CS 598CSC: Combinatorial Optimization Lecture date: Feb 18, 2010
Instructor: Nitish Korula Scribe: Abner Guzman-Rivera

1 Maximum Weight Matching in Bipartite Graphs
In these notes we consider the following problem:

Definition 1 (Maximum Weight Bipartite Matching) Given a bipartite graph G = (V, E)
with bipartition (A, B) and weight function w : E — R find a matching of mazimum weight where
the weight of matching M is given by w(M) = > o5y w(e).

Note that without loss of generality, we may assume that G is a complete weighted bipartite
graph (we may add edges of zero weight as necessary); we may also assume that G is balanced,
i.e. |A] = |B| = 3|V|, as we can add dummy vertices as necessary. Hence, some maximum weight
matching is a perfect matching. Furthermore, by negating the weights of the edges we can state
the problem as the following minimization problem:

Definition 2 (Minimum Weight Perfect Matching in Bipartite Graphs) Given a bipartite
graph G = (V, E) with bipartition (A, B) and weight function w : E — R U {oc}, find a perfect
matching M minimizing w(M) =3 .y w(e).

We could also assume that no edge weights are negative as we may add a large enough constant
C to all weights, but this is not required by the algorithms below.
The following is an ILP formulation of the minimum weight perfect matching problem:

min Z (a,b) subject to:
(a,b)
Zx(a,b) =1 Vae A
b
> x(ab) = 1 Vbe B (1)

a

z(a,b) € {0,1} VYaec A,be B
Definition 3 (Primal) This is the LP relaxation of the above ILP:

min Z x(a, b) subject to:

ZCL‘(CL, b) = 1 VYae A
Z z(a,b) = 1 VYbeB (2)
z(a,b) > 0 Yac AbeB

Recall that we saw, in an earlier lecture, a proof of the following theorem by noting that the
constraint matrix of the polytope is totally unimodular.

Theorem 4 Any extreme point of the polytope defined by the constraints in (@ is integral.

We obtain a different proof of Theorem [via algorithms to find a minimum-weight perfect
matching. Our algorithms are primal-dual; we will construct a feasible solution to the dual of
LP with value equal to the weight of the perfect matching output by the algorithm. By weak
duality, this implies that the matching is optimal. More precisely, our algorithms will always
maintain a feasible dual solution y, and will attempt to find a primal feasible solution (a perfect
matching M) that satisfies complementary slackness.

(Dual) The following LP is the dual for (2):

mazximize Z y(a) + Z y(b) subject to:
(a€A beB

yla) +y(b) < w(a,b) V(a,b) € E 3)

Given a dual-feasible solution y, we say that an edge e = (a, b) is tight if y(a) + y(b) = w(a,b). Let
9 be dual-feasible, and let M be a perfect matching in G(V, E): Then,

w) = 3 wlad) > Y @)+ i)

(a,b)eM (a,b)eM
= Y ia) - (8(a)n M)+ " §(b) - (5(b) N M)
acA beB
= > i)+ > 9()
acA beB

where the first inequality follows from the feasibility of j, and the final equality from the fact that
M is a perfect matching. That is, any feasible primal solution (a perfect matching M) has weight
at least as large as the value of any feasible dual solution. (One could conclude this immediately
from the principle of weak duality.) Note, though, that if M only uses edges which are tight under
1, we have equality holding throughout, and so by weak duality, M must be optimal. That is, given
any dual feasible solution g, if we can find a perfect matching M only using tight edges, M must
be optimal. (Recall that this is the principle of complementary slackness.)

Our primal-dual algorithms apply these observations as follows: We begin with an arbitrary
feasible dual solution y, and find a maximum-cardinality matching M that uses only tight edges.
If M is perfect, we are done; if not, we update our dual solution. This process continues until we
find an optimal solution.

We first give a simple algorithm (Algorithm 1 in the following page) exploiting these ideas to
prove Theorem |4] The existence of set S in line 6 is a consequence of Hall’s theorem. Observe that
the value of y increases at the end of every iteration. Also, the value of y remains feasible as tight
edges remain tight and it is easy to verify that by the choice of € the constraints for other edges
are not violated.

Claim 5 Algorithm [1] terminates if w is rational.

Proof: Suppose all weights in w are integral. Then at every iteration € is integral and furthermore
e > 1. It follows that the number i of iterations is bounded by i < maxw(a,b) - |E|. If weights are
rational we may scale them appropriately so that all of them become integers. O

Algorithm 1 MinWeightPerfectMatching(G = (V, E), w)

y<0
E’ + set of tight edges
M «— max cardinality matching for graph G' = (V, F’)
while M is not a perfect matching do
let G’ = (V, E')
let S C A be such that |S| > |N(S)]|
let € = mingegpep\n(s) {w(a, b) —y(a) — y(b)}
Va € S y(a) =y(a) +¢€
Vb e N(S) y(b) = y(b) —e
update £/, M
: end while
: return M

—_ = =

Proof of Theorem |4, The incidence vector of a perfect matching computed by Algorithm [1]is an
extreme point of the polytope in . This vector is integral. Furthermore, by carefully choosing
the cost function one can make any extreme point be the unique optimum solution to the primal
linear program. O

Note that Algorithm [I] does not necessarily terminate in strongly polynomial time; in the rest
of this section, we describe a more efficient algorithm for the minimum-weight bipartite matching
problem.

As before, Algorithm [2| always maintains a feasible dual y and attempts to find a close to
primal feasible solution (matching M) that satisfies complementary slackness. One key difference
from Algorithm [1]is that we now carefully use the maximum cardinality matching M as a guide in
constructing the updated dual solution y; this allows us to argue that we can augment M efficiently.
(In contrast, Algorithm [1| effectively “starts over” with a new matching M in each iteration.)

Algorithm 2 MinWeightPerfectMatchingPD(G = (V, E), w)

1: Vb e B y(b) — 0

2: VYa € A y(a) « min, {w(a,b)}

3: B’ « set of tight edges

4: M « max cardinality matching for graph G’ = (V, E’)
5. while M is not a perfect matching do

6: let Eg; < {e directed from A to B|e€ E';e¢ M}
7 {e directed from B to A|e€ FE' e € M}
8 let D= (V,Eg,) {D is a directed graph}

9: let L « {v | v is reachable in D from an unmatched vertex in A}
10: let € = mingeanz pen\ {w(a,b) —y(a) —y(b)}

11: VYae ANLy(a)=y(a)+e

122 Vbe BN L y(b) =y(b) —¢

13: update B/, M
14: end while
15: return M

Claim 6 At every iteration, C = (A\ L) U (BN L) is a vertex cover for graph G' = (V,E').
Moreover, |C| = |M|.

Proof: Assume C' is not a vertex cover. Then there must be an edge e = (a,b) € E' witha € ANL
and b € B\ L. If e is directed from a to b, then since a is reachable from an unmatched vertex in
A, so is b; this contradicts the fact that b € B\ L. Therefore, e must be directed from b to a, and
hence e is in the matching M. As a itself is matched (using edge €) and a € L, it must be reachable
from an unmatched vertex of A. But the only incoming edge to a is (b, a) (this is the unique edge
incident to a in the matching M), and hence b is reachable from this unmatched vertex of A; again,
this contradicts the fact that b ¢ L. To show the second part of the proof we show that |C| < |M],
since the reverse inequality is true for any matching and any vertex cover. The proof follows from
the following observations:

1. No vertex in A\ L is unmatched by the definition of L.

2. No vertex in BN L is unmatched since this would imply the existence of an augmenting path
(contradicting the maximality of M).

3. There is no edge e = (a,b) € M such that a € A\ L and b € BN L. Otherwise, as this edge
would be directed from b to a, a would be in L.

These remarks imply that every vertex in C is matched and moreover the corresponding edges of
the matching are distinct. Hence |C| < |M|, and so C' is an optimum vertex cover for G'(V, E’). O

At every iteration where the maximum cardinality matching M output is not perfect, the
algorithm will use information from the optimum vertex cover C' to update the dual solution and
improve its value. By the proof of claim |§| there is no tight edge between a € AN L and b € B\ L,
which implies € > 0; it is easy to check that the updated dual solution is feasible. Moreover, the
difference between the new dual solution and the old dual solution is:

V]

e-(JANL| = |BNL) =€ (JANL| +|AN L] = [A\ L] = [BNL|) = e- (=~ |C)),

but |C| = |M]| < %', since M is not perfect, which implies the value of the dual solution strictly
increases. When the algorithm terminates, we obtain a perfect matching M and a dual feasible

solution which satisfy complementary slackness.

Claim 7 Algorithm (@ terminates in O(|V'|?) iterations.

Proof: We first observe that after any iteration, all edges in M are still tight: The only edges (a, b)
that are tight at the beginning of an iteration but not at the end are those with a € AN L and
b € B\ L; from observation 3 in the proof of Claim |§|7 there are no edges in M of this form. Thus,
after any iteration, the size of a maximum cardinality matching M in G'(V, E’) cannot decrease.

Say that an iteration is successful if the size of a maximum cardinality matching using the tight
edges F’ increases. Clearly, after at most |V]/2 successful iterations, we have a perfect matching,
and the algorithm terminates. We show that there are at most |B| = |V/|/2 consecutive unsuccessful
iterations between any pair of successful iterations. Hence, the total number of iterations is at most
L1 I which is O(|V]2).

To bound the number of consecutive unsuccessful iterations, we argue below that after an
unsuccessful iteration, |B N L| increases. Assume for now that this is true: After at most |B]
unsuccessful iterations, we have BN L = B. Once this occurs, every vertex of B (which must
include at least one unmatched vertex) is reachable from an unmatched vertex of A, and so we can
augment M to find a larger matching, which means that the current iteration is successful.

It remains only to prove that at every unsuccessful iteration, at least one more vertex in B
must become reachable from an exposed vertex in A (i.e. |B N L| increases). First note that no
vertex of A or B becomes unreachable; the only way this could happen is if for some path P from
an unmatched vertex a € A to vertex v € L, an edge e € P that was previously tight is no longer
tight. But the only edges that are no longer tight are between A\ L and B N L, and by definition,
no such path P visits a vertex in A\ L. To see that at least one new vertex of B becomes reachable,
note that some edge e = (a,b) with a € AN L and b € B\ L now has become tight by our choice
of e. As the edge (a,b) is directed from a to b, b is now reachable. O

It is not hard to see that each iteration takes only O(|V|?) time, and hence the overall running
time of the algorithm is O(|V[*). A more careful analysis would yield a tighter running time of

O([V]?).
References

[1] A. Schrijver. Combinatorial optimization: Polyhedra and Efficiency, Springer, 2003. Chapter
17.

[2] Lecture notes from Michael Goemans class on Combinatorial Optimization. http://math.
mit.edu/~goemans/18433S09/matching-notes.pdf, 2009.

http://math.mit.edu/~goemans/18433S09/matching-notes.pdf
http://math.mit.edu/~goemans/18433S09/matching-notes.pdf

	Maximum Weight Matching in Bipartite Graphs

