SPb HSE, ПАДИИ, 1 курс, осень 2024/25 Практика по алгоритмам #18

Treap 6 февраля

Собрано 10 февраля 2025 г. в 21:32

Содержание

1. Treap	1
2. Разбор задач практики	3
3. Домашнее задание	6
3.1. Дополнительная часть	6

Treap

1. Повторение

Пусть у нас есть массив. Пусть ключ – позиция в массиве. Реализуйте вставку нового элемента на i-ую позицию: $[2,7,8,3] \rightarrow [2,7,4,8,3]$.

2. Дерево по неявному ключу

- a) Запросы: insert(i,x), del(i), get_sum(l,r) (не забывайте про split)
- b) Отложенные операции: set(1,r,value).
- c) Добавим запросы reverse(1,r) и rotate(k).

3. Excel

Есть excel-табличка. Научитесь за $\mathcal{O}(\log n)$ обрабатывать запросы

- а) Столбец j подвинуть влево-вправо на d.
- b) Строку i подвинуть вверх-вниз на d.
- с) Поменять/прочитать ячейку [i, j].

4. Улучшаем и изучаем декартово дерево

- a) insert через один спуск и один split.
- b) del через один спуск и один merge.
- с) Дан отсортированный по x_i массив пар $\langle x_i, y_i \rangle$. Постройте Тreap за $\mathcal{O}(n)$ (есть простое решение).

5. Корректность

Покажите, что от фиксированного набора пар $\langle x_i, y_i \rangle$ из различных x_i и $y_i \exists !$ treap.

6. Время работы Тгеар

Пусть дан массив $x_1, x_2, ..., x_n$, по нему был построен Treap.

На лекции мы показали $\forall i$ глубина узла с ключом x_i имеет матожидание $\mathcal{O}(\log n)$.

Докажите, что матожидание времени работы split и merge есть $\mathcal{O}(\log n)$.

7. Копирование памяти

Соделайте массив, который за $\mathcal{O}(\log n)$ умеет read(i), write(i,x), copy(l,r,i). В процессе того, как мы это делаем, нам понадобится магия copy(treap) за $\mathcal{O}(1)$. Пусть она уже есть.

8. Детская персистентность

Придумайте персистентный массив, который умеет делать

- а) Обращение за $\mathcal{O}(1)$, модификацию за $\mathcal{O}(n)$.
- b) Обращение за $\mathcal{O}(m)$, модификацию за $\mathcal{O}(1)$.
- с) Обращение за $\mathcal{O}(1)$, модификацию за $\mathcal{O}(1)$, offline.
- d) Частичная персистентность (модифицировать можно только последнюю версию). Обращение за $\mathcal{O}(\log m)$, модификацию за $\mathcal{O}(1)$.

9. Персистентность для взрослых

Придумайте персистентный массив, который умеет делать обращение за $\mathcal{O}(\log n)$, модификацию за $\mathcal{O}(\log n)$.

10. Персистентное удаление

Помните, мы умели делать *ленивое* удаление из BST за $\mathcal{O}(1)$? Напишите явно его персистентноую версию за $\mathcal{O}(\log n)$.

11. (*) Персистентный СНМ

12. (*) Зоопарк

Вам нужно за $\mathcal{O}(\log^2 n)$ отвечать на запрос на отрезке «количество рекордов в массиве равном отрезку». Рекордами массива называются x, которые строго больше чем все левее него.

13. (*) Найдите матожидание максимальной глубины вершины в случайном дереве.

Разбор задач практики

1. Спускаемся к *i*-й позиции, вставляем рядом.

Ко всем позициям, которые правее (больше), нужно сделать +=1. На самом деле ключпозицию можно не хранить, а восстанавливать, зная размеры поддеревьев, тогда дерево будет называться «деревом по неявному ключу».

2. Дерево по неявному ключу

a) add(i,x), del(i), get_sum(l,r), set(l,r,value).

Дерево по неявному ключу на нашем массиве. В каждой вершине храним:

- size размер поддерева (для неявного ключа),
- sum сумма в поддереве,
- pending число, которое мы лениво хотим присвоить в поддерево.
- time отметка времени, когда присвоили pending.

Каждый раз, когда заходим в вершину, делаем push — проталкиваем pending вниз, ставя вершине корректный sum.

Каждый раз, когда меняем вершину, делаем update – пересчитываем size и sum.

Код приводится для случая, когда определен пустой node* null.

```
void push(node* t):
2
      if (t == null || t->pending == -1) return;
3
      t->1->pending = t->r->pending = t->pending;
      t->sum = t->size * t->pending;
4
5
      t->pending = -1;
  int sum(node* t):
      return t->pending == -1 ? t->sum : t->pending * t->size;
7
  void update(node* t):
9
      if (t == null) return;
10
      t->size = 1 + t->l->size + t->r->size;
       t -> sum = t -> x + sum(t -> 1) + sum(t -> r);
11
```

- insert и del делаются обычным образом, но с добавлением вызовов push и update.
- get_sum(1, r) как в прошлой задаче. Либо, если есть Split и Merge, вырезанием нужного куска, взятием sum корня и обратным слиянием.
- set(1,r,value) аналогично get_sum, но вместо возвращения sum происходит pending = value, time = timer++
- b) reverse(1,r), rotate(k)

Храним rev – нужно ли разворачивать поддерево. Лениво проталкиваем (как и pending).

```
def push(t):
    ...
    if t.rev == 1:
        t.l.rev ^= 1; t.r.rev ^= 1; t.rev = 0
        t.l, t.r = t.r, t.l
```

```
rotate(k) = split(k) + merge в обратном порядке. rotate(k) = reverse(0, n-k) + reverse(n-k, n) + reverse(0, n)
```

3. Excel

Храним два дерева по неявному ключу: перестановку строк, перестановку столбцов. Запрос cell[i,j]: table.get(rows.get(i),columns.get(j)), где table — мэп, хеш-таблица.

4. Улучшаем и изучаем декартово дерево

a) add через один split

Спускаемся по дереву до позиции вставки v. Ставим вершину с x вместо v, делаем ее детьми $\mathrm{split}(v,x)$.

b) delete через один merge

Спускаемся по дереву до удаляемой вершины, заменяем ее на merge ее детей.

с) Наивный алгоритм построения дерева

```
B худшем случае T(n) = \Theta(n) + T(n-1) = \Theta(n^2).
```

В среднем $\mathcal{O}(n \log n)$, та же рекуррента, что в qsort.

d) Декартово дерево за $\mathcal{O}(n)$ по отсортированным x

Добавляем вершины по одной. У новой вершины самый большой x, она добавится в правую ветвь. Держим правую ветвь в стеке. Ищем позицию вставки снизу вверх.

```
while (!right_branch.empty() && new_node->y < right_branch.back()->y) {
    new_node->l = right_branch.back();
    right_branch.pop_back();
}

if (!right_branch.empty())
    right_branch.back()->r = new_node;
right_branch.push_back(new_node);
```

5. Корректность

Единственным образом можем выбрать корень, далее единственным образом разделяем на L и R, далее по индукции.

6. Время работы Тгеар

См. конспект ПМИ.

7. Копирование памяти

```
Split(Root, L, A, B)
Split(B, R-L, B, C)
Split(Root1, i, A1, B1)
Split(B1, R-L, B1, C1)
ans = Merge(A, Merge(B1, C))
```

8. Детская персистентность

Изменение за $\mathcal{O}(n)$ – копировать массив полностью (сору on write).

Изменение за $\mathcal{O}(1)$ – поддерживать дерево версий (всего массива, а не ячеек отдельно!) Для каждой версии хранить версию-отца и изменение относительно отца.

get(version, i) — пройти по дереву версий от version до корня, найти последнее изменение i-й ячейки массива.

Offline-персистентность: обходим дерево версий dfs-ом, вниз делаем изменения, вверх откатываем их.

Частичная персистентность: в каждой ячейке массива последовательность её изменений, добавление – pushback, запрос – бинпоиск.

9. Персистентность для взрослых

Картинка с копированием путей. Напоминание, что все деревья, к которым запросы сверху, одинаковы: BST AVL, treap, ДО, BST по неявному ключу. Массив = BST по неявному ключу. Мы умеем через treap (т.к. у него есть split/merge), вообще split/merge есть у всего, например, у AVL, но мы его не проходили.

10. Персистентное удаление

Лениво: сделали find за $\mathcal{O}(1)$, пометили вершину как удалённую.

В персистентном мире нельзя поменять вершину, можно только создать копию ⇒ и копию отца и т.д. Но к отцу мы подниматься не умеем, т.к. у нас потенциально много отцов в разных версиях ⇒ единственный вариант персистентного ленивого удаления – рекурсивный find, который на обратном ходу рекурсии копирует вершины:

```
pnode Del(pnode v, int x):
    if (v->x == x)
        return new node {v->1, v->r, v->x, 1}; // deleted

if (x < v->x)
    return new node {Del(v->1, x), v->r, v->x, v->deleted};

else
    return new node {v->1, Del(v->r, x), v->x, v->deleted};
```

11. (*) Персистентный СНМ

Любая структура данных состоит из массивов, а массив мы умеем делать персистентным.

12. (*) Зоопарк

?

13. (*) Найдите матожидание максимальной глубины вершины в случайном дереве.

?

Домашнее задание

1. (2) Декартовы картины

Нарисуйте все деревья, которые могут получиться в результате операции Merge(бамбук идущий влево-вниз, вершина) и Merge(бамбук идущий вправо-вниз, вершина).

2. (2) Новые возможности

У вас есть Тreap. Вы знаете про персистентность. Создайте структуру данных, которая чтото такое хранит для каждого префикса массива, что может за $\mathcal{O}(\log n)$ отвечать на запрос get(k,i) «k-e по значению число на префиксе [0,i)». Длина массива $n \leq 200\,000$.

3.1. Дополнительная часть

1. (2) Странная очередь

В ряд стоят n групп людей, суммарное количество денег у i-й группы равно a_i . Происходят события — пришло новая группа людей с x деньгами и встала между i-й и i+1 группами в текущей нумерации; k раз подряд среди всех пар «соседние группы», та пара, в которой сумма денег меньше, объединилась в одну группу (нумерация сдвинулась), если таких пар несколько, самая левая. После каждого запроса возвращать номер самой богатой группы. Обработайте m запросов за $\mathcal{O}((n+m)\log n)$.

2. **(3)** Шары и урны

Рассмотрим n различных шаров и n различных урн, стоящих в ряд. Изначально каждая урна содержит ровно один из шаров. С урнами производят m операций вида move(i,j,k) – поднять все шары из отрезка урн [i,i+k), и опустить все эти шары в таком же порядке в отрезок урн [j,j+k). Отрезки могут пересекаться. По данной последовательности операций выясните для каждого шара, в какой урне он будет находиться после всех перемещений.