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The presentation here is based on [1] and [2].

1 Introduction to Matroids

Matroids (formally introduced by Whitney in 1935) are combinatorial structures that capture the
abstract properties of linear independence defined for vector spaces.

Definition 1 A matroid M is a tuple (S, I), where S is a finite ground set and I ⊆ 2S (the power
set of S) is a collection of independent sets, such that:

1. I is nonempty, in particular, ∅ ∈ I,

2. I is downward closed; i.e., if X ∈ I and Y ⊆ X, then Y ∈ I,

3. If X, Y ∈ I, and |X| < |Y |, then ∃y ∈ Y \X such that X + y ∈ I.

Exercise 2 Show that the third property in Definition 1 can be replaced by the following: if X, Y ∈
I, |Y | = |X|+ 1, then ∃y ∈ Y \X such that X + y ∈ I.

Example 3 (Vector Matroid) Let M be a m × n matrix with entries in some field F and vi

be the ith column of M , viewed as a vector in the vector space Fm. Let S = {1, 2, . . . , n} and
I = {I : I ⊆ S, {vi}i∈I are linearly independent} (under the usual definition of linear independence
in linear algebra). Then M = (S, I) is a matroid. To see this, notice that properties 1 and 2 of
Definition 1 are trivially satisfied. To show property 3, suppose X, Y ∈ I and |X| < |Y |. If there
is no y ∈ Y \X such that X + y ∈ I, then Y is in the span of {vx}x∈X . Hence, |Y | ≤ |X| which is
a contradiction.

Example 4 (Graphic Matroid) Let G = (V,E) be an undirected multi-graph (loops allowed).
Let I = {I : I ⊆ E, I induces a forest in G}. Then M = (E, I) is a matroid. Again, the first
two properties of Definition 1 are easy to verify. To show property 3, suppose X, Y ∈ I such that
|X| < |Y |. Both X and Y induce forests in G. Let V1, V2, . . . , Vk(X) be the vertex sets of the
connected components in G[X] (G restricted to the edge set X). Here, k(X) denotes the number
of connected components in G[X]. Each connected component is a tree. Hence, if there is an
edge y ∈ Y that connects two different components of G[X] then G[X + y] is again a forest and
we are done. If not, then every edge y ∈ Y have its both ends in the same component of G[X].
Thus, the number of connected components in G[Y ], denoted by k(Y ), is at least k(X). Thus,
|X| = |V | − k(X) ≥ |V | − k(Y ) = |Y |, which is a contradiction.

Example 5 (Uniform Matroid) Let M = (S, I), where S is any finite nonempty set, and I =
{I : I ⊆ S, |I| ≤ k} for some positive integer k. Then M is a matroid.

Example 6 (Partition Matroid) Let S1, S2, . . . , Sn be a partition of S and k1, k2, . . . , kn be pos-
itive integers. Let I = {I : I ⊆ S, |I ∩ Si| ≤ ki for all 1 ≤ i ≤ n}. Then M = (S, I) is a
matroid.



Example 7 (Laminar Matroid) Let F be a laminar family on S (i.e., if X,Y ∈ F then X, Y ⊆
S; and either X ∩ Y = ∅, or X ⊆ Y , or Y ⊆ X) such that each x ∈ S is in some set X ∈ F .
For each X ∈ F , let k(X) be a positive integer associated with it. Let I = {I : I ⊆ S, |I ∩X| ≤
k(X) ∀X ∈ F}. Then M = (S, I) is a matroid. Notice that laminar matroids generalize partition
matroids, which in turn generalize uniform matroids.

Exercise 8 Verify Example 7.

Example 9 (Transversal Matroid) Let G = (V,E) be a bipartite graph with bipartition V1 and
V2. let I = {I : I ⊆ V1, ∃ a matching M in G that covers I}. Then M = (V1, I) is a matroid.

Example 10 (Matching Matroid) Let G = (V,E) be an undirected graph. Let I = {I : I ⊆
V,∃ a matching M in G that covers I}. Then M = (V, I) is a matroid.

Exercise 11 Verify Examples 9 and 10.

1.1 Base, Circuit, Rank, Span and Flat

Let M = (S, I) be a matroid.

Definition 12 A set X ⊆ S such that X /∈ I is called a dependent set of M.

Definition 13 A loop is an element x ∈ S such that {x} is dependent.

Notice that a loop cannot appear in any sets in I and can be effectively removed from S.

Definition 14 A base is an inclusion wise maximal set in I.

Proposition 15 If B and B̂ are bases of M then |B| = |B̂|.

Proof: If |B| < |B̂| then from Definition 1, ∃x ∈ B̂\B such that B + x ∈ I, contradicting the
maximality of B. 2

Notice that the notion of base here is similar to that of a basis in linear algebra.

Lemma 16 Let B and B̂ be bases of M and x ∈ B̂\B. Then ∃y ∈ B\B̂ such that B̂ − x + y is a
base of M.

Proof: Since B̂−x ∈ I and |B̂−x| < |B|, ∃y ∈ B\B̂ such that B̂−x+y ∈ I. Then |B̂−x+y| = |B|,
implying that B̂ − x + y is a base of M. 2

Definition 17 Let M = (S, I) be a matroid. Given Ŝ ⊆ S, let Î = {I : I ⊆ Ŝ, I ∈ I}. Then
M̂ = (Ŝ, Î) is also a matroid and is referred to as the restriction of M to Ŝ.

Definition 18 Given M = (S, I) and Ŝ ⊆ S, B̂ is a base for Ŝ if B̂ is a base of M̂, where M̂ is
a restriction of M to Ŝ.

Proposition 19 Given M = (S, I), let B ⊆ X be a base for X. Then for any Y ⊇ X, there exist
a base B̂ for Y that contains B.



Proof: Notice that B is independent in the restriction of M to Y (henceforth independent in Y ).
Let B̂ be the maximal independent set in Y that contains B. Since all maximal independent sets
have same size, B̂ is a base of Y . 2

Definition 20 Given M = (S, I), a circuit is a minimal dependent set (i.e., an inclusion wise
minimal set in 2S\I). Thus, if C is a circuit then ∀x ∈ C, C − x ∈ I.

The definition of a circuit is related to graph theory in the following sense: if M is the graphic
matroid of a graph G, then the circuits of M are the cycles of G. Single element circuits of a
matroid are loops; if M is a graphic matroid of a graph G, then the set of loops of M is precisely
the set of loops of G.

Lemma 21 Let C1 and C2 be two circuits such that C1 6= C2 and x ∈ C1 ∩ C2. Then for every
x1 ∈ C1\C2 there is a circuit C such that x1 ∈ C and C ⊆ C1 ∪C2 − x. In particular, C1 ∪C2 − x
contains a circuit.

Proof: Notice that C1\C2 is nonempty (and so is C2\C1), otherwise, C1 ⊆ C2. Since C1 6= C2, C1

is a strict subset of C2, contradicting the minimality of C2.
Let C1 ∪ C2 − x contain no circuits. Then B = C1 ∪ C2 − x is independent, and hence, a base

for C1∪C2 (since it is maximal). Also, |B| = |C1∪C2|−1. Since C1∩C2 is an independent set, we
can find a base B̂ for C1 ∪C2 that contains C1 ∩C2. Then |B̂| = |B| = |C1 ∪C2| − 1. Since C1 \C2

and C2 \ C1 are both non-empty, this is possible only if either C1 ⊆ B̂ or C2 ⊆ B̂, contradicting
that B̂ is a base. Hence, C1 ∪ C2 − x must contain a circuit.

Now let x1 ∈ C1\C2. Let B1 be a base for C1 ∪ C2 that contains C1 − x1, and B2 be a base
for C1 ∪ C2 that contains C2 − x. Clearly, x1 /∈ B1 and x /∈ B2. If x1 /∈ B2 then B2 + x1 must
have a circuit and we are done. If x1 ∈ B2, then from Lemma 16, there exists x̂ ∈ B1\B2 such that
B̂ = B2 − x1 + x̂ is a base for C1 ∪ C2. Notice that x̂ 6= x, otherwise C2 ⊆ B̂. Thus, x1 /∈ B̂ and
B̂ + x1 contains the circuit satisfying the condition of Lemma 21. 2

Corollary 22 Let M = (S, I) be a matroid. If X ∈ I and y /∈ X then either X + y ∈ I or there
is a unique circuit C in X + y. Moreover, for each ŷ ∈ C, X + y − ŷ ∈ I.

Proof: If X +y /∈ I, then it must contain a circuit C1. Assume there is another circuit C2 ⊆ X +y,
and C1 6= C2. Since X ∈ I, both C1 and C2 must contain y. From Lemma 21, C1∪C2− y contains
a circuit. But this is a contradiction since C1∪C2−y ⊆ X. Hence, X +y contains a unique circuit,
call it C. Now, if for some ŷ ∈ C, X +y− ŷ /∈ I, then X +y− ŷ is dependent and contains a circuit
Ĉ. However, Ĉ 6= C since ŷ /∈ Ĉ, contradicting that C is unique. 2

Corollary 23 If B and B̂ are bases. Let x̂ ∈ B̂\B, then ∃x ∈ B\B̂ such that B + x̂− x is a base.

Proof Sketch. Follows from Corollary 22. 2

Definition 24 Let M = (S, I) be a matroid. The rank function, denoted by rM, of M is rM :
2S 7→ Z+, where for X ⊆ S, rM(X) is the size of a maximum independent set contained in X.

Note that the above definition assigns a unique number to each set X since all maximal inde-
pendent sets contained in X have the same cardinality.



Proposition 25 Given a matroid M = (S, I), the rank function rM has the following properties:

1. 0 ≤ rM(X) ≤ |X| for all X ⊆ S.

2. rM is submodular; i.e., for any X, Y ⊆ S, rM(X ∪ Y ) + rM(X ∩ Y ) ≤ rM(X) + rM(Y ).

Proof: Property 1 is by the definition of rM. To show the second property, we use the equivalent
definition of submodularity; i.e., we show that if X ⊆ Y and z ∈ S, then rM(X + z) − rM(X) ≥
rM(Y + z)− rM(Y ). First notice that for any X ⊆ S and z ∈ S, rM(X + z) ≤ rM(X) + 1. Thus,
we only need to show that if rM(Y +z)−rM(Y ) = 1 then rM(X +z)−rM(X) = 1 for any X ⊆ Y .

If rM(Y + z)− rM(Y ) = 1, then every base B of Y + z contains z. Let B̂ be a base of X. Since
X ⊆ Y + z, from Proposition 19, there exists a base B̄ of Y + z such that B̄ ⊇ B̂. Then B̂ + z is
independent, implying rM(X + z)− rM(X) = 1 as B̂ + z is a base in X + z. 2

Definition 26 Let M = (S, I) be a matroid. For any X ⊆ S, the span of X, denoted by
spanM (X), is defined as spanM (X) = {y : y ∈ S, rM(X + y) = rM(X)}. A set X ⊆ S is
spanning if spanM (X) = S.

Exercise 27 Prove the following properties about the span function spanM : 2S → 2S.

• If T, U ⊆ S and U ⊆ spanM (T ) then spanM (U) ⊆ spanM (T ).

• If T ⊆ S, t ∈ S \ T and s ∈ spanM (T + t) \ spanM (T ) then t ∈ spanM (T + s).

Definition 28 Let M = (S, I) be a matroid. A subset X ⊆ S is a flat of M iff spanM (X) = X.

Exercise 29 Prove the following properties about flats.

• If F1 and F2 are flats then F1 ∩ F2 is a flat.

• If F is a flat and t ∈ S \F and F ′ is a smallest flat containing F + t then there is no flat F ′′

with F ⊂ F ′′ ⊂ F ′.

Remark 30 We showed basic properties of bases, circuits, rank, span and flats of a matroid. One
can show that a matroid can alternatively be specified by defining its bases or circuits or rank or
span or flats that satisfy these properties. We refer the reader to [2].
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