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Abstract. Efficient implementations of Dijkstra's shortest path algorithm are investigated. A new data
structure, called the radix heap, is proposed for use in this algorithm. On a network with n vertices,
mn edges, and nonnegative integer arc costs bounded by C, a one-level form of radix heap gives
a time bound for Dijkstra's algorithm of O(m + n log C). A two-level form of radix heap gives a bound
of O(m + n log C/log log C). A combination of a radix heap and a previously known data structure
called a Fibonacci heap gives a bound of O(m + n /log C). The best previously known bounds are
O(m + n log n) using Fibonacci heaps alone and O(m log log C) using the priority queue structure
of Van Emde Boas et al. [17].
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1. Introduction

Let G = (V, E) be a graph with vertex set V of size n and arc set E of size m. Let s
be a distinguished vertex of G and let c be a function assigning a nonnegative real-
valued cost to each arc of G. We denote the cost of (v, w) E E by c(v, w) to avoid
extra parentheses. The single-source Shortest path problem is that of computing,
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for each vertex v reachable from s, the cost of a minimum-cost path from s to v.
(The cost of a path is the sum of the costs of its edges.) We assume that all vertices
are reachable from s; if this is not the case, unreachable vertices can be deleted
from G in a linear-time preprocessing step.

The theoretically most efficient known algorithm for this problem is Dijkstra's
algorithm [6]. Our description of his algorithm is based on that in Tarjan's
monograph [13]. The algorithm maintains a tentative cost d(v) for each vertex v,
such that some path from s to v has total cost d(v). As the algorithm proceeds, the
tentative costs decrease, until at the termination of the algorithm, for each vertex
v, d(v) is the cost of a minimum-cost path from s to v. Initially d(s) = 0O and
d(v) = oo for every v # s. The algorithm maintains a partition of the vertices into
three states: unlabeled vertices, those with infinite tentative costs; labeled vertices,
those with finite tentative cost whose minimum cost is not yet known; and scanned
vertices, those whose minimum cost is known. Initially, s is labeled and all other
vertices are unlabeled. The algorithm consists of repeating the following step until
all vertices are scanned:

Scan a Vertex. Select a labeled vertex v such that d(v) is minimum and
declare v scanned. For each arc (v, w), if d(v) + c(v, w) < d(w), replace d(w)
by d(v) + c(v, w) and declare w labeled if it is currently unlabeled.

The algorithm can easily be augmented to compute actual minimum-cost paths
instead of just the costs of such paths. This computation requires only O(m)
additional time.

The key to efficient implementation of Dijkstra's algorithm is the use of a data
structure called a heap (or priority qluele). A heap consists of a set of items, each
with an associated real-valued key, on which the following operations are possible:

(i) insert(h, x). Insert new item x, with predefined key, into heap h.
(ii) delete rain(h). Find an item of minimum key in heap h, delete it from h,

and return it as the result of the operation.
(iii) decrease(h, x, value). Replace by value the key of item .x in heap h; value

must be smaller than the old key of x.

In a heap-based implementation of Dijkstra's algorithm, a heap h contains all
the labeled vertices; the tentative cost of a labeled vertex is its key. Initially,
h = s }. The scanning step is implemented as follows:

Scan a Vertex. Let v = delete min(h). Declare v scanned. For each arc (v, w),
if d(w) = oo, let d(w) = d(v) + c(v, w) and perform insert(hA, w); if d(w) < oo and
d(v) + c(v, w) < d(w), perform decrease(h, w, d(v) + c(v, w)).

Dijkstra's algorithm runs in O(m) time plus the time required to perform the
heap operations. There are n insert operations (counting one to insert s initially),
n delete min operations, and at most m - n + decrease operations. Dijkstra's
original implementation uses an array to represent the heap, giving a bound of
0(1) time per insert or decrease and O(n) time per delete win, or 0(n 2) time
overall. A more modern heap implementation, the Fibonacci heap [8], needs 0(1)
time per insert or decrease and only O(log n) per delete win, for an overall time
bound of O(m + n log n). The same bound is attainable using relaxed heaps [7] or
Vheaps [12].

A time of O(m + n log n) is best possible for Dijkstra's algorithm, if the arc costs
are real numbers and only binary comparisons are used in the heap implementa-
tion. This is because it is easy to reduce the problem of sorting n numbers to a run
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of Dijkstra's algorithm. The question arises whether the O(m + n log n) bound can
be beaten in the special case that all the arc costs are integers of moderate size.
This is the question we explore in this paper.

Henceforth, we assume that all arc costs are integers bounded above by C. Under
this assumption, a data structure of Van Emde Boas et al. [16, 17] can be used to
implement the heap in Dijkstra's algorithm, giving a time bound of O(log log C)
per heap operation, or O(m log log C) time in total. The space needed for the heap
is O(n + C), but this can be reduced to O(n + Ce) for any positive constant using
tries [15], or even to 0(n) if universal hashing [2] or dynamic perfect hashing [5]
is used. (Use of hashing makes the algorithm randomized instead of deterministic
and the time bound expected instead of the worst case.)

The existence of an O(m + n log n) bound for arbitrary real-valued costs suggests
the problem of obtaining a bound for integer costs of the form O(m + nf(C)) for
some function f of the number sizes, with f growing as slowly as possible.
An algorithm independently discovered by Dial [4] and Johnson [9] runs in
O(m + nC) time. Based on the existence of the Van Emde Boas-Kaas-
Zijlstra data structure, one might hope for a bound of O(m + nlog log C).
Obtaining such a bound is an open problem. We shall develop a data structure
that results in a bound of O(m + log C). Our data structure, the radix heap,
exploits special properties of the heap operations in Dijkstra's algorithm. The most
important of these properties is that successive delete min operations return vertices
in nondecreasing order by tentative cost. The simplest form of the data structure,
the one-level radix heap, was originally proposed by Johnson [10], who used it to
obtain an O(m log log C + n log C log log C) time bound for Dijkstra's algorithm.
By slightly changing the implementation, we reduce the time to O(m + a log C).
Section 2 describes this result.

By adding another level to the structure, we obtain a two-level radix heap.
The idea of adding a second level is borrowed from Denardo and Fox [3].
The new structure reduces the running time of Dijkstra's algorithm to
O(m + n log C/log log C). Section 3 presents this result. One more change to the
structure, the addition of Fibonacci heaps in the second level, reduces the time
bound further, to O(m + n /Iog C). Section 4 discusses this improvement.

Section 5 discusses the effect of increasing the cost of doing arithmetic; all the
results mentioned above are predicated on the assumption that integers of size
O(nC) can be added or compared in constant time. In the semilogarithmic model
studied in Section 5, in which arithmetic on integers of O(log n) bits takes 0(1)
time, the m-term in the bounds given above increases to O(m log C/log n), while
the n-term remains the same.

2. One-Level Radix Heaps

Radix heaps rely on the following properties of Dijkstra's algorithm:

(i) For any vertex v, if d(v) is finite, d(v) E [0 .. nC].'1
(ii) For any vertex v # s, if v is labeled, d(v) E [d(x) .. d(x) + C], where x is the

most recently scanned vertex.

Property (ii) implies in particular that successive delete min operations return
vertices in nondecreasing order by tentative cost.

A one-level radix heap is a collection of B = lg(C + 1)1 + 2 buckets,2 indexed
from I through B. Each bucket has an associated size. The size of bucket i is

We denote the interval of integers [x 11 I x c aI] by [I . l.
2 We denote log2 by g.
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denoted by size(i) and defined as follows:

size(l) = 1;

size(i)-=2'2 for 2 i B - ;

size(B) = nC + 1.

Observe that the bucket sizes satisfy the following important inequality:
j- 

Z size(i) > min{size(j), C + 1} for 2 j < B. (1)
i= 

Each bucket also has a range that is an interval of integers. Initially the ranges
of the buckets partition the interval [0 . . nC + ]. In general the ranges partition
the interval [dmin .. nC + ], where dmin is the maximum label of a scanned node.
For each bucket i the upper bound u(i) of its interval is maintained; the range of
bucket i is range(i) = [u(i - 1) + I .. u(i)], with the conventions that u(0) =
dmin - I and rnge(i) = 0 if u(i - ) Ž u(i). Whereas the sizes of all buckets are
fixed throughout the computation, the ranges change; for each bucket i, u(i) is a
nondecreasing function of time.

Initially u(i) = 2- - I for I i B - 1, u (B) = nC + 1. Observe that this
implies I range(i) size(i). This inequality is maintained throughout the com-
putation for each bucket. The labeled vertices are stored in the buckets, with vertex
v stored in bucket i if d(v) E range(i). Initially, vertex s is inserted into bucket I.
The range of bucket I is maintained so that every vertex v in bucket I has d(v) =
tz(1); thus the effective range of bucket I contains only u(1).

Each bucket is represented by a doubly linked list of its vertices, to make
insertion and deletion possible in constant time. In addition, stored with each
vertex is the index of the bucket containing it.

The three heap operations are implemented as follows. To insert a newly labeled
vertex v, examine values of i in decreasing order, starting with i = B, until finding
the largest i such that u(i) < d(v); then insert v into bucket i + 1. To decrease the
key of a vertex v, remove v from its current bucket, say bucket j. Reduce the key
of v. Proceed as in an insertion to reinsert v into the correct bucket, but begin with
bucket i = j.

For a single vertex v, the time spent on insertion and all decrease operations is
O(log C) plus O(1) per decrease, because the index of the bucket containing v can
never increase. Thus, the total time for all such operations during a run of Dijkstra's
algorithm is O(m + n log C).

The most complicated operation is delete min, which is performed as follows. If
bucket 1 is nonempty, return any vertex in bucket . Otherwise, find the nonempty
bucket of smallest index, say bucket j. By scanning through the items in bucket j,
find a vertex of smallest tentative cost, say v. Save v to return as the result of the
delete min and distribute the remaining vertices in bucket j among buckets of
smaller index, as follows. Replace u(0) by d(v) - 1, u(l) by d(v), and for i running
from 2 through] - 1, replace u(zi) by mintu(i - ) + size(i), (j)}. Remove each
vertex from bucketj and reinsert it as in decrease; do not reinsert v.

Property (ii) and inequality (1) guarantee that, if j > 2 in a delete min, every
vertex in bucket j will move to a bucket of strictly smaller index. It follows that the
time spent on delete win operations is (log C) per delete min plus (log C) per
vertex, for a total of O(n log C) during a run of Dijkstra's algorithm. We conclude
that the total running time of Dijkstra's algorithm with this implementation is
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O(m + n log C). The space required as O(m + log C). Johnson [10], using the
same data structure, obtained a bound worse by a factor of log log C because he
used binary search instead of sequential scan to reinsert vertices into buckets.

3. Two-Level Radix Heaps
Reducing the running time of the algorithm of Section 2 requires reducing the
number of reinsertions of vertices into buckets. This can be done by increasing the
bucket sizes, but then inequality (1) no longer holds. We overcome this problem
by dividing each bucket into segments. All segments within a bucket have the same
size.

A two-level radix heap is defined by a parameter K, determining the number of
segments within a bucket. The number of buckets is B = FlogK(C + 1)1 + I. The
sizes of the buckets are as follows:

size(i)=K' for 1 i < B- I;

size(B) = nC + 1.

As in the one-level scheme, bucket i has range(i) = [u(i - 1) + I .. u(i)], with
u(O) = dmin - and u(B) = nC + . The remaining upper bounds on ranges have
the following initial values:

u(j) = K'- I for I j B- 1.
i=1

For 1 i B - 1, bucket i is partitioned into K segments, each of size K'- .
Segments are indexed by ordered pairs; segment (i, k) is segment k of bucket i.
Bucket B consists of a single segment.

Each segment has an associated range, which is a function of the range of its
bucket. The range of segment (i, k) is range(i, k) = [u(i, k - 1) + 1 .. u(i, k)]
where u(i, k) is defined as follows:

u(i, k) = max{u(i - 1), u(i) - (K- k)K-'l}.

Observe that I range(i, k) I s K'-] = size(i, k) for I i B - 1 and 1 < k <
K. The algorithm maintains the invariant that for 1 i B - , I range(i) I c K'.

The algorithm maintains the ranges of buckets (i.e., the u(i)'s) explicitly,
but computes the ranges of segments as needed. Observe that, given an integer
x E range(i), the value of k such that x E range(i, k) can be computed in
constant time using the formula

k=KLu(x'- 

Choosing K to be a power of two simplifies this computation on a computer
whose number representation is binary, but this is not necessary for our theoretical
results.

The labeled vertices are stored in the segments, with vertex v stored in segment
(i, k) if d(v) range(i, k). Each segment is represented by a doubly linked list.
The three heap operations are implemented as follows. An insert or decrease
operation on a vertex v is performed as in a one-level heap, except that once the
bucket i such that d(v) E range(i) is located, the k such that d(v) E range(i, k)
is computed (in constant time), and v is inserted into segment (i, k). The total
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time for all insert and decrease operations during a run of Dijkstra's algorithm is
O(rm + Bn) = O(n + n logKC).

The delete win operation is implemented much as in a one-level heap, except
that only the contents of a single segment are distributed, not the contents of an
entire bucket. To perform delete min, find the first nonempty bucket, say j. Find
the first nonempty segment within bucketj, say (j, k). (Ifj = B, k = 1, since bucket
B consists of only a single segment.) Ifj = 1, remove and return any vertex in 
segment (j, k). Otherwise, scan the vertices in segment (j, k) to find one, say v, x
with minimum tentative cost. Redefine (i) for 0 i j - 1 as in a one-level
heap. Distribute all vertices in segment (j, k) (except iv) into their new correct
segments, which lie in buckets I through j - 1.

A few details of the data structure deserve comment. To facilitate locating the
first nonempty bucket, a bit for each bucket is maintained that indicates whether
or not the bucket is empty. Determining j in a delete in then takes (B) time.
The segments are represented as an array of doubly linked lists, with the index of
segment (i, k) being K(i - ) + k. Since each vertex in a segment that is distributed
moves to a lower bucket, the total number of such movements is (Bn). The total
time for all the delete nin operations is O(Bn) plus the time for n steps of the
form, "find the first nonempty segment in a given bucket."

If each such segment is found merely by scanning all the segments in the bucket,
the time for one such step is O(K), and the total running time of Dijkstra's
algorithm is (m + (B + K)n). Choosing K proportional to log C/log log C
gives B = logK(C + 1)1 + 1 = (log C/log log C), and the total running time is
O(m + n log C/log log C). The space required is 0(rn + (log C/log log C)2), redu-
cible to O(m + (log C/log log C)) for any constant > 0 using a trie [15] or even
to O(m) using either universal hashing [2] or dynamic perfect hashing [5].

If C < n, the running time of the algorithm can be reduced to O( +
n log C/log log n) by using table lookup to find nonempty segments. Specifically,
choose K = Fg ni. For each bucket (other than bucket B), maintain an integer of
rig n I bits whose kth bit is one if segment k of the bucket is nonempty, and zero
otherwise. During a preprocessing step, construct an array of n positions, indexed
from I to n such that position i contains . if and only if the kth bit of i (expressed
in binary) is the first nonzero bit. Construction of this array takes O(n) time, and
once the array is constructed, the first nonempty segment of a nonempty bucket
can be found in 0(1) time by accessing the array position indexed by the integer
encoding the nonempty segments.

By choosing the appropriate one of the two methods above for finding
the first nonempty segment in a bucket, we obtain a time bound of
O(m + n log C/log log (nC)) for Dijkstra's algorithm.

4. Use of Fibonacci Heaps

Our final improvement reduces the running time of Dijkstra's algorithm to )
O(m + n log C) by using a variant of Fibonacci heaps to find nonempty
segments. Throughout this section we shall refer to each segment by its index; as I
in Section 3 the index of segment (i, ) is K(i - ) + k, which is an integer in the
interval [l .. KB - K + ]. We associate with each labeled vertex the index of the
segment containing it. We need to be able to maintain the collection of labeled
vertices under the following three kinds of operations:

(i) delete win. Find a labeled vertex of minimum index, mark it scanned, and
return it.
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(ii) insert(x). Declare x to be a newly labeled vertex, with predefined index.
(iii) decrease(x, value). Replace the index of labeled vertex x by value; value

must be smaller than the old index of x.

In other words, we must maintain the set of labeled vertices as a heap, with the
key of each vertex equal to its index. A run of Dijkstra's algorithm requires n insert

j} ~ operations, delete min operations, and at most n decrease operations, in addition
to the time for maintaining bucket boundaries and recomputing segments. The
total time for all the latter bookkeeping is O(m + Bn).

Fibonacci heaps (abbreviated F-heaps) support delete min in O(log n) amortized
time 3 and insert and decrease in 0(1) amortized time [8], where n is the maximum
heap size. But in our application, the number of possible index values is much
smaller than the number of vertices. We shall describe how to extend Fibonacci
heaps so that if the keys are integers in the interval [1 .. N], the amortized time
per delete min is O(log minin, NJ), while the amortized time per insert or decrease
remains 0(1). In the application at hand, we can take N = KB. The choice of K =
2 r-lg-c gives B= O(logKC) = O(log C), and log N = O( C); therefore, the
total running time of Dijkstra's algorithm is O(m + n log C).

It remains for us to make the necessary changes to F-heaps. The main idea is to
make sure that such a heap contains at most N items, that is, at most one item per
key value. Making this idea work in the presence of decrease operations requires
some care and some knowledge of the internal workings of F-heaps.

We need to know the following facts about F-heaps. An F-heap consists of a
collection of heap-ordered trees whose nodes are the items in the heap. (A heap-
ordered tree is a rooted tree such that if p(x) is the parent of node x, the key of x
is no less than the key of p(x).) Each node in an F-heap has a rank equal to the
number of its children. A fundamental operation on F-heaps is linking, which
combines two heap-ordered trees into one by comparing the keys of their roots
and making the root of smaller key the parent of the root of larger key, breaking a
tie arbitrarily. A link operation takes 0(1) time. Only trees with roots of equal
rank are linked.

Each nonroot node in an F-heap is in one of two states, marked or unmarked.
When a node becomes a nonroot by losing a comparison during a link, it becomes
unmarked. Nodes become marked during decrease operations, as described below.

The three heap operations are performed as follows. To insert a new item, merely
make it into a one-node tree and add this tree to the collection of trees. This takes
0(1) time.

To perform a decrease operation on a node x, begin by updating the key of x.
Then, if x is not a root, cut the edge joining x and p(x) and repeat the following
step, with y initially equal to the old p(x), until y is unmarked or y is a tree root:
cut the edge joining y and its parent p(y), and set y equal to p(y). After the last
such cut, if the last node y is not a root, mark it.

The overall effect of such a decrease operation is possibly to break the initial tree
containing x into several trees, one of which has root x. The time required by the
decrease operation is 0(1) plus 0(1) per cut. Since only one node is marked per
decrease operation, and since one node becomes unmarked per cut except for at
most one cut per decrease operation, the total number of cuts during a sequence
of decrease operations is at most twice the number of decrease operations, even
though a single decrease can result in many cuts.

3 By amortized time, we mean the time per operation averaged over a worst-case sequence of operations.
See Tarjan's survey paper [ 14] or Mehlhorn's book [11].
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To perform the third heap operation, delete min, scan all the tree roots and
identify one, say x, of minimum key. Remove x from its tree, thereby making each
of its children a tree root. Finally, repeatedly link trees whose roots have equal
rank, until no two tree roots have equal rank.

The key to the analysis of F-heaps is that manipulation of rooted trees in
the ways described above maintains the following invariant: for any node x,
rank(x) = O(log size(x)), where size(x) is the number of nodes in the subtree
rooted at x. A simple analysis gives an amortized time bound of 0(1) for insert
and decrease, and O(log n) for delete min.

Now we extend F-heaps to reduce the amortized time per delete min to
O(log minIn, N}). For each value i E [ . . N], the algorithm maintains the set S(i)
of items with key i. One item in S(i) is designated the representative of S(i). All
the items, both the representatives and the nonrepresentatives, are grouped into
heap-ordered trees of the kind manipulated by the F-heap algorithm. These trees
are divided into two groups: active trees, those whose roots are representatives, and
passive trees, those whose roots are nonrepresentatives.

The algorithm maintains the following two invariants:

(i) The key of a nonroot node x is strictly greater than that of its parent (a
strengthening of the heap order property);

(ii) Every nonrepresentative is a root.

Invariant (ii) implies that all nodes in active trees are representatives and hence
have distinct keys; thus, the number of nodes in active trees is at most N. Invariants
(i) and (ii) together imply that the representative of minimum key is the root of an
active tree; hence, delete rmin need only scan the roots of active trees.

The three heap operations are performed as follows: To insert an item x, make
it into a one-node tree, which becomes active or passive depending on whether the
set S(i) into which x is inserted is empty or not; if it is, x becomes the representative
of S(i). To perform a decrease operation, proceed as on an ordinary F-heap as
described above, with the following addition: move x from its old set, say S(i), to
the appropriate new set, say S(j). Make some other item (if any) in S(i), say y, the
representative of S(i) and make the tree with root y active. If x is the only item in
S(j), make the tree rooted at x active; otherwise, make it passive. Make other new
trees created by cuts active. The total time required by a decrease operation is 0(1)
plus 0(1) per cut, including the time to move trees between the active and passive
groups.

To perform delete min, proceed as on an ordinary F-heap, with the following
changes: Scan only the roots of active trees to find a minimum, say x. Delete x
from the set S(i) containing it, and if S(i) remains nonempty, choose some item
in S(i), say y, to be the new representative; activate the tree with root y. Then
perform repeated linking, but only on active trees; that is, after deleting the active
node of minimum key and updating the representative of its set, repeatedly link
active trees whose roots have equal rank until all active trees have roots of different
ranks.

The efficiency analysis of the extended data structure is almost the same as that
of the original. Define the potential of the data structure to be the number of trees
plus twice the number of marked nodes. Define the amortized time of a heap
operation to be its actual time (measured in suitable units) plus the net increase in
potential it causes. The initial potential is zero (if the initial heap is empty) and the
potential is always nonnegative. It follows that, for any sequence of heap operations,
the total amortized time is an upper bound on the total actual time.
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The amortized time of an insertion is 0(1), since it increases the potential by
one. A decrease operation causing k cuts adds 0(1) - k to the potential: each cut
except for at most one adds a tree but removes a marked node; marked nodes
count for two in the potential. Thus, a decrease takes 0(1) amortized time if a cut
is regarded as taking unit time.

Each link during a delete min operation reduces the potential by one and thus
has an amortized time of zero, if a link is regarded as taking unit time. Not counting
links, the time spent during a delete min is O(log min{n, NJ), as is the increase in
potential caused by removing a node of minimum key: the maximum rank of any
node is O(log minjn, NJ) by the same argument used in the analysis of ordinary
F-heaps. Thus, the amortized time of delete min is O(log min{n, NJ), as desired.

The idea used here, that of grouping trees into active and passive, applies as well
to Vheaps [12] to give the same time bounds, but it does not seem to apply to
relaxed heaps [7]. The extended F-heap, if used directly in the implementation of
Dijkstra's algorithm, gives a running time of O(m + n log C), the same as that
obtained in Section 2.

5. Time Bounds in a Semilogarithmic Computation Model
In the previous sections, we analyzed our algorithms using a unit-cost random-
access machine [I] as the computation model. In particular, we assumed that
addition and comparison of integers in the interval .. nC] takes 0(1) time. If C
is large, this assumption may not be realistic. In this section, we derive bounds for
the algorithms assuming a semilogarithmic-cost computation model. We show that
in this model, the m-term in our bounds becomes m Fg C/lg n 1, while the
n-term remains unchanged. Tile following two assumptions define the semiloga-
rithmic model:

(1) Arithmetic on integers of length 0 (log n) and all other random access machine
operations (index calculations, pointer assignments, etc.) take 0(1) time;

(2) log C = n'° ).

In our algorithms, we represent arc costs and tentative costs d(v) as arrays of
length lg(nC + 1)/R 1, where R = Llg n/2J. Each array element is an integer in the
range [0 .. 2R - 1]. By assumption (1), indexing into these arrays takes 0(1) time,
but this is only reasonable if the indices are O(log n) in length, which is the reason
for imposing assumption (2). Henceforth, in this section we also assume that
log C = (log n); if log C = 0O(log n), the bounds of the previous sections hold
without change for the semilogarithmic model. If log C = Q (log n), then
lg(nC + 1) = O(log C), a fact that we shall use repeatedly without further
comment.

Let us first analyze the algorithm of Section 2. We hall revise and reformu-
late the algorithm to fit into the semilogarithmic model better. In particu-
lar, we emphasize the bit manipulation involved in the computation. Let
B = Flg(nC + 1)1. At a given time in the algorithm, let Vbe a labeled vertex with
minimum tentative cost d(v). Let CaB- ... ac be the binary representation of d(v);
that is, a E {0, 1} and d(v) = aVij1 ci2'-. The algorithm maintains buckets
numbered through B containing the labeled vertices, with bucket I containing
every vertex u such that d(u) = d(v) and bucket i for 2 i c B, containing every
vertex u such that position i - 1 is the largest position in which the binary
representations of d(u) and d(v) differ. Note that in this variant of the Section 2
algorithm, bucket ranges are represented implicitly rather than explicitly.
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Finding the smallest nonempty bucket by a sequential scan over the buckets
takes O(log(nC + 1))= O(log C) time. Distributing the vertices in a bucket is done
by scanning down through the appropriate bits of the tentative costs of the vertices
in the bucket. Such distribution takes O(log(nC + 1)) = O(log C) time per vertex
over the entire algorithm. (Extracting the appropriate bit of a tentative cost can be
done either by appropriate shifting and masking operations, or, if these are not
available, by table lookup. In either case, the time to extract a bit is 0 (I).) Updating
tentative costs takes 0 (m log C/log n) time over the entire algorithm. It follows
that the total running time of Dijkstra's algorithm is O(m log C/log n + n log C).

Next we turn to the algorithms of Sections 3 and 4. In these algorithms each
bucket is divided into K segments. In the spirit of assumption (1), we restrict
ourselves to log K = O(log n). The number of buckets is B = FlogK(nC + 1)1.
The assignment of labeled vertices to buckets and segments is as follows. Let
aB-I ... ao be the K-ary expansion of the minimum tentative cost of a labeled
vertex, say v. A labeled vertex u belongs to segment k of bucket i if either i = 1,
k = ac + , and d(u) = d(v); or if i - is the largest position at which the
K-ary expansions of d(u) and d(v) differ and k = a_- + 1i.

The time to find the first nonempty segment (by scanning over buckets, then
over segments within a bucket) is 0 (B + K). The total time for distributing vertices
among segments is O(B) per vertex. The total running time of the method is
thus O(m log C/log n + B + rnK). Choosing K proportional to g(nC)/lglg(nC)
gives a total running time of O(m log C/log n + n log (nC)/log log (nC))
O(m log C/log n + n log C/log log C).

Adding an extended F-heap to represent the nonempty segments, as in Section
4, reduces the time to find the first nonempty segment to O((logBK))2 /log n):
there are O(log BK)) steps, each of which manipulates integers in the interval
[ I .. BK], which is the range of the segment indices.) The m decrease operations
on the F-heap take O(n log(BK)/log n) time. The total time to run Dijkstra's
algorithm is thus

jIrlog C log (BK) +(B + (log (BK))2))
k logn + ogn og log n

Choosing K = 2 r'/ g("c+)"' if lg(nC + 1) • (Ig n)2_K= n if lg(nC + i) > (Ig n)2 gives
a total running time of O(m log C/log n + nx/log C).

It is worthwhile to compare these bounds with the running time of the straight
F-heap-based algorithm [8]. That algorithm requires O(m + n log n) steps, each of
which involves addition or comparison of integers in the range [O .. nC] and thus
takes 0 (log C/log n) time in the semilogarithmic model. The total time of the
algorithm is thus O(m log C/log n + n log C), the same as the time for the modified
Section 2 algorithm. The F-heap algorithm is more complicated, however. The
algorithms of Sections 3 and 4 are both faster than the F-heap algorithm, for
appropriate values of the parameters. Note that the time to read the problem input
is Q2 (m log C/log n ). Assuming that solving the problem requires reading the input,
the algorithm that combines a two-level distributive heap with an F-heap is
optimum to within a constant factor if

log C n log n l
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