ДЗ #10, MST и DSU СП6 ВШЭ, Магистры, 13 ноября 2024

Содержание

Must have		2
Задача 10А.	Остовное дерево 2 [0.25 (2.5), 256]	2
Задача 10В.	Ближе к предкам [0.25 (2.5), 256]	3
Задачи здор	ового человека	4
Задача 10С.	Разрезание графа [0.4 (3.5), 256]	4
Задача 10D.	Больные вершины [0.3 (3), 256]	5
Для искател	ей острых ощущений	6
Задача 10Е.	Ребра добавляются, граф растет [0.7 (6), 256]	6
Задача 10F.	Электросеть [0.3 (3.5), 256]	7

У вас не получается читать/выводить данные? Воспользуйтесь примерами (c++) (python).

Обратите внимание, входные данные лежат в **стандартном потоке ввода** (он же stdin), вывести ответ нужно в **стандартный поток вывода** (он же stdout).

ДЗ #10, MST и DSU СПб ВШЭ, Магистры, 13 ноября 2024

Must have

Задача 10А. Остовное дерево 2 [0.25 (2.5), 256]

Требуется найти в связном графе остовное дерево минимального веса.

Формат входных данных

Первая строка входного файла содержит два натуральных числа n и m — количество вершин и ребер графа соответственно. Следующие m строк содержат описание ребер по одному на строке. Ребро номер i описывается тремя натуральными числами b_i , e_i и w_i — номера кондов ребра и его вес соответственно ($1 \le b_i, e_i \le n, \ 0 \le w_i \le 100\,000$). $n \le 20\,000, m \le 100\,000$.

Граф является связным.

Формат выходных данных

Первая строка выходного файла должна содержать одно натуральное число — вес минимального остовного дерева.

Примеры

stdin	stdout
4 4	7
1 2 1	
2 3 2	
3 4 5	
4 1 4	

Подсказка по решению

Здесь подойдёт любой алгоритм MST. Краскал. Прим. Важно, чтобы работал за $\mathcal{O}(m \log n)$.

Задача 10В. Ближе к предкам [0.25 (2.5), 256]

Страна Древляндия изначально состояла из одного древнего города 0. Время от времени города некоторого города p_i , недовольные условиями жизни уезжали из p_i и создавали новый город. Каждый следующий город получал минимальный не использованный номер, то есть, i. Жители города i никогда не забывают, что их предки пришли именно из p_i . Последнее время города по программе «слияние с предками» стали объединяться в регионы. Время от времени город i объявляет «не должно быть больше никаких границ между нами и предками из города p_i , давайте объединим наши городские агломерации в одну агломерацию».

Вам, как министру экономики Древляндии интересно в каждый момент времени знать размер самой большой городской агломерации, количество городов, в неё входящее.

Формат входных данных

Входные данные состоят из одного или нескольких тестов. На первой строке число тестов t, далее t однотипных тестов, каждый из которых задан следующим образом.

На 1-й строке n ($2 \le n \le 10^5$). На 2-й строке числа $p_1, p_2, \dots p_{n-1}$: $1 \le p_i < i - \forall$ города номер города предков. На 3-й строке перестановка из n-1 числа от 1 до n-1 – порядок операций слияния, число x обозначает, что регионы городов x и p_x сливаются в один.

Сумма n по всем тестам также не превосходит 10^5 .

Формат выходных данных

Для каждого теста выведите одну строку из n-1 числа, числа в этой строке – размеры максимальных регионов после каждой из операций слияния в тесте.

Пример

stdin	stdout
3	2
2	2 3 4
0	2 2 4
1	
4	
0 1 2	
3 2 1	
4	
0 1 2	
1 3 2	

Подсказка по решению

Просто DSU и хранить размеры.

Задачи здорового человека

Задача 10С. Разрезание графа [0.4 (3.5), 256]

Дан неориентированный граф. Над ним в заданном порядке производят операции следующих двух типов:

- cut разрезать граф, то есть удалить из него ребро;
- ask проверить, лежат ли две вершины графа в одной компоненте связности.

Известно, что после выполнения всех операций типа cut рёбер в графе не осталось. Найдите результат выполнения каждой из операций типа ask.

Формат входных данных

Первая строка входного файла содержит три целых числа, разделённые пробелами — количество вершин графа n, количество рёбер m и количество операций k ($1 \le n \le 50\,000$, $0 \le m \le 100\,000$, $m \le k \le 150\,000$).

Следующие m строк задают рёбра графа; i-ая из этих строк содержит два числа u_i и v_i $(1 \le u_i, v_i \le n)$, разделённые пробелами — номера концов i-го ребра. Вершины нумеруются с единицы; граф не содержит петель и кратных рёбер.

Далее следуют k строк, описывающих операции. Операция типа **cut** задаётся строкой "**cut** u v" $(1 \le u, v \le n)$, которая означает, что из графа удаляют ребро между вершинами u u v. Операция типа **ask** задаётся строкой "**ask** u v" $(1 \le u, v \le n)$, которая означает, что необходимо узнать, лежат ли в данный момент вершины u u v в одной компоненте связности. Гарантируется, что каждое ребро графа встретится в операциях типа **cut** ровно один раз.

Формат выходных данных

Для каждой операции ask во входном файле выведите на отдельной строке слово "YES", если две указанные вершины лежат в одной компоненте связности, и "NO" в противном случае. Порядок ответов должен соответствовать порядку операций ask во входном файле.

Пример

stdin	stdout
3 3 7	YES
1 2	YES
2 3	NO
3 1	NO
ask 3 3	
cut 1 2	
ask 1 2	
cut 1 3	
ask 2 1	
cut 2 3	
ask 3 1	

Подсказка по решению

Разрезать сложно. Просто соединять. Что же делать?

Задача 10D. Больные вершины [0.3 (3), 256]

Случилось страшное, в древнем великом дереве вершины начали заболевать. Вы пока не понимаете причину болезни, пытаетесь разобраться, для этого нужно уметь быстро узнавать ближайшую к i в направлении корня больную вершину.

Формат входных данных

Входные данные состоят из одного или нескольких тестов. На первой строке число тестов t, далее t однотипных тестов, каждый из которых задан следующим образом.

На 1-й строке число вершин в дереве n $(2 \le n \le 10^5)$ и число запросов q $(1 \le q \le 10^5)$. Корень дерева – вершина 1. На 2-й строке числа $p_2, p_3, \ldots p_n \colon 1 \le p_i < i$. p_v – отец вершины v в дереве. Изначально все вершины здоровы. Следующие q строк содержат заросы вида «? i» – найти ближайшую больную от i в направлении корня и «- i» – вершина i заболела.

Сумма n и q по всем тестам также не превосходит 10^5 .

Формат выходных данных

Для каждого теста выведите одну строку, содержащую ответы на запросы вида «?». Если больных в направлении корня нет, ответом будет -1.

Пример

stdin	stdout
3	-1 1 2
2 5	-1 -1
1	-1 2 2
? 2	
- 1	
? 2	
- 2	
? 2	
3 4	
1 1	
- 2	
? 3	
- 3	
? 1	
6 4	
1 2 3 4 5	
- 2	
? 1	
? 2	
? 6	

Подсказка по решению

DSU. Опять идея «смотреть с конца». Опять идея сжатия путей.

Кстати, вы знали, что на практике, если из эвристик «ранговая» и «сжатие путей» реализовать только вторую, то работает быстрее?

ДЗ #10, MST и DSU СП6 ВШЭ, Магистры, 13 ноября 2024

Для искателей острых ощущений

Задача 10Е. Ребра добавляются, граф растет [0.7 (6), 256]

В неориентированный граф последовательно добавляются новые ребра. Изначально граф пустой. После каждого добавления нужно говорить, является ли текущий граф двудольным.

Формат входных данных

На первой строке n — количество вершин, m — количество операций «добавить ребро». Следующие m строк содержат пары чисел от 1 до n — описание добавляемых ребер.

Формат выходных данных

Выведите в строчку m нулей и единиц. i-й символ должен быть равен единице, если граф, состоящий из первых i ребер, является двудольным.

$$1 \le n, m \le 300\,000$$

Примеры

stdin	stdout
3 3	110
1 2	
2 3	
3 1	

Задача 10 F. Электросеть [0.3 (3.5), 256]

Дан граф. Вершины — точки на плоскости. Между каждой парой городов i, j можно построить дорогу. Стоимость дороги $(|x_i-x_j|+|y_i-y_j|)\cdot(k_i+k_j)$. А ещё в каждом городе можно построить электростанцию за стоимость c_i . Изначально дорог нет. Нужно за минимальную суммарную стоимость сделать так, чтобы в каждой компоненте связности была минимум одна электростанция.

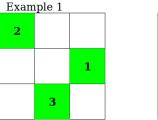
Формат входных данных

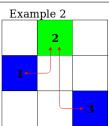
В первой строке записано одно целое число n ($1 \le n \le 2000$) — количество городов. Затем следует n строк. В i-й строке записаны два целых числа x_i ($1 \le x_i \le 10^6$) и y_i ($1 \le y_i \le 10^6$) — координаты i-го города. В следующей строке записаны n целых чисел c_1, c_2, \ldots, c_n ($1 \le c_i \le 10^9$) — цена установки электростанции в i-м городе. В последней строке записаны n целых чисел k_1, k_2, \ldots, k_n ($1 \le k_i \le 10^9$).

Формат выходных данных

В первой строке выведите суммарную стоимость.

Далее информацию где строить электростанции – число городов, сами города.


Далее информацию, какие города соединять – число дорог, какие города соединять.


Если существует несколько способов так выбрать города и соединения, чтобы получить конструкцию минимальной цены, то выведите любую из них.

Примеры

stdin	stdout
3	8
2 3	3
1 1	1 2 3
3 2	0
3 2 3	
3 2 3	
3	27
2 1	1
1 2	2
3 3	2
23 2 23	1 2
3 2 3	2 3

Замечание

Города с электростанциями раскрашены зеленым, остальные — синим, дороги красным.

В первом примере цена строительства электростанций во всех городах равна 3+2+3=8. Можно показать, что больше никакая конфигурация не стоит меньше 8 иен.

Во втором примере цена строительства электростанции в городе 2 равна 2. Стоимость соединения городов 1 и 2 равна $2 \cdot (3+2)$, соединения городов 2 и 3 равна $3 \cdot (2+3)$. Итого 27.