & 2 & 6 & \perp & 5 & 3 & \perp & 7 & 8 & \perp \\
T_{12}<T_{6}<T_{9}<T_{3}<T_{0} \text { because }(\$, 0)<(\mathrm{a}, 5)<(\mathrm{a}, 7)<(\mathrm{b}, 2)<(\mathrm{y}, 1) .
\end{array}
$$

Step 2(b): Merge T_{C} and $T_{\bar{C}}$.

- Use comparison based merging algorithm needing $\mathcal{O}(n)$ comparisons.
- To compare $T_{i} \in T_{C}$ and $T_{j} \in T_{\bar{C}}$, we have two cases:

$$
\begin{aligned}
& i \in C_{1}: T_{i} \leq T_{j} \Longleftrightarrow\left(T[i], N_{i+1}\right) \leq\left(T[j], N_{j+1}\right) \\
& i \in C_{2}: T_{i} \leq T_{j} \Longleftrightarrow\left(T[i], T[i+1], N_{i+2}\right) \leq\left(T[j], T[j+1], N_{j+2}\right)
\end{aligned}
$$

Note that none of the N-values is \perp.

Example 4.27:

$$
\begin{array}{rccccccccccccc}
i & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
T[i] & \mathrm{y} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \mathrm{a} & \mathrm{~b} & \mathrm{~b} & \mathrm{a} & \mathrm{~d} & \circ & \$ \\
N_{i} & \perp & 1 & 4 & \perp & 2 & 6 & \perp & 5 & 3 & \perp & 7 & 8 & \perp
\end{array}
$$

$T_{1}<T_{6}$ because $(\mathrm{a}, 4)<(\mathrm{a}, 5)$.
$T_{3}<T_{8}$ because $(\mathrm{b}, \mathrm{a}, 6)<(\mathrm{b}, \mathrm{a}, 7)$.

Theorem 4.28: Algorithm DC3 constructs the suffix array of a string $T[0 . . n)$ in $\mathcal{O}(n)$ time plus the time needed to sort the characters of T.

There are many variants:

- DC3 is an optimal algorithm under several parallel and external memory computation models, too. There exists both parallel and external memory implementations of DC3.
- Using a larger value of q, we obtain more space efficient algorithms. For example, using $q=\log n$, the time complexity is $\mathcal{O}(n \log n)$ and the space needed in addition to the text and the suffix array is $\mathcal{O}(n / \sqrt{\log n})$.

Induced Sorting

Define three type of suffixes,-+ and $*$ as follows:

$$
\begin{aligned}
C^{-} & =\left\{i \in[0 . . n) \mid T_{i}>T_{i+1}\right\} \\
C^{+} & =\left\{i \in[0 . . n) \mid T_{i}<T_{i+1}\right\} \\
C^{*} & =\left\{i \in C^{+} \mid i-1 \in C^{-}\right\}
\end{aligned}
$$

Example 4.29:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$T[i]$	m	m	i	s	s	i	s	s	i	i	p	p	i	i	$\$$
type of T_{i}	-	-	$*$	-	-	$*$	-	-	$*$	+	-	-	-	-	

For every $a \in \Sigma$ and $x \in\{-,+. *\}$ define

$$
\begin{aligned}
& C_{a}=\{i \in[0 . . n] \mid T[i]=a\} \\
& C_{a}^{x}=C_{a} \cap C^{x}
\end{aligned}
$$

Then

$$
\begin{aligned}
C_{a}^{-} & =\left\{i \in C_{a} \mid T_{i}<a^{\infty}\right\} \\
C_{a}^{+} & =\left\{i \in C_{a} \mid T_{i}>a^{\infty}\right\}
\end{aligned}
$$

and thus, if $i \in C_{a}^{-}$and $j \in C_{a}^{+}$, then $T_{i}<T_{j}$. Hence the suffix array is $n C_{1} C_{2} \ldots C_{\sigma-1}=n C_{1}^{-} C_{1}^{+} C_{2}^{-} C_{2}^{+} \ldots C_{\sigma-1}^{-} C_{\sigma-1}^{+}$.

The basic idea of induced sorting is to use information about the order of T_{i} to induce the order of the suffix $T_{i-1}=T[i-1] T_{i}$. The main steps are:

1. Sort the sets $C_{a}^{*}, a \in[1 . . \sigma)$.
2. Use $C_{a}^{*}, a \in[1 . . \sigma)$, to induce the order of the sets $C_{a}^{-}, a \in[1 . . \sigma)$.
3. Use $C_{a}^{-}, a \in[1 . . \sigma)$, to induce the order of the sets $C_{a}^{+}, a \in[1 . . \sigma)$.

The suffixes involved in the induction steps can be indentified using the following rules (proof is left as an exercise).

Lemma 4.30: For all $a \in[1 . . \sigma)$
(a) $i-1 \in C_{a}^{-}$iff $i>0$ and $T[i-1]=a$ and one of the following holds

1. $i=n$
2. $i \in C^{*}$
3. $i \in C^{-}$and $T[i-1] \geq T[i]$.
(b) $i-1 \in C_{a}^{+}$iff $i>0$ and $T[i-1]=a$ and one of the following holds 1. $i \in C^{-}$and $T[i-1]<T[i]$
4. $i \in C^{+}$and $T[i-1] \leq T[i]$.

To induce C^{-}suffixes:

1. Set C_{a}^{-}empty for all $a \in[1 . . \sigma)$.
2. For all suffixes T_{i} such that $i-1 \in C^{-}$in lexicographical order, append $i-1$ into $C_{T[i-1]}^{-}$.

By Lemma 4.30(a), Step 2 can be done by checking the relevant conditions for all $i \in n C_{1}^{-} C_{1}^{*} C_{2}^{-} C_{2}^{*} \ldots$

Algorithm 4.31: InduceMinusSuffixes
Input: Lexicographically sorted lists $C_{a}^{*}, a \in \Sigma$
Output: Lexicographically sorted lists $C_{a}^{-}, a \in \Sigma$
(1) for $a \in \Sigma$ do $C_{a}^{-} \leftarrow \emptyset$
(2) $\operatorname{pushback}\left(n-1, C_{T[n-1]}^{-}\right)$
(3) for $a \leftarrow 1$ to $\sigma-1$ do
(4) for $i \in C_{a}^{-}$do // include elements added during the loop
(5) if $i>0$ and $T[i-1] \geq a$ then $\operatorname{pushback}\left(i-1, C_{T[i-1]}^{-}\right)$
(6) for $i \in C_{a}^{*}$ do $\operatorname{pushback}\left(i-1, C_{T[i-1]}^{-}\right)$

Note that since $T_{i-1}>T_{i}$ by definition of C^{-}, we always have i inserted before $i-1$.

Inducing +-type suffixes goes similarly but in reverse order so that again i is always inserted before $i-1$:

1. Set C_{a}^{+}empty for all $a \in[1 . . \sigma)$.
2. For all suffixes T_{i} such that $i-1 \in C^{+}$in descending lexicographical order, append $i-1$ into $C_{T[i-1]}^{+}$.

Algorithm 4.32: InducePlusSuffixes
Input: Lexicographically sorted lists $C_{a}^{-}, a \in \Sigma$
Output: Lexicographically sorted lists $C_{a}^{+}, a \in \Sigma$
(1) for $a \in \Sigma$ do $C_{a}^{+} \leftarrow \emptyset$
(2) for $a \leftarrow \sigma-1$ downto 1 do
(3) for $i \in C_{a}^{+}$in reverse order do // include elements added during loop
(4) if $i>0$ and $T[i-1] \leq a$ then $\operatorname{pushfront}\left(i-1, C_{T[i-1]}^{+}\right)$
(5) for $i \in C_{a}^{-}$in reverse order do
(6) if $i>0$ and $T[i-1]<a$ then $\operatorname{pushfront}\left(i-1, C_{T[i-1]}^{+}\right)$

We still need to explain how to sort the $*$-type suffixes. Define

$$
\begin{aligned}
F[i] & =\min \left\{k \in[i+1 . . n] \mid k \in C^{*} \text { or } k=n\right\} \\
S_{i} & =T[i . . F[i]] \\
S_{i}^{\prime} & =S_{i} \sigma
\end{aligned}
$$

where σ is a special symbol larger than any other symbol.
Lemma 4.33: For any $i, j \in[0 . . n), T_{i}<T_{j}$ iff $S_{i}^{\prime}<S_{j}^{\prime}$ or $S_{i}^{\prime}=S_{j}^{\prime}$ and $T_{F[i]}<T_{F[j]}$.
Proof. The claim is trivially true except in the case that S_{j} is a proper prefix of S_{i} (or vice versa). In that case, $S_{i}>S_{j}$ but $S_{i}^{\prime}<S_{j}^{\prime}$ and thus $T_{i}<T_{j}$ by the claim. We will show that this is correct.
Let $\ell=F[j]$ and $k=i+\ell-j$. Then

- $\ell \in C^{*}$ and thus $\ell-1 \in C^{-}$. By Lemma 4.30, $T[\ell]<T[\ell-1]$.
- $T[k-1 . . k]=T[\ell-1 . . \ell]$ and thus $T[k]<T[k-1]$. If we had $k \in C^{+}$, we would have $k \in C^{*}$. Since this is not the case, we must have $k \in C^{-}$.
- Let $a=T[\ell]$. Since $\ell \in C_{a}^{+}$and $k \in C_{a}^{-}$, we must have $T_{k}<a^{n+1}<T_{\ell}$.
- Since $T[i . . k)=T[j . . \ell)$ and $T_{k}<T_{\ell}$, we have $T_{i}<T_{j}$.

Algorithm 4.34: SAIS

Step 0: Choose C.

- Compute the types of suffixes. This can be done in $\mathcal{O}(n)$ time based on Lemma 4.30.
- Set $C=\cup_{a \in[1 . . \sigma)} C_{a}^{*} \cup\{n\}$. Note that $|C| \leq n / 2$, since for all $i \in C$, $i-1 \in C^{-} \subseteq \bar{C}$.

Example 4.35:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$T[i]$	m	m	i	s	s	i	s	s	i	i	p	p	i	i	$\$$
type of T_{i}	-	-	$*$	-	-	$*$	-	-	$*$	+	-	-	-	-	

$C_{\mathrm{i}}^{*}=\{2,5,8\}, C_{\mathrm{m}}^{*}=C_{\mathrm{p}}^{*}=C_{\mathrm{s}}^{*}=\emptyset, C=\{2,5,8,14\}$.

Step 1: Sort T_{C}.

- Sort the strings $S_{i}^{\prime}, i \in C^{*}$. Since the total length of the strings S_{i}^{\prime} is $\mathcal{O}(n)$, the sorting can be done in $\mathcal{O}(n)$ time using LSD radix sort.
- Assign order preserving names $N_{i} \in[1 . .|C|-1]$ to the string S_{i}^{\prime} so that $N_{i} \leq N_{j}$ iff $S_{i}^{\prime} \leq S_{j}^{\prime}$.
- Construct the sequence $R=N_{i_{1}} N_{i_{2}} \ldots N_{k} 0$, where $i_{1}<i_{3}<\cdots<i_{k}$ are the $*$-type positions.
- Construct the suffix array $S A_{R}$ of R. This is done recursively unless all symbols in R are unique, in which case a simple counting sort is sufficient.
- The order of the suffixes of R corresponds to the order of $*$-type suffixes of T. Thus we can construct the lexicographically ordered lists $C_{a}^{*}, a \in[1 . . \sigma)$.

Example 4.36:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$T[i]$	m	m	i	s	s	i	s	s	i	i	p	p	i	i	$\$$
N_{i}			2			2			1						0

$R=\left[\right.$ issiz][issiz][iippii\$z] $\$=2210, S A_{R}=(3,2,1,0), C_{\mathrm{i}}^{*}=(8,5,2)$

Step 2: Sort $T_{[0 . . n]}$.

- Run InduceMinusSuffixes to construct the sorted lists $C_{a}^{-}, a \in[1 . . \sigma)$.
- Run InducePlusSuffixes to construct the sorted lists $C_{a}^{+}, a \in[1 . . \sigma)$.
- The suffix array is $S A=n C_{1}^{-} C_{1}^{+} C_{2}^{-} C_{2}^{+} \ldots C_{\sigma-1}^{-} C_{\sigma-1}^{+}$.

Example 4.37:

i	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14
$T[i]$	m	m	i	s	s	i	s	s	i	i	p	p	i	i	$\$$
type of T_{i}	-	-	$*$	-	-	$*$	-	-	$*$	+	-	-	-	-	

$$
\begin{aligned}
& n=14 \Rightarrow C_{\mathrm{i}}^{-}=(13,12) \\
& C_{\mathrm{i}}^{-} C_{\mathrm{i}}^{*}=(13,12,8,5,2) \Rightarrow C_{\mathrm{m}}^{-}=(1,0), C_{\mathrm{p}}^{-}=(11,10), C_{\mathrm{s}}^{-}=(7,4,6,3) \\
& \quad \Rightarrow \quad C_{\mathrm{i}}^{+}=(8,9,5,2) \\
& \quad \Rightarrow \quad S A=C_{\$} C_{\mathrm{i}}^{-} C_{\mathrm{i}}^{+} C_{\mathrm{m}}^{-} C_{\mathrm{p}}^{-} C_{\mathrm{s}}^{-}=(14,13,12,8,9,5,2,1,0,11,10,7,4,6,3)
\end{aligned}
$$

Theorem 4.38: Algorithm SAIS constructs the suffix array of a string $T[0 . . n)$ in $\mathcal{O}(n)$ time plus the time needed to sort the characters of T.

- In Step 1, to sort the strings $S_{i}^{\prime}, i \in C^{*}$, SAIS does not actually use LSD radix sort but the following procedure:

1. Construct the sets $C_{a}^{*}, a \in[1 . . \sigma)$ in arbitrary order.
2. Run InduceMinusSuffixes to construct the lists $C_{a}^{-}, a \in[1 . . \sigma)$.
3. Run InducePlusSuffixes to construct the lists $C_{a}^{-}, a \in[1 . . \sigma)$.
4. Remove non-*-type positions from $C_{1}^{+} C_{2}^{+} \ldots C_{\sigma-1}^{+}$.

With this change, most of the work is done in the induction procedures.
This is very fast in practice, because all the lists C_{a}^{x} are accessed sequentially during the procedures.

- The currently fastest suffix sorting implementation in practice is probably divsufsort by Yuta Mori. It sorts the *-type suffixes non-recursively in $\mathcal{O}(n \log n)$ time and then continues as SAIS.

Summary: Suffix Trees and Arrays

The most important data structures for string processing:

- Designed for indexed exact string matching.
- Used in efficient solutions to a huge variety of different problems.

Construction algorithms are among the most important algorithms for string processing:

- Linear time for constant and integer alphabet.

Often augmented with additional data structures:

- suffix links, LCA preprocessing
- LCP array, RMQ preprocessing, BWT, ...

