FINDING THE MINIMUM DISTANCE BETWEEN TWO CONVEX POLYGONS *

Jacob T. SCHWARTZ
Courant Institute of Mathematical Sciences, New York University, Washington Square, New York, NY 10012, U.S.A.

Received 10 August 1981

1. Intreduction

Suppose that a provisional path of coordinated motion has been planned for two rigid polyhedral bodies B_{1} and B_{2} in 3 -space. Then there will exist functions $\mathbf{R}_{1}(t), R_{2}(t), x_{1}(t), x_{2}(t)$ of a parameter t designating time such that the set of points occupied by B_{j} at time t is $R_{j}(t) B_{j}+X_{j}(t)$. To verify the validity of the proposed motion, one can proceed as follows: find the minimum distance δ between the convex sets $R_{1}(t) B_{1}+x_{1}(t)$ and $R_{2}(t) B_{2}+X_{2}(t)$ for $t=0$. Let L be the diameter of the set B_{2}, and from the known form of the functions R_{1}, R_{2}, x_{1}, and x_{2} find an ϵ sufficiently small so that

$$
\begin{aligned}
& \left(\left|R_{1}^{-1}(t) R_{2}(t)-R_{1}^{-1}(0) R_{2}(0)\right| \cdot L+\mid x_{1}(t)+x_{2}(t)\right. \\
& \quad-x_{1}(0)-x_{2}(0) \mid<\delta
\end{aligned}
$$

for all $0 \leqslant t \leqslant \epsilon$. Then a collision between the moving bodies is impossible for this range of t; hence we can advance t from 0 to ϵ, and repeat this step. When successive steps of this kind have brought us from $t=0$ to some final value t^{*}, we can be sure that the planned path is collision-free.

To use this technique effectively, we need a fast algorithm for estimating the minimum distance between two polyhedra. The present note will address

[^0]the problem of finding this distance, but only under two drastic simplifying assumptions, namely
(i) B_{1} and B_{2} are assumed to be convex;
(ii) \mathbf{B}_{1} and \mathbf{B}_{2} are assumed to be two dimensional. Assuming that B_{1} and B_{2} have a total of N vertices and are described by clockwise bounding segment lists of the standard kind, an $O\left(\log ^{2} N\right)$ algorithm for determining the minimum distance between B_{1} and B_{2} will be given. The related problem of finding the minimum distance between a variable.point x and a fixed convex body B is considered in [2], where an $O(\log N)$ algorithm is given.

2. The algorithm

Hence let B_{1} and B_{2} be convex polygons. Write
$B_{1} \pm B_{2}=\left\{x \pm y: x \in B_{1}, y \in B_{2}\right\}$
and
$-B=\{-x ; x \in B\}$,
so that $B_{1}+B_{2}$ is the so-called Minkowski Sum of B_{1} and B_{2}, and $B_{1}-B_{2}=B_{1}+\left(-B_{2}\right)$. Our problem is to estimate the distance between the point $x=0$ and the set $B_{1}-B_{2}$; replacing B_{2} by $-B_{2}$, it becomes that of estimating the distance from the origin to the convex set $B_{1}+B_{2}$.
A fast $(O(N))$ procedure for finding $B_{1}+B_{2}$ given B_{1} and B_{2} is described in [1], and is as follows:
(a) The sides of B_{1} and B_{2} are available as circular lists arranged in increasing order of the angle θ that each side makes with the x axis. Merge these two lists
into a single similarly ordered list L .
(b) If a side S of B_{2} (resp. B_{1}) lies between two s.ccessive sides $S^{\prime}, S^{\prime \prime}$ of B_{1} (resp. B_{2}) in this list, let c be the corner at which S and S^{\prime} meet. Then $S+c$ is a side of $B_{1}+B_{2}$, and L lists these sides of $B_{1}+B_{2}$ in their standard circular order. We will say in what follows that the side $S+c$ of $B_{1}+B_{2}$ comes from S (which is a side either of B_{1} or of B_{2}), and that c is the corner of B_{1} (resp. B_{2}) that matches the side S of B_{2} (resp. B_{1}).

Our algorithm will apply this construction, but to attain $O\left(\log ^{2} N\right)$ performance will avoid forming the full list L. We proceed as follows.
(i) The sides of any convex polygon B can be oriented so that the interior of B lies to their left. Oriented in this way, the sides of B fall into two (circularly) contigsous groups, one consisting of (vertically) ascending, the other of descending edges. It is clear that the ascending (resp. descending) edges of $B_{1}+B_{2}$ come from the separate ascending (resp. descending) edges of B_{1} and of B_{2}.
(ii) Let a point x in the plane be given; we wish to determine whether it belongs to $B_{1}+B_{2}$, and if not, to find its minimum distance to $\mathbf{B}_{1}+\mathbf{B}_{2}$. First determine the highest (resp. lowest) corner H_{j}, L_{j} of each B_{j} t this can be done in time $\mathrm{O}(\log \mathrm{N})$ by binary search of the sides of B_{j}. Then the highest and lowest corners of $B_{1}+B_{2}$ are $H_{2}+H_{2}$ and $L_{1}+L_{2}$ respectively. If x does not lie in the vertical range bracketed by these two points, it is definitely not in $B_{1}+B_{2}$. If x does lie. in this vertical range, then a horizontal line drawn through x will intersect exactly two sides of $B_{1}+B_{2}$, one an ascending, the other a descending side, and x belongs to $B_{1}+B_{2}$ if and only if it lies between these two sides. To find these two intersections, we can start at the lowest corner $\mathrm{L}_{1}+\mathrm{L}_{2}$ of $B_{1}+B_{2}$, and perform a binary search of its ascending (resp. descending) sides. This can be done without actually forming the full collection of its sides, using a technique which we will now explain.
(iii) Let the ascending sides of $B_{1}+B_{2}$ be enumerated, in bottom-to-top order, as $S_{1}, S_{2}, \ldots, S_{n}$. At any moment during a binary search of these sides, we will be examining two of these sides S_{k}, S_{k}, and will need to examine a side S_{j} lying between them. We can suppose that the side S^{\prime} of B_{1} (resp. B_{2}) from which each side S_{j} under examination comes is known, and that the corner \mathbf{c} of \mathbf{B}_{2} (resp. \mathbf{B}_{1}) matching \mathbf{S}^{\prime} is also known.

For our binary search to retain logarithmic efficiency, we must be able to locate a side S_{k} between S_{i} and S_{j} such that k is at least (resp. most) a fixed fraction α (resp. 1- α) of the distance fromito j. This can be done as follows. Let S_{i} come from a side S^{\prime} (of B_{1} or B_{2}) numbered i^{\prime}, matched by a corner $\mathrm{c}^{\prime \prime}$ (of B_{2} or B_{1}) whose entering edge is numbered $\mathrm{i}^{\prime \prime}$, and define $S^{\prime \prime}, j^{\prime}$ and $j^{\prime \prime}$, similarly from S_{j}. If S^{\prime} and $\mathrm{S}^{\prime \prime}$ are sides of the same polygon (B_{1} or B_{2}), put
$\Delta^{\prime}=\mathrm{j}^{\prime}-\mathrm{i}^{\prime}, \quad \Delta^{\prime \prime}=\mathrm{j}^{\prime \prime}-\mathrm{i}^{\prime \prime}$.
On the other hand, if S^{\prime} and $S^{\prime \prime}$ are sides of different polygons, put
$\Delta^{\prime}=\mathrm{j}^{\prime \prime}-\mathrm{i}^{\prime}, \quad \Delta^{\prime \prime}=\mathrm{j}^{\prime}-\mathrm{i}^{\prime \prime}$.
In order to avoid detailed enumeration of tediously many cases, we will suppose that S^{\prime} and $S^{\prime \prime}$ are sides of different polygons; the treatment of the cases thereby ignored and of this case are similar.

If $\Delta^{\prime} \geqslant \Delta^{\prime \prime}$, advance from side i^{\prime} (of the polygon having S^{\prime} as a side) halfway toward side $j^{\prime \prime}$ of this polygon. Let the side in this intermediate position be T, let its index be m , and find its matching corner c . Then $T+c$ is a side of $B_{1}+B_{2}$; its index as a side of $B_{1}+B_{2}$ exceeds i by at least $\frac{1}{2} \Delta^{\prime}$ and by at most $\frac{1}{2} \Delta^{\prime}+\Delta^{\prime \prime}$. Hence in lies at least $\frac{1}{4}$ and at most $\frac{3}{4}$ of the way from i to j .

Similarly, if $\Delta^{\prime \prime}>\Delta^{\prime}$, advance from side i" (of the polygon having $c^{\prime \prime}$ as a corner) halfway toward side i^{\prime} of this polygon. Let the side in this intermediate position be T, its index be m , and its matching corner be c. Then again $T+c$ is a side of $B_{1}+B_{2}$ whose index is at least $\frac{1}{4}$ and at most $\frac{3}{4}$ of the way from i to j.

Locating the corner matching a given side can be done in time $\mathrm{O}(\log \mathrm{N})$, so overall the binary search we have just described requires $O\left(\log ^{2} N\right)$ time.
(iv) The binary search will locate the two points of intersection of the horizontal line through x with the boundary of $\mathbf{B}_{1}+B_{2}$. If x lies between these points it is interior to $B_{1}+B_{2}$, and we are finished. Otherwise x lies to the right or to the left of one of them. Suppose, for the sake of definiteness, that x lies to the right of $\mathrm{B}_{1}+\mathrm{B}_{2}$, or, if x lies above (resp. below) the topmost (resp. bottom most) point of $B_{1}+B_{2}$, that it lies to the left of this point. Then the point of $B_{1}+B_{2}$ lying closest to x lies on one of the ascending edges forming the left-hand part Q of the boundary of $B_{1}+B_{2}$. We now begin to search for this edge. We start this search
from an edge of $\mathbf{B}_{1}+B_{2}$ visible from x. Such an edge is available in all cases, since if x lies above (resp. below) $\mathrm{B}_{1}+\mathrm{B}_{2}$ we have only to take the topmost (resp. bottom most) edge of Q .
(v) To find the edge S^{*} of $B_{1}+B_{2}$ containing the point Z closest to x, we start with an edge S visible from x and draw a line from x to the initial corner c_{1} of S (note again that the edges of Q are oriented and point downward). Let C_{2} be the other corner of S. If the angle $\mathrm{xc}_{1} \mathrm{c}_{2}$ is acute, then N lies on Q below c_{1}; if obtuse, then at or above c_{1}. This observation enables the edge S containing Z to be located by binary search. As previously, this binary search procedure will run in time $O\left(\log ^{2} N\right)$. Suppose now that S contains Z. Then if $\mathrm{xc}_{1} \mathrm{c}_{2}$ is acute but $\mathrm{xc}_{2} \mathrm{c}_{1}$ is obtuse Z is c_{2}; if $\mathrm{xc}_{1} \mathrm{c}_{2}$ is obtuse then Z is c_{1}; and otherwise Z is the foot of the perpendicular from x to S .

3. A technique for accelerating the expected speed of location of a point on a divided real axis

Like many other geometric algorithms, the algorithm sketched in the preceding pages makes repeated use of the foliowing computational step:

Given 0 fxed increasing sequence of real numbers x_{1}, \ldots, x_{n}, and a point x, locate the interval (x_{i}, x_{i+1}) in which x lies.

The normal technique for accomplishing this is simply to perform a binary search, which requires time $O(\log n)$.

We will now sketch an alternative approach which has the same worst case behavior, but (if the points x_{j} are randomly distributed) will reduce the expected time needed to locate the desired interval to $O(1)$. This is simply to keep an auxiliary table T consisting of $\frac{\pi}{\alpha}$ locations. To set up T, we divide the full range ($\mathrm{x}_{1}, \mathrm{x}_{\mathrm{n}}$) from the minimum to the maximum of the x_{i} into an equal subintervals I, each of which corresponds to an entry E of T; E then stores the indices of the largest and smallest x_{j} belonging to I. To find the

Table 1

Value of α	Value of $e^{-\alpha^{2}} \alpha^{j} \log j / j!$
1	0.22
2	0.57
4	1.20

interval ($\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{i}+1}$) containing a given x we simply calculate the entry E of T corresponding to x, and perform a binary search in the subrange (x_{j}, x_{k}) of (x_{1}, x_{n}) indicated by E.

To analyze the expected performance of this scheme, we can reason as follows. The number of x_{j} expected to fall into each of the subranges I into which we divide the full range (x_{1}, x_{n}) is α, so that, assuming that α is small, the probability p_{j} that j items actually fall into I will be Poissonian with expectation α, i.e. $p_{j}=e^{-\alpha} \alpha^{j} / j!$. If we enter an interval containing j items to do a binary search, $\mathrm{O}(1+\log \mathrm{j})$ time will be required for the search. Thus the expected searching time is

$$
O(1)+O\left(e^{-\alpha} \sum_{j>2} \alpha^{j} \log j / j!\right)
$$

Table 1 shows this last function.
This technique can be used in the "find matching corner' step of the closest point algorithm sketched earlier, and, assuming a random distribution of angles parallel to the sides of the polygons involved, will reduce the expected time needed to find this corner to $O(1)$; thus the expected time required for the whole algorithm is $O(\log N)$ rather than $O\left(\log ^{2} N\right)$.

References

[1] 1. Najfeld, Analytic design of compensators and computational geometry, Ph.D. Thesis, Brown University, Prowidence, RI (1978).
[2] M. Shamos, Problems in computational geometry (firat revision), Informally distributed lecture notes, CarnegieMellon University, Pittsburgh, PA (1975).

[^0]: * This report was prepared as a result of work performed under NASA Contracts No. NAS1-14472 and NAS1-15810 while the author was in residence at the Institute for Computer Applications in Science and Engineering (ICASE), NASA Langley Research Center, Hampton, VA 2366S, U.S.A.

