
CS 598CSC: Combinatorial Optimization Lecture date: 2/4/2010
Instructor: Chandra Chekuri Scribe: David Morrison

Gomory-Hu Trees

(The work in this section closely follows [3])
Let G = (V,E) be an undirected graph with non-negative edge capacities defined by c : E → R.

We would like to be able to compute the global minimum cut on the graph (i.e., the minimum
over all min-cuts between pairs of vertices s and t). Clearly, this can be done by computing the
minimum cut for all

(
n
2

)
pairs of vertices, but this can take a lot of time. Gomory and Hu showed

that the number of distinct cuts in the graph is at most n − 1, and furthermore that there is an
efficient tree structure that can be maintained to compute this set of distinct cuts [1] (note that
there is also a very nice randomized algorithm due to Karger and Stein that can compute the global
minimum cut in near-linear time with high probability [2]).

An important note is that Gomory-Hu trees work because the cut function is both submodular
and symmetric. We will see later that any submodular, symmetric function will induce a Gomory-
Hu tree.

Definition 1. Given a graph G = (V,E), we define αG(u, v) to be the value of a minimum u, v
cut in G. Furthermore, for some set of vertices U , we define δ(U) to be the set of edges with one
endpoint in U .

Definition 2. Let G, c, and αG be defined as above. Then, a tree T = (V (G), ET) is a Gomory-
Hu tree if for all st ∈ ET , δ(W) is a minimum s, t cut in G, where W is one component of
T − st.

The natural question is whether such a tree even exists; we will return to this question shortly.
However, if we are given such a tree for an arbitrary graph G, we know that this tree obeys some
very nice properties. In particular, we can label the edges of the tree with the values of the minimum
cuts, as the following theorem shows (an example of this can be seen in figure 1):

Theorem 1. Let T be a Gomory-Hu tree for a graph G = (V,E). Then, for all u, v ∈ V , let st be
the edge on the unique path in T from u to v such that αG(s, t) is minimized. Then,

αG(u, v) = αG(s, t)

and the cut δ(W) induced by T − st is a u, v minimum cut in G. Thus αG(s, t) = αT (s, t) for each
s, t ∈ V where the capacity of an edge st in T is equal to αG(s, t).

Proof. We first note that αG obeys a triangle inequality. That is, αG(a, b) ≥ min(αG(a, c), αG(b, c))
for any undirected graph G and vertices a, b, c (to see this, note that c has to be on one side or the
other of any a, b cut).

Consider the path from u to v in T . We note that if uv = st, then αG(u, v) = αG(s, t).
Otherwise, let w 6= v be the neighbor of u on the u-v path in T . By the triangle inequality
mentioned above, αG(u, v) ≥ min(αG(u,w), αG(w, v)). If uw = st, then αG(u, v) ≥ αG(s, t);
otherwise, by induction on the path length, we have that αG(u, v) ≥ αG(w, v) ≥ αG(s, t).

However, by the definition of Gomory-Hu trees, we have that αG(u, v) ≤ αG(s, t), since the cut
induced by T − st is a valid cut for u, v. Thus, we have αG(u, v) = αG(s, t) and the cut induced by
T − st is a u, v minimum cut in G. �

3

f

a

b c

d

e

2

7

5
22

3

4

10

8

14

a b f e c

d

18 17 13 15

Figure 1: A graph G with its corresponding Gomory-Hu tree [4].

Remark 2. Gomory-Hu trees can be (and are often) defined by asking for the property described in
Theorem 1. However, the proof shows that the basic requirement in Definition 2 implies the other
property.

The above theorem shows that we can represent compactly all of the minimum cuts in an
undirected graph. Several non-trivial facts about undirected graphs fall out of the definition and
the above result. The only remaining question is “Does such a tree exist? And if so, how does one
compute it efficiently?” We will answer both questions by giving a constructive proof of Gomory-Hu
trees for any undirected graph G. However, first we must discuss some properties of submodular
functions.

Definition 3. Given a finite set E, f : 2E → R is submodular if for all A,B ∈ 2E, f(A)+f(B) ≥
f(A ∪B) + f(A ∩B).

An alternate definition based on the idea of “decreasing marginal value” is the following:

Definition 4. Given E and f as above, f is submodular if f(A+ e)− f(A) ≥ f(B+ e)− f(B) for
all A ⊆ B and e ∈ E.

To see the equivalence of these definitions, let fA(e) = f(A+ e)− f(A), and similarly for fB(e).
Take any A,B ⊆ E and e ∈ E such that A ⊆ B, and let f be submodular according to definition 3.
Then f(A+ e) + f(B) ≥ f((A+ e) ∪B) + f((A+ e) ∩B) = f(B + e) + f(A). Rearranging shows
that fA(e) ≥ fB(e). Showing that definition 4 implies definition 3 is slightly more complicated, but
can be done (Exercise).

There are three types of submodular functions that will be of interest:

1. Arbitrary submodular functions

2. Non-negative (range is [0,∞)). Two subclasses of non-negative submodular functions are
monotone (f(A) ≤ f(B) whenever A ⊆ B) and non-monotone.

3. Symmetric submodular functions where f(A) = f(E \A) for all A ⊆ E.

As an example of a submodular function, consider a graph G = (V,E) with capacity function
c : E → R+. Then f : 2V toR+ defined by f(A) = c(δ(A)) (i.e., the capacity of a cut induced by a
set A) is submodular.

To see this, notice that f(A) + f(B) = a+ b+ 2c+ d+ e+ 2f , for any arbitrary A and B, and
a, b, c, d, e, f are as shown in figure 2. Here, a (for example) represents the total capacity of edges
with one endpoint in A and the other in V \ (A ∪ B). Also notice that f(A ∪ B) + f(A ∩ B) =
a+ b+ 2c+d+ e, and since all values are positive, we see that f(A) +f(B) ≥ f(A∪B) +f(A∩B),
satisfying definition 3.

A

bc

a

d e

f

B

Figure 2: Given a graph G and two sets A,B ⊆ V , this diagram shows all of the possible classes
of edges of interest in G. In particular, there could be edges with both endpoints in V \ (A ∪ B),
A, or B that are not shown here.

Exercise 1. Show that cut function on the vertices of a directed graph is submodular.

Another nice property about this function f is that it is posi-modular, meaning that f(A) +
f(B) ≥ f(A − B) + f(B − A). In fact, posi-modularity follows for any symmetric submodular
function:

f(A) + f(B) = f(V −A) + f(B) ≥ f ((V −A) ∩B) + f ((V −A) ∪B)
= f(B −A) + f (V − (A−B))
= f(B −A) + f(A−B)

We use symmetry in the first and last lines above. In fact, it turns out that the above two
properties of the cut function are the only two properties necessary for the proof of existence of
Gomory-Hu trees. As mentioned before, this will give us a Gomory-Hu tree for any non-negative
symmetric submodular function. We now prove the following lemma, which will be instrumental
in constructing Gomory-Hu trees:

Key Lemma. Let δ(W) be an s, t minimum cut in a graph G with respect to a capacity function
c. Then for any u, v ∈W,u 6= v, there is a u, v minimum cut δ(X) where X ⊆W .

Proof. Let δ(X) be any u, v minimum cut that crosses W . Suppose without loss of generality that
s ∈ W, s ∈ X, and u ∈ X. If one of these are not the case, we can invert the roles of s and t or X
and V \X. Then there are two cases to consider:

Case 1: t 6∈ X (see figure 3). Then, since c is submodular,

Ws

u

t

v

X

Figure 3: δ(W) is a minimum s, t cut. δ(X) is a minimum u, v cut that crosses W . This diagram
shows the situation in Case 1; a similar picture can be drawn for Case 2

c(δ(X)) + c(δ(W)) ≥ c(δ(X ∩W)) + c(δ(X ∪W)) (1)

But notice that δ(X∩W) is a u, v cut, so since δ(X) is a minimum cut, we have c(δ(X∩W)) ≥
c(δ(X)). Also, X ∪ W is a s, t cut, so c(δ(X ∪ W)) ≥ c(δ(W)). Thus, equality holds in
equation (1), and X ∩W is a minimum u, v cut.

Case 2: t ∈ X. Since c is posi-modular, we have that

c(δ(X)) + c(δ(W)) ≥ c(δ(W \X)) + c(δ(X \W)) (2)

However, δ(W \ X) is a u, v cut, so c(δ(W \ X)) ≥ c(δ(X)). Similarly, δ(X \W) is an s, t
cut, so c(δ(X \W)) ≥ c(δ(W)). Therefore, equality holds in equation (2), and W \ X is a
u, v minimum cut.

�

The above argument shows that minimum cuts can be uncrossed, a technique that is useful in
many settings. In order to construct a Gomory-Hu tree for a graph, we need to consider a slightly
generalized definition:

Definition 5. Let G = (V,E), R ⊆ V . Then a Gomory-Hu tree for R in G is a pair consisting
of T = (R,ET) and a partition (Cr | r ∈ R) of V associated with each r ∈ R such that

1. For all r ∈ R, r ∈ Cr

2. For all st ∈ ET , T − st induces a minimum cut in G between s and t defined by

δ(U) =
⋃
r∈X

Cr

where X is the vertex set of a component of T − st.

Notice that a Gomory-Hu tree for G is simply a generalized Gomory-Hu tree with R = V .

Algorithm 1 GomoryHuAlg(G, R)

if |R| = 1 then
return T = ({r},∅), Cr = V

else
Let r1, r2 ∈ R , and let δ(W) be an r1, r2 minimum cut

〈〈Create two subinstances of the problem〉〉
G1 = G with V \W shrunk to a single vertex, v1; R1 = R ∩W
G2 = G with W shrunk to a single vertex, v2; R2 = R \W

〈〈Now we recurse〉〉
T1, (C1

r | r ∈ R1) = GomoryHuAlg(G1, R1)
T2, (C2

r | r ∈ R2) = GomoryHuAlg(G2, R2)

〈〈Note that r′, r′′ are not necessarily r1, r2!〉〉
Let r′ be the vertex such that v1 ∈ C1

r′

Let r′′ be the vertex such that v2 ∈ C2
r′′

〈〈See figure 4〉〉
T = (R1 ∪R2, ET1 ∪ ET2 ∪ {rr′})
(Cr | r ∈ R) = ComputePartitions(R1, R2, C

1
r , C

2
r , r
′, r′′)

return T,Cr

end if

Algorithm 2 ComputePartitions(R1, R2, C
1
r , c

2
r , r
′, r′′)

〈〈We use the returned partitions, except we remove v1 and v2 from Cr′ and Cr′′ , respectively〉〉
For r ∈ R1, r 6= r′, Cr = C1

r

For r ∈ R1, r 6= r′′, Cr = C2
r

Cr′ = C1
r′ − {v1}, Cr′′ = C2

r′′ − {v2}
return (Cr | r ∈ R)

Intuitively, we associate with each vertex v in the tree a “bucket” that contains all of the
vertices that have to appear on the same side as v in some minimum cut. This allows us to define
the algorithm GomoryHuAlg.

Theorem 3. GomoryHuAlg returns a valid Gomory-Hu tree for a set R.

Proof. We need to show that any st ∈ ET satisfies the “key property” of Gomory-Hu trees. That
is, we need to show that T − st induces a minimum cut in G between s and t. The base case
is trivial. Then, suppose that st ∈ T1 or st ∈ T2. By the Key Lemma, we can ignore all of the
vertices outside of T1 or T2, because they have no effect on the minimum cut, and by our induction
hypothesis, we know that T1 and T2 are correct.

Thus, the only edge we need to care about is the edge we added from r′ to r′′. First, consider
the simple case when αG(r1, r2) is minimum over all pairs of vertices in R. In this case, we see that
in particular, αG(r1, r2) ≤ αG(r′, r′′), so we are done.

However, in general this may not always be the case. Let δ(W) be a minimum cut between r1
and r2, and suppose that there is a smaller r′, r′′ minimum cut δ(X) than what W induces; that
is c(δ(X)) < (̧δ(W)). Assume without loss of generality that r1, r′ ∈W . Notice that if r1 ∈ X, we

r’’

1

r2

T1 T2

C = {v ,...}r’
1

1 r’’
2

2
C = {v ,...}

r’

r

Figure 4: T1 and T2 have been recursively computed by GomoryHuAlg. Then we find r′ and
r′′ such that v1 (the shrunken vertex corresponding to V \W in T1) is in the partition of r′, and
similarly for r′′ and v2. Then, to compute T , we connect r′ and r′′, and recompute the partitions
for the whole tree according to ComputePartitions.

have a smaller r1, r2 cut than δ(W), and similarly if r2 ∈ X. So, it is clear that X separates r1 and
r′. By our key lemma, we can then uncross and assume that X ⊆W .

Now, consider the path from r′ to r1 in T1. There exists an edge uv on this path such that the
weight of uv in T1, w1(uv), is at most c(δ(X)). Because T1 is a Gomory-Hu tree, uv induces an
r1, r2 cut in G of capacity w1(uv) (since v1 ∈ C1

r′). But this contradicts the fact that W is a r1, r2
minimum cut. Threfore, e can pick r1 and r2 arbitrarily from R1 and R2, and GomoryHuAlg is
correct. �

This immediately implies the following corollary:

Corollary 4. A Gomory-Hu tree for R ⊆ V in G can be computed in the time needed to compute
|R| − 1 minimum-cuts in graphs of size at most that of G.

Finally, we present the following alternative proof of the last step of theorem 3 (that is, showing
that we can choose r1 and r2 arbitrarily in GomoryHuAlg). As before, let δ(W) be an r1, r2
minimum cut, and assume that r1 ∈W, r2 ∈ V \W . Assume for simplicity that r1 6= r′ and r2 6= r′′

(the other cases are similar). We claim that αG1(r1, r′) = αG(r1, r′) ≥ αG(r1, r2). To see this, note
that if αG1(r1, r′) < αG(r1, r2), there is an edge uv ∈ ET1 on the path from r1 to r′ that has weight
less than αG(r1, r2), which gives a smaller r1, r2 cut in G than W (since v1 ∈ C1

r′). For similar
reasons, we see that αG(r2, r′′) ≥ αG(r1, r2).

Thus, by the triangle inequality we have

αG(r′, r′′) ≥ min(αG(r′, r1), αG(r′′, r2), αG(r1, r2) ≥ αG(r1, r2)

which completes the proof.
Gomory-Hu trees allow one to easily show some facts that are otherwise hard to prove directly.

Some examples are the following.

Exercise 2. For any undirected graph there is a pair of nodes s, t and an s-t minimum cut consisting
of a singleton node (either s or t). Such a pair is called a pendant pair.

Exercise 3. Let G be a graph such that deg(v) ≥ k for all v ∈ V . Show that there is some pair s, t
such that αG(s, t) ≥ k.

Notice that the proof of the correctness of the algorithm relied only on the key lemma which in
turn used only the symmetry and submodularity of the cut function. One can directly extend the
proof to show the following theorem.

Theorem 5. Let V be a ground set, and let f : 2V → R+ be a symmetric submodular function.
Given s, t in V , define the minimum cut between s and t as

αf (s, t) = min
W⊆V,|W∩{s,t}|=1

f(W)

Then, there is a Gomory-Hu tree that represents αf . That is, there is a tree T = (V,ET) and a
capacity function c : ET → R+ such that αf (s, t) = αT (s, t) for all s, t in V , and moreover, the
minimum cut in T induces a minimum cut according to f for each s, t.

Exercise 4. Let G = (V, ξ) be a hypergraph. That is, each hyper-edge S ∈ ξ is a subset of V . Define
f : 2V → R+ as f(W) = |δ(W)|, where S ∈ ξ is in δ(W) iff S ∩W and S \W are non-empty.
Show that f is a symmetric, submodular function.

References

[1] R. E. Gomory, T. C. Hu. Multi-terminal network flows. Journal of the Society for Industrial
and Applied Mathematics, vol. 9, 1961.

[2] D. R. Karger. Minimum cuts in near-linear time. Journal of the ACM, vol. 47, 2000.

[3] A. Schrijver. Combinatorial Optimization. Springer-Verlag Berlin Heidelberg, 2003. Chapter
15.4.

[4] V. Vazirani. Approximation Algorithms. Springer, 2004.

