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1 Matroid Intersection

One of several major contributions of Edmonds to combinatorial optimization is algorithms and
polyhedral theorems for matroid intersection, and more generally polymatroid intersection.

From an optimization point of view, the matroid intersection problem is the following: Let
M1 = (S, I1) and M2 = (S, I2) be two matroids on the same ground set S. Then I1 ∩ I2 is the
collection of all sets that are independent in both matroids.

One can ask the following algorithmic questions:

1. Is there a common base in the two matroids? That is, is there I ∈ B1 ∩ B2 where B1 and B2

are the bases of M1 and M2.

2. Output a maximum cardinality set in I1 ∩ I2.

3. Given w : S → <, output a maximum weight set in I1 ∩ I2. Or output a maximum weight
common base, if it exists.

Remark 1 It is easy to see that the intersection of two matroids, i.e., (S, I1∩I2), is not necessarily
a matroid.

Exercise 2 If M1 = (S, I1) is a matroid and M2 = (S, I2) is the uniform matroid, then M3 =
(S, I1 ∩ I2) is a matroid.

As one can imagine, matroid intersection can capture several additional optimization problems.

Example: Bipartite Matching. Let G = (V,E) be a bipartite graph with bipartition A ∪ B.
Let M1 = (E, I1) and M2 = (E, I2) be two partition matroids on E, where

I1 = {E′ ⊆ E | |δ(v) ∩ E′| ≤ 1, v ∈ A}
I2 = {E′ ⊆ E | |δ(v) ∩ E′| ≤ 1, v ∈ B}.

Then it is easy to see that I ∈ I1 ∩ I2 if and only if I induces a matching in G. Thus bipartite
matching problems are special cases of matroid intersection problems.

Example: Branchings and Arborescences. Let D = (V,A) be a directed graph. A branching
in D is a set of edges A′ ⊆ A such that the in-degree of each node is at most one and the edges in
A form a forest. (An example is shown in Figure 1.) An arborescence rooted at a node r ∈ V is a
directed out-tree such that r has a path to each node v ∈ V . Thus an arborescence is a branching
in which r is the only node with in-degree 0.

Consider two matroids M1 = (A, I1) and M2 = (A, I2) where M1 = (A, I1) is a partition
matroid:

I1 = {A′ ⊆ A | |δ−(v) ∩A′| ≤ 1, v ∈ V }



Figure 1: Example of a branching

and M2 is a graphic matroid on G = (V,Au) obtained by making an undirected graph on V by
removing directions from arcs in A with:

I2 = {A′ ⊆ A | A′ induces a forest in Gu}

It is easy to see that I1 ∩ I2 is the set of all branchings, and a common basis corresponds to
arborescences.

Example: Colorful Spanning Trees. Let G = (V,E) where edges in E are colored with k
colors. That is, E = E1 ] E2 ] . . . ] Ek. Suppose we are given integers h1, h2, . . . , hk and wish to
find a spanning tree that has at most hi edges of color i (i.e., from Ei). Observe that this can be
phrased as a matroid intersection problem: it is the combination of a spanning tree matroid and a
partition matroid.

We now state a min-max theorem for the size of the maximum cardinality set in the intersection
of two matroids.

Theorem 3 Let M1 = (S, I1) and M2 = (S, I2) be two matroids with rank functions r1 and r2.
Then the size of the maximum cardinality set in I1 ∩ I2 is given by:

min
U⊆S

r1(U) + r2(S\U)

Proof: Let I ∈ I1 ∩ I2. Take any set U ⊆ S. Then

I = |I ∩ U |+ |I\U | ≤ r1(U) + r2(S\U)

since I ∩ U ∈ I1 and I\U ∈ I2. 2

We prove the difficult direction algorithmically. That is, we describe an algorithm for the
maximum cardinality set in I1 ∩ I2 that, as a byproduct, proves the other direction.

The algorithm is an “augmenting” path type algorithm inspired by bipartite matching and
matroid base exchange properties that we discussed earlier. Given I ∈ I1 ∩ I2, the algorithm
outputs a J ∈ I1 ∩I2 such that |J | = |I|+ 1, or certifies correctly that I is a maximum cardinality
set in I1 ∩ I2 by exhibiting a set U ⊆ S such that |I| = r1(U) + r2(S\U).

Recall that for a matroid M = (S, I) and I ∈ I, we defined a directed graph DM (I) = (S,A(I))
where

A(I) = {(y, z) | y ∈ I, z ∈ S\I, I − y + z ∈ I}

as a graph that captures exchanges for I.



Now we have two matroids M1 and M2 and I ∈ I1 ∩ I2 and we wish to augment I to another
set J ∈ I1 ∩ I2 if possible. For this purpose we define a graph DM1,M2(I) = (S,A(I)) where

A(I) = {(y, z) | y ∈ S, z ∈ S\I, I − y + z ∈ I1}
∪ {(z′, y′) | z′ ∈ S\I, y′ ∈ I, I − y′ + z′ ∈ I2}

In other words, DM1,M2(I) is the union of DM1(I) and the reverse of DM2(I). In this sense there
is asymmetry in M1 and M2. (An example is shown in Figure 2.)

y’

z

z’

y

S\II

Figure 2: Exchange Graph DM1,M2(I)

(y, z) ∈ A(I)⇒ I − y + z ∈ I1
(z′, y′) ∈ A(I)⇒ I − y′ + z′ ∈ I2

Let X1 = {z ∈ S\I | I + z ∈ I1} and X2 = {z ∈ S\I | I + z ∈ I2}, and let P be a shortest path
from X1 to X2 in DM1,M2(I). Note that the shortest path could consist of a single z ∈ X1 ∩X2.
There may not be any path P between X1 and X2.

Lemma 4 If there is no X1−X2 path in DM1,M2(I), then I is a maximum cardinality set in I1∩I2.

Proof: Note that if X1 or X2 are empty then I is a base in one of M1 or M2 and hence a max
cardinality set in I1 ∩I2. So assume X1 6= ∅ and X2 6= ∅. Let U be the set of nodes that can reach
X2 in DM1,M2(I). No X1−X2 path implies that X1 ∩U = ∅, X2 ⊆ U , and δ−(U) = ∅ (i.e., no arcs
enter U). Then we have the following:

Claim 5 r1(U) ≤ |I ∩ U |

Proof: If r1(U) > |I ∩ U |, then ∃z ∈ U\(I ∩ U) such that (I ∩ U) + z ∈ I1 with I + z /∈ I1. If
I + z ∈ I1, then z ∈ X1 and X1 ∩ U 6= ∅, contradicting the fact that there is no X1 − X2 path.
Since (I ∩ U) + z ∈ I1 but I + z /∈ I1, there must exist a y ∈ I\U such that I − y + z ∈ I1. But
then (y, z) ∈ A(I), contradicting the fact that δ−(U) = ∅ (shown in Figure 3).

2

Claim 6 r2(S\U) ≤ |I\U | (The proof is similar to the previous proof.)

Thus |I| = |I ∩ U | + |I\U | ≥ r1(U) + r2(S\U), which establishes that |I| = r1(U) + r2(S\U).
Therefore, I is a max cardinality set in I1 ∩ I2. 2
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Figure 3: Exchange Graph with a (y, z) arc entering U
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Figure 4: A path P in DM1,M2(I)

Lemma 7 If P is a shortest X1 −X2 path in DM1,M2(I), then I ′ = I∆V (P ) is in I1 ∩ I2.

Proof: Recall the following lemma from the previous lecture which we will use here:

Lemma 8 Let M = (S, I) be a matroid. Let I ∈ I and J ⊆ S such that |I| = |J |. If there is a
unique perfect matching on I∆J in A(I), then J ∈ I.

Let P = z0, y1, z1, . . . , yt, zt (shown in Figure 4) be a shortest path from X1 to X2. Let J =
{z1, . . . , zt} ∪ (I\{y1, . . . , yt}). Then J ⊆ S, |J | = |I|, and the arcs from {y1, . . . , yt} to {z1, . . . , zt}
form a unique perfect matching from I\J to J\I (otherwise P has a short cut and is not a shortest
path). Then by Lemma 8, J ∈ I1.

Also, zi /∈ X1 for i ≥ 1, otherwise P would not be the shortest possible X1 − X2 path. This
implies that zi + I /∈ I1, which implies that r1(I ∪ J) = r1(I) = r1(J) = |I| = |J |. Then since
I + z0 ∈ I1, it follows that J + z0 ∈ I1 (i.e., I ′ = (I\{y1, . . . , yt}) ∪ {z0, z1, . . . , zt} ∈ I1).

By symmetry, I ′ ∈ I2. This implies that I ′ ∈ I1 ∩ I2. 2

Theorem 9 There is a polynomial time algorithm to find a maximum cardinality set in the inter-
section of two matroids.



Algorithm 1 will compute a maximum cardinality independent set in the intersection of two
matroids M1 and M2 in polynomial time. This algorithm can be adapted to find a maximum weight
independent set in the intersection of two matroids by adding appropriate weights to the vertices
in DM1,M2(I) and searching for the shortest weight path with the fewest number of arcs among all
such paths of shortest weight.

Algorithm 1 Algorithm for Maximum Cardinality Independent Set in Intersection of Two Matroids
1: procedure maxIndepSet(M1 = (S, I1), M2 = (S, I2))
2: I ← ∅
3: repeat
4: Construct DM1,M2(I)
5: X1 ← {z ∈ S\I | I + z ∈ I1}
6: X2 ← {z ∈ S\I | I + z ∈ I2}
7: Let P be a shortest X1 −X2 path in DM1,M2(I)
8: if P is not empty then
9: I ← I∆V (P ) . I ′ = (I\{y1, . . . , yt}) ∪ {z0, z1, . . . , zt}

10: end if . Else P is empty and I is maximal
11: until I is maximal
12: end procedure
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