
JOURNAL OF COMPUTER AND SYSTEM SCIENCES 21, 236-250 (1980)

implicit Data Structures for Fast Search and Update*

J. IAN MUNRO AND HENDRA SUWANDA

Department of Computer Science, University of Waterloo, Waterloo, Ontario NZL 3G1, Canada

Received October 15, 1979; revised May 6, 1980

We consider representations of data structures in which the relative ordering of the
values stored is inzpZicit in the pattern in which the elements are retained, rather than
explicit in pointers. Several implicit schemes for storing data are introduced to permit
efficient implementation of the instructions insert, delete and search. B(Nll*) basic opera-
tions are shown to be necessary and sufficient, in the worst case, to perform these in-
structions provided that the data elements are kept in some fixed partial order. We de-
monstrate, however, that the upper bound can be reduced to O(N1j3 log N) if arrange-
ments other than fixed partial orders are used.

1. INTRODUCTION

Pointers are often used to indicate partial orderings among the keys in a data structure.
While their use is often crucial to the flexibility and efficiency of algorithms, their explicit
representation often contributes heavily to the space requirement. In this paper our
interest is in structures (and algorithms acting on them) in which structural information
is implicit in the way data are stored, rather than explicit in pointers. Thus, only a simple
array is needed for the data.

The classic example of such an implicit data structure is the heap [7]. A heap, containing
Nelements from some totally ordered set, is stored as a one dimensional array; A[1 : : N].
A partial order on the elements of the array is maintained so that A[i] < 424 and A[i] <
42i + I] (see Fig. 1). This implicit representation of a tree permits the minimum element
to be found immediately and a new element to be inserted in O(log N) steps.l Similarly,
an element in a specified position may be deleted in O(log N) steps. Furthermore, the
structure has the delightful dynamic property that no wholesale (global) restructuring
is required as the number of elements being stored changes. Unfortunately, a heap is a
very bad representation if searches for arbitrary elements are to be performed; indeed,
these operations require 6(N) comparisons.

Another example of an implicit structure is a sorted list. We can view a sorted list as
being constructed by storing the median of the elements in the middle of the array,

* This work was supported by the Natural Sciences and Engineering Research Council of
Canada under Grant Ag237. A preliminary version of this paper was presented to the 1 lth Annual
ACM Symposium on Theory of Computing, Atlanta, Georgia, May 1979.

r AR logarithms are to base 2 unless otherwise stated.

236
0022~0000/80/050236-15$02.00/O
Copyright Q 1980 by Academic Press, Inc.
All rights of reproduction in any form reserved.

I I
I I
I I
1 I

I
I
I

I I
I I
I I
I 1

I I

I I

I I
I

I
I

I

I I

I I

I I
I 1

I

I

I

1 2 3 4 5

FIG. 1. A heap viewed as an implicit

6 7

structure.

I

I

I I I
I I I

1
1

I I I 1
l I I
I I I
I

;
I I I

I
4 5 6 7

I

I
, I ;

I
I I

I I I I
I I I I

FIG. 2. A sorted list viewed as an implicit structure for performing binary search.

238 MUNRO AND SUWANJJA

partitioning the elements into two groups (those smaller and those larger than the median)
and repeating the same process with the smaller elements in the left part of the array and
the larger ones on the right. The implicit information in this array is a binary tree corre-
sponding to the process of the binary search (see Fig. 2). In contrast to the heap, searching
an arbitrary element can be done in O(log N) steps, but an insertion or a deletion may
need B(N) steps (moves) to restructure the array.

Our major goal in this paper is to develop pointer free data structures under which the
basic operations of insert, delete and search can be performed reasonably efficiently. We
are also able to establish lower bounds on the relative costs of these operations under a
reasonable model. In developing these lower bounds, it is convenient to think of an inser-
tion and a deletion as being paired to form a change of a data value.

2. THE MODEL OF COMPUTATION

Our basic interest is in dynamic data structures, in particular ones in which N, the
number of data items, will change with time. The model is a (potentially infinite) one
dimensional array the first N locations of which contain the data items. We will draw no
formal distinction between a pointer and an integer (index) in the range [0, N]. A data
structure is then implicit, if the only such integer which need be retained is iV itself. Most,
though not all, of our attention will be devoted to such structures, although we note that
one might prefer to permit a constant number of pointers to be retained and still designate
the structure as implicit. We will also suggest two structures which might be described
as “semi-implicit,” in that a variable, but o(N), number of pointers (indices) is kept.
Our basic operations on data elements are making comparisons between two elements
(with three possible outcomes (, = and}) and moving elements. Arithmetics are allowed
only for manipulating the indices.

Our measure of complexity is the maximum number of comparisons and moves required
to perform any of the operations on the data structure. This worst-case analysis of single
operations is in contrast with a closely related problem considered by Bentley et al. [I].
They store N data elements in N consecutive storage locations which are viewed as
[log(N + I)] sorted lists. List i is of length 2’-l if the ith most significant bit of the binary
representation of N is 1, and of length 0 otherwise. A search is easily made on this struc-
ture in O((log N)2) time by doing [log(N + l)] binary searches. An insertion is made by
adding the new element to the end of the list and doing whatever merges are necessary
to reconstitute the structure. They demonstrated that O(N(log N)2) comparisons and
moves are sufficient to perform any sequence of N insertions and searches when this
scheme is employed. That is, in a very strong sense, an average of O((log N)s) steps are
sufficient to perform an insertion or a search on a list of N elements. They also show that
this bound is within a constant factor of being optimal for their problem, provided the
only reordering used is the merging of pairs of sorted sequences of elements, and that the
cost of performing such a merge is equal to the sum of the lengths of the sequences. A
method of deleting elements is also demonstrated, but this is at the cost of an extra bit
of storage per data item and a small increase in run-time.

IMPLICIT DATA STRUCTURF3 239

3. AN IMPLICIT STRUCTURE BA.SED ON A PARTIAL ORDERING

The ordering scheme presented by Bentley et al. is, like the heap and sorted list, a
fixed partial order (for each IV) imposed on the locations of the array. The elements
occupying the locations must be consistent with the partial order. The more restrictive,
in the sense of permitting fewer total orders, the partial order is, the easier it seems to be
to perform searches, but the harder it appears to make changes to the structure (because
of the many relations that must be maintained). The heap and the sorted list are two
rather extreme examples demonstrating the imbalance between the cost for searching
and the cost for modification. In this section we present an ordering scheme which balances
these costs.

3.1. The Bi’arental Heap or Beap

As we have noted, the heap is a very poor structure upon which to perform searches
for random elements. One interpretation of the reason for this difficulty is that as a result
of each internal node having two sons, there are too many (N/2) incomparable elements
in the system. The other extreme, each element having only one son, is a sorted list and
so is difficult to update. Our first compromise between costs of searching and updating
is to create a structure with the same father-son relationship as a heap, and with most
nodes having two sons. The difference is that in general each node will have two parents.
This left us with the cumbersome term, biparental heap, which, fortunately, was shortened
to beup by Ed Robertson.

To form this structure, the array is partitioned into roughly (2N)1/2 blocks. The ith
block consists of the i elements stored from position (i(i - I)/2 + 1) through position
i(i + 1)/2. This enables us to increase or decrease the size of the entire structure while
changing the number of elements in only one block. Indeed, this and similar blocking
methods are used in all of the structures we present. The ordering imposed on this struc-
ture is that the kth element of the jth block is less than (or equal to if a multiset is to be
stored) both the kth and the K + 1st elements of the block j + 1. This ordering is
illustrated in Fig. 3. The numbers in Fig. 3a denotes the indices of the array and an arrow
may be viewed either as a pointer or as a < relation. The structure is then analogous to a
heap; however, an element in our structure will typically have two parents, and so the
height of the structure is about (2N)l12.

Taking a slightly different point of view, one can interpret this structure as an upper
triangular of a matrix (or grid) in which locations 1, 2, 4, 7 ... form the first column and
1, 3, 6, 10 ... the first row. Furthermore, each row and each column are maintained in
sorted order. Under this interpretation, the element in position (i, j) of the triangular
grid is actually stored in location P(i, j) = ((i + j - 2)2 + i + 3j - 2)/2 of the array.
We are, in fact, simply using the well-known diagonal pairing function. In the interest of
brevity we will present several of our algorithms in terms of moving along rows and
columns. Note that these manipulations can easily be performed on the structure without
the awkward repeated computation of the inverses of P(i, j), and in general without the
explicit evaluation of P(i, j) at each node visited. This structure is easily created by

240 MUNFtO AND SUWANDA

FIG. 3a. A beap.

2.1

7.7

18.1

8.1 El 7.6

9.1

19.0

7.7 18.1

/\/
9.1 19.1

\/ \
8.1 7.6

Array locations

FIG. 3b. An example of a beap with 12 elements showing storage mapping and implicit structure.

sorting the entire list. In [6] it is shown that there are about (IV!)‘/” beaps on an ordered
set of N elements. This implies that log(N!/(N!)1/2 N (N/2) log N comparisons are
necessary, on the average, to create a beap, and so B(N log N) are necessary and sufficient.
We now describe methods for performing a few basic operations on this structure.

I. Finding the minimum: This element is in the first location.

2. Finding the maximum: The maximum is in one of the last (2N)l12 locations.

3. Insertion: Insertion is performed in a manner analogous to insertion into a heap.
A new element is inserted into location (N + 1) of the array. If this element is smaller

IMPLICIT DATA STRUCTURES 241

than either of its parents, it is interchanged with the larger parent. This sifting-up
process is continued until the element is in a position such that it is larger than both of
its parents. Since the height of the structure is (2N)1/2 + O(l), one sees that at most 2
(2N)l/” + O(1) comparisons and (2N)‘/” + O(1) moves are performed. Furthermore,
we note that if we,are to insert into the structure an element which is smaller than all
elements currently stored, then every element on some “parent-offspring” path from
location 1 to one of the last (2~39~1~ locations must be moved. This condition holds
regardless of the insertion scheme employed. Hence the scheme outlined minimizes the
maximum number of moves performed in making an insertion into a beap.

4. Deletion: Once we have determined the location of the element to be removed,
simply move the element in position N of the array to that location. This element then
filters up or down in essentially the manner used for insertions. Thus, the cost for a
deletion is at most 2(2N)‘j2 + O(1) comparisons and (2N)lj2 + O(1) moves.

5. Search: For this operation, it is convenient to view the structure as an “upper-left”
triangular matrix (see Fig. 4). We start searching for an element, say X, at the top right
corner of the matrix. After comparing x with the element under consideration, we will
do one of the following depending upon the outcome of the comparison.

(i) If x is less than the element under consideration, move left one position along
the row.

(ii) If x exceeds the element, either move down one position along the column or if
this is not possible (because we are on the diagonal) then move left and down one position
each.

(iii) If th e e e 1 m ent is equal to X, stop searching.

Repeating the above process, the search path will eventually terminate successfully or
meet with the left side of the triangle and be unable to move. The latter condition indi-

C

The Search Path

-

FIG. 4. A search path through a beap.

242 MUNRO AND SUWANDA

x+E x+E x+E x+E Xi-E

FIG. 5. Diagonal and euperdiagonal containing elements near x.

cates an unsuccessful search. Thus, the cost for a search is at most 2(2N)‘12 + O(1)
comparisons.

In summary, we have demonstrated the following:

THEOREM 3.1.1. Storing N data elements in an array of length N as a beap and retaining
no additional information other than the value N, it is possible to maintain a data structure
under which insertions and deletions can be performed in 2(2N)1J2 + O(1) comparisons and
(2N)l12 + O(I) moves, and searches in 2(2N)li2 + O(1) comparisons.

It is worthy of note that searching on this structure cannot be done with fewer compari-
sona.

THEOREM 3.1.2. 2(2N)1/2 + O(1) corn p axisons are necessary and suficient to search for
an element in a beap.

Proof. Consider the diagonal and super-diagonal (the row above the diagonal) of the
structure (Fig. 5). Suppose the diagonal contains the largest elements in the structure
and the super-diagonal contains elements smaller than those on diagonal but larger than
any others in the rest of the system. No other information about the relative values of
the elements is assumed. Suppose, then, that we are to search for an element known to be
smaller than all (except perhaps one) of the elements on the diagonal, but larger than all
except perhaps one) on the superdiagonal. There is no choice but to inspect all elements
in both of these blocks. The theorem follows by noting the number of elements on a
diagonal. 1

4. LOWER BOUNDS

Snyder [5l has shown that if the representation of a data structure on N elements is
“unique,” then at least one of the operations insert, delete or search requires G’(N1/2)
comparisons or alterations. Snyder’s model, however, differs from ours in that he assumes
the use of explicit pointers in his representation. This implies, for example, that if the
maximum element in a sorted list is to be replaced by one smaller than any of the elements
in the list, only two pointer changes have to be made to return to the original form. Under
an implicit ordering, every element would have to be moved to preserve the sorted order.
In this sense, Snyder’s lower bound can be construed as somewhat stronger than necessary

IMPLICIT DATA STRUCTURES 243

for our purposes. On the other hand, he assumes the structure is effectively stored as a
tree of bounded degree. This precludes some of the index calculations which we would
rather permit, and in that sense his lower bounds are too weak. We can, however, demon-
strate the same lower bound as Snyder’s Q(N112), for the class of implicit data structures
which are based solely on storing the data in some fixed partial order. Although this
result sounds very similar to Snyder’s, the two are incomparable; and furthermore, the
proof techniques are quite different. Observe that the structures discussed in the preceding
sections are based on a fixed partial order.

For simplicity let us assume that we are to perform the basic operations of search and
change (i.e., deletion followed by an insertion) on our structure. We insist on pairing a
deletion with an insertion only to eliminate the problem of the structure changing its
size.

Let 9’ denote the maximum number of comparisons necessary to search for an element
and %? denote the number of locations from which data must be moved to perform a
change.

THEOREM 4.1. If an implicit data structure containing N elements carries no structural
information other than a fixed partial order on the values stored in various locations, then
Y*%‘>N.

Proof. Consider the directed acyclic graph whose nodes correspond to the locations
in a structure, and edges correspond to orderings between elements in our locations as
specified by the partial order underlying the storage scheme. Let S be the largest antichain
this graph. It is quite possible that the elements stored in the locations corresponding to S
are of consecutive ranks among the elements stored in the structure. Hence in searching
for any of these elements, no comparisons with any elements outside S can remove from
consideration any in S. Therefore, the number of elements in S is a lower bound and the
number of comparisons necessary to perform a search on the structure.

Now suppose the elements of the longest chain, C, are as small relative to the other ele-
ments in the structure as is consistent with the partial order. That is, if there are K elements
which must be smaller than a given element in the chain, then the particular element is
the k + 1st smallest in the structure. Finally, assume we are to replace the smallest
element in C (which is the smallest element in the structure) with one greater than the
largest element in C. This implies that each element in the chain is in a position requiring
more specific locations be occupied by elements smaller than the given element than there
exist in the entire structure. Hence, every element on the given chain must be moved
(including the removing of the minimum element). The theorem now follows since the
product of the length of the longest chain and the size of the largest antichain must be
at least N (see, for example, [3]). 1

COROLLARY 4.2. A total of B(N1j2) moves and comparisons are necessary and su.cient
to perform the operations insert, delete and search on an implicit data structure in which the
only information known about the structure is a fixed partial order on the array locations and
the size of the structure.

244 MUNRO AND SUWANDA

Proof. Follows from Theorems 4.1 and 3.1 .I. 1

Consider a partial order on N elements which has 9 linear extensions (i.e., there are
9 total orders consistent with the partial order). Then 9, the information theory lower
bound on the number of comparisons necessary to construct this partial order, is
log(N!/Y) = N log N - log Y - O(N). Suppose a search can be performed on a
sequence of elements arranged according to this partial order using at most Y compari-
sons, then Borodin et al. [2] show:

LEMMA 4.3. B + N log 9 > (1 + o(1)) N log N.

Combining this with Theorem 4.1 (log Y + log V > log N), it follows that 9’ +
2N log 9 + N log V 3 (2 + o(1)) N log N. By substituting for B and observing that,
in the proof of Lemma 4.3, the o(l) term is large enough so that the O(N) term in the
expression for may be dropped, an interesting combinatorial view of the interplay between
the various cost criteria is obtained.

COROLLARY 4.4. 2N log 9 + N log %? - log y > (1 + 0(1)) iv log N.

It is, perhaps, worth noting that the beap (a 2-dimensional grid) gives the best balance
we can get between the cost for searching and the cost for insertion/deletion. By going to a
one dimensional grid, which is a sorted list, insertion and deletion will become more
expensive and searching will become cheaper. Going to the obvious extension in three
or more dimensions reduces the cost of modification at the expense of retrieval cost.

5. ON STRUCTURES NOT USING A FIXED PARTIAL ORDER

In this section, we present several implicit (and “semi-implicit”) structures under which
the product of search time and insert (or delete) time is less than N. The main trick
employed is to store blocks of elements in an arbitrary cyclic shift of sorted order. We call
such a block a rotated list. An example of a rotated list is given in Fig. 6. All techniques
presented in this section are based on the assumption that all elements in the structure
at the same time are distinct.

5.1. Rotated Lists

Again the array is partitioned into blocks such that the ith block contains i elements.
The requirements for the order maintained are much more stringent than those of the
beap. We insist that

(i) all elements in block i be less than or equal to all elements in block i + 1;
(ii) block i is a rotated list of size i.

An example is shown in Fig. 7.
Before discussing other searches we must describe a technique for finding the minimum

of a rotated list containing distinct elements. The method used is a bisection technique.

IMPLICIT DATA STRUCTURES 245

FIG. 6. A rotated list of size 5.

q 1p-i-q [-T-i-qT] Is[;si;isl.... 1 2 3 4 5 6 7 8 9 10

FIG. 7. Each block stored as a rotated list.

FIG. 8. Finding the minimum in a rotated list.

Figure 8 illustrates the problem of determining the minimum value in the interval [F, L].
The search procedure is described below:

If F = L then the minimum is found. Otherwise, M := [(F + L)/2J

if element (M) < element (L) then min is in [F, M]; apply the procedure recursively.
if element (M) > element (L) then min is in [n/r + 1, L]; apply the procedure

recursively.

It can be shown that this process requires at most [log ;] comparisons if i is the size of
the block. We note a limitation of our technique in that if elements are repeated, this
search procedure for a block minimum may not succeed. Indeed if all but one of the ele-
ments of a block are the same, then only an exhaustive search will find the minimum.

We now describe methods for performing basic operations on such structures:

1. Finding the minimum: Again this element is in the first array location.
2. Finding the maximum: The maximum is in one of the locations in the last block.

By using the above search procedure, we can find the minimum element of that block;
the maximum is in the immediately preceding location (or in location LV, if the block
minimum is in the first location in the block). Hence only [log((2N)lP)] + 0(1) compari-
sons are required.

3. Search: Our basic approach is to perform a simple binary search until it is deter-

mined that the desired element lies in one of two consecutive blocks. Next the above
search procedure (based on bisection technique) is performed to determine the minimum
element in the larger block. Based on this outcome of a comparison between this minimum
and the desired element, we either

bl ck6’br ’
er orm a (cyclicly shifted) binary search on the larger of the two candidate

f 0

(ii) determine the position of the minimum element in the smaller block, and per-
form a binary search on that block.

246 MUNRO AND SUWANDA

An alternate search technique with the same worst-case behavior is to first do a binary
search on the blocks to find two consecutive blocks that may contain the desired element
and then proceed as before.

LEMMA 5.1.1. In the worst case, searching requires at most 2 log N + 0(1) comparisons.

Proof. Let k and K + 1 be the sizes of the two consecutive blocks. The number of
comparisons in finding these two blocks is at most [log N - log K]. Locating the mini-
mum value in the larger block requires at most [log(K + l)] comparisons. Completing
the search requires at most 2 + [log K] + [log(k + I)] comparisons. Thus, the entire
process costs at most log N + 2 log K + O(1) comparisons. This again is bounded by
2 log N + O(1) comparisons. a

4. Insertion: Using the basic strategy suggested for performing a search, the block
into which a new element should be inserted can be found in log N + O(1) comparisons.
A further (2N)‘/s + O(1) (at most) moves suffice to insert the new element into its
proper position, remove the block maximum and shift the elements which lie between the
new element and the former location of the block maximum. At this point, we see that
for each block larger than the one in which the insertion was made, we must perform the
operation of inserting a “new” minimum element and removing the old maximum.
Fortunately, the new minimum can simply take the place of the old maximum and no
further shifting (within blocks) is necessary. This transformation can be performed on a
block of i elements in log i + O(1) comparisons and one swap. Thus, the entire task can
be accomplished in about (N/2)‘/” log N + O(N1/2) comparisons and O(N)1/2 moves.

5. Deletion: Deletions are performed in essentially the same way as that outlined for
insertions.

Summarizing the above results and observing that once the structure is formed, only
O(N1/2 log N) comparisons are necessary to complete a sort of the list, we have shown:

THEOREM 5.1.2. Assuming data items are distinct, there exists an implicit data structure
which performs searches in 2 log N comparisons and insertions and deletions in (N/2)‘/”
log N + O(N1/2) comparisons and moves. N log N - O(N) comparisons are necessary and
suficient to create this structure.

At this point, it is natural to ask whether or not we can simultaneously achieve the
O(log N) search time of the rotated sort structure and the O(N112) insertion and deletion
costs of the beap. In the next section we show that this is possible with o(N) additional
storage.

5.2. Improving Insertion Time with Extra Storage

5.2.1. With (2N)l12 + O(1) Pointers

Observe that the B(N1/2 log N) behavior of the above technique is due to the search,
in each block, for the (local) maximum. By retaining a pointer to the maximum of each
block, the insertion and deletion times are reduced to O(N112).

IMPLICIT DATA STRUCTURES 247

5.2.2. Batching the Updates with a Small Auxiliary Map

Another approach is to “batch” insertions and deletions. This can be accomplished
with k (for an arbitrary value of k) extra locations to store the pointers (indices) to the
array and, with each of these k indices, a bit to indicate whether insertion or deletion is
to be performed. k log N or so bits are required for this modification map; furthermore,
it is possible that k extra locations in the array are used for elements which have already
been deleted. The basic approach is simply to note the modifications to be made in the
auxiliarly table; actually making the changes in the table is delayed. A search is made by
scanning the main table and the modification map. We now sketch this general approach.

1. Deletion: Put a pointer (in the modification map) to the key to be deleted, assuming
there is no pointer to it already. If the element is marked to be deleted, do no more. If it
is a newly inserted element, and so has a pointer in the modification map, remove the
element and adjust the map in the straightforward manner.

2. Insertion: Search the map to see if the “new” element is actually in the array but to be
deleted. If this is the case, we just remove the corresponding entry in the map. Otherwise,
we put the key in the next location, and keep a new pointer to this location in the modifi-
cation map. Note we must retain both the size of the basic table and the location of the
most recently added element.

3. Search: We search the map first, if there is an entry pointing to the desired element
in the array, the answer will depend on the extra bit denoting a deletion or an insertion.
Otherwise, we search on the structure by using methods described in the previous section.
The cost will be O(k + log N) comparisons.

When the map is full, we sort the newly inserted and deleted keys and then, the changes
are made in a single pass. This restructuring will require at most O((k + IV) log N)
operations, and so can be “time-shared” with the next k insert/delete commands, although
the details of doing so are admittedly complicated. Clearly choosing k to be rather large
reduces the cost of making changes at the expense of the search time. The judicious choice
of log N as the value of k achieves our goal of O(log N) search time and O(N1/2) to make
an insertion or deletion.

At this point, one is also inclined to ask whether or not both the search and modification
costs may reduce to below 19(Nl/~). The answer is in fact positive. This can be achieved
by combining the ideas of a beap and the rotated list as described below.

5.3. A Beap of Rotated Lists

In this section we will present a structure on N elements which allows us to perform a
search, a deletion or an insertion in O(N1j310g N) comparisons and swaps. Again the array
is partitioned into blocks. The ith block is stored from location (i - l)i(2i - 1)/6 + 1
through location i(i + 1)(2i + 1)/6, and is divided into i consecutive subblocks containing
i elements each. The subblocks correspond to the elements (nodes) of the beap and each
subblock is stored as a rotated list. Note that the height of the structure is about (3N)‘/“,
which is equal to the number of blocks. More precisely,

248 MUNRO AND SUWANDA

height

= (3&3

FIG. 9. A beap of rotated lists.

(i) each subblock of block i is a rotated list of size i;

(ii) all the elements of the Kth subblock of the jth block are less then all elements of
the Kth and K + 1st subblocks of block j + 1.

A structural example of a beap of rotated lists is given in Fig. 9. As in the case of the
beap, we note that moving along rows and columns from subblock to subblock can be
done easily without computing the pairing function and its inverses, provided three or
four parameters are kept. Now we describe how to perform the operations:

1. Finding the minimum: Again this element is in position I.

2. Finding the maximum: The maximum is in one of the last (3N)‘/” subblocks. The
maximum element in a subblock can be found in (log N)/3 + O(1) comparisons, and so
the maximum elements in the entire structure can be found by searching each of these
subblocks in a total of (N/9)1/s log N + O(N113) comparisons.

3. Insertion: By combining methods for the beap and the rotated lists, we insert the
new element into the N + 1st position of the array, which is part of a subblock. Since the
subblock is cyclicly sorted, about 2/3 log N comparisons and (3N)l/” swaps are required
in the worst case to insert the new element into the subblock. As in the beap, if the new
element is smaller than either of the maximum elements of its parents, it is interchanged
with the larger one. This process continues (as in the beap) until the imposed ordering
is restored. Since the height of the structure is about (3N)‘/“, O(N1/3 log N) comparisons
and swaps are in fact used.

4. Deletion: Similar to insertion.

5. Search: Basically searches are performed in the same manner as described for the
beap. The key differences are that a comparison with a single element in the beap is
replaced by a (modified) binary search to find the minimum (and hence the maximum)
of a subblock, and so the decision to move left along the row or down along the column
will need more comparisons. Again, we start searching for an element, say X, at the top

IMPLICIT DATA STRUCTURES 249

right corner subblock of the matrix. After finding the minimum and maximum of the
subblock under consideration we will do the following:

(i) If x is less than the minimum element, move left one subblock along the row.

(ii) If x is larger than the maximum element, move down one subblock along the
column, if this cannot be done (on diagonal) then move left and down one subblock each.

(iii) If x is in the range of this subblock, then do a binary search to find X. If success-
ful, then stop searching; otherwise, move left and down one subblock each.

This process is repeated until either x is found or the required move cannot be made.
In this manner a search can be performed in O(N1i3 log N) comparisons. Hence we have

'THEOREM 5.3.1. There z’s an implicit data structure through which it is possible to
perform each of the operations insert, delete and search in O(N1i3 log N) comparisons and
moves.

We note that the easiest way to initialize the structure is to sort the N elements of the
array. The cost of doing so is within a (small) constant factor of that of the optimal method.

6. CONCLUSION

We have drawn attention to implicit data structures as a class of representations worthy
of study. A new application of this class has been demonstrated by using them to maintain
structures in which insertions, deletion and searches can be performed reasonably
efficiently. Table I summarizes the behaviour of algorithms acting on the implicit struc-
tures we have proposed.

TABLE 1

Costs of the Implicit Structures Discussed

Structure Search Insert/delete Extra storage

Beap

Rotated lists

Rotated lists with
block pointers

Rotated lists with
auxiliary table

Beap of rotated lists

O(N)‘/2

w% N)

O(log N)

O(lw N)

O(N”3 log N)

O(N’J

O(N112 log N)

O(N’/2)

O(N’/2)

O(N’/3 log N)

log N bits

log N bits

O(N’/2 log N) bits

O((log N)r) bits

log N bits

ACKNOWLEGMENTS

The authors are pleased to thank Kelly Booth, Frank Tompa and the referees for many helpful
suggestions on clarifying the presentation of this paper.

250 MUNRO AND SUWANDA

Note added in proof. Greg Frederickson has extended the notion of rotated lists to construct
an implicit structure permitting searches in O(log N) time and updates in o(Nc) time. (“Proc. 21st
IEEE Symp. on Foundations of Computer Science,” pp. 255-259).

REFERENCES

1. J. L. BENTLEY, D. DETIG, L. GUIBAS, AND J. SAXE, An optimal data structure for minimal
storage dynamic member searching, unpublished manuscript.

2. A. B. BORODIN, L. J. GUIBAS, N. A. LYNCH, AND A. C. YAO, Efficient searching via partial
ordering, unpublished manuscript. April 1979.

3. J. A. BONDY AND U. S. R. MURTY, “Graph Theory with Applications,” American Elsevier,
New York, 1976.

4. D. E. KNUTH, “The Art of Computer Programming,” Vol. III, “Sorting and Searching,”
Addison-Wesley, Don Mills, Ontario, 1973.

5. L. SNYDER, On uniquely representable data structures, in “Proceedings, 18th IEEE Symposium
on Foundations of Computer Science, 1977,” pp. 142-146.

6. H. SUWANDA, “Implicit Data Structures for the Dictionary Problem,” Ph.D. Thesis, Dept.
of Computer Science, University of Waterloo. (Also as Research Report CS-80-04.)

7. J. W. J. WILLIAMS, “Algorithm 232: Heapsort,” &mm. Assoc. Comput. Mach. 7’(1964), 347-348.

