SPb HSE, ПАДИИ, 1 курс, весна 2024/25 Практика по алгоритмам #31

LP и ILP

29 мая

Собрано 27 мая 2025 г. в 19:35

Содержание

1. LP и ILP	1
2. Разбор задач практики	3
3. Домашнее задание	5
3.1. Обязательная часть	5
3.2. Дополнительная часть	5

LP и ILP

1. LP решает всё

Запишите задачу через LP. Нужно ли нам ILP? (a) Knapsack; (b) Maxcost Matching.

2. Мультипродуктовый поток

Запишите новую для себя задачу «Мультипродуктовый поток» через LP. Получится ли решить ILP? Суть в том, что одной и той же дорожной сетью пользуются несколько компаний. У 1-й склад в s_1 , точка сбыта в t_1 , товара A_1 , у второй склад в s_2 , точка сбыта в t_2 , товара A_2 , . . . Могут ли все реализовать план доставки через данную дорожную сеть?

3. Простейшая LP

Пусть есть чёрный ящик, который умеет находить x: Ax > 0. Сведите к нему форму задачи $x: Ax > b, \ x > 0, \ \langle c, x \rangle \to \max$.

4. Нейрон

Один нейрон (он же перцептрон) — по сути линейный барьерный классификатор. Нейрон определяется весами $w_1 \dots w_n$ и значением барьера α , получает на вход данные $a_1 \dots a_n$, считает $a_1 w_1 + \dots + a_n w_n$ и выдаёт на выход 1, если получилось больше α , иначе 0.

Вы знаете, что для входных данных $A_i \in \mathbb{R}^n$, на выходе должно быть $b_i \in \{0,1\}$. Обучите нейрон: подберите веса $w_i \in R$ и барьер α .Сделайте его устойчивым к погрешности.

5. Время работы симплекса

Приведите пример $\mathcal{O}(n)$ неравенств, которые порождают $\Omega(2^n)$ вершин.

6. Выпуклая оболочка

Найдите вершины d-мерной выпуклой оболочки точек.

7. Max Matching

Запишите LP для Max Matching, запишите двойственную к ней задачу.

Пусть теперь у ребёр есть вес и задача Max Cost Matching: $\sum w_e \to \max$.

8. Что с двойственной?

Если у задачи нет решений, или максимум не ограничен, что с двойственной задачей?

9. Коковектор

Запишите задачу двойственную к двойственной.

10. (*) Вероятностные стратегии

Двое играют в матричную игру. Первый выбирает строку i, второй столбец j, результат игры A_{ij} . Первый $A_{ij} \to \max$, второй $A_{ij} \to \min$. Вероятностные стратегии сильнее детерминированных. Первый выбирает строку с вероятностью p_i , второй столбец с вероятностью q_j : $\sum p_i = \sum q_j = 1$, матожидание результата игры $F = \sum p_i q_j A_{ij}$.

Если первый знает q, он может гарантировать себе $P = \max_i (\sum_j q_j A_i j)$. Если второй знает p, он может гарантировать себе $Q = \min_j (\sum_i p_i A_i j)$.

Утверждается, что $\min_q P = \max_p Q \Rightarrow P = Q = F$ при оптимальной игре обоих. Дана A, найдите оптимальные p, q.

11. (*) Двойственные расстояния

Запишите задачу поиска расстояний от s в виде LP.

Выпишите к ней двойственную. На что похоже?

Разбор задач практики

1. LP решает всё

- (a) x_i берём ли мы i-й предмет, $0 \leqslant x_i \leqslant 1$. $\sum x_i w_i \leqslant S$, $\sum x_i cost_i \to \max$. $x_i \in \mathbb{Z}$.
- (b) x_e берём ли мы ребро $e, 0 \leqslant x_i \leqslant 1$. $\sum x_e cost_e \to \max, \forall v \sum x_{e \in N(v)} \leqslant 1$. $x_i \in \mathbb{Z}$.

2. Мультипродуктовый поток

 $x_{e,i}$ – сколько i-го товара течёт по ребру e.

$$\forall i, v \notin \{s_i, t_i\} \sum x_{e \in in(v), i} = \sum x_{e \in out(v), i}, \forall e \sum_i x_{e, i} \leqslant c_e. \ x_{e, i} \geqslant 0, \ x_{e, i} \in \mathbb{Z}.$$

A для истока $\forall i \sum x_{e \in out(s_i),i} = A_i$

3. Простейшая LP

Сделаем бинпоиск по ответу, ищем $\langle c, x \rangle > \alpha$. Это условия, и условия $x_i > 0$ добавили в систему неравенств. Поменяли знак всем исходным неравенствам на -Ax + b > 0, для b добавили переменную $x_{n+1} > 0$, получается $-\langle A_i, x \rangle + b_i \cdot x_{n+1} > 0$.

4. Нейрон

Составим систему неравенств $\forall i \sum a_{ij}w_j > \alpha_1$ для $b_i = 1$ и $\forall i \sum a_{ij}w_j < \alpha_2$ для $b_i = 0$. $\alpha_1 - \alpha_2 \to \max$. Переменные $w_1, \dots w_n, \alpha_1, \alpha_2$. Разрешимо, если $\max > 0$. $\alpha = \frac{1}{2}(\alpha_1 + \alpha_2)$.

5. Время работы симплекса

Кубик. Задаётся 2n плоскостями, имеет 2^n вершин.

6. Выпуклая оболочка

Чтобы проверить одну вершину v_i , потратим $\mathcal{O}(LP)$. Будем искать нормаль $q \in \mathbb{R}^n$: $\forall j \neq i \langle q, v_i \rangle < \langle q, v_j \rangle$, если найдём v_i – вершина оболочки.

7. Max Matching

$$x_e$$
 – берём ли ребро. $\forall v \sum_{e \in N(v)} x_e \leq 1, \forall e x_e \geq 0, \sum x_e \rightarrow \max$

Складываем неравенства с коэффициентами. Обозначим коэффициент y_v . Хотим, чтобы сумма коэффициентов для каждого e была больше $c_e = 1 \Leftrightarrow y_a + y_b \geqslant 1$ для ребра e = (a, b). При этом получаем оценку сверху на $\langle c, x \rangle \Rightarrow \langle b, y \rangle \to \min \Leftrightarrow \sum y_v \to \min$. Получили минимальное вершинное покрытие.

MaxCostMatching: $\sum x_e w_e \to \max$ Двойственная: $c_e = w_e \Leftrightarrow y_a + y_b \geqslant w_e$, $\sum y_v \to \min$ (для каждой вершины выбрать вес так, чтобы сумма концов мажорировала вес ребра). В двудольном случае это по сути выбор потенциалов, чтобы сделать веса не положительными.

8. Что с двойственной?

Если у задачи нет решений, то min двойственной не ограничен.

Если максимум не ограничен, то у двойственной нет решений.

9. Коковектор

Двойственная к двойственной – исходная. Можно это в явном виде расписать.

10. (*) Вероятностные стратегии

?

11. (*) Двойственные расстояния

?

Домашнее задание

3.1. Обязательная часть

1. **(2)** LR-циркуляция

Запишите задачу mincost LR-циркуляции в форме LP.

2. (2) Муки двойственности

Запишите двойственную к задаче в форме $Ax\leqslant b, \langle c,x\rangle \to \max$ (без условия $x\geqslant 0)$

3.2. Дополнительная часть

1. **(2)** Сэр Гамильтон

Сведите HAM-PATH к ILP.

2. **(2)** Разрезы – тоже LP

- (1) Как записать задачу minCut в форме LP?
- (1) Какая у неё двойственная с точки зрения LP?