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1 Total Dual Integrality

Recall that if A is TUM and b, c are integral vectors, then max{cx : Ax ≤ b} and min{yb : y ≥
0, yA = c} are attained by integral vectors x and y whenever the optima exist and are finite. This
gives rise to a variety of min-max results, for example we derived König’s theorem on bipartite
graphs. There are many examples where we have integral polyhedra defined by a system Ax ≤ b
but A is not TUM; the polyhedron is integral only for some specific b. We may still ask for the
following. Given any c, consider the maximization problem max{cx : Ax ≤ b}; is it the case that
the dual minimization problem min{yb : y ≥ 0, yA = c} has an integral optimal solution (whenever
a finite optimum exists)?

This motivates the following definition:

Definition 1 A rational system of inequalities Ax ≤ b is totally dual integral (TDI) if, for all
integral c, min{yb : y ≥ 0, yA = c} is attained by an integral vector y∗ whenever the optimum exists
and is finite.

Remark 2 If A is TUM, Ax ≤ b is TDI for all b.

This definition was introduced by Edmonds and Giles[2] to set up the following theorem:

Theorem 3 If Ax ≤ b is TDI and b is integral, then {x : Ax ≤ b} is an integral polyhedron.

This is useful because Ax ≤ b may be TDI even if A is not TUM; in other words, this is a
weaker sufficient condition for integrality of {x : Ax ≤ b} and moreover guarantees that the dual is
integral whenever the primal objective vector is integral.

Proof Sketch. Let P = {x : Ax ≤ b}. Recall that we had previously shown that the following are
equivalent:

(i) P is integral.

(ii) Every face of P contains an integer vector.

(iii) Every minimal face of P contains an integer vector.

(iv) max{cx : x ∈ P} is achieved by an integral vector whenever the optimum is finite.

Edmonds and Giles proved two more equivalent conditions:

(v) Every rational supporting hyperplane of P contains an integer vector.

(vi) If c is integral, then max{cx : x ∈ P} is an integer whenever the optimum exists and is finite.



Condition (vi) implies the theorem as follows. If Ax ≤ b is TDI and b is integral, max{cx : x ∈ P}
is an integer for all integral c whenever it is finite; this is because the dual optimum is achieved by
an integral vector y∗ (TDI property) and the objective function by∗ is integral because b is integral.
This implies that P is integral. 2

There’s an important subtlety to the definition of total dual integrality: being TDI is a property
of a system of inequalities, not a property of the corresponding polyhedron.
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We will illustrate this with an example from [3]. Consider the system Ax ≤ b drawn above on
the left. If we take the cost vector c to be (1, 1), then the primal has an optimum at (2, 2) with
value 4. The tight constraints at this vertex have normal vectors (2, 1) and (1, 2) (these are rows of
A). Therefore, in order for the dual yA = c to have an integer solution, we must be able to express
(1, 1) as an integer combination of (2, 1) and (1, 2). Since this is impossible, Ax ≤ b is not TDI.

However, suppose we add more constraints to obtain the system A′x ≤ b′ drawn above on the
right. Note that this system corresponds to the same polyhedron as Ax ≤ b. However, now we have
an additional normal vector at (2, 2) – namely, (1, 1). Thus (1, 1) is now an integer combination of
the normal vectors at (2, 2). The system A′x ≤ b′ is in fact TDI, even though it corresponds to the
same polytope as the (non-TDI) system Ax ≤ b.

The example demonstrates a necessary for a system to be TDI. We explain this in the general
context. Consider the problem max{cx : Ax ≤ b} with c integral, and assume it has a finite
optimum β. Then it is achieved by some vector x∗ in the face F defined by the intersection of
{x : Ax ≤ b} with the hyperplane cx = β. For simplicity assume that the face F is an extreme
point/vertex of the polyhedron and let A′x∗ = b′ be the set of all inequalities in Ax ≤ b that are
tight at x∗. The dual is min{yb : y ≥ 0, yA = c}. By LP duality theory, any dual optimum solution
y corresponds to c being expressed a non-negative combination of the row vectors of A′, in other
words c is in the cone of the row vectors of A′. If Ax ≤ b is TDI then we ask for an integral dual
optimum solution; this requires that there is an integer solution to yA′ = c, y ≥ 0. This motivates



the following definition.

Definition 4 A set {a1, . . . , ak} of vectors in Rn is a Hilbert basis if every integral vector x ∈
Cone({a1, . . . , ak}) can be written as x =

∑k
i=1 µiai, µi ≥ 0, µi ∈ Z (that is, x is a non-negative

integer combination of a1, . . . , ak). If the ai are themselves integral, we call {a1, . . . , ak} an integral
Hilbert basis.

The following theorem is not difficult to prove with the background that we have developed.

Theorem 5 The rational system Ax ≤ b is TDI if and only if the following property is true for
each face F of P ; let A′x = b′ be the set of all inequalities in Ax ≤ b that are tight/active at F ,
then the rows vectors of A′ form a Hilbert basis.

Corollary 6 If the system Ax ≤ b, αx ≤ β is TDI then Ax ≤ b, αx = β is also TDI.

The example above raises the question of whether one can take any rational system Ax ≤ b
and make it TDI by adding sufficiently many redundant inequalities. Indeed that is possible, and
is based on the following theorem.

Theorem 7 Every rational polyhedral cone has a finite integral Hilbert basis.

Theorem 8 (Giles-Pulleyblank) Any rational polyhedron P has a representation Ax ≤ b such
that

(i) P = {x : Ax ≤ b},

(ii) A is integral, and

(iii) Ax ≤ b is TDI.

Moreover, b is integral if and only if P is integral.

2 The Cunningham-Marsh Theorem

Suppose we have a graph G = (V,E). Let Podd(V ) denote the family of all odd subsets of V with
size at least 3. Recall that in our study of matchings, we have examined three different systems of
inequalities.

x(δ(v)) = 1 ∀v ∈ V
P1 : x(δ(U)) ≥ 1 U ∈ Podd(V )

x ≥ 0
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⌊
1
2 |U |

⌋
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x ≥ 0
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⌋
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x ≥ 0



Here P2 determines the matching polytope for G, while P1 and P3 determine the perfect match-
ing polytope.

It is not hard to see that P1 is not TDI. Consider K4 with w(e) = 1 for every edge e. In this
case, the unique optimal dual solution is yv = 1

2 for each vertex v.
On the other hand, P2 and P3 are TDI; this was proven by Cunningham and Marsh[1]. Consider

the primal maximization and dual minimzation problems for P2 below:

maximize wx subject to

x(δ(v)) ≤ 1 ∀v ∈ V

x(E[U ]) ≤
⌊

1
2 |U |

⌋
∀U ∈ Podd(V )

x ≥ 0

minimize
∑
v∈V

yv +
∑

U∈Podd(V )

zU ·
⌊

1
2
|U |
⌋

subject to

ya + yb +
∑

U∈Podd(V )

a,b∈U

zU ≥ w(ab) ∀ab ∈ E

y ≥ 0, z ≥ 0

By integrality of the matching polytope, the maximum value of the primal is the maximum
weight of a matching under w; by duality, this equals the minimum value of the dual. The
Cunningham-Marsh Theorem tells us that this minimum value is achieved by integral dual vectors
y∗, z∗ with the additional condition that the sets {U : z∗U > 0} form a laminar family.

Theorem 9 (Cunningham-Marsh) The system P2 is TDI (as is P3). More precisely, for every
integral w, there exist integral vectors y and z that are dual feasible such that {U : zU > 0} is
laminar and ∑

v∈V

yv +
∑

U∈Podd(V )

zU ·
⌊

1
2
|U |
⌋

= ν(w)

where ν(w) is the maximum weight of a matching under w.

Exercise 10 Show that the Tutte-Berge Formula can be derived from the Cunningham-Marsh The-
orem.

Cunningham and Marsh originally proved this theorem algorithmically, but we present a differ-
ent proof from [4]; the proof relies on the fact that P2 is the matching polytope. A different proof
is given in [4] that does not assume this and in fact derives that P2 is the matching polytope as a
consequence.

Proof: We will use induction on |E| + w(E) (which is legal because w is integral). Note that if
w(e) ≤ 0 for some edge e, we may discard it; hence we may assume that w(e) ≥ 1 for all e ∈ E.

Case I: Some vertex v belongs to every maximum-weight matching under w.
Define w′ : E → Z+ by

w′(e) = w(e)− 1 if e ∈ δ(v)
w′(e) = w(e) if e 6∈ δ(v)

Now induct on w′. Let y′, z′ be an integral optimal dual solution with respect to w′ such that {U :
z′U > 0} is laminar; the value of this solution is ν(w′). Because v appears in every maximum-weight
matching under w, ν(w′) ≤ ν(w)−1; by definition of w′, ν(w′) ≥ ν(w)−1. Thus ν(w′) = ν(w)−1.



Let y∗ agree with y′ everywhere except v, and let y∗v = y′v + 1. Let z∗ = z′. Now y∗, z∗ is a dual
feasible solution with respect to w, the solution is optimal since it has weight ν(w′) + 1 = ν(w),
and {U : z∗U > 0} is laminar since z∗ = z′.

Case II: No vertex belongs to every maximum-weight matching under w.
Let y, z be a fractional optimal dual solution. Observe that y = 0, since yv > 0 for some vertex
v, together with complementary slackness, would imply that every optimal primal solution covers
v, i.e. v belongs to every maximum-weight matching under w. Among all optimal dual solutions
y, z (with y = 0) choose the one that maximizes

∑
U∈Podd(V ) zU

⌊
1
2 |U |

⌋2. To complete the proof,
we just need to show that z is integral and {U : zU > 0} is laminar.

Suppose {U : zU > 0} is not laminar; choose W,X ∈ Podd(V ) with zW > 0, zX > 0, and
W ∩X 6= ∅. We claim that |W ∩X| is odd. Choose v ∈W ∩X, and let M be a maxmimum-weight
matching under w that misses v. Since zW > 0, by complementary slackness, M contains

⌊
1
2 |W |

⌋
edges inside W ; thus v is the only vertex in W missed by M . Similarly, v is the only vertex in X
missed by M . Thus M covers W ∩X−{v} using only edges inside W ∩X−{v}, so |W ∩X − {v}|
is even, and so |W ∩X| is odd. Let ε be the smaller of zW and zX ; form a new dual solution by
decreasing zW and zX by ε and increasing zW∩X and zW∪X by ε (this is an uncrossing step).

We claim that this change maintains dual feasibility and optimality. Clearly zW and zX are
still nonnegative. If an edge e is contained in W and X, then the sum in e’s dual constraint loses
2ε from zW and zX , but gains 2ε from zW∩X and zW∪X , and hence still holds. Likewise, if e is
contained in W but not X (or vice-versa), the sum loses ε from zW but gains ε from zW∪X . Thus
these changes maintained dual feasibility and did not change the value of the solution, so we still
have an optimal solution. However, we have increased

∑
U∈Podd(V ) zU

⌊
1
2 |U |

⌋2 (the reader should
verify this), which contradicts the choice of z. Thus {U : zU > 0} is laminar.

Suppose instead that z is not integral. Choose a maximal U ∈ Podd(V ) such that zU is not an
integer. Let U1, . . . , Uk be maximal odd sets contained in U such that each zUi > 0. (Note that
we may have k = 0.) By laminarity, U1, . . . , Uk are disjoint. Let α = zU − bzUc. Form a new dual
solution by decreasing zU by α and increasing each zUi by α.

We claim that the resulting solution is dual feasible. Clearly we still have zU ≥ 0, and no
other dual variable was decreased. Thus we need only consider the edge constraints; moreover, the
only constraints affected are those corresponding to edges contained within U . Let e be an edge
contained in U . If e is contained in some Ui, then the sum in e’s constraint loses α from zU but
gains α from zUi , so the sum does not change. On the other hand, suppose e is not contained in
any Ui. By maximality of U and the Ui, U is the only set in Podd containing e. Thus before we
changed zU we had zU ≥ w(e); because w(e) is integral, we must still have zU ≥ w(e). Hence our
new solution is dual feasible.

Since the Ui are disjoint, contained in U , and odd sets,
⌊

1
2 |U |

⌋
>
∑k

i=1

⌊
1
2 |Ui|

⌋
. Thus our new

solution has a smaller dual value than the old solution, which contradicts the optimality of z. It
follows that z was integral, which completes the proof.

To show that the system P3 is TDI, we use Corollary 6 and the fact that system P2 is TDI. 2
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