CS 598CSC: Combinatorial Optimization Lecture data: 4/8/2010
Instructor: Chandra Chekuri Scribe: Bolin Ding

1 Introduction to Submodular Set Functions and Polymatroids

Submodularity plays an important role in combinatorial optimization. Given a finite ground set S,
a set function f : 25 — R is submodular if

fA)+ f(B)> f(AnB)+ f(AUB) VA,BCS;
or equivalently,
f(A+e)— f(A) > f(B+e)— f(B) VACBandee S\B.
Another equivalent definition is that

f(A+e)+ f(A+e2) > f(A)+ f(A+er +e) VACS and distinct ej,e2 € S\ A.

Exercise: Prove the equivalence of the above three definitions.

A set function f : 29 — R is non-negative if f(A) > 0 VA C S. f is symmetric if f(A) =
f(S\ A) VA CS. fis monotone (non-decreasing) if f(A) < f(B) VA C B. f is integer-valued if
f(A)eZVACS.

1.1 Examples of submodular functions

Cut functions. Given an undirected graph G = (V, E) and a ‘capacity’ function ¢ : E — R on
edges, the cut function f : 2V — R, is defined as f(U) = ¢(6(U)), i.e., the sum of capacities of
edges between U and V\U. f is submodular (also non-negative and symmetric, but not monotone).
In an undirected hypergraph G = (V,) with capacity function ¢ : £ — Ry, the cut function is
defined as f(U) = ¢(0g(U)), where d¢(U) ={ee€ & |enU # D and en (S \U) # 0}.
In a directed graph D = (V, A) with capacity function ¢ : A — R4, the cut function is defined
as f(U) = c(dout(U)), where dout(U) is the set of arcs leaving U.

Matroids. Let M = (S,7) be a matroid. Then the rank function ry; : 25 — Ry is submodular
(also non-negative, integer-valued, and monotone).

Let My = (S,Z1) and My = (S,Z2) be two matroids. Then the function f given by f(U) =
o (U) +ra,(S\ U), for U C S, is submodular (also non-negative, and integer-valued). By the
matroid intersection theorem, the minimum value of f is equal to the maximum cardinality of a
common independent set in the two matroids.

Coverage in set system. Let 71,75, ..., T, be subsets of a finite set T". Let S = [n] = {1,2,...,n}
be the ground set. The coverage function f : 25 — R, is defined as f(A) = |UjeaTs|.

A generalization is obtained by introducing the weights w : T' — R, of elements in T, and
defining the weighted coverage f(A) = w (UjeaTs).

Another generalization is to introduce a submodular and monotone weight-function g : 27 — R,
of subsets of T'. Then the function f is defined as f(A) = g (UicaT;).

All the three versions of f here are submodular (also non-negative, and monotone).

Flows to a sink. Let D = (V, A) be a directed graph with an arc-capacity function ¢: A — R..
Let a vertex ¢t € V be the sink. Consider a subset S C V' \ {t} of vertices. Define a function
f:29 >Ry as f(U) = max flow from U to ¢t in the directed graph D with edge capacities ¢, for a
set of ‘sources’ U. Then f is submodular (also non-negative and monotone).

Max element. Let S be a finite set and let w : S — R. Define a function f : 29 — R as
f(U) = max{w(u) | v € U} for nonempty U C S, and f(#) = min{w(u) | v € S}. Then f is
submodular (also monotone).

Entropy and Mutual information. Let X1, X5, ..., X, be random variables over some under-
lying probability space, and S = {1,2,...,n}. For A C S, define X4 = {X; | i € A} to be the set
of random variables with indices in A. Then f(A) = H(X4), where H(-) is the entropy function,
is submodular (also non-negative and monotone). Also, f(A) = I(Xa;Xg\4), where I(-;-) is the
mutual information of two random variables, is submodular.

Exercise: Prove the submodularity of the functions introduced in this subsection.

1.2 Polymatroids
Define two polyhedra associated with a set function f on S:
Pr={zeR® | 2(U)< f(U)VYU C S, >0} and EP;={z € R | z(U) < f(U) YU C S}.

If f is a submodular function, then Py is called the polymatroid associated with f, and EP; the
extended polymatroid associated with f. A polyhedron is called an (extended) polymatroid if it is
the (extended) polymatroid associated with some submodular function. Since 0 < zs < f({s}) for
each s € S, a polymatroid is bounded, and hence is a polytope.

An observation is that Py is non-empty iff f > 0, and EPy is non-empty iff f(0) > 0.

If f is the rank function of a matroid M, then Py is the independent set polytope of M.

A vector x in EPy (or in Py) is called a base vector of EP; (or of Py) if 2(S) = f(S5). A base
vector of f is a base vector of EP;. The set of all base vectors of f is called the base polytope of
EP; or of f. It is a face of E Py and denoted by By:

By ={zxeR% | z(U) < f(U) VYU C S, z(S) = f(S5)}.

By is a polytope, since f({s}) > zs = x(S) —x(S\ {s}) > f(S) — f(S\ {s}) for each s € S.
The following claim is about the set of tight constraints in the extended polymatroid associated
with a submodular function f.

Claim 1 Let f : 2% — R be a submodular set function. Forx € EPy, define F, = {U C S | z(U) =
f(U)} (tight constraints). Then F, is closed under taking unions and intersections.

Proof: Consider any two sets U,V € F,, we have
fOUV)>z(UUV)=zU)4+z(V)—2(UNV)> fU)+ f(V)=fUNV)> f(UUV).
Therefore, z(UUV) = f(UUV) and 2(UNV) = f(UNV). O

Given a submodular set function f on S and a vector a € R®, define the set function f|a as

(fla)(U) = min(f(T) + a(U\ T)).

Claim 2 If f is a submodular set function on S, fla is also submodular.

Proof: Let g = f|a for the simplicity of notation. For any X,V C S, let X’ C X s.t. g(X) =
FXN+a(X\X),and Y CY s.t. g(Y) = f(Y')+a(Y \Y’). Then, from the definition of g,

g(XNY)+g(XUY) < (F(X'NY") +a((X N Y)\ (X' NY))+(F(X UY) +a((X UY)\ (X UY).
From the submodularity of ,

JXNY) 4 F(XTUY') < F(X) + F(Y).
And from the modularity of a,

a(XNY)\N(X'NY)+a((XUY)\(X'UY))=a(XNY)+a(XUY)—a(X' NY'")—a(X'UY")
a(X)+a(Y) —a(X') —a(Y").

Therefore, we have g(X NY)+ g(X UY) < f(X)+ f(Y) +a(X\ X)) +a(Y \Y). 0

What is EPy|, and Py|,? We have the following claim.

Claim 3 If f is a submodular set function on S and f(0) =0, EPy, = {x € EPy | v < a} and
Py ={z € Py | x <a}.

Proof: For any x € EPy|, and any U C S, we have that (U) < (fla)(U) < f(U)+a(U\U) = f(U)
implying € EPy, and that z(U) < (fla)(U) < f(0) + a(U \ 0) = a(U), implying z < a.

For any x € EPy with x < a and any U C S, suppose that (fl|a)(U) = f(T) +a(U \ T). Then
we have, z(U) = z(T) +x(U\T) < f(T) +a(U\T) = (fla)(U), implying z € EPy,.

The proof of Py, = {z € Py | z < a} is similar. O

A special case of the above claim is that when a = 0, then (f|0)(U) = minpcy f(T') and
EPf|O = {3: € EPf ’ r < 0}.

2 Optimization over Polymatroids by the Greedy Algorithm

Let f : 25 — R be a submodular function and assume it is given as a value oracle. Also given a
weight vector w : § — R4, we consider the problem of maximizing w - x over EPs.

max w - (1)
WS EPf.

Edmonds showed that the greedy algorithm for matroids can be generalized to this setting.

We assume (or require) that w > 0, because otherwise, the maximum value is unbounded.
W.lo.g., we can assume that f()) = 0: if f(0) < 0, EPf = 0; and if f(0)) > 0, setting f(0) =0
does not violate the submodularity.

Greedy algorithm and integrality. Consider the following greedy algorithm:

1. Order S = {s1,52,...,8n} s.t. w(s1) > ... > w(sy). Let A; = {s1,...,s;} for 1 <i < n.
2. Define Ag = 0 and let 2'(s;) = f(4;) — f(Ai—1), for 1 < i < n.

Note that the greedy algorithm is a strongly polynomial-time algorithm.
To show that the greedy algorithm above is correct, consider the dual of maximizing w - x:

min 3 y(U) () (2)

Ucs

> yU) = w(s)

U3s;
y > 0.

Define the dual solution: y'(A4,) = ¢'(S) = w(sn), ¥'(Ai) = w(s;) — w(sit1) for 1 <i<n—1,
and 3/ (U) = 0 for all other U C S.
Exercise: Prove that 2’ and 3/ are feasible and 3y’ satisfies complementary slackness w.r.t. 2’ in (1)
and (2). Then it follows that the system of inequalities {x € RY | x(U) < f(U), YU C S} is totally
dual integral (TDI), because the optimum of (2) is attained by the integral vector 3’ constructed
above (if the optimum exists and is finite).

Theorem 4 If f : 25 — R is a submodular function with f(0) = 0, the greedy algorithm (computing
x') gives an optimum solution to (1). Moreover, the system of inequalities {x € R | 2(U) <
f(U), YU C S} is totally dual integral (TDI).

Now consider the case of P;. Note that Py is non-empty iff f > 0. We note that if f is monotone
and non-negative, then the solution 2’ produced by the greedy algorithm satisfies z > 0 and hence
if feasible for Py. So we obtains:

Corollary 5 If f is a non-negative monotone submodular function on S with f(0) = 0 and let
w: S — Ry, then the greedy algorithm also gives an optimum solution ' to max{w -z | x € Py}.
Moreover, the system of inequalities {x € RS | (U) < f(U), YU C S} is TDI.

Therefore, from Theorem 4 and Corollary 5, for any integer-valued submodular function f, EP;
is an integer polyhedron, and if in addition f is non-negative and monotone, Py is also an integer
polyhedron.

One-to-one correspondence between f and EP;. Theorem 4 also implies f can be recovered
from EP;. In other words, for any extended polymatroid P, there is a unique submodular function
[satisfying f(0) = 0, with which P is associated with (i.e., EP; = P), since:

Claim 6 Let f be a submodular function on S with f(0) = 0. Then f(U) = max{z(U) | x € EPy}
for each U C S.

Proof: Let o = max{z(U) | x € EPy}. a < f(U), because x € EPy. To prove a > f(U), in (1),
define w(s;) = 1 iff s; € U and w(s;) = 0 otherwise, consider the greedy algorithm producing z’:
W.lo.g., we can assume after Step 1 in the greedy algorithm, U = {s1, s2,..., 8¢}, and w(s;) =1
if 1 <i <k and w(s;) =0 otherwise. Define 2/(s;) = f(A;) — f(Ai—1) where A; = {s1,...,8;}. As
x' is feasible in (1) (exercise: @’ € EPy), w2’ < max{w -z | x € EP;}. From the definition of w,
w-x =z(U), and from the selection of 2/, w -2’ = f(A1) — f(0) + f(A2) — f(A1) + ...+ f(Ax) —
f(Ag—1) = f(Ax) — f(0) = f(U). Therefore, f(U) < max{z(U) | z € EP;} = a. O

There is a similar one-to-one correspondence between non-empty polymatroids and non-negative
monotone submodular functions f with f()) = 0. We can also show that, for any such function f,
f(U) =max{z(U) | x € Py} for each U C S.

3 Ellipsoid-based Submodular Function Minimization

Let f : 2° — R be a submodular function and assume it is given as a value oracle, i.e., when given
U C S, the oracle returns f(U). Our goal is to find minycg f(U). Before discussing combinato-
rial algorithms for this problem, we will first describe an algorithm based on the equivalence of
optimization and separation (the ellipsoid-based method) in this section.

We can assume f(0)) = 0 (by resetting f(U) < f(U) — f(0) for all U C S). With the greedy
algorithm introduced in Section 2, we can optimize over EPy in polynomial time (Theorem 4). So
the separation problem for EP; is solvable in polynomial time, hence also the separation problem
for P = EPyN{x | x < 0}, and therefore also the optimization problem for P.

Fact 7 There is a polynomial-time algorithm to separate over P, and hence to optimize over P.

Claim 8 If f(0) =0, max{z(S) | € P} = minycg f(U), where P = EP; N {z | x < 0}.

Proof: Define g = f|0, and then we have ¢g(S) = minycg f(U). Since g is submodular (from
Claim 2) and P = EP, (from Claim 3), thus from Claim 6, g(S) = max{z(S) | € P}. Therefore,
we have max{z(S) | x € P} = minycg f(U). O

Fact 7 and Claim 8 imply that we can compute the value of minycg f(U) in polynomial time.
We still need an algorithm to find U* C S s.t. f(U*) = mingcg f(U).

Theorem 9 There is a polynomial-time algorithm to minimize a submodular function f given by
a value oracle.

Proof: To complete the proof, we present an algorithm to find U* C S s.t. f(U*) = mingcg f(U).

Initially, let @ = minycg f(U). In each iteration:

1. We find an element s € S s.t. the minimum value of f over all subsets of S\ {s} is equal to
«, which implies that there exists an U* C S with f(U*) = a and s ¢ U*.

2. So we then focus on S\ {s} for finding the U*; this algorithm proceeds with setting S <— S\{s}
and repeats Step 1 for finding another such s; if such an s cannot be found in some iteration, the
algorithm terminates and returns the current S as U*. O

