
CS 598CSC: Combinatorial Optimization Lecture date: Feb 9, 2010
Instructor: Chandra Chekuri Scribe: Matthew Yancey

1 Matchings in Non-Bipartite Graphs

We discuss matching in general undirected graphs. Given a graph G, ν(G) denotes the size of the
largest matching in G. We follow [1] (Chapter 24).

1.1 Tutte-Berge Formula for ν(G)

Tutte (1947) proved the following basic result on perfect matchings.

Theorem 1 (Tutte) A graph G = (V,E) has a prefect matching iff G − U has at most |U | odd
components for each U ⊆ V .

Berge (1958) generalized Tutte’s theorem to obtain a min-max formula for ν(G) which is now
called the Tutte-Berge formula.

Theorem 2 (Tutte-Berge Formula) For any graph G = (V,E),

ν(G) =
|V |
2
−max

U⊆V

o(G− U)− |U |
2

where o(G− U) is the number of components of G− U with an odd number of vertices.

Proof: We have already seen the easy direction that for any U , ν(G) ≤ |V |2 −
o(G−U)−|U |

2 by noticing
that o(G− U)− |U | is the number of nodes from the odd components in G− U that must remain
unmatched.

Therefore, it is sufficient to show that ν(G) = |V |
2 − maxU⊆V

o(G−U)−|U |
2 . Any reference to

left-hand side (LHS) or right-hand side (RHS) will be in reference to this inequality. Proof via
induction on |V |. Base case of |V | = 0 is trivial.

Case 1: There exists v ∈ V such that v is in every maximum matching. Let G′ =
(V ′, E′) = G− v, then ν(G′) = ν(G)− 1 and by induction, there is U ′ ⊆ V ′ such that the RHS of
the formula is equal to ν(G′) = ν(G) − 1. It is easy to verify that U = U ′ ∪ {v} satisfies equality
in the formula for G.

Case 2: For every v ∈ G, there is a maximum matching that misses it. By Claim 3
below, ν(G) = |V |−1

2 and that there is an odd number of vertices in the entire graph. If we take
U = ∅, then the theorem holds. 2

Claim 3 Let G = (V,E) be a graph such that for each v ∈ V there is a maximum matching in G

that misses v. Then, ν(G) = |V |−1
2 . In particular, |V | is odd.

Proof: G is necessarily connected. By way of contradiction, assume there exists two vertices u 6= v
and a maximum matching M that avoids them. Among all such choices, choose M, u, v such that
dist(u, v) is minimized. If dist(u, v) = 1 then M can be grown by adding uv to it. Therefore there

exists a vertex t, u 6= t 6= v, such that t is on a shortest path from u to v. Also, by minimality of
distance between u and v we know that t ∈M .

By the assumption, there is at least one maximum matching that misses t. We are going to
choose a maximum matching N that maximizes N ∩M while missing t. N must cover u, or else
N, u, t would have been a better choice above. Similarly, N covers v. Now |M | = |N | and we have
found one vertex t ∈ M −N and two u, v ∈ N −M , so there must be another vertex x ∈ M −N
that is different from all of the above. Let xy ∈ M . N is maximal, so xy can’t be added to it.
Thus, we must have that y ∈ N and that means y 6= t. Let yz ∈ N . Then we have that z ∈ N −M
because xy ∈M and z 6= x.

Figure 1: Green vertices are in M. Blue vertices are in N.

Consider the matching N ′ = N − yz + xy. We have that |N ′| = |N | and N ′ avoids t and
|N ′ ∩M | > |N ∩M |. This is a contradiction. 2

2 Algorithm for Maximum Cardinality Matching

We now describe a polynomial time algorithm for finding a maximum cardinality matching in a
graph, due to Edmonds. Faster algorithms are now known but the fundamental insight is easier to
see in the original algorithm. Given a matching M in a graph G, we say that a node v is M -exposed
if it is not covered by an edge of M .

Definition 4 A path P in G is M -alternating if every other edge is in M . It can have odd or even
length. A path P is M -augmenting if it is M -alternating and both ends are M -exposed.

Lemma 5 M is a maximum matching in G if and only if there is no M -augmenting path.

Proof: If there is an M -augmenting path, then we could easily use it to grow M and it would not
be a maximum matching.

In the other direction, assume that M is a matching that is not maximum by way of contradic-
tion. Then there is a maximum matching N , and |N | > |M |. Let H be a subgraph of G induced
by the edge set M∆N = (M −N)∪ (N −M) (the symmetric difference). Note that the maximum

degree of a node in H is at most 2 since a node can be incident to at most one edge from N −M
and one edge from M −N . Therefore, H is a disjoint collection of paths and cycles. Furthermore,
all paths are M -alternating (and N -alternating too). All cycles must be of even length, since they
alternate edges from M and N too. At least one of the paths must have more N edges than M
edges because |N | > |M | and we deleted the same number of edges from N as M . That path is an
M -augmenting path. 2

The above lemma suggests a greedy algorithm for finding a maximum matching in a graph
G. Start with a (possibly empty) matching and iteratively augment it by finding an augmenting
path, if one exists. Thus the heart of the matter is to find an efficient algorithm that given G and
matching M , either finds an M -augmenting path or reports that there is none.

Bipartite Graphs: We quickly sketch why the problem of finding M -augmenting paths is rela-
tively easy in bipartite graphs. Let G = (V,E) with A,B forming the vertex bipartition. Let M
be a matching in G. Let X be the M -exposed vertices in A and let Y be the M -exposed vertices
in B. Obtain a directed graph D = (V,E′) by orienting the edges of G as follows: orient edges in
M from B to A and orient edges in E \M from A to B. The following claim is easy to prove.

Claim 6 There is an M -augmenting path in G if and only if there is an X-Y path in the directed
graph D described above.

Non-Bipartite Graphs: In general graphs it is not straight forward to find an M -augmenting
path. As we will see, odd cycles form a barrier and Edmonds discovered the idea of shrinking
them in order to recursively find a path. The first observation is that one can efficiently find an
alternating walk.

Definition 7 A walk in a graph G = (V,E) is a finite sequence of vertices v0, v1, v2, . . . , vt such
that vivi+1 ∈ E, 0 ≤ i ≤ t− 1. The length of the walk is t.

Note that edges and nodes can be repeated on a walk.

Definition 8 A walk v0, v1, v2, . . . , vt is M -alternating walk if for each 1 ≤ i ≤ t− 1, exactly one
of vi−1vi and vivi+1 is in M .

Lemma 9 Given a graph G = (V,E), a matching M , and M -exposed nodes X, there is an O(|V |+
|E|) time algorithm that either finds a shortest M -alternating X-X walk of positive length or reports
that there is no such walk.

Proof Sketch. Define a directed graph D = (V,A) where A = {(u, v) : ∃x ∈ V, ux ∈ E, xv ∈M}.
Then a X-X M -alternating walk corresponds to a X-N(X) directed path in D where N(X) is the
set of neighbors of X in G (we can assume there is no edge between two nodes in X for otherwise
that would be a shortest walk). Alternatively, we can create a bipartite graph with D = (V ∪V ′, A)
where V ′ is a copy of V and A = {(u, v′) | uv ∈ E \M} ∪ {(u′, v) | uv ∈ M} and find a shortest
X-X ′ directed path in D where X ′ is the copy of X in V ′. 2

What is the structure of an X-X M -alternating walk? Clearly, one possibility is that it is
actually a path in which case it will be an M -augmenting path. However, there can be alternating
walks that are not paths as shown by the figure below.

One notices that if an X-X M -alternating walk has an even cycle, one can remove it to obtain
a shorter alternating walk. Thus, the main feature of an alternating walk when it is not a path is
the presence of an odd cycle called a blossom by Edmonds.

Definition 10 An M -flower is an M -alternating walk v0, v1, . . . , vt such that vo ∈ X, t is odd and
vt = vi for some even i < t. In other words, it consists of an even length v0, . . . , vi M -alternating
path (called the stem) attached to an odd cycle vi, vi+1, . . . , vt = vi called the M -blossom. The node
vi is the base of the stem and is M -exposed if i = 0, otherwise it is M -covered.

Figure 2: A M -flower. The green edges are in the matching

Lemma 11 A shortest positive length X-X M -alternating walk is either an M -augmenting path
or contains an M -flower as a prefix.

Proof: Let v0, v1, . . . , vt be a shortest X-X M -alternating walk of positive length. If the walk is
a path then it is M -augmenting. Otherwise let i be the smallest index such that vi = vj for some
j > i and choose j to be smallest index such that vi = vj . If vi, . . . , vj is an even length cycle we
can eliminated it from the walk and obtain a shorter alternating walk. Otherwise, v0, . . . , vi, . . . , vj

is the desired M -flower with vi as the base of the stem. 2

Given a M -flower and its blossom B (we think of B as both a set of vertices and an odd cycle),
we obtain a graph G/B by shrinking B to a single vertex b and eliminating loops and parallel edges.
It is useful to identify b with the base of the stem. We obtain a matching M/B in G/B which
consists of eliminating the edges of M with both end points in B. We note that b is M/B-exposed
iff b is M -exposed.

Theorem 12 M is a maximum matching in G if and only if M/B is a maximum matching in
G/B.

Proof: The next two lemmas cover both directions. 2

To simplify the proof we do the following. Let P = v0, . . . , vi be the stem of the M -flower.
Note that P is an even length M -alternating path and if v0 6= vi then v0 is M -exposed and vi is

M -covered. Consider the matching M ′ = M∆E(P), that is by switching the matching edges in
P into non-matching edges and vice-versa. Note that |M ′| = |M | and hence M is a maximum
matching in G iff M ′ is a maximum matching. Now, the blossom B = vi, . . . , vt = vi is also a
M ′-flower but with a degenerate stem and hence the base is M ′-exposed. For the proofs to follow
we will assume that M = M ′ and therefore b is an exposed node in G/B. In particular we will
assume that B = v0, v1, . . . , vt = v0 with t odd.

Proposition 13 For each vi in B there is an even-length M -alternating path Qi from v0 to vi.

Proof: If i is even then v0, v1, . . . , vi is the desired path, else if i is odd, v0 = vt, vt−1, . . . , vi is the
desired path. That is, we walk along the odd cycle one direction or the other to get an even length
path. 2

Lemma 14 If there is an M/B augmenting path P in G/B then there is an M -augmenting path
P ′ in G. Moreover, P ′ can be found from P in O(m) time.

Proof:
Case 1: P does not contain b. Set P ′ = P .
Case 2: P contains b. b is an exposed node, so it must be an endpoint of P . Without loss of

generality, assume b is the first node in P . Then P starts with an edge bu 6∈M/B and the edge bu
corresponds to an edge viu in G where vi ∈ B. Obtain path P ′ by concatenating the even length
M -alternating path Qi from v0 to vi from Proposition 13 with the path P in which b is replaced
by vi; it is easy to verify that is an M -augmenting path in G. 2

Lemma 15 If P is an M -augmenting path in G, then there exists an M/B augmenting path in
G/B.

Proof: Let P = u0, u1, . . . , us be an M -augmenting path in G. If P ∩ B = ∅ then P is an
M/B augmenting path in G/B and we are done. Assume u0 6= v0 - if this is not true, flip the
path backwards. Let uj be the first vertex in P that is in B. Then u0, u1, . . . , uj−1, b is an M/B
augmenting path in G/B. Two cases to verify when uj = v0 and when uj = vi for i 6= 0, both are
easy. 2

Remark 16 The proof of Lemma 14 is easy when b is not M -exposed. Lemma 15 is not straight
forward if b is not M -exposed.

From the above lemmas we have the following.

Lemma 17 There is an O(nm) time algorithm that given a graph G and a matching M , either
finds an M -augmenting path or reports that there is none. Here m = |E| and n = |V |.

Proof: The algorithm is as follows. Let X be the M -exposed nodes. It first computes a shortest
X-X M -alternating walk P in O(m) time — see Lemma 9. If there is no such walk then clearly
M is maximum and there is no M -augmenting path. If P is an M -augmenting path we are done.
Otherwise there is an M -flower in P and a blossom B. The algorithm shrinks B and obtains
G/B and M/B which can be done in O(m) time. It then calls itself recursively to find an M/B-
augmenting path or find out that M/B is a maximum matching in G/B. In the latter case, M is
a maximum matching in G. In the former case the M/B augmenting path can be extended to an

M -augmenting path in O(m) time as shown in Lemma 14. Since G/B has at least two nodes less
than G, it follows that his recursive algorithm takes at most O(nm) time. 2

By iteratively using the augmenting algorithm from the above lemma at most n/2 times we
obtain the following result.

Theorem 18 There is an O(n2m) time algorithm to find a maximum cardinality matching in a
graph with n nodes and m edges.

The fastest known algorithm for this problem has a running time of O(m
√
n) and is due to

Micali and Vazirani with an involved formal proof appearing in [3]; an exposition of this algorithm
can be found in [2].

References

[1] A. Schrijver. Combinatorial Optimization. Springer-Verlag Berlin Heidelberg, 2003

[2] P. Peterson and M. Loui. The General Maximum Matching Algorithm of Micali and Vazirani.
Algorithmica, 3:511-533, 1998.

[3] V. Vazirani. A Theory of Alternating Paths and Blossoms for Proving Correctness of the
O(|E|

√
|V |) General Graph Maximum Matching Algorithm. Combinatorica, 14(1):71–109,

1994.

	Matchings in Non-Bipartite Graphs
	Tutte-Berge Formula for (G)

	Algorithm for Maximum Cardinality Matching

