Содержание

Must have		2
Задача 6А.	Зайчик [1, 256]	2
Задача 6В.	Разложение на кубы [1, 256]	3
Задача 6С.	Рюкзак [1, 256]	4
Задача 6D.	Калькулятор [1, 256]	5
Задачи здор	ового человека	6
Задача 6Е.	Три последовательности [1, 256]	6
Задача 6F.	НПП [1, 256]	7
Задача 6 G .	Почтовые отделения [1, 256]	8
Для искател	ей острых ощущений	9
Задача 6Н.	Восстановление [1, 256]	9
Задача 61. Н	Наибольшая общая возрастающая [1, 256]	10

У вас не получается читать/выводить данные? Воспользуйтесь примерами (c++) (python).

Обратите внимание, входные данные лежат в **стандартном потоке ввода** (он же stdin), вывести ответ нужно в **стандартный поток вывода** (он же stdout).

Must have

Задача 6А. Зайчик [1, 256]

Зайчик прыгает по прямой просеке, для удобства разделённой на n клеток. Клетки пронумерованы по порядку натуральными числами от 1 до n. Некоторые клетки заболочены: если зайчик прыгнет на такую клетку, ему несдобровать. Некоторые другие клетки просеки поросли вкусной зелёной травой: прыгнув на такую клетку, зайчик сможет отдохнуть и подкрепиться.

Зайчик начинает свой путь из клетки с номером 1 и хочет попасть в клетку с номером n, по пути ни разу не провалившись в болото и скушав как можно больше вкусной зелёной травы. Конструктивные особенности зайчика таковы, что из клетки с номером k он может прыгнуть лишь в клетки с номерами k+1, k+3 и k+5.

Выясните, какое максимальное количество клеток с травой сможет посетить зайчик на своём пути.

Формат входных данных

В первой строке входного файла задано число n — количество клеток ($2 \le n \le 1000$). Вторая строка состоит из n символов; i-ый символ соответствует i-ой клетке просеки. Символ 'w' обозначает болото, символ '" — зелёную траву, а символ '.' соответствует клетке без каких-либо особенностей. Гарантируется, что первая и последняя клетки не содержат болот и травы.

Формат выходных данных

В первой строке выходного файла выведите одно число — максимальное количество клеток с травой, которые зайчик сможет посетить на своём пути. Если зайчику не удастся оказаться в клетке с номером n, выведите -1.

Примеры

stdin	stdout
4	2
."".	
5	0
.₩"	
9	-1
.www.www.	

Задача 6В. Разложение на кубы [1, 256]

Дано целое число от n, представить его в виде суммы минимального числа кубов.

Формат входных данных

В этой задаче мультитест. Каждая строка входных данных содержит одно целое n от 1 до 50 000. Количество n в одном тесте от 1 до 10 000.

Формат выходных данных

Для каждого n на отдельной строке минимальное количество кубов в разложении.

Примеры

stdin	stdout
7	7
8	1
10	3
43	3

Замечание

$$7 = 1^{3} + 1^{3} + 1^{3} + 1^{3} + 1^{3} + 1^{3} + 1^{3}$$

$$8 = 2^{3}$$

$$10 = 2^{3} + 1^{3} + 1^{3}$$

$$43 = 2^{3} + 2^{3} + 3^{3}$$

Подсказка по решению

Важно посчитать динамику 1 раз, а не 10 000!

Задача 6С. Рюкзак [1, 256]

Найдите максимальный вес золота, который можно унести в рюкзаке вместительностью S, если есть N золотых слитков с заданными весами.

Формат входных данных

В первой строке входного файла запианы два числа — S и N (1 $\leqslant S \leqslant 10\,000,$ 1 $\leqslant N \leqslant 300).$

Далее следует N неотрицательных целых чисел, не превосходящих $100\,000$ — веса слитков.

Формат выходных данных

Выведите искомый максимальный вес.

Примеры

stdin	stdout
10 3	9
1 4 8	
20 4	19
5 7 12 18	

Подсказка по решению

Самая простая версия рюкзака.

Лучше пишите с $\mathcal{O}(S)$ памяти. И быстрее, и код короче.

Задача 6D. Калькулятор [1, 256]

Имеется калькулятор, который выполняет следующие операции:

- \bullet Умножить число X на 2.
- Умножить число X на 3.
- Прибавить к числу X единицу.

Определите, какое наименьшее количество операций требуется, чтобы получить из числа 1 число N.

Формат входных данных

Во входном файле написано натуральное число N, не превосходящее 10^6 .

Формат выходных данных

В первой строке выходного файла выведите минимальное количество операций. Во второй строке выведите числа, последовательно получающиеся при выполнении операций. Первое из них должно быть равно 1, а последнее N.

Примеры

stdin	stdout
1	0
	1
5	3
	1 3 4 5
962340	17
	1 3 9 27 54 55 165 495 1485 4455
	8910 17820 17821 53463 160389
	160390 481170 962340

Подсказка по решению

В этой задаче самое важное – потренироваться восстанавливать ответ.

Задачи здорового человека

Задача 6Е. Три последовательности [1, 256]

Даны три последовательности целых чисел. Ваша задача— найти **длину** их наибольшей общей подпоследовательности.

Формат входных данных

Входной файл содержит описание трех последовательностей. Каждая последовательность задается двумя строчками. Первая строка содержит длину последовательности n ($1 \le n \le 100$), а вторая — ее элементы (32-х битные целые числа).

Формат выходных данных

Выведите длину наибольшей общей подпоследовательности.

Примеры

stdin	stdout
3	2
1 2 3	
3	
2 1 3	
3	
1 3 5	
3	0
1 2 3	
3	
4 5 6	
3	
1 3 5	

Подсказка по решению

Не бойтесь задачи. Она такая же, как уже изученная вами.

Только динамика теперь трёхмерная.

Задача 6F. НПП [1, 256]

Для заданной числовой последовательности a_1, a_2, \ldots, a_n требуется найти длину максимальной последовательнократной подпоследовательности.

Для последовательнократной подпоследовательности $a_{k_1}, a_{k_2}, \ldots, a_{k_t}$ ($k_1 < k_2 < \cdots < k_t$) верно, что $a_{k_i}|a_{k_j}$ при $1 \le i < j \le t$ (утверждение «a|b» эквивалентно «b кратно a»). Подпоследовательность из одного элемента полагается последовательнократной по определению.

Формат входных данных

В первой строке входного файла записано одно натуральное число N ($1 \le N \le 1\,000$) — количество чисел в исходной последовательности. Далее следует N натуральных чисел, не превосходящих $2 \cdot 10^9$ — сама последовательность.

Формат выходных данных

Вывести единственное число, равное искомому количеству.

Примеры

stdin	stdout
4	3
3 6 5 12	

Задача 6G. Почтовые отделения [1, 256]

Вдоль прямой дороги расположены деревни. Дорога представляется целочисленной осью, а расположение каждой деревни задается одним целым числом — координатой на этой оси. Никакие две деревни не имеют одинаковых координат. Расстояние между двумя деревнями вычисляется как модуль разности их координат.

В некоторых, не обязательно во всех, деревнях будут построены почтовые отделения. Деревня и расположенное в ней почтовое отделение имеют одинаковые координаты. Почтовые отделения необходимо расположить в деревнях таким образом, чтобы общая сумма расстояний от каждой деревни до ближайшего к ней почтового отделения была минимальной.

Формат входных данных

В первой строке содержатся два целых числа: количество деревень n ($1 \le n \le 300$) и количество почтовых отделений m ($1 \le m \le 30$), $m \le n$. Вторая строка содержит n целых чисел в возрастающем порядке, являющихся координатами деревень. Для каждой координаты x верно $1 \le x \le 10^4$.

Формат выходных данных

Первая строка выходного файла должна содержать одно целое число — общую сумму расстояний от каждой деревни до её ближайшего почтового отделения. Вторая строка должна содержать m целых чисел в возрастающем порядке. Эти числа являются искомыми координатами почтовых отделений. Если для заданного расположения деревень есть несколько решений, необходимо найти любое из них.

Пример

stdin	stdout
10 5	9
1 2 3 6 7 9 11 22 44 50	2 7 22 44 50

Подсказка по решению

Разобрана на практике. $\mathcal{O}(n^2m)$ точно получит ОК.

Для искателей острых ощущений

Задача 6Н. Восстановление [1, 256]

Денис обнаружил ошибку в своей программе, которая должна удалять все символы из строки кроме "(" и ")". Оказывается, некоторые скобки заменяются на что-то нечитаемое.

Теперь его заинтересовал вопрос, сколько различных правильных скобочных последовательностей могут являться результатом правильного алгоритма.

Формат входных данных

Единственная строка входного файла содержит строку из круглых скобок и знаков вопроса, где вопросами обозначены утраченные символы. Вопрос можно заменить на ровно одну любую скобку. Длина строки не превосходит 10000, но может быть нечетной.

Формат выходных данных

Выведите одно число — количество различных скобочных последовательностей, удовлетворяющих шаблону Дениса, по модулю $10^9 + 7$.

Пример

stdin	stdout
(??()?	2

Подсказка по решению

Вряд ли на питоне можно получить ОК. Сорри, так бывает.

Задача 61. Наибольшая общая возрастающая [1, 256]

Даны две последовательности чисел — a и b. Нужно найти наибольшую общую возрастающую подпоследовательность. Более формально: такие $1\leqslant i_1< i_2<\cdots< i_k\leqslant a.n$ и $1\leqslant j_1< j_2\cdots< j_k\leqslant b.n$, что $\forall t: a_{i_t}=b_{j_t}, a_{i_t}< a_{i_{t+1}}$ и k максимально.

Формат входных данных

На первой строке целые числа n и m от 1 до $3\,000$ — длины последовательностей. Вторая строка содержит n целых чисел, задающих первую последовательность. Третья строка содержит m целых чисел, задающих вторуя последовательность. Все элементы последовательностей — целые неотрицательные числа, не превосходящие 10^9 .

Формат выходных данных

Выведите одно целое число — длину наибольшей общей возрастающей подпоследовательности.

Пример

stdin	stdout
6 5	2
1 2 1 2 1 3	
2 1 3 2 1	

Подсказка по решению

В этой задаче есть решение за $\mathcal{O}(n^2)$ времени и $\mathcal{O}(n)$ памяти.