CS 598CSC: Combinatorial Optimization Lecture date: March 4, 2010
Instructor: Chandra Chekuri Scribe: Vineet Abhishek

The presentation here is based on [I] and [2].

1 Introduction to Matroids

Matroids (formally introduced by Whitney in 1935) are combinatorial structures that capture the
abstract properties of linear independence defined for vector spaces.

Definition 1 A matroid M is a tuple (S,T), where S is a finite ground set and T C 2° (the power
set of S) is a collection of independent sets, such that:

1. T is nonempty, in particular, ) € Z,
2. T is downward closed; i.e., if X €T andY C X, thenY € T,
3. If X, Y €Z, and | X| < |Y|, then Jy € Y\X such that X +y € L.

Exercise 2 Show that the third property in Definition[1] can be replaced by the following: if X,Y €
Z, Y| =|X|+1, then Iy € Y\X such that X +y € L.

Example 3 (Vector Matroid) Let M be a m x n matriz with entries in some field F and v;
be the it" column of M, viewed as a vector in the vector space F™. Let S = {1,2,...,n} and
Z={I:1C S {vi}icr are linearly independent} (under the usual definition of linear independence
in linear algebra). Then M = (S,7) is a matroid. To see this, notice that properties 1 and 2 of
Definition (1] are trivially satisfied. To show property 3, suppose X,Y € T and |X| < |Y|. If there
is noy € Y\X such that X +y € Z, then Y s in the span of {vs}zex. Hence, |Y| < |X| which is
a contradiction.

Example 4 (Graphic Matroid) Let G = (V, E) be an undirected multi-graph (loops allowed).
Let T = {I : I C E, I induces a forest in G}. Then M = (E,T) is a matroid. Again, the first
two properties of Definition 1] are easy to verify. To show property 3, suppose X,Y € I such that
|X| < |Y]. Both X and Y induce forests in G. Let Vi,Va,...,Vi(x) be the verter sets of the
connected components in G[X] (G restricted to the edge set X ). Here, k(X) denotes the number
of connected components in G[X]. FEach connected component is a tree. Hence, if there is an
edge y € Y that connects two different components of G[X| then G[X + y| is again a forest and
we are done. If not, then every edge y € Y have its both ends in the same component of G[X].
Thus, the number of connected components in G[Y], denoted by k(Y), is at least k(X). Thus,
| X|=|V]|=k(X)>|V]|=kY)=1Y|, which is a contradiction.

Example 5 (Uniform Matroid) Let M = (S,Z), where S is any finite nonempty set, and T =
{I:1CS,|I| <k} for some positive integer k. Then M is a matroid.

Example 6 (Partition Matroid) Let Sy,S9,...,S, be a partition of S and ki, ka, ..., k, be pos-
itive integers. Let T = {I : I C S, [INS;| < k; forall1l < i < n}. Then M = (S,Z) is a
matroid.



Example 7 (Laminar Matroid) Let F be a laminar family on S (i.e., if X, Y € F then X,Y C
S; and either X NY =0, or X CY, orY C X) such that each x € S is in some set X € F.
For each X € F, let k(X) be a positive integer associated with it. Let T ={I : 1 C S, |[INX| <
k(X) VX € F}. Then M = (S,Z) is a matroid. Notice that laminar matroids generalize partition
matroids, which in turn generalize uniform matroids.

Exercise 8 Verify Example[7.

Example 9 (Transversal Matroid) Let G = (V, E) be a bipartite graph with bipartition Vi and
Vo. let T ={I:1CVi,3 a matching M in G that covers I'}. Then M = (V1,T) is a matroid.

Example 10 (Matching Matroid) Let G = (V, E) be an undirected graph. Let T = {I : I C
V,3 a matching M in G that covers I}. Then M = (V,I) is a matroid.

Exercise 11 Verify Examples[9 and[10

1.1 Base, Circuit, Rank, Span and Flat
Let M = (S,Z) be a matroid.

Definition 12 A set X C S such that X ¢ T is called a dependent set of M.
Definition 13 A loop is an element x € S such that {z} is dependent.
Notice that a loop cannot appear in any sets in Z and can be effectively removed from S.

Definition 14 A base is an inclusion wise maximal set in T.

Proposition 15 If B and B are bases of M then |B| = |B].

Proof: If |B| < |§| then from Definition (1} Jx € E\B such that B + x € Z, contradicting the
maximality of B. O
Notice that the notion of base here is similar to that of a basis in linear algebra.

Lemma 16 Let B and B be bases of M and z € E\B Then Jy € B\E such that B — x + Y is a
base of M.

Proof: Since E/\—x € Zand |B—z| < |B|, 3y € B\B such that B—z+y € Z. Then |B—xz+y| = |B|,
implying that B — x + y is a base of M. O

Definition 17 Let M = (S,Z) be a matroid. Given S C S, let 7= {I:IC §,I € ZI}. Then
M = (5,7) is also a matroid and is referred to as the restriction of M to S.

Definition 18 Given/{\/l =(S5,7) and S cs, B is a base for § ifﬁ s a base of ./\//\l, where M is
a restriction of M to S.

Proposition 19 Given M = (S,7), let B C X be a base for X. Then for any Y 2O X, there exist
a base B for'Y that contains B.



Proof: Notice that B is independent in the restriction of M to Y (henceforth independent in Y").
Let B be the maximal independent set in Y that contains B. Since all maximal independent sets
have same size, B is a base of Y. O

Definition 20 Given M = (S,7), a circuit is a minimal dependent set (i.e., an inclusion wise
minimal set in 25\ ). Thus, if C is a circuit then Vo € C, C —x € T.

The definition of a circuit is related to graph theory in the following sense: if M is the graphic
matroid of a graph G, then the circuits of M are the cycles of G. Single element circuits of a
matroid are loops; if M is a graphic matroid of a graph G, then the set of loops of M is precisely
the set of loops of G.

Lemma 21 Let C; and Co be two circuits such that Cy # Co and x € Cy N Cs. Then for every
x1 € C1\Cy there is a circuit C' such that x1 € C and C C Cy UCy — x. In particular, C1 UCy — x
contains a circuit.

Proof: Notice that C1\C5 is nonempty (and so is C2\C1), otherwise, C; C Cs. Since Cy # Ca, Cy
is a strict subset of C9, contradicting the minimality of Cl.

Let C7 U Cy — x contain no circuits. Then B = C7 U Cy — x is independent, and hence, a base
for C1 UCy (since it is maximal). Also, |B| = |C1UC3| — 1. Since C1 N Cy is an independent set, we
can find a base B for C1 UCy that contains C1 N Cy. Then |§| = |B| = |C1UCs| —1. Since C1 \ Cy
and Cy \ C; are both non-empty, this is possible only if either C; C B or Cy C E, contradicting
that B is a base. Hence, C'y U (5 — x must contain a circuit.

Now let x1 € C1\Csy. Let By be a base for C7 U Cy that contains C7 — z1, and By be a base
for C; U Cy that contains Co — z. Clearly, 1 ¢ By and « ¢ By. If 1 ¢ By then By + 1 must
hAave a circuit and we are done. If z1 € By, then from Lemma there exists A;? € B1\Bs sucll that
B = By —x1 + Z is a base for C; U Cy. Notice that & # z, otherwise Cy C B. Thus, x; ¢ B and
B+ 21 contains the circuit satisfying the condition of Lemma O

Corollary 22 Let M = (S,Z) be a matroid. If X € T and y ¢ X then either X +vy € T or there
is a unique circuit C in X +y. Moreover, for eachy € C, X +y—y €.

Proof: If X +y ¢ Z, then it must contain a circuit C;. Assume there is another circuit Cy C X 4y,
and Cp # (5. Since X € 7, both (7 and C must contain y. From Lemma C1 U5 —y contains
a circuit. But this is a contradiction since C'1 UCy —y C X. Hence, X 4y contains a unique circuit,
call it C'. Now, if for some ye ¢, X+y-y y ¢ Z, then X +y—7 is dependent and contains a circuit
C. However, C # (' since y ¢ C contradicting that C' is unique. O

Corollary 23 If B and B are bases. Let & € B\B, then 3z € B\B such that B+ 7% — x is a base.
Proof Sketch. Follows from Corollary O
Definition 24 Let M = (S,Z) be a matroid. The rank function, denoted by raq, of M is raq :
25 1 7, where for X C S, rap(X) is the size of a mazimum independent set contained in X .

Note that the above definition assigns a unique number to each set X since all maximal inde-
pendent sets contained in X have the same cardinality.



Proposition 25 Given a matroid M = (S,T), the rank function rrq has the following properties:
1. 0<rpm(X) <|X| for all X C S.
2. T is submodular; i.e., for any X, Y C S, rp(XUY) +rp(XNY) <rpm(X) +rm(Y).

Proof: Property 1 is by the definition of 4. To show the second property, we use the equivalent
definition of submodularity; i.e., we show that if X C Y and z € S, then ry(X + 2) — rpm(X) >
rm(Y +2) —rpm(Y). First notice that for any X C S and z € S, ry(X + 2) < rpq(X) + 1. Thus,
we only need to show that if ry (Y +2) —rpm(Y) =1 then ry (X +2)—rpmq(X) =1forany X C Y.

If 7o (Y +2) —rpq(Y) = 1, then every base B of Y + z contains z. Let B be a base of X. Since
X CY + 2z, from Proposition there exists a base B of Y + z such that B D B. Then B + 2z is
independent, implying rp(X + 2) —rp(X) =1 as B+ zisabasein X + z. O

Definition 26 Let M = (S,Z) be a matroid. For any X C S, the span of X, denoted by
spany; (X)), is defined as spany(X) = {y 1y € S,;rm(X +y) = rm(X)}. A set X C S s
spanning if spany;(X) = S.

Exercise 27 Prove the following properties about the span function spany, : 25 — 2.
o IfT .U C S and U C spany;(T) then spany; (U) C spany;(T).
o IfTCS,teS\T and s € spany (T +t) \ spany;(T') then t € spany (T + s).

Definition 28 Let M = (S,Z) be a matroid. A subset X C S is a flat of M iff spany;(X) = X.

Exercise 29 Prove the following properties about flats.
o If F1 and F5 are flats then F1 N Fy is a flat.

o I[fFisaflat andt € S\ F and F' is a smallest flat containing F +t then there is no flat F”
with F C F" C F'.

Remark 30 We showed basic properties of bases, circuits, rank, span and flats of a matroid. One
can show that a matroid can alternatively be specified by defining its bases or circuits or rank or
span or flats that satisfy these properties. We refer the reader to [2].
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