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1 Weighted Matroid Intersection

We saw an algorithm for finding a maximum cardinality set in the intersection of two matroids.
The algorithm generalized in a straightforward fashion to the weighted case. The correctness is
more complicated and we will not discuss it here.

The algorithm for the weighted case is also an augmenting path algorithm. Recall the cardinality
algorithm 1:

Algorithm 1 Algorithm for Maximum Cardinality Independent Set in Intersection of Two Matroids
1: procedure maxIndepSet(M1 = (S, I1), M2 = (S, I2))
2: I ← ∅
3: repeat
4: Construct DM1,M2(I)
5: X1 ← {z ∈ S\I | I + z ∈ I1}
6: X2 ← {z ∈ S\I | I + z ∈ I2}
7: Let P be a shortest X1 −X2 path in DM1,M2(I)
8: if P is not empty then
9: I ← I∆V (P ) . I ′ = (I\{y1, . . . , yt}) ∪ {z0, z1, . . . , zt}

10: end if . Else P is empty and I is maximal
11: until I is maximal
12: end procedure

The weighted case differs only in finding P . Let w : S → <+ be the weights. Then in computing
P we assign weights to each vertex x ∈ DM1,M2(I) as w(x) if x ∈ I and −w(x) to x /∈ I. The
desired path P should now be a minimum length path according to the weights; further, P should
have the smallest number of arcs among all minimum length paths.

Theorem 1 There is a polynomial time combinatorial algorithm for weighted matroid intersection.

2 Matroid Intersection Polytope

Edmonds proved the following theorem about the matroid intersection polytope:

Theorem 2 Let M1 = (S, I1) and M2 = (S, I2) be two matroids on S. Then the convex hull of
the characteristic vectors of sets in I1 ∩ I2 is determined by the following set of inequalities:

x ≥ 0
x(U) ≤ r1(U) ∀ U ⊆ S
x(U) ≤ r2(U) ∀ U ⊆ S



where r1 and r2 are the rank functions of M1 and M2, respectively. Moreover, the system of
inequalities is TDI. In other words,

Pcommon indep. set(M1,M2) = Pindep. set(M1) ∩ Pindep. set(M2).

Proof: Consider the primal-dual pair

max
∑
e∈S

w(e)x(e)

subject to x(U) ≤ r1(U) ∀ U ⊆ S
x(U) ≤ r2(U) ∀ U ⊆ S

x ≥ 0

min
∑
U⊆S

(
r1(U)y1(U) + r2(U)y2(U)

)
subject to

∑
U⊆S
U3e

(
y1(U) + y2(U)

)
≥ w(e) ∀ e ∈ S

y1 ≥ 0
y2 ≥ 0

We will prove that the dual has an integral optimum solution whenever w is integral. We can
assume that w(e) ≥ 0 for each e without loss of generality.

Lemma 3 There exists an optimum solution y∗1, y
∗
2 to the dual such that

F1 = {U ⊆ S | y∗1(U) > 0}
F2 = {U ⊆ S | y∗2(U) > 0}

are chains.

Proof: Suppose that no optimum solution to the dual satisfies the above property. Then choose
an optimum y∗1, y

∗
2 with F1 = {U ⊆ S | y∗1(U) > 0} and F2 = {U ⊆ S | y∗2(U) > 0} such that the

number of proper intersections plus the number of disjoint sets in F1 and F2 is minimal.
Then for A,B ∈ F1, if A and B properly intersect or are disjoint, we can increase y∗1(A ∩ B)

and y∗1(A ∪ B) by ε and decrease y∗1(A) and y∗1(B) by ε to create a new dual solution. This new
solution is still dual feasible since

χ(A ∪B) + χ(A ∩B) = χ(A) + χ(B).

and the dual objective value changes by

−ε
(
r1(A) + r1(B)

)
+ ε
(
r1(A ∪B) + r1(A ∩B)

)
.

By the submodularity of r1, this is ≤ 0. If this value is < 0, then this contradicts the optimality of
the original solution y∗1, y

∗
2. On the other hand, if this value equals 0, then we have a new optimum

solution for the dual with a smaller number of proper intersections plus disjoint sets in F1,F2,
contradicting the choice of y∗1, y

∗
2. This follows similarly for A,B ∈ F2. 2



Corollary 4 There exists a vertex solution y∗1, y
∗
2 such that the support of y∗1 and y∗2 are chains.

Proof Sketch. Suppose that no vertex solution to the dual satisfies this property. Then choose a
vertex solution y∗1, y

∗
2 with F1 = {U ⊆ S | y∗1(U) > 0} and F2 = {U ⊆ S | y∗2(U) > 0} such that the

number of proper intersections plus the number of disjoint sets in F1 and F2 is minimal. Perform
the uncrossing technique as in the previous proof.

Then for all e ∈ S, the constraint for e remains tight after uncrossing. This holds trivially for
e /∈ A ∪B. If e ∈ A but e /∈ B, then e ∈ A ∪B but e /∈ A ∩B, so the net change in the constraint
for e is ε− ε = 0 and it therefore remains at equality (similarly for e ∈ B but e /∈ A). If e ∈ A∩B,
then the net change in the constraint for e is 2ε− 2ε = 0 and the contraint remains tight.

The uncrossing technique then creates a new vertex solution with fewer proper intersections
plus disjoint sets in F1 and F2, contradicting the choice of y∗1, y

∗
2. 2

The following very useful lemma was shown by Edmonds.

Lemma 5 Let S be a set and F1 and F2 be two laminar families on S. Let F = F1 ∪ F2 and let
A be the S ×F incidence matrix. Then A is TUM.

Proof: By S ×F incidence matrix we mean Ax,C = 1 if x ∈ C where x ∈ S, C ∈ F , and Ax,C = 0
otherwise. Without loss of generality, we can assume that each x ∈ S appears in at least one set
C in either F1 or F2, otherwise we can remove x from S without affecting A (since the row for x
would consist of all 0’s).

Let A be a counterexample with |F| + |S| minimal, and among such with a minimal number
of 1’s in A. There are two cases to consider: First, if F1 and F2 are collections of disjoint sets,
then every row of A has at most two nonzero entries. If every row of A has exactly two nonzero
entries, then A represents the edge-vertex incidence matrix of a bipartite graph, which is TUM (see
Figure 1). Since A is a counterexample, this cannot be the case. Therefore, at least one row of A
must have only one nonzero entry.
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Figure 1: Case where F1 and F2 are collections of disjoint sets
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Figure 2: Replacing Y,Z ∈ F1 with Y, Z\Y

Let A′ be the the matrix consisting of the rows of A with two nonzero entries. Then A′ is
TUM (for the reason given before). We claim that this implies that A is also TUM: for any square
submatrix B of A, the determinant of B can be computed by first expanding the computation along
the rows of B with only one nonzero entry. The resulting submatrix represents a square submatrix
of A′, which does not have determinant −2 or 2. Therefore, the original submatrix B of A cannot
have determinant −2 or 2. This is true for any square submatrix of A, so A must be TUM.

This means that F1 and F2 cannot be collections of disjoint sets if A is to be a counterexample.
Therefore, at least one of F1 and F2 must have two sets that are not disjoint. Without loss of
generality, assume that F1 has at least two sets Z and Y such that Y ⊂ Z. Of all possible Z and Y
meeting this criteria, choose the smallest Z. Then replacing Z by Z\Y generates another laminar
family F ′1.

Let A′ be the incidence matrix for S and F ′ = F ′1 ∪ F2.

Claim 6 A′ is TUM if and only if A is TUM.

A′ is obtained from A by subtracting the column for Y from the column for Z. Hence the deter-
minants of all submatrices are preserved. Also, A′ has fewer 1’s than A since Y 6= ∅. Since A was
chosen as a counterexample with the smallest number of 1’s, A′ cannot be a counterexample, and
thus A′ is TUM. But this implies that A is TUM, as well. Therefore, no such counterexample A
can exist. 2

Let y∗1, y
∗
2 be a vertex solution such that F1 and F2 are chains. Since y∗1, y

∗
2 is a vertex solution,

we have a subset F ⊆ F1 ∪ F2 such that (y∗1, y
∗
2) is a solution to the system of equalities∑

U∈F
U3e

(
y1(U) + y2(U)

)
= w(e) ∀ e ∈ S.

Then by Lemma 5, the constraint matrix for the above system corresponds to a TUM matrix. This
implies that there is an integral solution y1, y2 for integral w. From this we can conclude that
the dual LP has an integral optimum solution whenever w is integral, and therefore the system of
inequalities for the matroid intersection polytope is TDI. 2
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