2 курс ПМИ, осень 2024/25 Практика по алгоритмам #4

Потоки посложнее 30 сентября

Собрано 30 сентября 2024 г. в 12:44

Содержание

1. Потоки посложнее	1
2. Разбор задач практики	3
3. Домашнее задание	5
3.1. Обязательная часть	5
3.2. Дополнительная часть	5

Потоки посложнее

1. Единственность максимального потока

Дан поток из s в t размера k.

За $\mathcal{O}(E)$ проверить, \exists ли отличный от него поток из s в t размера k?

2. Котята, девочки, собачки

Вспоним задачу из последнего дз. За сколько и почему отработает алгоритм Диница?

3. Многосочетание

Дан двудольный граф. Каждой вершине сопоставлено число a_i .

Выбрать тах число рёбер так, чтобы степени вершин были $\leqslant a_i$.

За сколько будет работать алгоритм Диница в данном случае?

4. Глобальный разрез

В неорграфе без кратных рёбер удалить min число рёбер так, чтобы увеличилось число компонент связности. $\mathcal{O}(V \cdot Flow)$. За сколько работает Форд-Фалекрсон? В каком случае это быстрее чем Каргер-Штейн?

5. Взвешенное удаление графа

Дан орграф. За одно действие можно удалить все входящие в вершину i рёбра за стоимость $a_i \geqslant 0$ или все исходящие за стоимость $b_i \geqslant 0$. Удалить все рёбра за min стоимость.

6. Давайте придумаем LR-поток

- а) Несколько истоков, стоков. Пустить тах поток.
- b) А если мы хотим k_i путей, причём из s_i именно в t_i ?
- с) Даны несколько заводов (производит a_i товара) и магазинов (нуждается в b_j товара) и дорожная сеть. Придумать план перевозок, который удовлетворит все магазины.
- d) Найти любую LR-циркуляцию $(l_e \leqslant f_e \leqslant c_e)$.
- е) Найти любой LR-поток из s в t ($l_e \leqslant f_e \leqslant c_e$).
- f) Найти максимальный LR-поток из s в t ($l_e \leqslant f_e \leqslant c_e$).

7. Нарушение связности

Дан орграф. У каждого ребра есть неотрицательная стоимость удаления. Удалить рёбра минимальной суммарной стоимости так, чтобы из s не было пути в t.

8. Оптимизируем КарШтейна

Научитесь одну фазу алгоритма за $\mathcal{O}(V^4)$ делать не за $\mathcal{O}(V^2)$, а за $\mathcal{O}(E\alpha)$ ($c_e \equiv 1$).

9. Варьируем константы КарШтейна

В Каргере-Штейне мы делимся на несколько веток в момент, когда вероятность ошибки $=\frac{1}{2}$. Делимся ровно на 2 ветки, и в итоге получаем вероятность ошибки $q=1-\frac{1}{\log n}$. А если мы

- а) хотим сделать вероятность ошибки q = 0.75, сколько рекурсивных вызовов сделать?
- b) хотим сделать вероятность ошибки $q = 1 \varepsilon$, сколько рекурсивных вызовов сделать?
- с) Как делать дробное число вызовов?

10. (*) Оптимизированный поток

Научитесь поток размера |f| искать за $\mathcal{O}(|f| \cdot V^2/w)$.

11. (*) Малхотра-Кумар-Махешвари

Идея для оптимизации Диница: давайте научимся за $\approx \mathcal{O}(V)$ насыщать самую «узкую» вершину в нашем слоистом графе. Придумайте поток за $\mathcal{O}(V^3)$.

Разбор задач практики

1. Единственность максимального потока

Кроме нашего потока f есть другой поток f^* iff \exists циркуляция f^*-f в остаточной сети $c-f \Leftrightarrow \exists$ цикл в остаточной сети c-f.

2. Котята, девочки, собачки

 $c_v \leqslant deg_v \Rightarrow \sum c_v \leqslant 2E \Rightarrow$ фаз Диница не более \sqrt{E} . Каждая фаза работает за E. Итого $E\sqrt{E}$.

3. Многосочетание

Добавляем рёбра из истока в левую долю, из правой доли в сток.

На добавленных рёбрах пропускные способности a_i , на рёбрах исходного графа 1.

Ищем максимальный поток, ответ – насыщенные ребра исходного графа.

Диниц за $\mathcal{O}(E\sqrt{E})$ по первой теореме Карзанова.

4. Глобальный разрез

Вершина 1 лежит в какой-то половине разреза, нужно найти вершину, лежащую в другой. Фиксируем любой исток и перебираем сток. Пустили поток, нашли разрез. Время $\mathcal{O}(V \cdot Flow)$. Размер i-го потока не более $\deg_i \Rightarrow$ суммарный размер всех потоков не более E \Rightarrow даже обычный Форд-Фалкерсон даст время $\mathcal{O}(E^2)$.

5. Взвешенное удаление графа

Раздвоили вершины, ребро (u, v) перешло в (u_L, v_R) . Вес u_L равен b_v , вес v_R равен a_v , ищем минимальное по весу вершинное покрытие.

6. Давайте придумаем LR-поток

- а) Несколько истоков, стоков. Пустить тах поток. Добавим общий исток и общий сток. Пропускные способности $= +\infty$.
- b) k_i путей, из s_i именно в t_i Это NP-трудно.
- с) Транспортная задача (избытки и недостатки). Добавим общий исток и общий сток. Пропускные способности $=a_i, b_i$.
- d) Найти любую LR-циркуляцию $(l_e \leqslant f_e \leqslant c_e)$.
 - 1. \forall ребра e пустим l_e единиц потока.

Для ребра $e\colon a\to b$ образуется недостаток l_e в a и избыток l_e в b.

2. В каждой вершине сложили избытки и недостатки.

Получили предыдущую задачу на графе с пропускными способностями r_e-l_e .

- е) Найти любой LR-поток из s в t ($l_e \leqslant f_e \leqslant c_e$). Добавим ещё и ребро $t \to s$ пропускной способности $+\infty$.
- f) Найти максимальный LR-поток из s в t $(l_e \leqslant f_e \leqslant c_e)$. Максимальный LR-поток $-f^*$, мы уже нашли какой-то LR-поток f. Заметим, что f^*-f максимальный (уже не LR, а обычный) поток в G_f .

7. Нарушение связности

Нужно просто найти min разрез в графе, где c_e = вес ребра.

8. Оптимизируем КарШтейна

Сделаем random_shuffle рёбер и будем их добавлять в таком порядке, пока в графе не останется 2 компоненты связности. СНМ даёт времени $\mathcal{O}(m\alpha)$ либо $\mathcal{O}(m+n\log n)$.

9. Варьируем константы КарШтейна

q – вероятность ошибки $\Rightarrow q = \frac{1}{2} + \frac{1}{2}q^k$.

- a) $q = 0.75 \Rightarrow 2(0.75 0.5) = 0.75^k \Leftrightarrow 0.5 = 0.75^k \Rightarrow k = \log 0.5 / \log 0.75 \approx 2.409$
- b) $q = 1 \varepsilon \Rightarrow (1 \varepsilon)^k = (1 \varepsilon \frac{1}{2})/\frac{1}{2} \Rightarrow 1 k\varepsilon + \mathcal{O}(\varepsilon^2) = 1 2\varepsilon \Rightarrow k = 2 + \mathcal{O}(\varepsilon)$
- с) Сделать a+b: $a \in \mathbb{Z}, b \in [0,1)$ вызовов \Leftrightarrow сделать a вызовов и (a+1)-й с вероятностью b.

10. Оптимизированный поток

Мы посетим всего V вершин. $3a\partial a \cdot a \cdot a$ научиться ходить в непосещённую вершину за $\mathcal{O}(V/w)$. Пусть used — bitset посещённых вершин \Rightarrow

Когда стоим в вершине v, переходим в младший бит g[v] & ~used.

11. (*) Малхотра-Кумар-Махешвари

Оставим в графе только вершины $v: \exists s \leadsto v \leadsto t$. На оставшемся графе определим:

$$c[v] = \min(in[v], out[v]), in[v] = \sum_{e \in in[v]} c_e, out[v] = \sum_{e \in out[v]} c_e$$

Выберем за $\mathcal{O}(V)$ среди $v \colon c[v] > 0$ вершину $x \colon c[x] = \min$. Заметим, что из v в t поток можно толкать жадно – ему всегда есть куда утечь. Аналогично из s в v (толкаем из v по обратным рёбрам). Время на проталкивания c[v] единиц потока из v в s и t равно $V + k_i$, где k_i – количество рёбер, по которым произошло насыщающее проталкивание. Если ребро насытилось, его сразу можно удалить из графа $\Rightarrow \sum k_i \leqslant E \Rightarrow$ суммарное время работы алгоритма $\mathcal{O}(V^2 + E)$.

Домашнее задание

3.1. Обязательная часть

1. (1.5) Глобальный вершинный разрез

Удалить в связном неориентированном графе минимальное число **вершин** так, чтобы граф потерял связность. $\mathcal{O}(\text{Polynom}(V, E))$.

Внимание: решение «перебрать одну вершину не работает». Почему?

(+0.5) Оценить время работы решения, использующего Диница.

2. (3) Округление матрицы

Дана матрица из вещественных положительных чисел. Необходимо так округлить вверх или вниз до целых все элементы матрицы, чтобы суммы в строках и столбцах тоже округлились вверх или вниз до целых: даны $a_{ij} \in \mathbb{R}$, найти $b_{ij} \in \mathbb{Z}$:

$$b_{ij} = \lceil a_{ij} \rceil \lor b_{ij} = \lfloor a_{ij} \rfloor$$
 и $\forall_i \sum_j b_{ij} = \lceil \sum_j a_{ij} \rceil \lor \sum_j b_{ij} = \lfloor \sum_j a_{ij} \rfloor$, то же самое для \forall столбца j .

3. (2) Улучшаем Каргера-Штейна

Модифицируйте алгоритм для работы с произвольным (\mathbb{R}^+) пропускными способностями. Обоснуйте время работы $\mathcal{O}(V^4)$ простой версии алгоритма.

(a) (1)
$$c_e \in \mathbb{Z}$$
, (b) (1) $c_e \in \mathbb{R}$.

4. (4) Модифицируем Каргера-Штейна

Пусть мы будем делать не два, а четыре рекурсивных вызова. В какой момент оптимальнее всего сделать ветвление, какая асимптотика получится? Если вы умеете давать только оценки снизу или сверху на вероятность или время работы, сделайте это.

5. (2) Улучшаем 1-ю теорему Карзанова

Пусть $C' = \sum_{v} c[v]$, где сумма берётся по всем c[v] кроме $\mathcal{O}(1)$ максимальных. Докажите, что число фаз алгоритма Диница $\mathcal{O}(\sqrt{C'})$.

Подсказка: вспомните, как доказывать обычную версию теоремы Карзанова?

3.2. Дополнительная часть

1. (3) Поток в планарном графе

Дана укладка планарного графа. Вершинам сопоставлены точки на плоскости, рёбра — отрезки между вершинами, рёбра не пересекаются. У рёбер есть пропускные способности. Граф неориентированный. Даны две вершины s и t, лежащие на одной грани. Задача: за $\mathcal{O}(Dijkstra)$ найти величину максимального потока из s в t.

(4) Задача на строки?!

Решить за полином. Даны две строки s и p из символов «0», «1», «?».

Нужно заменить все «?» на нули и единицы так, чтобы d(s,p) было минимально.

Здесь d(s,p) равно сумме расстояний Хэмминга от p до всех подстрок s длины |p|.