By Claude Berge*

PRINCETON UNIVERSITY
Communicated by N. E. Steenrod, July 8, 1957
Introduction.-Given an unoriented graph (or 1-dimensional regular complex), let X be the set of all its vertices and U be the set of all its edges. When the graph is finite, the following problems arise:

Problem 1: A set $A \subset X$ is said to be internally stable if $x \in A, y \in A$ implies $(x, y) \notin U$. The symbol $|A|$ will denote the number of elements of A. Construct an internally stable set A such that $|A|$ is maximum.

Problem 2: A set $B \subset X$ is said to be a cover if every edge of U is adjacent to at least one vertex in B. Construct a cover with the minimum number of elements.

Problem 3: A set of edges $V \subset U$ is said to be a matching if two edges of V have no vertex in common. Construct a matching with the maximum number of elements.

A particular case of Problem 1 is the chess problem of Gauss: Put eight queens on the board such that no one can take any other. In n-person game theory, if the graph of domination is symmetrical, a maximum internally stable set turns out to be a maximum solution (in the von Neumann-Morgenstern sense ${ }^{1}$), and the more usual case can be solved by means of the Grundy functions. ${ }^{2}$

Problem 2 is the set theoretic dual of Problem 1, since the complement of an internally stable set is a cover, and conversely. Particular cases of Problem 3 are the problem of distinct representatives ($\mathrm{P} . \mathrm{Hall}^{3}$) and the problem of Petersen (D. König ${ }^{4}$). In the case where the graph is bipartite, Problem 3 has been solved by algebraic methods by O. Ore, ${ }^{5}$ and an efficient algorithm has been given by H . Kuhn. ${ }^{6}$ Unfortunately, the linear programming duality used by H. Kuhn no longer subsists when the graph is not bipartite. (Note that Problem 2 is the linear program dual to Problem 3 in the bipartite case.) In view of solving the general case, this paper states two theorems: Theorem 1 gives a necessary and sufficient condition for recognizing whether a matching is maximum and provides an algorithm for Problem 3, while Theorem 2 yields an algorithm for Problems 1 and 2.

The Theorems.-Consider a graph $G=(X, U)$ with a matching V_{0}; if $u \in V_{0}$ we shall say that edge u is strong, otherwise that u is weak. An alternating chain is a chain which does not use the same edge twice and is such that for any two adjacent edges one is strong and the other is weak. A vertex x which is not adjacent to a strong edge is said to be neutral, the set of all neutral points being N.

We shall also consider a graph \bar{G} constructed from G by adding a vertex \bar{a} and connecting \bar{a} to every neutral point with a strong edge. If there exists an alternating chain from \bar{a} to a vertex x, we shall picture an arrow on the last edge ($z, x)$, directed from z to x. A vertex $x(₫ N)$ which is not adjacent to a directed edge is said to be inaccessible, the set of all inaccessible points being I. A vertex $x(\Leftrightarrow N)$ adjacent to a weak edge directed to x and not to a strong edge directed to x is said to be weak, the set of all weak points being W. A vertex $x(\Leftrightarrow N)$ adjacent to a strong edge directed to x and not to a weak edge directed to x is said to be strong,
the set of all strong points being S. A vertex $x(\mathbb{N}$) adjacent to a strong edge directed to x and to a weak edge directed to x is said to be medium, and the set of all medium points will be designated by M.

Lemma 1. Let Y be a connected component of the subgraph M; if \bar{a} is inaccessible, there exists in \bar{G} one strong edge adjacent to Y and directed to Y only; all other edges adjacent to Y are weak and directed from Y only. Moreover, all vertices not in Y and connected to Y by one edge are weak, and $|Y| \geq 3$.

This is a theorem of T. Gallai; ${ }^{7}$ a shorter proof is given by Berge. ${ }^{8}$
Lemma 2. If \bar{a} is inaccessible, $S \cup N$ is internally stable.
(Immediate.)
Lemma 3. If \bar{a} is inaccessible, $M=\phi$ and $I=\phi$, then $S \cup N$ is a maximum internally stable set, W is a minimum cover, and V_{0} is a maximum matching.

From Lemma 2, $S \cup N$ is internally stable, hence $W=X-(S \cup N)$ is a cover. For every cover C and for every matching V, one has $|C| \geq|V|$; as $|W|=\left|V_{0}\right|$, the cover W is minimum and the matching V_{0} is maximum.

Lemma 4. Let Z be a connected component of the subgraph I; if \bar{a} is inaccessible, all edges adjacent to Z are weak and undirected; moreover, all vertices not in Z connected to Z by an edge are weak, and $|Z| \geq 2$.
(Immediate.)
Lemma 5. If $|N| \leq 1, V_{0}$ is a maximum matching.
This follows from the fact that $|X|=2\left|V_{0}\right|+|N|$.
Lemma 6. If $A \subset X$, let G_{A} be the graph constructed from G by shrinking A into a single vertex a_{A}, having as adjacent edges the adjacent edges of A. If the original strong edges constitute a maximum matching for the subgraph A, and for G_{A}, then V_{0} is a maximum matching for G.

This is easy to see by an induction on the number of elements of A.
Theorem 1. A matching V is maximum if and only if there does not exist an alternating chain connecting a neutral point to another neutral point.

If there existed an alternating chain $W=\left(u_{1}, u_{2} \ldots, u_{k}\right)$ connecting a neutral point a to a neutral point a^{\prime} different from $a,(V-W) \cup(W-V)$ would be a matching with more elements than V, and V would not be maximum.

Conversely, let us prove that, if such a chain does not exist, V is maximum; the proposition being obvious when the graph has one or two edges, we shall assume that the proposition is true for any graph having fewer than m edges, and we shall prove it for a graph G of m edges. One can assume that G is connected.

From Lemma 5, one can assume $|N|>1$; from Lemma 3, one can also assume that either $M \neq \phi$ or $I \neq \phi$.

1. If $M \neq \phi$, let Y be a connected component of the subgraph M; the graph G_{Y} constructed from G by shrinkage satisfies the conditions of the theorem (Lemma 1); as it has at least one edge less than G, the strong edges constitute a maximum matching for G_{Y}. On the other hand, the subgraph Y has only one neutral point (Lemma 1) and therefore its strong edges constitute a maximum matching. Thus, from Lemma $6, V_{0}$ is a maximum matching for G.
2. If $I \neq \phi$, let Z be a connected component of subgraph I, and consider the graph G_{Z}. The vertex a_{Z} is a neutral point, connected only with weak points. No alternating chain leads from a point of N to a_{Z}. As G_{Z} satisfies the conditions of the theorem, G_{Z} admits its strong edges as a maximum matching. On the
other hand, the subgraph Z, having no neutral points, admits its strong edges as a maximum matching; therefore, V_{0} is a maximum matching for G.

Theorem 2. Let C_{Y} (resp. C_{z}) be any minimum cover for the subgraph generated by a connected component Y of M (resp. Z of I). If there does not exist an alternating chain connecting a neutral point to another neutral point, the set

$$
C=W \cup \underset{Y}{\cup} C_{Y} \cup \underset{Z}{\cup} C_{Z}
$$

is a minimum cover for G. ${ }^{9}$
Every vertex which is connected by an edge to a component Y is a weak point (Lemma 1); every vertex which is connected by an edge to a component Z is a weak point (Lemma 4). Therefore C is a cover for G. As C is a minimum cover for the graph G^{\prime} deduced from G by removing all edges connecting a weak vertex to a medium or inaccessible vertex (Lemma 3), C is also a minimum cover for G.

Theorem 1 suggests the following procedure for solving Problem 3; Construct a maximal matching V, and determine whether there exists an alternating chain W connecting two neutral points. (The procedure is known.) If such a chain exists, change V into $(V-W) \cup(W-V)$, and look again for a new alternating chain; if such a chain does not exist, V is maximum.

Theorem 2 gives an algorithm for Problem 2, hence for Problem 1.

* Princeton University and C.N.R.S., Paris. This study was prepared at the Economics Research Project, Princeton University, under contract with the Office of Naval Research.
${ }^{1}$ J. von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton, N. J.: Princeton University Press, 1944).
${ }^{2}$ C. Berge, "Fonctions de Grundy d'un graphe infini," Compt. rend. Acad. Sci. Paris, 242, 1604, 1956; C. Berge and M. P. Schützenberger, "Jeux de Nim et solutions," Compt. rend. Acad. Sci. Paris, 242, 1672-1674, 1956.
${ }^{3}$ P. Hall, "On Representatives of Subsets," J. London Math. Soc., 10, 26-30, 1935.
${ }^{4}$ D. König, Theorie der endlichen und unendlichen Graphen (Leipzig, 1936).
${ }^{5}$ O. Ore, "Graphs and Matching Theorems," Duke Math. J., 22, 625-639, 1955.
${ }^{6}$ H. Kuhn, "The Hungarian Method for the Assignment Problem," Naval Research Logistics Quart., 2, 83-97, 1955.
${ }^{7}$ T. Gallai, "On Foundation of Graphs," Acta Math. Hung., 1, 133-153, 1950.
${ }^{8}$ C. Berge, Théorie des Graphes (Dunod publ., in preparation).
${ }^{9}$ R. Z. Norman and Michael O. Rabin proved independently a similar theorem (cf. An algorithm for a minimum cover of a graph, [Abstract], Washington, D. C. meeting of the A.M.S., October 26, 1957) which could be in some sense a dual of this result and which yields an algorithm for the following problem: construct a set C of edges such that every vertex is incident to an edge of C, and which has a minimum number of edges.

