Содержание

Must have		2
Задача 28А.	Простые числа [0.1, 256]	2
Задача 28В.	Разложение числа [0.1, 256]	3
Задачи здор	ового человека	4
Задача 28С.	Обратное по модулю [0.1, 256]	4
Задача 28D.	Большие протые числа [0.1, 256]	5
Задача 28Е.	Взаимнопростые числа [0.1, 256]	6
Для искател	ей острых ощущений	7
Задача 28F.	Sigma-функция на отрезке [0.6, 256]	7
Задача 28 G .	Делители 2 [0.1, 256]	8
Задача 28Н.	Всеобщая факторизация [0.2, 256]	9

Обратите внимание, входные данные лежат в **стандартном потоке ввода** (он же stdin), вывести ответ нужно в **стандартный поток вывода** (он же stdout).

Обратите внимание на GNU C++ компиляторы с суффиксом inc.

Подни можно пользоваться дополнительной библиотекой (optimization.h).

То есть, использовать быстрый ввод-вывод: пример про числа и строки.

И быструю аллокацию памяти (ускоряет vector-set-map-весь-STL): пример.

Для тех, кто хочет разобраться, как всё это работает.

Короткая версия быстрого ввода-вывода (тык) и короткая версия аллокатора (тык).

Must have

Задача 28А. Простые числа [0.1, 256]

Нужно уметь отвечать на запрос вида "k-е по величине простое число".

Формат входных данных

На первой строке целое число N не более 10^4 — количество запросов. Далее собственно запросы. Каждый запрос — целое число от 1 до 10^5 .

Формат выходных данных

Для каждого запроса выведите соответствующее простое число.

stdin	stdout
4	2 3 5 1299709
1 2 3 100000	

Задача 28В. Разложение числа [0.1, 256]

Напишите программу, которая по данному натуральному числу n выводит все его простые натуральные делители с учетом кратности.

Формат входных данных

Программа получает на вход одно целое число $n\ (1\leqslant n<2^{31}).$

Формат выходных данных

Программа должна вывести все простые натуральные делители числа n с учетом кратности в порядке неубывания.

stdin	stdout
6	2 3

Задачи здорового человека

Задача 28С. Обратное по модулю [0.1, 256]

Даны два целых числа — $a, m \ (0 \leqslant a < m)$. Нужно найти такое целое x, что $ax \equiv 1 \mod m$

Формат входных данных

На первой строке два целых числа — $a, \ m \ (0 \leqslant a < m \leqslant 10^{18}).$

Формат выходных данных

Если такого x не существует, выведите -1. Иначе выведите целое x ($0 \le x < m$). Если ответов несколько, выведите любой.

stdin	stdout
7 30	13

Задача 28D. Большие протые числа [0.1, 256]

Найдите все простые в диапазоне [A..B].

Формат входных данных

Даны 1 $\leqslant A \leqslant B \leqslant 10^{12}.$ Дополнительно известно $|B-A| \leqslant 10^6.$

Формат выходных данных

В строку все простые числа из диапазона в порядке возрастания.

stdin	stdout
60 80	61 67 71 73 79

Задача 28Е. Взаимнопростые числа [0.1, 256]

Дано целое число n. Нужно посчитать число целых $x\colon 1\leqslant x\leqslant n$ и $\gcd(x,n)=1$, здесь \gcd — наибольший общий делитель.

Формат входных данных

Входной файл содержит от 1 до 1000 строк, на каждой отдельный тест, число n (1 $\leq n \leq$ 200000000), для которого нужно посчитать количетсво взаимнопростых.

Формат выходных данных

Для каждого числа n на отдельной строке. Количество взаимнопростых с n чисел.

stdin	stdout
10	4
100	40

Для искателей острых ощущений

Задача 28F. Sigma-функция на отрезке [0.6, 256]

Нужно научиться считать $\sum\limits_{i=L}^R \sigma(n)$. Где $\sigma(n)$ — сумма натуральных делителей числа n.

Формат входных данных

Последовательность из не более чем 10^5 запросов. Каждый запрос записан на отдельной строке. Формат запроса прост: числа $L, R \ (1 \le L \le R \le 5 \cdot 10^6)$.

Формат выходных данных

Для каждого запроса нужно вывести одно число — $\sum\limits_{i=L}^{R}\sigma(n).$

stdin	stdout
3 10	83
3 3	4
10 10	18

Задача 28G. Делители 2 [0.1, 256]

Натуральное число a называется ∂ елителем натурального числа b, если $\frac{b}{a}$ — также натуральное число. Например, 1, 2, 3 и 6 — делители числа 6, а 4, 5 и 7 не являются его делителями.

В этой задаче требуется определить, каково максимальное количество различных делителей, которое может иметь натуральное число от 1 до N, включительно, и найти минимальное из чисел на этом интервале, имеющее ровно столько делителей.

Формат входных данных

В первой строке входного файла задано число N ($1 \le N \le 10^{18}$).

Формат выходных данных

Выведите в выходной файл два целых числа через пробел—сколько делителей может иметь натуральное число от 1 до N, включительно, а также само минимальное натуральное число, имеющее столько делителей.

stdin	stdout
2	2 2
5	3 4
7	4 6
18	6 12

Задача 28Н. Всеобщая факторизация [0.2, 256]

Вам требуется найти такие натуральные числа x и y, большие 1, что:

$$N = x \cdot y$$

Формат входных данных

Во входном файле записано единственное число $N~(2\leqslant N\leqslant 9\cdot 10^{18})$

Формат выходных данных

В выходной файл выведите два числа x и y, либо IMPOSSIBLE, если таких чисел не существует.

stdin	stdout
6	3 2
7	IMPOSSIBLE